Compare commits

...

416 Commits

Author SHA1 Message Date
4e7072349e Merge 64136b8410 into 701819d018 2025-05-13 09:02:33 -06:00
701819d018 Revert "Update README.md"
This reverts commit 68e151b2bd.
2025-05-13 20:14:08 +05:30
68e151b2bd Update README.md 2025-04-29 17:13:30 +05:30
06ff272541 feat(openai): add GPT 4.1 models 2025-04-29 13:10:14 +05:30
4154d5e4b1 Merge branch 'pr/629' 2025-04-23 20:35:52 +05:30
64136b8410 docker: configure config.toml using environment variable
Signed-off-by: Navratan Lal Gupta <navilg0409@gmail.com>
2025-04-14 00:13:01 +05:30
1862491496 feat(settings): add LM Studio API URL 2025-04-12 11:59:05 +05:30
073b5e897c feat(app): lint & beautify 2025-04-12 11:58:52 +05:30
9a332e79e4 Merge branch 'ItzCrazyKns:master' into feature/lm-studio-provider 2025-04-11 20:07:58 +04:00
72450b9217 Merge pull request #731 from ClawCloud-Ron/master
docs: add ClawCloud Run button
2025-04-11 21:20:44 +05:30
7e1dc33a08 Implement provider formatting improvements and fix client-side compatibility
- Add PROVIDER_INFO metadata to each provider file with proper display names
- Create centralized PROVIDER_METADATA in index.ts for consistent reference
- Update settings UI to use provider metadata for display names
- Fix client/server compatibility for Node.js modules in config.ts
2025-04-11 19:18:19 +04:00
aa240009ab Feature: Add LM Studio provider integration - Added LM Studio provider to support OpenAI compatible API - Implemented chat and embeddings model loading - Updated config to include LM Studio API endpoint 2025-04-11 19:18:19 +04:00
41b258e4d8 Set speech message before return 2025-04-08 23:17:52 -07:00
da1123d84b feat(groq): update model name 2025-04-07 23:30:51 +05:30
627775c430 feat(groq): remove maverick (not being run yet) 2025-04-07 23:29:51 +05:30
245573efca feat(groq): update model list 2025-04-07 23:23:18 +05:30
28b9cca413 docs: add ClawCloud Run button 2025-04-07 16:49:59 +08:00
a85f762c58 feat(package): bump version 2025-04-07 10:27:04 +05:30
3ddcceda0a feat(gemini-provider): update embedding models 2025-04-07 10:26:29 +05:30
e226645bc7 feat(app): lint & beautify 2025-04-06 13:48:58 +05:30
5447530ece Merge branch 'feat/deepseek-provider' 2025-04-06 13:48:10 +05:30
ed6d46a440 Merge branch 'pr/719' 2025-04-06 13:47:57 +05:30
588e68e93e feat(providers): add deepseek provider 2025-04-06 13:37:43 +05:30
c4440327db Merge pull request #720 from OmarElKadri/master
feat(search): add optional systemInstructions to API request body
2025-04-06 10:34:29 +05:30
64e2d457cc feat(search): add optional systemInstructions to API request body 2025-04-05 19:06:18 +01:00
bf705afc21 feat(message-box): change styles, lint & beautify 2025-04-05 22:32:56 +05:30
2e4433a6b3 feat(message-box): support [1,2,3,4] citation format instead of just [1][2][3] 2025-04-05 15:24:45 +00:00
09661ae11d feat(prompts): fix typo, closes #715 2025-04-02 13:02:28 +05:30
a8d410bc2f Merge pull request #716 from ItzCrazyKns/feat/system-instructions
Feat/system instructions
2025-04-01 15:59:18 +05:30
7d52fbb368 feat(settings): add system instructions 2025-04-01 15:50:24 +05:30
4b8e0ea1aa feat(chat-window): handle system instructions 2025-04-01 15:50:05 +05:30
5b1055e8c9 feat(routes): add system instructions 2025-04-01 15:49:36 +05:30
4b2a7916fd feat(docker-build): fix image tag errors 2025-03-30 22:51:59 +05:30
97e64aa65e Merge branch 'pr/703' 2025-03-30 21:12:27 +05:30
90e303f737 feat(search): lint & beautify, update content type 2025-03-30 21:12:04 +05:30
7955d8e408 Merge pull request #705 from ottsch/add-gemini-2.5
feat(models): Update Gemini chat models
2025-03-29 21:53:02 +05:30
b285cb4323 Update Gemini chat models 2025-03-28 17:07:11 +01:00
5d60ab1139 feat(api): Switch to newline-delimited JSON streaming instead of SSE 2025-03-27 13:04:09 +01:00
9095996356 Merge branch 'ItzCrazyKns:master' into master 2025-03-27 13:01:09 +01:00
310c8a75fd feat(routes): fix typo, closes #692 2025-03-27 11:36:58 +05:30
191d1dc25f refactor(api): clean up comments and improve abort handling in search route 2025-03-26 11:32:46 +01:00
d3b2f8983d feat(api): add streaming support to search route 2025-03-26 11:28:05 +01:00
27286465a3 feat(package): bump version 2025-03-26 13:34:09 +05:30
defc677932 feat(providers): update gemini & anthropic provider 2025-03-25 22:01:24 +05:30
45df9dc5bf feat(readme): update networking guide 2025-03-21 11:27:12 +05:30
06db95d7c0 feat(dockerfile): fix onnx issues 2025-03-21 11:25:28 +05:30
74f7eaed6e feat(workflow): fix build errors 2025-03-20 13:43:29 +05:30
dddd944a18 feat(workflow): update docker build 2025-03-20 13:22:43 +05:30
7eccd4d75b Merge pull request #679 from ItzCrazyKns/feat/remove-backend
feat(app): fix build errors
2025-03-20 12:48:27 +05:30
62e6c24840 feat(app): fix build errors 2025-03-20 12:47:54 +05:30
04a0342b52 Merge pull request #678 from ItzCrazyKns/feat/remove-backend
Feat/remove backend
2025-03-20 12:42:18 +05:30
5c016127cb feat(package): bump version 2025-03-20 12:41:07 +05:30
8b552010f9 feat(docs): update docs 2025-03-20 12:33:15 +05:30
97804e7b4d feat(config): remove unused vars 2025-03-20 12:30:06 +05:30
33b895b75e feat(app): add search API 2025-03-20 12:29:52 +05:30
048de2cb74 feat(docs): update docs 2025-03-20 12:29:31 +05:30
274e6ca88c feat(sidebar): remove unused state 2025-03-20 11:49:00 +05:30
f628b6e416 feat(groq): remove deprecated model 2025-03-20 11:48:44 +05:30
cf7144db96 feat(providers): add HF transformers 2025-03-20 11:48:26 +05:30
ffa793056d feat(chains): remove think tags 2025-03-20 11:47:54 +05:30
584d02b92a feat(app): add thinking model support 2025-03-20 10:56:03 +05:30
008c7cbec0 feat(chat-window): remove debugging code, 2025-03-20 09:47:32 +05:30
4d1ee79b8d feat(package): migrate db when built 2025-03-20 09:47:12 +05:30
ea638279e5 feat(docker): use standalone build 2025-03-20 09:46:50 +05:30
403d13eb50 feat(package): update scripts 2025-03-19 16:34:55 +05:30
217736d05a feat(app): remove backend 2025-03-19 16:23:27 +05:30
8a24572cd2 feat(app): add upload functionality 2025-03-19 15:32:32 +05:30
649c68f292 feat(ui): fix type errors 2025-03-19 13:42:28 +05:30
bab5dba6e1 feat(app): port history saving features 2025-03-19 13:42:15 +05:30
c24edac16d feat(app): add chat functionality 2025-03-19 13:41:52 +05:30
3150c21f17 feat(icons): fix type errors 2025-03-19 13:41:01 +05:30
c46fd7a9c8 feat(utils): add files utils, remove logger, fix API url 2025-03-19 13:40:35 +05:30
bab32e8d70 feat(app): add suggestions route 2025-03-19 13:40:10 +05:30
1130746f5d feat(app): add image & video search functionality 2025-03-19 13:38:40 +05:30
d1e9361665 feat(routes): add discover route 2025-03-19 13:37:54 +05:30
3bf2337697 feat(app): add db & schema 2025-03-19 13:37:01 +05:30
ee6e197ec0 feat(app): lint & beautify 2025-03-18 11:29:04 +05:30
32f26bb4e8 feat(app): add groq, gemini & anthropic provider 2025-03-18 11:28:47 +05:30
4cb20542a5 feat(config): update file path, add post endpoint 2025-03-18 10:33:32 +05:30
97f6196d9b feat(app): add GET config route 2025-03-18 10:25:09 +05:30
6c227cab6f feat(providers): move providers to UI 2025-03-18 10:24:51 +05:30
e9e34ddff9 feat(ui): add meta search agent 2025-03-18 10:24:33 +05:30
e29a08dc46 feat(ui): add necessary utils 2025-03-18 10:24:16 +05:30
5c313e9bed feat(ui): update packages, add config, add searxng 2025-03-18 10:23:59 +05:30
6b5bd9d79b feat(prompts): move to UI 2025-03-18 10:23:21 +05:30
64d2a467b0 Merge pull request #672 from sjiampojamarn/scrolling
Only set scrollIntoView for user msg.
2025-03-17 12:03:05 +05:30
9a2c4fe3b6 Only set scrollIntoView for user msg. 2025-03-16 22:15:58 -07:00
060c68a900 feat(message-box): lint & beautify 2025-03-14 22:05:07 +05:30
e6b87f89ec feat(sample-config): add custom openai model name 2025-03-08 20:08:27 +05:30
89b5229ce9 Merge pull request #663 from ericdachen/master
Update Readme
2025-03-05 11:11:07 +05:30
7756340dd9 Update README.md 2025-03-05 11:09:19 +05:30
bbd2e9c359 feat(readme): update warp banner 2025-03-05 11:05:25 +05:30
a32eb1dda3 feat(readme): lint & beautify, update anchor URL 2025-03-05 10:55:02 +05:30
aa834f7f04 Update README.md 2025-03-04 14:45:10 -05:00
064c0fbe42 Update README.md 2025-03-04 12:16:10 -05:00
bf4cf8eaeb Update README.md 2025-03-04 12:14:17 -05:00
a24992a3db Merge pull request #655 from ShortCipher5/patch-1
chore: Add Sealos 1-click deployment
2025-03-01 21:56:01 +05:30
d584067bb1 Update README.md 2025-02-27 23:26:45 -08:00
df4350f966 Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2025-02-26 10:40:34 +05:30
652ca2fdf4 Merge pull request #649 from QuietlyChan/fix/light-theme-ui-bug
fix(ui): improve dark mode text color for attachment buttons
2025-02-26 10:36:41 +05:30
216576128d fix(ui): update attachment text color for light and dark modes 2025-02-25 19:26:58 +08:00
bb3f180583 fix(ui): improve dark mode text color for attachment buttons 2025-02-25 17:26:33 +08:00
4d24d73161 Merge pull request #631 from user1007017/patch-1
Update README.md grammatical error
2025-02-20 10:37:33 +05:30
2e166c217b fix(MessageBox): break too long message title 2025-02-19 10:34:51 +08:00
4c73caadf6 feat(custom-openai): save live changes 2025-02-17 16:24:41 +05:30
5f0b87f4a9 Update README.md 2025-02-15 19:06:46 +01:00
8aaee2c40c feat(app): support complex title 2025-02-15 16:48:21 +08:00
115e6b2a71 Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2025-02-15 12:52:30 +05:30
a5c79c92ed feat(settings): add embedding provider settings 2025-02-15 12:52:27 +05:30
db3cea446e Update UPDATING.md 2025-02-15 12:33:43 +05:30
8e683d266a feat(package): bump version 2025-02-15 12:12:57 +05:30
e9ab425cee feat(sample-config): remove unused field 2025-02-15 11:34:14 +05:30
811c0c6fe1 Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2025-02-15 11:31:20 +05:30
cab1aa705c feat(settings): add new settings page 2025-02-15 11:31:08 +05:30
5cbc512322 feat(app): add auto video & image search 2025-02-15 11:29:59 +05:30
41d056e755 feat(handlers): use new custom openai 2025-02-15 11:29:08 +05:30
07dc7d7649 feat(config): update config & custom openai 2025-02-15 11:26:38 +05:30
7ec201d011 Merge pull request #599 from data5650/patch-1
feat: add Gemini 2.0 Flash Exp models
2025-02-07 11:29:29 +05:30
3582695054 feat: add Gemini 2.0 Flash Exp models
# Description
   Added two new Gemini models:
   - gemini-2.0-flash-exp
   - gemini-2.0-flash-thinking-exp-01-21

   # Changes Made
   - Updated src/lib/providers/gemini.ts to include new models
   - Maintained consistent configuration with existing models

   # Testing
   - Tested locally using Docker
   - Verified models appear in UI and are selectable
   - Confirmed functionality with sample queries

   # Additional Notes
   These models expand the available options for users who want to use the latest Gemini capabilities.
2025-02-05 00:47:34 +01:00
46541e6c0c feat(package): update markdown-to-jsx version 2025-02-02 14:31:18 +05:30
f37686189e feat(output-parsers): add empty check 2025-01-31 17:51:16 +05:30
0737701de0 Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2025-01-11 13:11:18 +05:30
5c787bbb55 feat(app): lint & beautify 2025-01-11 13:10:23 +05:30
2dc60d06e3 feat(chat-window): show settings during error on mobile 2025-01-11 13:10:10 +05:30
ec90ea1686 Merge pull request #531 from hacking-racoon/feat/video-slide-stop
feat(SearchVideos): modify Lightbox to pause the prev video when sliding
2025-01-07 12:47:38 +05:30
01230bf1c5 Merge pull request #555 from realies/fix/ws-reconnect
fix(ws-error): add exponential reconnect mechanism
2025-01-07 12:32:06 +05:30
6d9d712790 feat(chat-window): correctly handle server side WS closure 2025-01-07 12:26:38 +05:30
99cae076a7 feat(chat-window): display toast when retried 2025-01-07 11:49:40 +05:30
b7f7d25f54 feat(chat-window): lint & beautify 2025-01-07 11:44:19 +05:30
0ec54fe6c0 feat(chat-window): remove toast 2025-01-07 11:43:54 +05:30
5526d5f60f fix(ws-error): add exponential reconnect mechanism 2025-01-05 17:29:53 +00:00
0f6b3c2e69 Merge branch 'pr/538' 2025-01-05 14:15:58 +05:30
5a648f34b8 Set pageContent correctly 2025-01-04 10:36:33 -08:00
d18e88acc9 Delete msgs only belonging to the chat 2024-12-27 20:55:55 -08:00
409c811a42 feat(ollama): use axios instead of fetch 2024-12-26 19:02:20 +05:30
b5acf34ef8 feat(chat-window): fix bugs handling custom openai, closes #529 2024-12-26 18:59:57 +05:30
d30f714930 feat(SearchVideos): Modify Lightbox to pause the prev video when moving to next one, preventing interference with new video. 2024-12-25 15:19:23 +09:00
ee68095157 Merge pull request #523 from bart-jaskulski/groq-models
Update available models from Groq provider
2024-12-21 18:08:40 +05:30
960e34aa3d Add Llama 3.3 model from Groq
Signed-off-by: Bart Jaskulski <bjaskulski@protonmail.com>
2024-12-19 08:07:36 +01:00
4cb38148b3 Remove deprecated Groq models
Signed-off-by: Bart Jaskulski <bjaskulski@protonmail.com>
2024-12-19 08:07:14 +01:00
c755f98230 Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2024-12-18 19:42:28 +05:30
c3a231a528 feat(readme): add discord server 2024-12-16 20:59:21 +05:30
f30a61c4aa feat(metaSearchAgent): handle undefined content for YT. search 2024-12-16 18:24:01 +05:30
ea74e3013c Merge pull request #519 from yslinear/hotfix
feat(anthropic): update chat models to include Claude 3.5 Haiku and new version for Sonnet
2024-12-15 21:32:49 +05:30
1c3c689039 feat(anthropic): update chat models to include Claude 3.5 Haiku and new version for Sonnet 2024-12-13 17:24:15 +08:00
2c5ca94b3c feat(app): lint and beautify 2024-12-05 20:19:52 +05:30
db7407bfac feat(messageBox): style markdown 2024-12-05 20:19:41 +05:30
5b3e8a3214 feat(prompts): implement new prompt 2024-12-05 20:19:22 +05:30
d79d854e2d Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2024-12-02 21:08:06 +05:30
8cb74f1964 feat(contribution): update guidelines 2024-12-02 21:07:59 +05:30
f88912784b Merge pull request #466 from timoa/fix/docs-markdown-lint
📚 chore(docs): fix Markdown lint issues in the docs
2024-12-01 21:05:23 +05:30
e08d864445 feat(focus): only icon on small devices 2024-11-30 20:58:11 +05:30
e4a0799503 feat(package): bump version 2024-11-29 18:37:02 +05:30
fdb3d09d12 Merge branch 'feat/single-search' 2024-11-29 18:07:33 +05:30
dc4a843d8a feat(agents): switch to MetaSearchAgent 2024-11-29 18:06:00 +05:30
92f66266b0 feat(agents): add a unified agent 2024-11-29 18:05:28 +05:30
177746235a feat(providers): add gemini 2024-11-28 20:47:18 +05:30
ecad065577 feat(searchAgent): handle empty fileIds 2024-11-27 15:13:46 +05:30
64ee19c70a feat(messageHandler): switch to webSearch mode if files 2024-11-25 12:34:37 +05:30
be745501aa feat(package): bump version 2024-11-25 12:23:23 +05:30
aa176c12f6 Merge pull request #484 from ItzCrazyKns/feat/uploads
Add file uploads
2024-11-24 20:29:46 +05:30
4b89008f3a feat(app): add file uploads 2024-11-23 15:04:19 +05:30
c650d1c3d9 feat(ollama): add keep_alive param 2024-11-20 19:11:47 +05:30
874505cd0e feat(package): bump version 2024-11-19 16:32:30 +05:30
b4a80d8ca0 feat(dockerfile): downgrade node version, closes #473 2024-11-19 14:40:24 +05:30
c7bab91803 feat(webSearchAgent): prevent excess results 2024-11-19 10:43:50 +05:30
a58adbfecc Update README.md 2024-11-17 23:01:24 +05:30
9e746aea5e feat(readme): remove ? from image URL 2024-11-17 23:01:02 +05:30
5e1331144a feat(readme): update readme cache 2024-11-17 22:59:29 +05:30
d789c970b1 feat(assets): update screenshot 2024-11-17 22:55:57 +05:30
e699cb2921 Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2024-11-17 19:49:22 +05:30
03eed9693b Merge branch 'pr/451' 2024-11-17 19:48:56 +05:30
011570dd9b Merge pull request #421 from sjiampojamarn/discover-nit
Make Discover link to a new tab
2024-11-17 19:40:05 +05:30
f3e918c3e3 chore(docs): fix Markdown lint issues in the docs 2024-11-15 07:04:45 +01:00
18529391f4 Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2024-11-14 13:35:15 +05:30
a1a7470ca6 feat(package): update markdown-to-jsx 2024-11-14 13:35:10 +05:30
10c5ac1076 Merge pull request #448 from bastipnt/master
add db setup to CONTRIBUTING.md
2024-11-09 20:54:14 +05:30
7c01d2656e fix(EmptyChatMessageInput): focus on mount 2024-11-04 22:00:08 -06:00
afb4786ac0 add db setup to CONTRIBUTING.md 2024-11-03 10:33:01 +01:00
1e99fe8d69 feat(package): bump version 2024-10-31 11:08:49 +05:30
012dfa5a74 feat(listLineOutputParser): handle unclosed tags 2024-10-30 10:29:21 +05:30
65d057a05e feat(suggestions): handle custom OpenAI 2024-10-30 10:29:06 +05:30
3e7645614f feat(image-search): handle custom OpenAI 2024-10-30 10:28:40 +05:30
7c6ee2ead1 feat(video-search): handle custom OpenAI 2024-10-30 10:28:31 +05:30
540f38ae68 feat(empty-chat): add settings for mobile 2024-10-30 09:14:09 +05:30
f1c0b5435b feat(delete-chat): use window.location to refresh page 2024-10-30 09:11:48 +05:30
b33e5fefba feat(navbar): remove comments 2024-10-29 20:00:31 +05:30
03d0ff2ca4 feat(navbar): make delete & plus button work 2024-10-29 19:59:58 +05:30
687cbb365f Discover link to new page 2024-10-20 17:23:43 -07:00
dfb532e4d3 feat(package): bump version 2024-10-18 18:45:23 +05:30
c8cd959496 feat(dockerfile): update backend image 2024-10-18 17:29:26 +05:30
4576d3de13 feat(dockerfile): update docker image 2024-10-18 17:26:02 +05:30
8057f28b20 feat(settings): handle no models 2024-10-18 17:07:09 +05:30
36bb265e1f feat(dockerfile): revert base image 2024-10-18 12:27:56 +05:30
71fc19f525 feat(dockerfile): update registry 2024-10-18 12:24:55 +05:30
c7c0ebe5b6 feat(dockerfile): use NPM registry 2024-10-18 12:15:04 +05:30
8fe1b7c5e3 feat(webSearchAgent): revert prompt 2024-10-18 12:01:56 +05:30
6e0d3baef6 feat(dockerfile): update docker image 2024-10-18 11:50:56 +05:30
54e0bb317a feat(groq): update deprecated models 2024-10-18 11:05:57 +05:30
3e6e57dab0 feat(chat-window): fix rewrite, use messageID 2024-10-17 18:51:11 +05:30
5aad2febda feat(messageHandler): fix duplicate messageIDs 2024-10-17 18:50:43 +05:30
24e1919c5e feat(dockerfile): update image to prevent python errors 2024-10-17 10:46:18 +05:30
c7abd96b05 feat(readme): add networking 2024-10-17 10:01:00 +05:30
3a01eebc04 feat(chat): prevent ws not open errors 2024-10-15 18:04:50 +05:30
7532c436db feat(package): bump version 2024-10-15 16:23:13 +05:30
b9509a5d41 feat(app): lint & beautify 2024-10-15 16:21:29 +05:30
9db847c366 feat(library): enhance UI 2024-10-15 16:21:15 +05:30
19bf71cefc feat(chat-window): only send init msg if ready 2024-10-15 16:21:00 +05:30
61c0347ef2 feat(app): add discover 2024-10-15 16:20:45 +05:30
0a7167eb04 feat(search-api): add optimizationMode 2024-10-11 10:54:08 +05:30
7cce853618 feat(providers): add optimization modes 2024-10-11 10:35:59 +05:30
877735b852 feat(package): update headlessui 2024-10-11 10:35:33 +05:30
1680a1786e feat(image-build): improve build time by caching 2024-10-03 10:41:05 +05:30
66f1e19ce8 feat(image-build): use Docker buildx, publish multi arch images 2024-10-03 09:37:15 +05:30
ae3fc5f802 feat(docs): modify updating docs 2024-10-02 22:54:16 +05:30
9f88d16ef1 feat(docker-compose): use env vars from compose 2024-10-02 22:54:00 +05:30
c233362e70 feat(dockerfile): specify default args 2024-10-02 22:53:45 +05:30
1aaf172246 feat(build-workflow): update head 2024-10-02 22:01:49 +05:30
4bba674134 feat(build-workflow): update branch 2024-10-02 22:00:46 +05:30
dcfe43ebda trigger build 2024-10-02 22:00:04 +05:30
fc5e35b1b1 feat(docker): add prebuilt images 2024-10-02 21:59:40 +05:30
425a08432b feat(groq): add Llama 3.2 2024-09-26 21:37:05 +05:30
e3488366c1 Update SEARCH.md 2024-09-25 17:56:19 +05:30
8902abdcee Update SEARCH.md 2024-09-25 17:54:35 +05:30
15203c123d feat(docs): update search docs 2024-09-25 17:49:16 +05:30
a0aad69f62 feat(readme): update readme 2024-09-25 16:56:41 +05:30
1cfa3398a3 feat(package): bump version 2024-09-25 16:54:44 +05:30
ead2d98a9f feat(search): update types 2024-09-25 16:54:19 +05:30
c52d6ac290 feat(docs): add search API docs 2024-09-25 16:54:07 +05:30
2785cdd97a feat(routes): add search route 2024-09-25 15:27:48 +05:30
1589f16d5a feat(providers): add displayName property 2024-09-24 22:34:43 +05:30
40f551c426 feat(search-button): add empty check 2024-09-15 10:16:20 +05:30
1fcd64ad42 feat(docker-file): use SearXNG URL from env 2024-09-05 18:40:07 +05:30
07e5615860 feat(docker-compose): link config.toml as vol. 2024-09-04 18:54:54 +05:30
c4f52adb45 feat(textarea): handle "/" keys 2024-09-02 11:44:40 +05:30
92abbc5b98 feat(webSearchRetriever): use question instead of input 2024-08-29 16:54:37 +05:30
c952469f08 feat(chaWindow): lint & beautify 2024-08-29 16:51:59 +05:30
449684c419 feat(webSearchAgent): update retriever prompt & change temp 2024-08-29 16:51:42 +05:30
f620252406 feat(linkDocument): add error handling 2024-08-29 16:51:12 +05:30
e8ed4df31a feat(chat-window): close socket on unmount 2024-08-28 14:27:22 +05:30
2873093fee feat(package): bump version 2024-08-28 10:00:05 +05:30
806c47e705 feat(chatwindow): fix infinite loading 2024-08-28 09:53:06 +05:30
ff34d1043f feat(app): lint & format 2024-08-25 15:08:47 +05:30
c521b032a7 feat(agents): fix unresloved types 2024-08-25 15:08:30 +05:30
6b8f7dc32c Merge branch 'pr/309' 2024-08-25 12:03:54 +05:30
8bb3e4f016 feat(agents): update types 2024-08-25 12:03:32 +05:30
51939ff842 feat(webSearchAgent): fix typo, closes #313 2024-08-24 21:48:27 +05:30
e4faa82362 Fix #307, update outdated searxng/settings.yml 2024-08-09 20:53:53 +08:00
9c1936ec2c feat(chat-window): lint & beautify 2024-08-04 18:14:46 +05:30
c4932c659a feat(app): lint 2024-07-31 20:17:57 +05:30
96f67c7028 Merge pull request #290 from ItzCrazyKns/canary 2024-07-30 10:15:52 +05:30
61dfeb89b4 feat(package): bump version 2024-07-30 10:10:55 +05:30
8e4f0c6a6d feat(web-search): add URL & PDF searching capibilities 2024-07-30 10:09:05 +05:30
6f50e25bf3 feat(output-parsers): add line output parser 2024-07-30 10:08:29 +05:30
9abb4b654d feat(app): handle unhandled exception & rejection 2024-07-30 10:07:28 +05:30
0a29237732 feat(listLineOutputParser): handle invalid keys 2024-07-30 10:06:52 +05:30
c62e7f091e feat(package): bump version 2024-07-25 20:39:43 +05:30
08379fcad5 feat(ws-connector): fix undefined chat model 2024-07-25 20:36:26 +05:30
cbce39a5dd feat(settings): fix undefined model for custom OpenAI 2024-07-25 20:34:49 +05:30
27f8cfd212 feat(toast): fix theme colors 2024-07-25 20:33:56 +05:30
8a76f92e23 feat(groq): add Llama 3.1 2024-07-23 20:49:17 +05:30
00a52fc3b1 Delete .github/FUNDING.yml 2024-07-23 10:46:32 +05:30
8143eca2c1 feat(readme): remove patreon 2024-07-23 10:45:52 +05:30
9bb0b64044 Merge pull request #279 from zandko/perf/filter-first
perf: Optimize document filtering and sorting for performance
2024-07-23 10:08:54 +05:30
Zan
323f3c516c perf: Optimize document filtering and sorting for performance 2024-07-23 10:06:33 +08:00
c0b3a409dd feat(package): bump version 2024-07-20 09:27:34 +05:30
9195cbcce0 feat(openai): add GPT-4 Omni mini 2024-07-20 09:26:46 +05:30
f02393dbe9 feat(providers): add anthropic 2024-07-15 21:20:16 +05:30
e1732b9bf2 feat(chat-window): fix WS connection errors 2024-07-14 12:37:36 +05:30
fac41d3812 add gemma2-9b-it 2024-07-13 20:20:23 -07:00
27e6f5b9e1 feat(chat-window): unselect unavailable model 2024-07-09 16:21:45 +05:30
8539ce82ad feat(providers): fix loading issues 2024-07-08 15:39:27 +05:30
3b4b8a8b02 feat(providers): add custom_openai 2024-07-08 15:24:45 +05:30
3ffb20b777 feat(backend): fix type errors 2024-07-08 01:31:11 +05:30
f4b58c7157 feat(dockerfile): revert base image back to slim 2024-07-06 15:13:05 +05:30
2678c36e44 feat(agents): fix grammar in prompt, closes 239 & 203 2024-07-06 15:12:51 +05:30
25b5dbd63e feat(providers): separate each provider 2024-07-06 14:19:33 +05:30
c63c9b5c8a feat(readme): update ollama guide 2024-07-03 21:02:21 +05:30
80818983d8 feat(package): bump version 2024-07-03 20:49:13 +05:30
5217d21366 feat(dockerfile): revert to node:slim 2024-07-03 20:47:31 +05:30
57ede99b83 Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2024-07-02 10:52:02 +05:30
c74e16e01c feat(chats): add delete functionality 2024-07-02 10:51:47 +05:30
ce593daab9 Update README.md 2024-06-30 12:39:37 +05:30
fcf9b644af Create FUNDING.yml 2024-06-30 12:34:32 +05:30
6ae825999a feat(readme): update manual install 2024-06-30 10:45:35 +05:30
b291265944 feat(package): add @langchain/community 2024-06-30 10:42:01 +05:30
c62684407d feat(chat-window): handle notFound errors 2024-06-29 12:11:34 +05:30
f4b01a29bb feat(docs): update docs 2024-06-29 11:39:23 +05:30
022cf55db7 feat(docs): add update docs 2024-06-29 11:38:43 +05:30
aeef03fbaf feat(readme): update todo 2024-06-29 11:17:43 +05:30
9588eed710 feat(package): bump version 2024-06-29 11:17:29 +05:30
7d2344dc85 feat(chats): remove comment 2024-06-29 11:11:10 +05:30
799f4d6aee feat(docker-compose): implement data volume 2024-06-29 11:10:26 +05:30
c51ec8ff0f feat(app): implement library feature 2024-06-29 11:09:51 +05:30
61044715e9 feat(msg-handler): update message types 2024-06-29 11:09:31 +05:30
d806c7e581 feat(app): add chats route 2024-06-29 11:09:13 +05:30
93b90dc1c4 feat(db): create schema & config files 2024-06-29 11:08:11 +05:30
7879167b13 feat(package): add better-sqlite3 2024-06-29 11:07:52 +05:30
f7d1364f30 feat(discover): remove unadded page 2024-06-28 09:34:40 +05:30
91bba8eaca feat(utils): accept string in time difference 2024-06-28 09:34:03 +05:30
4545ff1d7d feat(chat-window): adjust color & size 2024-06-25 16:11:39 +05:30
a152e58132 🎉 wip: implemented error state for backend socket connection and othe 2024-06-25 15:43:36 +05:30
9d827d4cc2 feat(package): update WS module 2024-06-24 21:34:14 +05:30
336ceefe2b feat(readme): update connection error docs 2024-06-23 14:36:15 +05:30
9a96fd4788 feat(message-input): focus on / key 2024-06-23 10:46:22 +05:30
87cc86d406 feat(package): bump version 2024-06-23 09:55:25 +05:30
5fd64ef6e6 Merge pull request #168 from WanQuanXie/fix-ui-compile-type-error
fix(ui): ui compile fail
2024-06-23 09:42:07 +05:30
594106aea3 update(ui): remove useless imports 2024-06-07 16:39:14 +08:00
2ae5846b3d fix(ui): ui compile fail
remove both of them, a new feature is coming soon -  mobile device support setting navbar
2024-06-03 18:54:12 +08:00
476303f52b feat(package): bump version 2024-06-02 14:20:23 +05:30
21b315d14b Merge pull request #135 from WanQuanXie/light-mode
Adapt light mode
2024-06-02 12:23:10 +05:30
7c676479d4 feat(theme-switcher): move to settings menu 2024-06-02 12:19:53 +05:30
8e18c32e23 Merge branch 'pr/137' 2024-06-01 10:52:34 +05:30
5f6e61d7a0 feat(docker-compose): remove extra hosts from frontend 2024-06-01 10:51:56 +05:30
32cc430b1b feat(chat-window): use light theme for spinner 2024-05-31 11:08:32 +05:30
cf0abbb9d2 feat(message-actions): move to separate components 2024-05-31 11:02:37 +05:30
dcbcab3122 feat(theme-components): use default exports 2024-05-31 11:02:00 +05:30
90f9edea95 feat(components): use arrow function 2024-05-30 21:38:37 +05:30
6fb0c5b362 Merge pull request #153 from aiyogg/master
feat(docker-compose): update docker-compose.yaml with restart policy
2024-05-30 16:02:09 +05:30
f4628ae52d feat(docker-compose): update docker-compose.yaml with restart policy 2024-05-30 18:12:22 +08:00
9e7e1d76a2 update(ui): correct SearchVideo and SearchImages plus action button hover background color 2024-05-29 14:44:25 +08:00
9a36e48de5 fix(ui): correct the dom elements' position 2024-05-29 14:31:42 +08:00
cfab91ddbf update(ui): restore both message input field dark mode background color 2024-05-29 12:22:29 +08:00
2d9ca3835e update(SettingDialog): restore SettingDialog form input and select field dark mode background color 2024-05-29 12:10:24 +08:00
f061345c74 fix(MessageBox): multi line related item text will turn the plus icon small 2024-05-28 12:48:08 +08:00
5fe08b5ec8 update(MessageBox): parsed markdown message render style fix 2024-05-28 12:45:19 +08:00
6a2f4b8ebf update(EmptyChat): EmptyChat theme switcher hide on lg screen 2024-05-28 11:29:04 +08:00
4eadc0c797 feat(EmptyChat): EmptyChat page add theme switcher 2024-05-28 11:25:31 +08:00
743b67d0e9 update(MessageSources): tune the source panel and inner block background color and border color 2024-05-28 11:11:45 +08:00
c8a16a622e update(ui): remove light-300 color level 2024-05-28 10:55:52 +08:00
cae05bcf5e update(ui): input action panel background adapt to light mode 2024-05-28 10:50:54 +08:00
710b72d053 feat(ui): theme switcher show in responsive mode 2024-05-28 10:48:58 +08:00
af9862c019 update(ui): sidebar in mobile screen adapt light mode 2024-05-28 10:26:24 +08:00
984b80b5ec fix(ui): restore some hover style in dark mode 2024-05-28 10:15:42 +08:00
cb65f67140 update(MessageInput): weaken button border color and background color in light mode 2024-05-28 08:03:49 +08:00
62c7f535db update(MessageSources): source block's mark point adapt light mode
which is before the number in bottom-right corner
2024-05-28 07:57:59 +08:00
943458440c update(MessageSources): weaken sources Dialog panel and inner block border color 2024-05-28 07:50:35 +08:00
d28cfa3319 fix(MessageBox): <code/> type message text-color adapt light mode 2024-05-28 07:47:45 +08:00
b37a6e1560 fix(MessageInputActions): focus mode action hover style align before 2024-05-28 07:36:20 +08:00
0a2934935e update(ui): change light mode color 2024-05-28 07:30:28 +08:00
a5978d544c update(ui): re-manage theme config 2024-05-27 11:49:09 +08:00
d46a844df8 update(ui): realign dark mode style with before 2024-05-27 10:42:40 +08:00
c97a434723 fix(ui): hover style class uses 2024-05-25 07:26:51 +08:00
382fa295e5 fix: add extra_hosts to docker-compose.yaml to allow connection to ollama 2024-05-24 08:19:15 -07:00
90f68ab214 update(SearchVideos): video cover label style adapt light mode 2024-05-24 22:41:06 +08:00
89c30530bc update(Navbar): update Navbar light mode background 2024-05-24 22:08:47 +08:00
776d389c1e refactor(SettingDialog): extract reduplicate code to common component
DO NOT REPEAT YOURSELF!
2024-05-24 21:58:14 +08:00
996cc1b674 feat: adaptive light mode 2024-05-24 21:18:10 +08:00
f9664d48e7 feat: setup theme context config 2024-05-24 18:20:15 +08:00
79cfd0a722 chore(ui): add next-themes 2024-05-24 17:32:14 +08:00
d04ba91c85 feat(routes): use coalescing operator 2024-05-22 10:45:16 +05:30
7853c18b6f feat(docs): update port 2024-05-19 11:35:28 +05:30
64ea4b4289 feat(package): bump version 2024-05-18 13:11:24 +05:30
c61facef13 feat(message-box): display suggestions 2024-05-18 13:11:15 +05:30
fcff93a594 feat(message-actions): update rewrite button 2024-05-18 13:10:54 +05:30
3bfaf9be28 feat(app): add suggestion generation 2024-05-18 13:10:39 +05:30
68b595023e feat(suggestion-generator): update prompt 2024-05-18 13:10:09 +05:30
180e204c2d feat(providers): add GPT-4 omni 2024-05-14 19:33:54 +05:30
0e2f4514b4 feat(readme): update readme 2024-05-13 20:10:44 +05:30
0993c5a760 feat(app): revert port & network changes 2024-05-13 19:58:17 +05:30
100872f2d9 feat(docker-compose): revert network changes 2024-05-12 14:04:05 +05:30
22aee27cda feat(env): remove port 2024-05-12 12:48:01 +05:30
9d30224faa feat(readme): update readme 2024-05-12 12:24:36 +05:30
b622df5a9f feat(docker-compose): update ports, change network type 2024-05-12 12:16:08 +05:30
1b18715f8f feat(docs): update PORT 2024-05-12 12:15:53 +05:30
9816eb1d36 feat(server): add bind address 2024-05-12 12:15:25 +05:30
828eeb0c77 feat(app-dockerfile): add PORT arg 2024-05-12 12:14:52 +05:30
c852bee8ed feat(app): add suspense boundary 2024-05-11 21:19:38 +05:30
954b4bf89a feat(readme): add search engine guide 2024-05-11 12:14:49 +05:30
3ef39c69a7 feat(chat-window): add ability to use q query param 2024-05-11 12:09:39 +05:30
7a28be9e1a feat(readme): add installation docs 2024-05-11 12:09:08 +05:30
a60145137c feat(docs): add networking 2024-05-11 10:23:05 +05:30
7eace1e6bd feat(searxng-container): bind mount & add limiter 2024-05-10 20:55:08 +05:30
baef45b456 Merge branch 'ItzCrazyKns:master' into master 2024-05-10 12:00:18 +08:00
9a7af945b0 lint 2024-05-09 20:43:04 +05:30
09463999c2 feat(routes): add suggestions route 2024-05-09 20:42:03 +05:30
0f6986fc9b feat(agents): add suggestion generator agent 2024-05-09 20:41:43 +05:30
5e940914a3 feat(output-parsers): add list line output parser 2024-05-09 20:39:38 +05:30
ac4cba32c8 fix(SettingsDialog): baseURL storage key 2024-05-09 15:53:57 +08:00
4f5f6be85f feat(working): fix grammatical mistake 2024-05-08 20:05:29 +05:30
17fbc28172 Merge pull request #86 from WanQuanXie/list-map-key-fix
fix(Chat): list map element must specify a unique key
2024-05-08 12:56:00 +05:30
655fbec583 Merge pull request #87 from ItzCrazyKns/develop/1.4.0
Develop/1.4.0
2024-05-08 09:51:10 +05:30
0af66f8b72 fix(Chat): list map element must specify a unique key 2024-05-08 09:57:11 +08:00
8f9c709648 Merge branch 'develop/1.4.0' of https://github.com/ItzCrazyKns/Perplexica into develop/1.4.0 2024-05-07 19:40:36 +05:30
2a1d6e261d feat(backend-dockerfile): use Debian based image 2024-05-07 19:40:33 +05:30
74d1df7d25 feat(package): bump version 2024-05-07 19:40:14 +05:30
e042ff491b feat(compose): remove expose directive 2024-05-07 19:39:59 +05:30
fc1bfb3888 Merge pull request #83 from ItzCrazyKns/master
Merge `master` into `develop/14.0`
2024-05-07 18:46:24 +05:30
d9ba36794a feat(readme): add donations 2024-05-07 13:03:06 +05:30
321e60b993 feat(embedding-providers): load separately, add bert & bge 2024-05-07 12:33:44 +05:30
68837e06ee feat(embedding-providers): add local models 2024-05-07 11:52:53 +05:30
01fc683d32 fix(SettingDialog): use value instead of selected props in <select>
avoid the browser console warning in devServer mode
2024-05-07 06:35:39 +08:00
f88f179920 feat(package): bump version 2024-05-06 20:01:57 +05:30
4cb0aeeee3 feat(settings): conditionally pick selected models 2024-05-06 20:00:56 +05:30
e8fe74ae7c feat(ws-managers): implement better error handling 2024-05-06 19:59:13 +05:30
ed47191d9b feat(readme): update readme 2024-05-06 13:00:07 +05:30
b4d787d333 feat(readme): add troubleshooting 2024-05-06 12:58:40 +05:30
38b1995677 feat(package): bump version 2024-05-06 12:36:13 +05:30
f28257b480 feat(settings): fetch localStorage at state change 2024-05-06 12:34:59 +05:30
9b088cd161 feat(package): bump version 2024-05-05 16:35:06 +05:30
94ea6c372a feat(chat-window): clear storage after error 2024-05-05 16:29:40 +05:30
6e61c88c9e feat(error-object): add key 2024-05-05 16:28:46 +05:30
ba7b92ffde feat(providers): add Content-Type header 2024-05-05 10:53:27 +05:30
f8fd2a6fb0 feat(package): bump version 2024-05-04 15:04:43 +05:30
0440a810f5 feat(http-headers): add Content-Type 2024-05-04 15:01:53 +05:30
e3fef3a1be feat(chat-window): add error handling 2024-05-04 14:56:54 +05:30
4bf69dfdda feat(package): bump version 2024-05-04 10:59:32 +05:30
9f45ecb98d feat(providers): separate embedding providers, add custom-openai provider 2024-05-04 10:51:06 +05:30
c710f4f88c feat(message-box): fix bugs 2024-05-04 10:48:42 +05:30
79f6a52b5b feat(ui-packages): add react-text-to-speech, bump version 2024-05-03 21:16:48 +05:30
c87c2b27a9 feat(message-actions): add speak message, bump version 2024-05-03 18:25:22 +05:30
dafc835774 feat(docs): update URLs 2024-05-03 16:34:32 +05:30
205373d676 feat(docs): add architecture docs 2024-05-03 16:31:58 +05:30
408abd24ea feat(readme): add one click deployment buttons 2024-05-02 15:05:21 +05:30
1d344266aa feat(config): fix typo 2024-05-02 15:04:33 +05:30
1bcff03cfc chore(package): add nodemon, closes #39 2024-05-02 12:24:09 +05:30
149 changed files with 12130 additions and 9560 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 151 KiB

After

Width:  |  Height:  |  Size: 641 KiB

138
.github/workflows/docker-build.yaml vendored Normal file
View File

@ -0,0 +1,138 @@
name: Build & Push Docker Images
on:
push:
branches:
- master
release:
types: [published]
jobs:
build-amd64:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
with:
install: true
- name: Log in to DockerHub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Extract version from release tag
if: github.event_name == 'release'
id: version
run: echo "RELEASE_VERSION=${GITHUB_REF#refs/tags/}" >> $GITHUB_ENV
- name: Build and push AMD64 Docker image
if: github.ref == 'refs/heads/master' && github.event_name == 'push'
run: |
DOCKERFILE=app.dockerfile
IMAGE_NAME=perplexica
docker buildx build --platform linux/amd64 \
--cache-from=type=registry,ref=itzcrazykns1337/${IMAGE_NAME}:amd64 \
--cache-to=type=inline \
--provenance false \
-f $DOCKERFILE \
-t itzcrazykns1337/${IMAGE_NAME}:amd64 \
--push .
- name: Build and push AMD64 release Docker image
if: github.event_name == 'release'
run: |
DOCKERFILE=app.dockerfile
IMAGE_NAME=perplexica
docker buildx build --platform linux/amd64 \
--cache-from=type=registry,ref=itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }}-amd64 \
--cache-to=type=inline \
--provenance false \
-f $DOCKERFILE \
-t itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }}-amd64 \
--push .
build-arm64:
runs-on: ubuntu-24.04-arm
steps:
- name: Checkout code
uses: actions/checkout@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
with:
install: true
- name: Log in to DockerHub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Extract version from release tag
if: github.event_name == 'release'
id: version
run: echo "RELEASE_VERSION=${GITHUB_REF#refs/tags/}" >> $GITHUB_ENV
- name: Build and push ARM64 Docker image
if: github.ref == 'refs/heads/master' && github.event_name == 'push'
run: |
DOCKERFILE=app.dockerfile
IMAGE_NAME=perplexica
docker buildx build --platform linux/arm64 \
--cache-from=type=registry,ref=itzcrazykns1337/${IMAGE_NAME}:arm64 \
--cache-to=type=inline \
--provenance false \
-f $DOCKERFILE \
-t itzcrazykns1337/${IMAGE_NAME}:arm64 \
--push .
- name: Build and push ARM64 release Docker image
if: github.event_name == 'release'
run: |
DOCKERFILE=app.dockerfile
IMAGE_NAME=perplexica
docker buildx build --platform linux/arm64 \
--cache-from=type=registry,ref=itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }}-arm64 \
--cache-to=type=inline \
--provenance false \
-f $DOCKERFILE \
-t itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }}-arm64 \
--push .
manifest:
needs: [build-amd64, build-arm64]
runs-on: ubuntu-latest
steps:
- name: Log in to DockerHub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Extract version from release tag
if: github.event_name == 'release'
id: version
run: echo "RELEASE_VERSION=${GITHUB_REF#refs/tags/}" >> $GITHUB_ENV
- name: Create and push multi-arch manifest for main
if: github.ref == 'refs/heads/master' && github.event_name == 'push'
run: |
IMAGE_NAME=perplexica
docker manifest create itzcrazykns1337/${IMAGE_NAME}:main \
--amend itzcrazykns1337/${IMAGE_NAME}:amd64 \
--amend itzcrazykns1337/${IMAGE_NAME}:arm64
docker manifest push itzcrazykns1337/${IMAGE_NAME}:main
- name: Create and push multi-arch manifest for releases
if: github.event_name == 'release'
run: |
IMAGE_NAME=perplexica
docker manifest create itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }} \
--amend itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }}-amd64 \
--amend itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }}-arm64
docker manifest push itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }}

11
.gitignore vendored
View File

@ -4,8 +4,9 @@ npm-debug.log
yarn-error.log
# Build output
/.next/
/out/
.next/
out/
dist/
# IDE/Editor specific
.vscode/
@ -31,4 +32,8 @@ logs/
# Miscellaneous
.DS_Store
Thumbs.db
Thumbs.db
# Db
db.sqlite
/searxng

View File

@ -35,4 +35,7 @@ coverage
*.swp
# Ignore all files with the .DS_Store extension (macOS specific)
.DS_Store
.DS_Store
# Ignore all files in uploads directory
uploads

View File

@ -6,7 +6,6 @@ const config = {
endOfLine: 'auto',
singleQuote: true,
tabWidth: 2,
semi: true,
};
module.exports = config;

View File

@ -1,30 +1,43 @@
# How to Contribute to Perplexica
Hey there, thanks for deciding to contribute to Perplexica. Anything you help with will support the development of Perplexica and will make it better. Let's walk you through the key aspects to ensure your contributions are effective and in harmony with the project's setup.
Thanks for your interest in contributing to Perplexica! Your help makes this project better. This guide explains how to contribute effectively.
Perplexica is a modern AI chat application with advanced search capabilities.
## Project Structure
Perplexica's design consists of two main domains:
Perplexica's codebase is organized as follows:
- **Frontend (`ui` directory)**: This is a Next.js application holding all user interface components. It's a self-contained environment that manages everything the user interacts with.
- **Backend (root and `src` directory)**: The backend logic is situated in the `src` folder, but the root directory holds the main `package.json` for backend dependency management.
- **UI Components and Pages**:
- **Components (`src/components`)**: Reusable UI components.
- **Pages and Routes (`src/app`)**: Next.js app directory structure with page components.
- Main app routes include: home (`/`), chat (`/c`), discover (`/discover`), library (`/library`), and settings (`/settings`).
- **API Routes (`src/app/api`)**: API endpoints implemented with Next.js API routes.
- `/api/chat`: Handles chat interactions.
- `/api/search`: Provides direct access to Perplexica's search capabilities.
- Other endpoints for models, files, and suggestions.
- **Backend Logic (`src/lib`)**: Contains all the backend functionality including search, database, and API logic.
- The search functionality is present inside `src/lib/search` directory.
- All of the focus modes are implemented using the Meta Search Agent class in `src/lib/search/metaSearchAgent.ts`.
- Database functionality is in `src/lib/db`.
- Chat model and embedding model providers are managed in `src/lib/providers`.
- Prompt templates and LLM chain definitions are in `src/lib/prompts` and `src/lib/chains` respectively.
## API Documentation
Perplexica exposes several API endpoints for programmatic access, including:
- **Search API**: Access Perplexica's advanced search capabilities directly via the `/api/search` endpoint. For detailed documentation, see `docs/api/search.md`.
## Setting Up Your Environment
Before diving into coding, setting up your local environment is key. Here's what you need to do:
### Backend
1. In the root directory, locate the `sample.config.toml` file.
2. Rename it to `config.toml` and fill in the necessary configuration fields specific to the backend.
3. Run `npm install` to install dependencies.
4. Use `npm run dev` to start the backend in development mode.
### Frontend
1. Navigate to the `ui` folder and repeat the process of renaming `.env.example` to `.env`, making sure to provide the frontend-specific variables.
2. Execute `npm install` within the `ui` directory to get the frontend dependencies ready.
3. Launch the frontend development server with `npm run dev`.
2. Rename it to `config.toml` and fill in the necessary configuration fields.
3. Run `npm install` to install all dependencies.
4. Run `npm run db:push` to set up the local sqlite database.
5. Use `npm run dev` to start the application in development mode.
**Please note**: Docker configurations are present for setting up production environments, whereas `npm run dev` is used for development purposes.

118
README.md
View File

@ -1,6 +1,24 @@
# 🚀 Perplexica - An AI-powered search engine 🔎 <!-- omit in toc -->
![preview](.assets/perplexica-screenshot.png)
<div align="center" markdown="1">
<sup>Special thanks to:</sup>
<br>
<br>
<a href="https://www.warp.dev/perplexica">
<img alt="Warp sponsorship" width="400" src="https://github.com/user-attachments/assets/775dd593-9b5f-40f1-bf48-479faff4c27b">
</a>
### [Warp, the AI Devtool that lives in your terminal](https://www.warp.dev/perplexica)
[Available for MacOS, Linux, & Windows](https://www.warp.dev/perplexica)
</div>
<hr/>
[![Discord](https://dcbadge.vercel.app/api/server/26aArMy8tT?style=flat&compact=true)](https://discord.gg/26aArMy8tT)
![preview](.assets/perplexica-screenshot.png?)
## Table of Contents <!-- omit in toc -->
@ -10,8 +28,14 @@
- [Installation](#installation)
- [Getting Started with Docker (Recommended)](#getting-started-with-docker-recommended)
- [Non-Docker Installation](#non-docker-installation)
- [Ollama Connection Errors](#ollama-connection-errors)
- [Using as a Search Engine](#using-as-a-search-engine)
- [Using Perplexica's API](#using-perplexicas-api)
- [Expose Perplexica to a network](#expose-perplexica-to-network)
- [One-Click Deployment](#one-click-deployment)
- [Upcoming Features](#upcoming-features)
- [Support Us](#support-us)
- [Donations](#donations)
- [Contribution](#contribution)
- [Help and Support](#help-and-support)
@ -21,6 +45,8 @@ Perplexica is an open-source AI-powered searching tool or an AI-powered search e
Using SearxNG to stay current and fully open source, Perplexica ensures you always get the most up-to-date information without compromising your privacy.
Want to know more about its architecture and how it works? You can read it [here](https://github.com/ItzCrazyKns/Perplexica/tree/master/docs/architecture/README.md).
## Preview
![video-preview](.assets/perplexica-preview.gif)
@ -33,12 +59,13 @@ Using SearxNG to stay current and fully open source, Perplexica ensures you alwa
- **Normal Mode:** Processes your query and performs a web search.
- **Focus Modes:** Special modes to better answer specific types of questions. Perplexica currently has 6 focus modes:
- **All Mode:** Searches the entire web to find the best results.
- **Writing Assistant Mode:** Helpful for writing tasks that does not require searching the web.
- **Writing Assistant Mode:** Helpful for writing tasks that do not require searching the web.
- **Academic Search Mode:** Finds articles and papers, ideal for academic research.
- **YouTube Search Mode:** Finds YouTube videos based on the search query.
- **Wolfram Alpha Search Mode:** Answers queries that need calculations or data analysis using Wolfram Alpha.
- **Reddit Search Mode:** Searches Reddit for discussions and opinions related to the query.
- **Current Information:** Some search tools might give you outdated info because they use data from crawling bots and convert them into embeddings and store them in a index. Unlike them, Perplexica uses SearxNG, a metasearch engine to get the results and rerank and get the most relevant source out of it, ensuring you always get the latest information without the overhead of daily data updates.
- **API**: Integrate Perplexica into your existing applications and make use of its capibilities.
It has many more features like image and video search. Some of the planned features are mentioned in [upcoming features](#upcoming-features).
@ -57,15 +84,18 @@ There are mainly 2 ways of installing Perplexica - With Docker, Without Docker.
3. After cloning, navigate to the directory containing the project files.
4. Rename the `sample.config.toml` file to `config.toml`. For Docker setups, you need only fill in the following fields:
4. Update environment variables in `docker-compose.yml` file to configure `config.toml`.
- `OPENAI`: Your OpenAI API key. **You only need to fill this if you wish to use OpenAI's models**.
- `OLLAMA`: Your Ollama API URL. You should enter it as `http://host.docker.internal:PORT_NUMBER`. If you installed Ollama on port 11434, use `http://host.docker.internal:11434`. For other ports, adjust accordingly. **You need to fill this if you wish to use Ollama's models instead of OpenAI's**.
- `GROQ`: Your Groq API key. **You only need to fill this if you wish to use Groq's hosted models**
Example:
**Note**: You can change these after starting Perplexica from the settings dialog.
Below section in `config.toml` can be configured using variables `MODELS_CUSTOM_OPENAI_API_KEY="sk-123456"`, `MODELS_CUSTOM_OPENAI_API_URL="http://localopenai:11134"` and `MODELS_CUSTOM_OPENAI_MODEL_NAME="meta-llama/llama-4"`
- `SIMILARITY_MEASURE`: The similarity measure to use (This is filled by default; you can leave it as is if you are unsure about it.)
```toml
[MODELS.CUSTOM_OPENAI]
API_KEY = "sk-123456"
API_URL = "http://localopenai:11134"
MODEL_NAME = "meta-llama/llama-4"
```
5. Ensure you are in the directory containing the `docker-compose.yaml` file and execute:
@ -79,25 +109,81 @@ There are mainly 2 ways of installing Perplexica - With Docker, Without Docker.
### Non-Docker Installation
1. Clone the repository and rename the `sample.config.toml` file to `config.toml` in the root directory. Ensure you complete all required fields in this file.
2. Rename the `.env.example` file to `.env` in the `ui` folder and fill in all necessary fields.
3. After populating the configuration and environment files, run `npm i` in both the `ui` folder and the root directory.
4. Install the dependencies and then execute `npm run build` in both the `ui` folder and the root directory.
5. Finally, start both the frontend and the backend by running `npm run start` in both the `ui` folder and the root directory.
1. Install SearXNG and allow `JSON` format in the SearXNG settings.
2. Clone the repository and rename the `sample.config.toml` file to `config.toml` in the root directory. Ensure you complete all required fields in this file.
3. After populating the configuration run `npm i`.
4. Install the dependencies and then execute `npm run build`.
5. Finally, start the app by running `npm rum start`
**Note**: Using Docker is recommended as it simplifies the setup process, especially for managing environment variables and dependencies.
See the [installation documentation](https://github.com/ItzCrazyKns/Perplexica/tree/master/docs/installation) for more information like updating, etc.
### Ollama Connection Errors
If you're encountering an Ollama connection error, it is likely due to the backend being unable to connect to Ollama's API. To fix this issue you can:
1. **Check your Ollama API URL:** Ensure that the API URL is correctly set in the settings menu.
2. **Update API URL Based on OS:**
- **Windows:** Use `http://host.docker.internal:11434`
- **Mac:** Use `http://host.docker.internal:11434`
- **Linux:** Use `http://<private_ip_of_host>:11434`
Adjust the port number if you're using a different one.
3. **Linux Users - Expose Ollama to Network:**
- Inside `/etc/systemd/system/ollama.service`, you need to add `Environment="OLLAMA_HOST=0.0.0.0"`. Then restart Ollama by `systemctl restart ollama`. For more information see [Ollama docs](https://github.com/ollama/ollama/blob/main/docs/faq.md#setting-environment-variables-on-linux)
- Ensure that the port (default is 11434) is not blocked by your firewall.
## Using as a Search Engine
If you wish to use Perplexica as an alternative to traditional search engines like Google or Bing, or if you want to add a shortcut for quick access from your browser's search bar, follow these steps:
1. Open your browser's settings.
2. Navigate to the 'Search Engines' section.
3. Add a new site search with the following URL: `http://localhost:3000/?q=%s`. Replace `localhost` with your IP address or domain name, and `3000` with the port number if Perplexica is not hosted locally.
4. Click the add button. Now, you can use Perplexica directly from your browser's search bar.
## Using Perplexica's API
Perplexica also provides an API for developers looking to integrate its powerful search engine into their own applications. You can run searches, use multiple models and get answers to your queries.
For more details, check out the full documentation [here](https://github.com/ItzCrazyKns/Perplexica/tree/master/docs/API/SEARCH.md).
## Expose Perplexica to network
Perplexica runs on Next.js and handles all API requests. It works right away on the same network and stays accessible even with port forwarding.
## One-Click Deployment
[![Deploy to Sealos](https://raw.githubusercontent.com/labring-actions/templates/main/Deploy-on-Sealos.svg)](https://usw.sealos.io/?openapp=system-template%3FtemplateName%3Dperplexica)
[![Deploy to RepoCloud](https://d16t0pc4846x52.cloudfront.net/deploylobe.svg)](https://repocloud.io/details/?app_id=267)
[![Run on ClawCloud](https://raw.githubusercontent.com/ClawCloud/Run-Template/refs/heads/main/Run-on-ClawCloud.svg)](https://template.run.claw.cloud/?referralCode=U11MRQ8U9RM4&openapp=system-fastdeploy%3FtemplateName%3Dperplexica)
## Upcoming Features
- [ ] Finalizing Copilot Mode
- [x] Add settings page
- [x] Adding support for local LLMs
- [ ] Adding Discover and History Saving features
- [x] History Saving features
- [x] Introducing various Focus Modes
- [x] Adding API support
- [x] Adding Discover
- [ ] Finalizing Copilot Mode
## Support Us
If you find Perplexica useful, consider giving us a star on GitHub. This helps more people discover Perplexica and supports the development of new features. Your support is appreciated.
If you find Perplexica useful, consider giving us a star on GitHub. This helps more people discover Perplexica and supports the development of new features. Your support is greatly appreciated.
### Donations
We also accept donations to help sustain our project. If you would like to contribute, you can use the following options to donate. Thank you for your support!
| Ethereum |
| ----------------------------------------------------- |
| Address: `0xB025a84b2F269570Eb8D4b05DEdaA41D8525B6DD` |
## Contribution

View File

@ -1,15 +1,29 @@
FROM node:alpine
ARG NEXT_PUBLIC_WS_URL
ARG NEXT_PUBLIC_API_URL
ENV NEXT_PUBLIC_WS_URL=${NEXT_PUBLIC_WS_URL}
ENV NEXT_PUBLIC_API_URL=${NEXT_PUBLIC_API_URL}
FROM node:20.18.0-slim AS builder
WORKDIR /home/perplexica
COPY ui /home/perplexica/
COPY package.json yarn.lock ./
RUN yarn install --frozen-lockfile --network-timeout 600000
RUN yarn install
COPY tsconfig.json next.config.mjs next-env.d.ts postcss.config.js drizzle.config.ts tailwind.config.ts ./
COPY src ./src
COPY public ./public
RUN mkdir -p /home/perplexica/data
RUN yarn build
CMD ["yarn", "start"]
FROM node:20.18.0-slim
WORKDIR /home/perplexica
COPY --from=builder /home/perplexica/public ./public
COPY --from=builder /home/perplexica/.next/static ./public/_next/static
COPY --from=builder /home/perplexica/.next/standalone ./
COPY --from=builder /home/perplexica/data ./data
COPY sample.config.toml /home/perplexica/config.toml
COPY container_entrypoint.sh /home/perplexica/container_entrypoint.sh
RUN mkdir /home/perplexica/uploads
CMD ["bash", "/home/perplexica/container_entrypoint.sh"]

View File

@ -1,18 +0,0 @@
FROM node:alpine
ARG SEARXNG_API_URL
WORKDIR /home/perplexica
COPY src /home/perplexica/src
COPY tsconfig.json /home/perplexica/
COPY config.toml /home/perplexica/
COPY package.json /home/perplexica/
COPY yarn.lock /home/perplexica/
RUN sed -i "s|SEARXNG = \".*\"|SEARXNG = \"${SEARXNG_API_URL}\"|g" /home/perplexica/config.toml
RUN yarn install
RUN yarn build
CMD ["yarn", "start"]

49
container_entrypoint.sh Normal file
View File

@ -0,0 +1,49 @@
#!/usr/bin/env bash
CONFIG_TOML_FILE=/home/perplexica/config.toml
TMP_FILE=${CONFIG_TOML_FILE}.tmp
touch $TMP_FILE
while IFS= read -r line; do
# Check if line is a section header (e.g., "[GENERAL]")
if [[ "$line" =~ ^\[([^]]+)\] ]]; then
current_section="${BASH_REMATCH[1]}"
echo "$line" >> "$TMP_FILE"
continue
fi
# Skip empty lines and comments
if [[ -z "$line" || "$line" =~ ^[[:space:]]*\# ]]; then
echo "$line" >> "$TMP_FILE"
continue
fi
# Extract key and value (handling quoted values)
key=$(echo "$line" | cut -d '=' -f 1 | xargs)
value=$(echo "$line" | cut -d '=' -f 2- | xargs)
# Construct the environment variable name in form of SECTION_KEY (e.g., GENERAL_SIMILARITY_MEASURE, MODELS_GEMINI_API_KEY)
current_section=$(echo "$current_section" | sed 's/\./_/')
env_var_name="${current_section}_${key}"
# Check if the environment variable exists
env_var_value=$(echo "${!env_var_name}")
if [ -n "$env_var_value" ]; then
new_value="$env_var_value"
echo "$key = $new_value" >> "$TMP_FILE"
else
# Keep original line if no env var exists
echo "$line" >> "$TMP_FILE"
fi
done < "$CONFIG_TOML_FILE"
# Replace the original file
mv "$TMP_FILE" "$CONFIG_TOML_FILE"
echo "Config file updated successfully."
# Start server
node server.js

2
data/.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
*
!.gitignore

View File

@ -1,45 +1,46 @@
services:
searxng:
build:
context: .
dockerfile: searxng.dockerfile
expose:
- 4000
image: docker.io/searxng/searxng:latest
volumes:
- ./searxng:/etc/searxng:rw
ports:
- 4000:8080
networks:
- perplexica-network
restart: unless-stopped
perplexica-backend:
build:
context: .
dockerfile: backend.dockerfile
args:
- SEARXNG_API_URL=http://searxng:8080
depends_on:
- searxng
expose:
- 3001
ports:
- 3001:3001
networks:
- perplexica-network
perplexica-frontend:
app:
image: itzcrazykns1337/perplexica:main
build:
context: .
dockerfile: app.dockerfile
args:
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
depends_on:
- perplexica-backend
expose:
- 3000
environment:
- SEARXNG_API_URL=http://searxng:8080
- GENERAL_SIMILARITY_MEASURE="cosine" # "cosine" or "dot"
- GENERAL_KEEP_ALIVE="5m" # How long to keep Ollama models loaded into memory. (Instead of using -1 use "-1m")
- MODELS_OPENAI_API_KEY=""
- MODELS_GROQ_API_KEY=""
- MODELS_ANTHROPIC_API_KEY=""
- MODELS_GEMINI_API_KEY=""
- MODELS_CUSTOM_OPENAI_API_KEY=""
- MODELS_CUSTOM_OPENAI_API_URL=""
- MODELS_CUSTOM_OPENAI_MODEL_NAME=""
- MODELS_OLLAMA_API_KEY="" # Ollama API URL - http://host.docker.internal:11434
- MODELS_DEEPSEEK_API_KEY=""
- MODELS_LM_STUDIO_API_KEY="" # LM Studio API URL - http://host.docker.internal:1234
- API_ENDPOINTS_SEARXNG="" # SearxNG API URL - http://localhost:32768
ports:
- 3000:3000
networks:
- perplexica-network
volumes:
- backend-dbstore:/home/perplexica/data
- uploads:/home/perplexica/uploads
restart: unless-stopped
networks:
perplexica-network:
volumes:
backend-dbstore:
uploads:

145
docs/API/SEARCH.md Normal file
View File

@ -0,0 +1,145 @@
# Perplexica Search API Documentation
## Overview
Perplexicas Search API makes it easy to use our AI-powered search engine. You can run different types of searches, pick the models you want to use, and get the most recent info. Follow the following headings to learn more about Perplexica's search API.
## Endpoint
### **POST** `http://localhost:3000/api/search`
**Note**: Replace `3000` with any other port if you've changed the default PORT
### Request
The API accepts a JSON object in the request body, where you define the focus mode, chat models, embedding models, and your query.
#### Request Body Structure
```json
{
"chatModel": {
"provider": "openai",
"name": "gpt-4o-mini"
},
"embeddingModel": {
"provider": "openai",
"name": "text-embedding-3-large"
},
"optimizationMode": "speed",
"focusMode": "webSearch",
"query": "What is Perplexica",
"history": [
["human", "Hi, how are you?"],
["assistant", "I am doing well, how can I help you today?"]
],
"systemInstructions": "Focus on providing technical details about Perplexica's architecture.",
"stream": false
}
```
### Request Parameters
- **`chatModel`** (object, optional): Defines the chat model to be used for the query. For model details you can send a GET request at `http://localhost:3000/api/models`. Make sure to use the key value (For example "gpt-4o-mini" instead of the display name "GPT 4 omni mini").
- `provider`: Specifies the provider for the chat model (e.g., `openai`, `ollama`).
- `name`: The specific model from the chosen provider (e.g., `gpt-4o-mini`).
- Optional fields for custom OpenAI configuration:
- `customOpenAIBaseURL`: If youre using a custom OpenAI instance, provide the base URL.
- `customOpenAIKey`: The API key for a custom OpenAI instance.
- **`embeddingModel`** (object, optional): Defines the embedding model for similarity-based searching. For model details you can send a GET request at `http://localhost:3000/api/models`. Make sure to use the key value (For example "text-embedding-3-large" instead of the display name "Text Embedding 3 Large").
- `provider`: The provider for the embedding model (e.g., `openai`).
- `name`: The specific embedding model (e.g., `text-embedding-3-large`).
- **`focusMode`** (string, required): Specifies which focus mode to use. Available modes:
- `webSearch`, `academicSearch`, `writingAssistant`, `wolframAlphaSearch`, `youtubeSearch`, `redditSearch`.
- **`optimizationMode`** (string, optional): Specifies the optimization mode to control the balance between performance and quality. Available modes:
- `speed`: Prioritize speed and return the fastest answer.
- `balanced`: Provide a balanced answer with good speed and reasonable quality.
- **`query`** (string, required): The search query or question.
- **`systemInstructions`** (string, optional): Custom instructions provided by the user to guide the AI's response. These instructions are treated as user preferences and have lower priority than the system's core instructions. For example, you can specify a particular writing style, format, or focus area.
- **`history`** (array, optional): An array of message pairs representing the conversation history. Each pair consists of a role (either 'human' or 'assistant') and the message content. This allows the system to use the context of the conversation to refine results. Example:
```json
[
["human", "What is Perplexica?"],
["assistant", "Perplexica is an AI-powered search engine..."]
]
```
- **`stream`** (boolean, optional): When set to `true`, enables streaming responses. Default is `false`.
### Response
The response from the API includes both the final message and the sources used to generate that message.
#### Standard Response (stream: false)
```json
{
"message": "Perplexica is an innovative, open-source AI-powered search engine designed to enhance the way users search for information online. Here are some key features and characteristics of Perplexica:\n\n- **AI-Powered Technology**: It utilizes advanced machine learning algorithms to not only retrieve information but also to understand the context and intent behind user queries, providing more relevant results [1][5].\n\n- **Open-Source**: Being open-source, Perplexica offers flexibility and transparency, allowing users to explore its functionalities without the constraints of proprietary software [3][10].",
"sources": [
{
"pageContent": "Perplexica is an innovative, open-source AI-powered search engine designed to enhance the way users search for information online.",
"metadata": {
"title": "What is Perplexica, and how does it function as an AI-powered search ...",
"url": "https://askai.glarity.app/search/What-is-Perplexica--and-how-does-it-function-as-an-AI-powered-search-engine"
}
},
{
"pageContent": "Perplexica is an open-source AI-powered search tool that dives deep into the internet to find precise answers.",
"metadata": {
"title": "Sahar Mor's Post",
"url": "https://www.linkedin.com/posts/sahar-mor_a-new-open-source-project-called-perplexica-activity-7204489745668694016-ncja"
}
}
....
]
}
```
#### Streaming Response (stream: true)
When streaming is enabled, the API returns a stream of newline-delimited JSON objects. Each line contains a complete, valid JSON object. The response has Content-Type: application/json.
Example of streamed response objects:
```
{"type":"init","data":"Stream connected"}
{"type":"sources","data":[{"pageContent":"...","metadata":{"title":"...","url":"..."}},...]}
{"type":"response","data":"Perplexica is an "}
{"type":"response","data":"innovative, open-source "}
{"type":"response","data":"AI-powered search engine..."}
{"type":"done"}
```
Clients should process each line as a separate JSON object. The different message types include:
- **`init`**: Initial connection message
- **`sources`**: All sources used for the response
- **`response`**: Chunks of the generated answer text
- **`done`**: Indicates the stream is complete
### Fields in the Response
- **`message`** (string): The search result, generated based on the query and focus mode.
- **`sources`** (array): A list of sources that were used to generate the search result. Each source includes:
- `pageContent`: A snippet of the relevant content from the source.
- `metadata`: Metadata about the source, including:
- `title`: The title of the webpage.
- `url`: The URL of the webpage.
### Error Handling
If an error occurs during the search process, the API will return an appropriate error message with an HTTP status code.
- **400**: If the request is malformed or missing required fields (e.g., no focus mode or query).
- **500**: If an internal server error occurs during the search.

View File

@ -0,0 +1,11 @@
# Perplexica's Architecture
Perplexica's architecture consists of the following key components:
1. **User Interface**: A web-based interface that allows users to interact with Perplexica for searching images, videos, and much more.
2. **Agent/Chains**: These components predict Perplexica's next actions, understand user queries, and decide whether a web search is necessary.
3. **SearXNG**: A metadata search engine used by Perplexica to search the web for sources.
4. **LLMs (Large Language Models)**: Utilized by agents and chains for tasks like understanding content, writing responses, and citing sources. Examples include Claude, GPTs, etc.
5. **Embedding Models**: To improve the accuracy of search results, embedding models re-rank the results using similarity search algorithms such as cosine similarity and dot product distance.
For a more detailed explanation of how these components work together, see [WORKING.md](https://github.com/ItzCrazyKns/Perplexica/tree/master/docs/architecture/WORKING.md).

View File

@ -0,0 +1,19 @@
# How does Perplexica work?
Curious about how Perplexica works? Don't worry, we'll cover it here. Before we begin, make sure you've read about the architecture of Perplexica to ensure you understand what it's made up of. Haven't read it? You can read it [here](https://github.com/ItzCrazyKns/Perplexica/tree/master/docs/architecture/README.md).
We'll understand how Perplexica works by taking an example of a scenario where a user asks: "How does an A.C. work?". We'll break down the process into steps to make it easier to understand. The steps are as follows:
1. The message is sent to the `/api/chat` route where it invokes the chain. The chain will depend on your focus mode. For this example, let's assume we use the "webSearch" focus mode.
2. The chain is now invoked; first, the message is passed to another chain where it first predicts (using the chat history and the question) whether there is a need for sources and searching the web. If there is, it will generate a query (in accordance with the chat history) for searching the web that we'll take up later. If not, the chain will end there, and then the answer generator chain, also known as the response generator, will be started.
3. The query returned by the first chain is passed to SearXNG to search the web for information.
4. After the information is retrieved, it is based on keyword-based search. We then convert the information into embeddings and the query as well, then we perform a similarity search to find the most relevant sources to answer the query.
5. After all this is done, the sources are passed to the response generator. This chain takes all the chat history, the query, and the sources. It generates a response that is streamed to the UI.
## How are the answers cited?
The LLMs are prompted to do so. We've prompted them so well that they cite the answers themselves, and using some UI magic, we display it to the user.
## Image and Video Search
Image and video searches are conducted in a similar manner. A query is always generated first, then we search the web for images and videos that match the query. These results are then returned to the user.

View File

@ -0,0 +1,46 @@
# Update Perplexica to the latest version
To update Perplexica to the latest version, follow these steps:
## For Docker users
1. Clone the latest version of Perplexica from GitHub:
```bash
git clone https://github.com/ItzCrazyKns/Perplexica.git
```
2. Navigate to the project directory.
3. Check for changes in the configuration files. If the `sample.config.toml` file contains new fields, delete your existing `config.toml` file, rename `sample.config.toml` to `config.toml`, and update the configuration accordingly.
4. Pull the latest images from the registry.
```bash
docker compose pull
```
5. Update and recreate the containers.
```bash
docker compose up -d
```
6. Once the command completes, go to http://localhost:3000 and verify the latest changes.
## For non-Docker users
1. Clone the latest version of Perplexica from GitHub:
```bash
git clone https://github.com/ItzCrazyKns/Perplexica.git
```
2. Navigate to the project directory.
3. Check for changes in the configuration files. If the `sample.config.toml` file contains new fields, delete your existing `config.toml` file, rename `sample.config.toml` to `config.toml`, and update the configuration accordingly.
4. After populating the configuration run `npm i`.
5. Install the dependencies and then execute `npm run build`.
6. Finally, start the app by running `npm rum start`
---

10
drizzle.config.ts Normal file
View File

@ -0,0 +1,10 @@
import { defineConfig } from 'drizzle-kit';
export default defineConfig({
dialect: 'sqlite',
schema: './src/lib/db/schema.ts',
out: './drizzle',
dbCredentials: {
url: './data/db.sqlite',
},
});

5
next-env.d.ts vendored Normal file
View File

@ -0,0 +1,5 @@
/// <reference types="next" />
/// <reference types="next/image-types/global" />
// NOTE: This file should not be edited
// see https://nextjs.org/docs/app/api-reference/config/typescript for more information.

View File

@ -1,5 +1,6 @@
/** @type {import('next').NextConfig} */
const nextConfig = {
output: 'standalone',
images: {
remotePatterns: [
{
@ -7,6 +8,7 @@ const nextConfig = {
},
],
},
serverExternalPackages: ['pdf-parse'],
};
export default nextConfig;

View File

@ -1,35 +1,65 @@
{
"name": "perplexica-backend",
"version": "1.1.0",
"name": "perplexica-frontend",
"version": "1.10.2",
"license": "MIT",
"author": "ItzCrazyKns",
"scripts": {
"start": "node dist/app.js",
"build": "tsc",
"dev": "nodemon src/app.ts",
"format": "prettier . --check",
"format:write": "prettier . --write"
},
"devDependencies": {
"@types/cors": "^2.8.17",
"@types/express": "^4.17.21",
"@types/readable-stream": "^4.0.11",
"prettier": "^3.2.5",
"ts-node": "^10.9.2",
"typescript": "^5.4.3"
"dev": "next dev",
"build": "npm run db:push && next build",
"start": "next start",
"lint": "next lint",
"format:write": "prettier . --write",
"db:push": "drizzle-kit push"
},
"dependencies": {
"@headlessui/react": "^2.2.0",
"@iarna/toml": "^2.2.5",
"@icons-pack/react-simple-icons": "^12.3.0",
"@langchain/anthropic": "^0.3.15",
"@langchain/community": "^0.3.36",
"@langchain/core": "^0.3.42",
"@langchain/google-genai": "^0.1.12",
"@langchain/openai": "^0.0.25",
"axios": "^1.6.8",
"@langchain/textsplitters": "^0.1.0",
"@tailwindcss/typography": "^0.5.12",
"@xenova/transformers": "^2.17.2",
"axios": "^1.8.3",
"better-sqlite3": "^11.9.1",
"clsx": "^2.1.0",
"compute-cosine-similarity": "^1.1.0",
"compute-dot": "^1.1.0",
"cors": "^2.8.5",
"dotenv": "^16.4.5",
"express": "^4.19.2",
"drizzle-orm": "^0.40.1",
"html-to-text": "^9.0.5",
"langchain": "^0.1.30",
"winston": "^3.13.0",
"ws": "^8.16.0",
"lucide-react": "^0.363.0",
"markdown-to-jsx": "^7.7.2",
"next": "^15.2.2",
"next-themes": "^0.3.0",
"pdf-parse": "^1.1.1",
"react": "^18",
"react-dom": "^18",
"react-text-to-speech": "^0.14.5",
"react-textarea-autosize": "^8.5.3",
"sonner": "^1.4.41",
"tailwind-merge": "^2.2.2",
"winston": "^3.17.0",
"yet-another-react-lightbox": "^3.17.2",
"zod": "^3.22.4"
},
"devDependencies": {
"@types/better-sqlite3": "^7.6.12",
"@types/html-to-text": "^9.0.4",
"@types/node": "^20",
"@types/pdf-parse": "^1.1.4",
"@types/react": "^18",
"@types/react-dom": "^18",
"autoprefixer": "^10.0.1",
"drizzle-kit": "^0.30.5",
"eslint": "^8",
"eslint-config-next": "14.1.4",
"postcss": "^8",
"prettier": "^3.2.5",
"tailwindcss": "^3.3.0",
"typescript": "^5"
}
}

View File

Before

Width:  |  Height:  |  Size: 1.3 KiB

After

Width:  |  Height:  |  Size: 1.3 KiB

View File

Before

Width:  |  Height:  |  Size: 629 B

After

Width:  |  Height:  |  Size: 629 B

View File

@ -1,11 +1,32 @@
[GENERAL]
PORT = 3001 # Port to run the server on
SIMILARITY_MEASURE = "cosine" # "cosine" or "dot"
KEEP_ALIVE = "5m" # How long to keep Ollama models loaded into memory. (Instead of using -1 use "-1m")
[API_KEYS]
OPENAI = "" # OpenAI API key - sk-1234567890abcdef1234567890abcdef
GROQ = "" # Groq API key - gsk_1234567890abcdef1234567890abcdef
[MODELS.OPENAI]
API_KEY = ""
[MODELS.GROQ]
API_KEY = ""
[MODELS.ANTHROPIC]
API_KEY = ""
[MODELS.GEMINI]
API_KEY = ""
[MODELS.CUSTOM_OPENAI]
API_KEY = ""
API_URL = ""
MODEL_NAME = ""
[MODELS.OLLAMA]
API_URL = "" # Ollama API URL - http://host.docker.internal:11434
[MODELS.DEEPSEEK]
API_KEY = ""
[MODELS.LM_STUDIO]
API_URL = "" # LM Studio API URL - http://host.docker.internal:1234
[API_ENDPOINTS]
SEARXNG = "http://localhost:32768" # SearxNG API URL
OLLAMA = "" # Ollama API URL - http://host.docker.internal:11434
SEARXNG = "" # SearxNG API URL - http://localhost:32768

File diff suppressed because it is too large Load Diff

View File

@ -1,3 +0,0 @@
FROM searxng/searxng
COPY searxng-settings.yml /etc/searxng/settings.yml

3
searxng/limiter.toml Normal file
View File

@ -0,0 +1,3 @@
[botdetection.ip_limit]
# activate link_token method in the ip_limit method
link_token = true

17
searxng/settings.yml Normal file
View File

@ -0,0 +1,17 @@
use_default_settings: true
general:
instance_name: 'searxng'
search:
autocomplete: 'google'
formats:
- html
- json
server:
secret_key: 'a2fb23f1b02e6ee83875b09826990de0f6bd908b6638e8c10277d415f6ab852b' # Is overwritten by ${SEARXNG_SECRET}
engines:
- name: wolframalpha
disabled: false

50
searxng/uwsgi.ini Normal file
View File

@ -0,0 +1,50 @@
[uwsgi]
# Who will run the code
uid = searxng
gid = searxng
# Number of workers (usually CPU count)
# default value: %k (= number of CPU core, see Dockerfile)
workers = %k
# Number of threads per worker
# default value: 4 (see Dockerfile)
threads = 4
# The right granted on the created socket
chmod-socket = 666
# Plugin to use and interpreter config
single-interpreter = true
master = true
plugin = python3
lazy-apps = true
enable-threads = 4
# Module to import
module = searx.webapp
# Virtualenv and python path
pythonpath = /usr/local/searxng/
chdir = /usr/local/searxng/searx/
# automatically set processes name to something meaningful
auto-procname = true
# Disable request logging for privacy
disable-logging = true
log-5xx = true
# Set the max size of a request (request-body excluded)
buffer-size = 8192
# No keep alive
# See https://github.com/searx/searx-docker/issues/24
add-header = Connection: close
# uwsgi serves the static files
static-map = /static=/usr/local/searxng/searx/static
# expires set to one day
static-expires = /* 86400
static-gzip-all = True
offload-threads = 4

View File

@ -1,265 +0,0 @@
import { BaseMessage } from '@langchain/core/messages';
import {
PromptTemplate,
ChatPromptTemplate,
MessagesPlaceholder,
} from '@langchain/core/prompts';
import {
RunnableSequence,
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { Document } from '@langchain/core/documents';
import { searchSearxng } from '../lib/searxng';
import type { StreamEvent } from '@langchain/core/tracers/log_stream';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import computeSimilarity from '../utils/computeSimilarity';
import logger from '../utils/logger';
const basicAcademicSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
Example:
1. Follow up question: How does stable diffusion work?
Rephrased: Stable diffusion working
2. Follow up question: What is linear algebra?
Rephrased: Linear algebra
3. Follow up question: What is the third law of thermodynamics?
Rephrased: Third law of thermodynamics
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
const basicAcademicSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Academic', this means you will be searching for academic papers and articles on the web.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containg a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Aything inside the following \`context\` HTML block provided below is for your knowledge returned by the search engine and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
{context}
</context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'.
Anything between the \`context\` is retrieved from a search engine and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
`;
const strParser = new StringOutputParser();
const handleStream = async (
stream: AsyncGenerator<StreamEvent, any, unknown>,
emitter: eventEmitter,
) => {
for await (const event of stream) {
if (
event.event === 'on_chain_end' &&
event.name === 'FinalSourceRetriever'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'sources', data: event.data.output }),
);
}
if (
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
);
}
if (
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit('end');
}
}
};
type BasicChainInput = {
chat_history: BaseMessage[];
query: string;
};
const createBasicAcademicSearchRetrieverChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
PromptTemplate.fromTemplate(basicAcademicSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
return { query: '', docs: [] };
}
const res = await searchSearxng(input, {
language: 'en',
engines: [
'arxiv',
'google scholar',
'internetarchivescholar',
'pubmed',
],
});
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: input, docs: documents };
}),
]);
};
const createBasicAcademicSearchAnsweringChain = (
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const basicAcademicSearchRetrieverChain =
createBasicAcademicSearchRetrieverChain(llm);
const processDocs = async (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
const rerankDocs = async ({
query,
docs,
}: {
query: string;
docs: Document[];
}) => {
if (docs.length === 0) {
return docs;
}
const docsWithContent = docs.filter(
(doc) => doc.pageContent && doc.pageContent.length > 0,
);
const [docEmbeddings, queryEmbedding] = await Promise.all([
embeddings.embedDocuments(docsWithContent.map((doc) => doc.pageContent)),
embeddings.embedQuery(query),
]);
const similarity = docEmbeddings.map((docEmbedding, i) => {
const sim = computeSimilarity(queryEmbedding, docEmbedding);
return {
index: i,
similarity: sim,
};
});
const sortedDocs = similarity
.sort((a, b) => b.similarity - a.similarity)
.slice(0, 15)
.map((sim) => docsWithContent[sim.index]);
return sortedDocs;
};
return RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
basicAcademicSearchRetrieverChain
.pipe(rerankDocs)
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicAcademicSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
llm,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
};
const basicAcademicSearch = (
query: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = new eventEmitter();
try {
const basicAcademicSearchAnsweringChain =
createBasicAcademicSearchAnsweringChain(llm, embeddings);
const stream = basicAcademicSearchAnsweringChain.streamEvents(
{
chat_history: history,
query: query,
},
{
version: 'v1',
},
);
handleStream(stream, emitter);
} catch (err) {
emitter.emit(
'error',
JSON.stringify({ data: 'An error has occurred please try again later' }),
);
logger.error(`Error in academic search: ${err}`);
}
return emitter;
};
const handleAcademicSearch = (
message: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = basicAcademicSearch(message, history, llm, embeddings);
return emitter;
};
export default handleAcademicSearch;

View File

@ -1,260 +0,0 @@
import { BaseMessage } from '@langchain/core/messages';
import {
PromptTemplate,
ChatPromptTemplate,
MessagesPlaceholder,
} from '@langchain/core/prompts';
import {
RunnableSequence,
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { Document } from '@langchain/core/documents';
import { searchSearxng } from '../lib/searxng';
import type { StreamEvent } from '@langchain/core/tracers/log_stream';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import computeSimilarity from '../utils/computeSimilarity';
import logger from '../utils/logger';
const basicRedditSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
Example:
1. Follow up question: Which company is most likely to create an AGI
Rephrased: Which company is most likely to create an AGI
2. Follow up question: Is Earth flat?
Rephrased: Is Earth flat?
3. Follow up question: Is there life on Mars?
Rephrased: Is there life on Mars?
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
const basicRedditSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Reddit', this means you will be searching for information, opinions and discussions on the web using Reddit.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containg a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Aything inside the following \`context\` HTML block provided below is for your knowledge returned by Reddit and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
{context}
</context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'.
Anything between the \`context\` is retrieved from Reddit and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
`;
const strParser = new StringOutputParser();
const handleStream = async (
stream: AsyncGenerator<StreamEvent, any, unknown>,
emitter: eventEmitter,
) => {
for await (const event of stream) {
if (
event.event === 'on_chain_end' &&
event.name === 'FinalSourceRetriever'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'sources', data: event.data.output }),
);
}
if (
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
);
}
if (
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit('end');
}
}
};
type BasicChainInput = {
chat_history: BaseMessage[];
query: string;
};
const createBasicRedditSearchRetrieverChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
PromptTemplate.fromTemplate(basicRedditSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
return { query: '', docs: [] };
}
const res = await searchSearxng(input, {
language: 'en',
engines: ['reddit'],
});
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content ? result.content : result.title,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: input, docs: documents };
}),
]);
};
const createBasicRedditSearchAnsweringChain = (
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const basicRedditSearchRetrieverChain =
createBasicRedditSearchRetrieverChain(llm);
const processDocs = async (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
const rerankDocs = async ({
query,
docs,
}: {
query: string;
docs: Document[];
}) => {
if (docs.length === 0) {
return docs;
}
const docsWithContent = docs.filter(
(doc) => doc.pageContent && doc.pageContent.length > 0,
);
const [docEmbeddings, queryEmbedding] = await Promise.all([
embeddings.embedDocuments(docsWithContent.map((doc) => doc.pageContent)),
embeddings.embedQuery(query),
]);
const similarity = docEmbeddings.map((docEmbedding, i) => {
const sim = computeSimilarity(queryEmbedding, docEmbedding);
return {
index: i,
similarity: sim,
};
});
const sortedDocs = similarity
.sort((a, b) => b.similarity - a.similarity)
.slice(0, 15)
.filter((sim) => sim.similarity > 0.3)
.map((sim) => docsWithContent[sim.index]);
return sortedDocs;
};
return RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
basicRedditSearchRetrieverChain
.pipe(rerankDocs)
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicRedditSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
llm,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
};
const basicRedditSearch = (
query: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = new eventEmitter();
try {
const basicRedditSearchAnsweringChain =
createBasicRedditSearchAnsweringChain(llm, embeddings);
const stream = basicRedditSearchAnsweringChain.streamEvents(
{
chat_history: history,
query: query,
},
{
version: 'v1',
},
);
handleStream(stream, emitter);
} catch (err) {
emitter.emit(
'error',
JSON.stringify({ data: 'An error has occurred please try again later' }),
);
logger.error(`Error in RedditSearch: ${err}`);
}
return emitter;
};
const handleRedditSearch = (
message: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = basicRedditSearch(message, history, llm, embeddings);
return emitter;
};
export default handleRedditSearch;

View File

@ -1,261 +0,0 @@
import { BaseMessage } from '@langchain/core/messages';
import {
PromptTemplate,
ChatPromptTemplate,
MessagesPlaceholder,
} from '@langchain/core/prompts';
import {
RunnableSequence,
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { Document } from '@langchain/core/documents';
import { searchSearxng } from '../lib/searxng';
import type { StreamEvent } from '@langchain/core/tracers/log_stream';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import computeSimilarity from '../utils/computeSimilarity';
import logger from '../utils/logger';
const basicSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
Example:
1. Follow up question: What is the capital of France?
Rephrased: Capital of france
2. Follow up question: What is the population of New York City?
Rephrased: Population of New York City
3. Follow up question: What is Docker?
Rephrased: What is Docker
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
const basicWebSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containg a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Aything inside the following \`context\` HTML block provided below is for your knowledge returned by the search engine and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
{context}
</context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'.
Anything between the \`context\` is retrieved from a search engine and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
`;
const strParser = new StringOutputParser();
const handleStream = async (
stream: AsyncGenerator<StreamEvent, any, unknown>,
emitter: eventEmitter,
) => {
for await (const event of stream) {
if (
event.event === 'on_chain_end' &&
event.name === 'FinalSourceRetriever'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'sources', data: event.data.output }),
);
}
if (
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
);
}
if (
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit('end');
}
}
};
type BasicChainInput = {
chat_history: BaseMessage[];
query: string;
};
const createBasicWebSearchRetrieverChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
PromptTemplate.fromTemplate(basicSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
return { query: '', docs: [] };
}
const res = await searchSearxng(input, {
language: 'en',
});
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: input, docs: documents };
}),
]);
};
const createBasicWebSearchAnsweringChain = (
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const basicWebSearchRetrieverChain = createBasicWebSearchRetrieverChain(llm);
const processDocs = async (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
const rerankDocs = async ({
query,
docs,
}: {
query: string;
docs: Document[];
}) => {
if (docs.length === 0) {
return docs;
}
const docsWithContent = docs.filter(
(doc) => doc.pageContent && doc.pageContent.length > 0,
);
const [docEmbeddings, queryEmbedding] = await Promise.all([
embeddings.embedDocuments(docsWithContent.map((doc) => doc.pageContent)),
embeddings.embedQuery(query),
]);
const similarity = docEmbeddings.map((docEmbedding, i) => {
const sim = computeSimilarity(queryEmbedding, docEmbedding);
return {
index: i,
similarity: sim,
};
});
const sortedDocs = similarity
.sort((a, b) => b.similarity - a.similarity)
.filter((sim) => sim.similarity > 0.5)
.slice(0, 15)
.map((sim) => docsWithContent[sim.index]);
return sortedDocs;
};
return RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
basicWebSearchRetrieverChain
.pipe(rerankDocs)
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicWebSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
llm,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
};
const basicWebSearch = (
query: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = new eventEmitter();
try {
const basicWebSearchAnsweringChain = createBasicWebSearchAnsweringChain(
llm,
embeddings,
);
const stream = basicWebSearchAnsweringChain.streamEvents(
{
chat_history: history,
query: query,
},
{
version: 'v1',
},
);
handleStream(stream, emitter);
} catch (err) {
emitter.emit(
'error',
JSON.stringify({ data: 'An error has occurred please try again later' }),
);
logger.error(`Error in websearch: ${err}`);
}
return emitter;
};
const handleWebSearch = (
message: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = basicWebSearch(message, history, llm, embeddings);
return emitter;
};
export default handleWebSearch;

View File

@ -1,219 +0,0 @@
import { BaseMessage } from '@langchain/core/messages';
import {
PromptTemplate,
ChatPromptTemplate,
MessagesPlaceholder,
} from '@langchain/core/prompts';
import {
RunnableSequence,
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { Document } from '@langchain/core/documents';
import { searchSearxng } from '../lib/searxng';
import type { StreamEvent } from '@langchain/core/tracers/log_stream';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import logger from '../utils/logger';
const basicWolframAlphaSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
Example:
1. Follow up question: What is the atomic radius of S?
Rephrased: Atomic radius of S
2. Follow up question: What is linear algebra?
Rephrased: Linear algebra
3. Follow up question: What is the third law of thermodynamics?
Rephrased: Third law of thermodynamics
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
const basicWolframAlphaSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Wolfram Alpha', this means you will be searching for information on the web using Wolfram Alpha. It is a computational knowledge engine that can answer factual queries and perform computations.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containg a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Aything inside the following \`context\` HTML block provided below is for your knowledge returned by Wolfram Alpha and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
{context}
</context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'.
Anything between the \`context\` is retrieved from Wolfram Alpha and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
`;
const strParser = new StringOutputParser();
const handleStream = async (
stream: AsyncGenerator<StreamEvent, any, unknown>,
emitter: eventEmitter,
) => {
for await (const event of stream) {
if (
event.event === 'on_chain_end' &&
event.name === 'FinalSourceRetriever'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'sources', data: event.data.output }),
);
}
if (
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
);
}
if (
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit('end');
}
}
};
type BasicChainInput = {
chat_history: BaseMessage[];
query: string;
};
const createBasicWolframAlphaSearchRetrieverChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
PromptTemplate.fromTemplate(basicWolframAlphaSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
return { query: '', docs: [] };
}
const res = await searchSearxng(input, {
language: 'en',
engines: ['wolframalpha'],
});
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: input, docs: documents };
}),
]);
};
const createBasicWolframAlphaSearchAnsweringChain = (llm: BaseChatModel) => {
const basicWolframAlphaSearchRetrieverChain =
createBasicWolframAlphaSearchRetrieverChain(llm);
const processDocs = (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
return RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
basicWolframAlphaSearchRetrieverChain
.pipe(({ query, docs }) => {
return docs;
})
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicWolframAlphaSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
llm,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
};
const basicWolframAlphaSearch = (
query: string,
history: BaseMessage[],
llm: BaseChatModel,
) => {
const emitter = new eventEmitter();
try {
const basicWolframAlphaSearchAnsweringChain =
createBasicWolframAlphaSearchAnsweringChain(llm);
const stream = basicWolframAlphaSearchAnsweringChain.streamEvents(
{
chat_history: history,
query: query,
},
{
version: 'v1',
},
);
handleStream(stream, emitter);
} catch (err) {
emitter.emit(
'error',
JSON.stringify({ data: 'An error has occurred please try again later' }),
);
logger.error(`Error in WolframAlphaSearch: ${err}`);
}
return emitter;
};
const handleWolframAlphaSearch = (
message: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = basicWolframAlphaSearch(message, history, llm);
return emitter;
};
export default handleWolframAlphaSearch;

View File

@ -1,90 +0,0 @@
import { BaseMessage } from '@langchain/core/messages';
import {
ChatPromptTemplate,
MessagesPlaceholder,
} from '@langchain/core/prompts';
import { RunnableSequence } from '@langchain/core/runnables';
import { StringOutputParser } from '@langchain/core/output_parsers';
import type { StreamEvent } from '@langchain/core/tracers/log_stream';
import eventEmitter from 'events';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import logger from '../utils/logger';
const writingAssistantPrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are currently set on focus mode 'Writing Assistant', this means you will be helping the user write a response to a given query.
Since you are a writing assistant, you would not perform web searches. If you think you lack information to answer the query, you can ask the user for more information or suggest them to switch to a different focus mode.
`;
const strParser = new StringOutputParser();
const handleStream = async (
stream: AsyncGenerator<StreamEvent, any, unknown>,
emitter: eventEmitter,
) => {
for await (const event of stream) {
if (
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
);
}
if (
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit('end');
}
}
};
const createWritingAssistantChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
ChatPromptTemplate.fromMessages([
['system', writingAssistantPrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
llm,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
};
const handleWritingAssistant = (
query: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = new eventEmitter();
try {
const writingAssistantChain = createWritingAssistantChain(llm);
const stream = writingAssistantChain.streamEvents(
{
chat_history: history,
query: query,
},
{
version: 'v1',
},
);
handleStream(stream, emitter);
} catch (err) {
emitter.emit(
'error',
JSON.stringify({ data: 'An error has occurred please try again later' }),
);
logger.error(`Error in writing assistant: ${err}`);
}
return emitter;
};
export default handleWritingAssistant;

View File

@ -1,261 +0,0 @@
import { BaseMessage } from '@langchain/core/messages';
import {
PromptTemplate,
ChatPromptTemplate,
MessagesPlaceholder,
} from '@langchain/core/prompts';
import {
RunnableSequence,
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { Document } from '@langchain/core/documents';
import { searchSearxng } from '../lib/searxng';
import type { StreamEvent } from '@langchain/core/tracers/log_stream';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import computeSimilarity from '../utils/computeSimilarity';
import logger from '../utils/logger';
const basicYoutubeSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
Example:
1. Follow up question: How does an A.C work?
Rephrased: A.C working
2. Follow up question: Linear algebra explanation video
Rephrased: What is linear algebra?
3. Follow up question: What is theory of relativity?
Rephrased: What is theory of relativity?
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
const basicYoutubeSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Youtube', this means you will be searching for videos on the web using Youtube and providing information based on the video's transcript.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containg a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Aything inside the following \`context\` HTML block provided below is for your knowledge returned by Youtube and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
{context}
</context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'.
Anything between the \`context\` is retrieved from Youtube and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
`;
const strParser = new StringOutputParser();
const handleStream = async (
stream: AsyncGenerator<StreamEvent, any, unknown>,
emitter: eventEmitter,
) => {
for await (const event of stream) {
if (
event.event === 'on_chain_end' &&
event.name === 'FinalSourceRetriever'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'sources', data: event.data.output }),
);
}
if (
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
);
}
if (
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit('end');
}
}
};
type BasicChainInput = {
chat_history: BaseMessage[];
query: string;
};
const createBasicYoutubeSearchRetrieverChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
PromptTemplate.fromTemplate(basicYoutubeSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
return { query: '', docs: [] };
}
const res = await searchSearxng(input, {
language: 'en',
engines: ['youtube'],
});
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content ? result.content : result.title,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: input, docs: documents };
}),
]);
};
const createBasicYoutubeSearchAnsweringChain = (
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const basicYoutubeSearchRetrieverChain =
createBasicYoutubeSearchRetrieverChain(llm);
const processDocs = async (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
const rerankDocs = async ({
query,
docs,
}: {
query: string;
docs: Document[];
}) => {
if (docs.length === 0) {
return docs;
}
const docsWithContent = docs.filter(
(doc) => doc.pageContent && doc.pageContent.length > 0,
);
const [docEmbeddings, queryEmbedding] = await Promise.all([
embeddings.embedDocuments(docsWithContent.map((doc) => doc.pageContent)),
embeddings.embedQuery(query),
]);
const similarity = docEmbeddings.map((docEmbedding, i) => {
const sim = computeSimilarity(queryEmbedding, docEmbedding);
return {
index: i,
similarity: sim,
};
});
const sortedDocs = similarity
.sort((a, b) => b.similarity - a.similarity)
.slice(0, 15)
.filter((sim) => sim.similarity > 0.3)
.map((sim) => docsWithContent[sim.index]);
return sortedDocs;
};
return RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
basicYoutubeSearchRetrieverChain
.pipe(rerankDocs)
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicYoutubeSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
llm,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
};
const basicYoutubeSearch = (
query: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = new eventEmitter();
try {
const basicYoutubeSearchAnsweringChain =
createBasicYoutubeSearchAnsweringChain(llm, embeddings);
const stream = basicYoutubeSearchAnsweringChain.streamEvents(
{
chat_history: history,
query: query,
},
{
version: 'v1',
},
);
handleStream(stream, emitter);
} catch (err) {
emitter.emit(
'error',
JSON.stringify({ data: 'An error has occurred please try again later' }),
);
logger.error(`Error in youtube search: ${err}`);
}
return emitter;
};
const handleYoutubeSearch = (
message: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = basicYoutubeSearch(message, history, llm, embeddings);
return emitter;
};
export default handleYoutubeSearch;

View File

@ -1,30 +0,0 @@
import { startWebSocketServer } from './websocket';
import express from 'express';
import cors from 'cors';
import http from 'http';
import routes from './routes';
import { getPort } from './config';
import logger from './utils/logger';
const port = getPort();
const app = express();
const server = http.createServer(app);
const corsOptions = {
origin: '*',
};
app.use(cors(corsOptions));
app.use(express.json());
app.use('/api', routes);
app.get('/api', (_, res) => {
res.status(200).json({ status: 'ok' });
});
server.listen(port, () => {
logger.info(`Server is running on port ${port}`);
});
startWebSocketServer(server);

306
src/app/api/chat/route.ts Normal file
View File

@ -0,0 +1,306 @@
import prompts from '@/lib/prompts';
import MetaSearchAgent from '@/lib/search/metaSearchAgent';
import crypto from 'crypto';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
import { EventEmitter } from 'stream';
import {
chatModelProviders,
embeddingModelProviders,
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '@/lib/providers';
import db from '@/lib/db';
import { chats, messages as messagesSchema } from '@/lib/db/schema';
import { and, eq, gt } from 'drizzle-orm';
import { getFileDetails } from '@/lib/utils/files';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { ChatOpenAI } from '@langchain/openai';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '@/lib/config';
import { searchHandlers } from '@/lib/search';
export const runtime = 'nodejs';
export const dynamic = 'force-dynamic';
type Message = {
messageId: string;
chatId: string;
content: string;
};
type ChatModel = {
provider: string;
name: string;
};
type EmbeddingModel = {
provider: string;
name: string;
};
type Body = {
message: Message;
optimizationMode: 'speed' | 'balanced' | 'quality';
focusMode: string;
history: Array<[string, string]>;
files: Array<string>;
chatModel: ChatModel;
embeddingModel: EmbeddingModel;
systemInstructions: string;
};
const handleEmitterEvents = async (
stream: EventEmitter,
writer: WritableStreamDefaultWriter,
encoder: TextEncoder,
aiMessageId: string,
chatId: string,
) => {
let recievedMessage = '';
let sources: any[] = [];
stream.on('data', (data) => {
const parsedData = JSON.parse(data);
if (parsedData.type === 'response') {
writer.write(
encoder.encode(
JSON.stringify({
type: 'message',
data: parsedData.data,
messageId: aiMessageId,
}) + '\n',
),
);
recievedMessage += parsedData.data;
} else if (parsedData.type === 'sources') {
writer.write(
encoder.encode(
JSON.stringify({
type: 'sources',
data: parsedData.data,
messageId: aiMessageId,
}) + '\n',
),
);
sources = parsedData.data;
}
});
stream.on('end', () => {
writer.write(
encoder.encode(
JSON.stringify({
type: 'messageEnd',
messageId: aiMessageId,
}) + '\n',
),
);
writer.close();
db.insert(messagesSchema)
.values({
content: recievedMessage,
chatId: chatId,
messageId: aiMessageId,
role: 'assistant',
metadata: JSON.stringify({
createdAt: new Date(),
...(sources && sources.length > 0 && { sources }),
}),
})
.execute();
});
stream.on('error', (data) => {
const parsedData = JSON.parse(data);
writer.write(
encoder.encode(
JSON.stringify({
type: 'error',
data: parsedData.data,
}),
),
);
writer.close();
});
};
const handleHistorySave = async (
message: Message,
humanMessageId: string,
focusMode: string,
files: string[],
) => {
const chat = await db.query.chats.findFirst({
where: eq(chats.id, message.chatId),
});
if (!chat) {
await db
.insert(chats)
.values({
id: message.chatId,
title: message.content,
createdAt: new Date().toString(),
focusMode: focusMode,
files: files.map(getFileDetails),
})
.execute();
}
const messageExists = await db.query.messages.findFirst({
where: eq(messagesSchema.messageId, humanMessageId),
});
if (!messageExists) {
await db
.insert(messagesSchema)
.values({
content: message.content,
chatId: message.chatId,
messageId: humanMessageId,
role: 'user',
metadata: JSON.stringify({
createdAt: new Date(),
}),
})
.execute();
} else {
await db
.delete(messagesSchema)
.where(
and(
gt(messagesSchema.id, messageExists.id),
eq(messagesSchema.chatId, message.chatId),
),
)
.execute();
}
};
export const POST = async (req: Request) => {
try {
const body = (await req.json()) as Body;
const { message } = body;
if (message.content === '') {
return Response.json(
{
message: 'Please provide a message to process',
},
{ status: 400 },
);
}
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
const chatModelProvider =
chatModelProviders[
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
];
const chatModel =
chatModelProvider[
body.chatModel?.name || Object.keys(chatModelProvider)[0]
];
const embeddingProvider =
embeddingModelProviders[
body.embeddingModel?.provider || Object.keys(embeddingModelProviders)[0]
];
const embeddingModel =
embeddingProvider[
body.embeddingModel?.name || Object.keys(embeddingProvider)[0]
];
let llm: BaseChatModel | undefined;
let embedding = embeddingModel.model;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
openAIApiKey: getCustomOpenaiApiKey(),
modelName: getCustomOpenaiModelName(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (chatModelProvider && chatModel) {
llm = chatModel.model;
}
if (!llm) {
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
}
if (!embedding) {
return Response.json(
{ error: 'Invalid embedding model' },
{ status: 400 },
);
}
const humanMessageId =
message.messageId ?? crypto.randomBytes(7).toString('hex');
const aiMessageId = crypto.randomBytes(7).toString('hex');
const history: BaseMessage[] = body.history.map((msg) => {
if (msg[0] === 'human') {
return new HumanMessage({
content: msg[1],
});
} else {
return new AIMessage({
content: msg[1],
});
}
});
const handler = searchHandlers[body.focusMode];
if (!handler) {
return Response.json(
{
message: 'Invalid focus mode',
},
{ status: 400 },
);
}
const stream = await handler.searchAndAnswer(
message.content,
history,
llm,
embedding,
body.optimizationMode,
body.files,
body.systemInstructions,
);
const responseStream = new TransformStream();
const writer = responseStream.writable.getWriter();
const encoder = new TextEncoder();
handleEmitterEvents(stream, writer, encoder, aiMessageId, message.chatId);
handleHistorySave(message, humanMessageId, body.focusMode, body.files);
return new Response(responseStream.readable, {
headers: {
'Content-Type': 'text/event-stream',
Connection: 'keep-alive',
'Cache-Control': 'no-cache, no-transform',
},
});
} catch (err) {
console.error('An error occurred while processing chat request:', err);
return Response.json(
{ message: 'An error occurred while processing chat request' },
{ status: 500 },
);
}
};

View File

@ -0,0 +1,69 @@
import db from '@/lib/db';
import { chats, messages } from '@/lib/db/schema';
import { eq } from 'drizzle-orm';
export const GET = async (
req: Request,
{ params }: { params: Promise<{ id: string }> },
) => {
try {
const { id } = await params;
const chatExists = await db.query.chats.findFirst({
where: eq(chats.id, id),
});
if (!chatExists) {
return Response.json({ message: 'Chat not found' }, { status: 404 });
}
const chatMessages = await db.query.messages.findMany({
where: eq(messages.chatId, id),
});
return Response.json(
{
chat: chatExists,
messages: chatMessages,
},
{ status: 200 },
);
} catch (err) {
console.error('Error in getting chat by id: ', err);
return Response.json(
{ message: 'An error has occurred.' },
{ status: 500 },
);
}
};
export const DELETE = async (
req: Request,
{ params }: { params: Promise<{ id: string }> },
) => {
try {
const { id } = await params;
const chatExists = await db.query.chats.findFirst({
where: eq(chats.id, id),
});
if (!chatExists) {
return Response.json({ message: 'Chat not found' }, { status: 404 });
}
await db.delete(chats).where(eq(chats.id, id)).execute();
await db.delete(messages).where(eq(messages.chatId, id)).execute();
return Response.json(
{ message: 'Chat deleted successfully' },
{ status: 200 },
);
} catch (err) {
console.error('Error in deleting chat by id: ', err);
return Response.json(
{ message: 'An error has occurred.' },
{ status: 500 },
);
}
};

View File

@ -0,0 +1,15 @@
import db from '@/lib/db';
export const GET = async (req: Request) => {
try {
let chats = await db.query.chats.findMany();
chats = chats.reverse();
return Response.json({ chats: chats }, { status: 200 });
} catch (err) {
console.error('Error in getting chats: ', err);
return Response.json(
{ message: 'An error has occurred.' },
{ status: 500 },
);
}
};

119
src/app/api/config/route.ts Normal file
View File

@ -0,0 +1,119 @@
import {
getAnthropicApiKey,
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
getGeminiApiKey,
getGroqApiKey,
getOllamaApiEndpoint,
getOpenaiApiKey,
getDeepseekApiKey,
getLMStudioApiEndpoint,
updateConfig,
} from '@/lib/config';
import {
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '@/lib/providers';
export const GET = async (req: Request) => {
try {
const config: Record<string, any> = {};
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
config['chatModelProviders'] = {};
config['embeddingModelProviders'] = {};
for (const provider in chatModelProviders) {
config['chatModelProviders'][provider] = Object.keys(
chatModelProviders[provider],
).map((model) => {
return {
name: model,
displayName: chatModelProviders[provider][model].displayName,
};
});
}
for (const provider in embeddingModelProviders) {
config['embeddingModelProviders'][provider] = Object.keys(
embeddingModelProviders[provider],
).map((model) => {
return {
name: model,
displayName: embeddingModelProviders[provider][model].displayName,
};
});
}
config['openaiApiKey'] = getOpenaiApiKey();
config['ollamaApiUrl'] = getOllamaApiEndpoint();
config['lmStudioApiUrl'] = getLMStudioApiEndpoint();
config['anthropicApiKey'] = getAnthropicApiKey();
config['groqApiKey'] = getGroqApiKey();
config['geminiApiKey'] = getGeminiApiKey();
config['deepseekApiKey'] = getDeepseekApiKey();
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
config['customOpenaiModelName'] = getCustomOpenaiModelName();
return Response.json({ ...config }, { status: 200 });
} catch (err) {
console.error('An error occurred while getting config:', err);
return Response.json(
{ message: 'An error occurred while getting config' },
{ status: 500 },
);
}
};
export const POST = async (req: Request) => {
try {
const config = await req.json();
const updatedConfig = {
MODELS: {
OPENAI: {
API_KEY: config.openaiApiKey,
},
GROQ: {
API_KEY: config.groqApiKey,
},
ANTHROPIC: {
API_KEY: config.anthropicApiKey,
},
GEMINI: {
API_KEY: config.geminiApiKey,
},
OLLAMA: {
API_URL: config.ollamaApiUrl,
},
DEEPSEEK: {
API_KEY: config.deepseekApiKey,
},
LM_STUDIO: {
API_URL: config.lmStudioApiUrl,
},
CUSTOM_OPENAI: {
API_URL: config.customOpenaiApiUrl,
API_KEY: config.customOpenaiApiKey,
MODEL_NAME: config.customOpenaiModelName,
},
},
};
updateConfig(updatedConfig);
return Response.json({ message: 'Config updated' }, { status: 200 });
} catch (err) {
console.error('An error occurred while updating config:', err);
return Response.json(
{ message: 'An error occurred while updating config' },
{ status: 500 },
);
}
};

View File

@ -0,0 +1,61 @@
import { searchSearxng } from '@/lib/searxng';
const articleWebsites = [
'yahoo.com',
'www.exchangewire.com',
'businessinsider.com',
/* 'wired.com',
'mashable.com',
'theverge.com',
'gizmodo.com',
'cnet.com',
'venturebeat.com', */
];
const topics = ['AI', 'tech']; /* TODO: Add UI to customize this */
export const GET = async (req: Request) => {
try {
const data = (
await Promise.all([
...new Array(articleWebsites.length * topics.length)
.fill(0)
.map(async (_, i) => {
return (
await searchSearxng(
`site:${articleWebsites[i % articleWebsites.length]} ${
topics[i % topics.length]
}`,
{
engines: ['bing news'],
pageno: 1,
},
)
).results;
}),
])
)
.map((result) => result)
.flat()
.sort(() => Math.random() - 0.5);
return Response.json(
{
blogs: data,
},
{
status: 200,
},
);
} catch (err) {
console.error(`An error occurred in discover route: ${err}`);
return Response.json(
{
message: 'An error has occurred',
},
{
status: 500,
},
);
}
};

View File

@ -0,0 +1,83 @@
import handleImageSearch from '@/lib/chains/imageSearchAgent';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '@/lib/config';
import { getAvailableChatModelProviders } from '@/lib/providers';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
import { ChatOpenAI } from '@langchain/openai';
interface ChatModel {
provider: string;
model: string;
}
interface ImageSearchBody {
query: string;
chatHistory: any[];
chatModel?: ChatModel;
}
export const POST = async (req: Request) => {
try {
const body: ImageSearchBody = await req.json();
const chatHistory = body.chatHistory
.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
return new AIMessage(msg.content);
}
})
.filter((msg) => msg !== undefined) as BaseMessage[];
const chatModelProviders = await getAvailableChatModelProviders();
const chatModelProvider =
chatModelProviders[
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
];
const chatModel =
chatModelProvider[
body.chatModel?.model || Object.keys(chatModelProvider)[0]
];
let llm: BaseChatModel | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
openAIApiKey: getCustomOpenaiApiKey(),
modelName: getCustomOpenaiModelName(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (chatModelProvider && chatModel) {
llm = chatModel.model;
}
if (!llm) {
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
}
const images = await handleImageSearch(
{
chat_history: chatHistory,
query: body.query,
},
llm,
);
return Response.json({ images }, { status: 200 });
} catch (err) {
console.error(`An error occurred while searching images: ${err}`);
return Response.json(
{ message: 'An error occurred while searching images' },
{ status: 500 },
);
}
};

View File

@ -0,0 +1,47 @@
import {
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '@/lib/providers';
export const GET = async (req: Request) => {
try {
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
Object.keys(chatModelProviders).forEach((provider) => {
Object.keys(chatModelProviders[provider]).forEach((model) => {
delete (chatModelProviders[provider][model] as { model?: unknown })
.model;
});
});
Object.keys(embeddingModelProviders).forEach((provider) => {
Object.keys(embeddingModelProviders[provider]).forEach((model) => {
delete (embeddingModelProviders[provider][model] as { model?: unknown })
.model;
});
});
return Response.json(
{
chatModelProviders,
embeddingModelProviders,
},
{
status: 200,
},
);
} catch (err) {
console.error('An error occurred while fetching models', err);
return Response.json(
{
message: 'An error has occurred.',
},
{
status: 500,
},
);
}
};

270
src/app/api/search/route.ts Normal file
View File

@ -0,0 +1,270 @@
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import { ChatOpenAI } from '@langchain/openai';
import {
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '@/lib/providers';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
import { MetaSearchAgentType } from '@/lib/search/metaSearchAgent';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '@/lib/config';
import { searchHandlers } from '@/lib/search';
interface chatModel {
provider: string;
name: string;
customOpenAIKey?: string;
customOpenAIBaseURL?: string;
}
interface embeddingModel {
provider: string;
name: string;
}
interface ChatRequestBody {
optimizationMode: 'speed' | 'balanced';
focusMode: string;
chatModel?: chatModel;
embeddingModel?: embeddingModel;
query: string;
history: Array<[string, string]>;
stream?: boolean;
systemInstructions?: string;
}
export const POST = async (req: Request) => {
try {
const body: ChatRequestBody = await req.json();
if (!body.focusMode || !body.query) {
return Response.json(
{ message: 'Missing focus mode or query' },
{ status: 400 },
);
}
body.history = body.history || [];
body.optimizationMode = body.optimizationMode || 'balanced';
body.stream = body.stream || false;
const history: BaseMessage[] = body.history.map((msg) => {
return msg[0] === 'human'
? new HumanMessage({ content: msg[1] })
: new AIMessage({ content: msg[1] });
});
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
const chatModelProvider =
body.chatModel?.provider || Object.keys(chatModelProviders)[0];
const chatModel =
body.chatModel?.name ||
Object.keys(chatModelProviders[chatModelProvider])[0];
const embeddingModelProvider =
body.embeddingModel?.provider || Object.keys(embeddingModelProviders)[0];
const embeddingModel =
body.embeddingModel?.name ||
Object.keys(embeddingModelProviders[embeddingModelProvider])[0];
let llm: BaseChatModel | undefined;
let embeddings: Embeddings | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
modelName: body.chatModel?.name || getCustomOpenaiModelName(),
openAIApiKey:
body.chatModel?.customOpenAIKey || getCustomOpenaiApiKey(),
temperature: 0.7,
configuration: {
baseURL:
body.chatModel?.customOpenAIBaseURL || getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (
chatModelProviders[chatModelProvider] &&
chatModelProviders[chatModelProvider][chatModel]
) {
llm = chatModelProviders[chatModelProvider][chatModel]
.model as unknown as BaseChatModel | undefined;
}
if (
embeddingModelProviders[embeddingModelProvider] &&
embeddingModelProviders[embeddingModelProvider][embeddingModel]
) {
embeddings = embeddingModelProviders[embeddingModelProvider][
embeddingModel
].model as Embeddings | undefined;
}
if (!llm || !embeddings) {
return Response.json(
{ message: 'Invalid model selected' },
{ status: 400 },
);
}
const searchHandler: MetaSearchAgentType = searchHandlers[body.focusMode];
if (!searchHandler) {
return Response.json({ message: 'Invalid focus mode' }, { status: 400 });
}
const emitter = await searchHandler.searchAndAnswer(
body.query,
history,
llm,
embeddings,
body.optimizationMode,
[],
body.systemInstructions || '',
);
if (!body.stream) {
return new Promise(
(
resolve: (value: Response) => void,
reject: (value: Response) => void,
) => {
let message = '';
let sources: any[] = [];
emitter.on('data', (data: string) => {
try {
const parsedData = JSON.parse(data);
if (parsedData.type === 'response') {
message += parsedData.data;
} else if (parsedData.type === 'sources') {
sources = parsedData.data;
}
} catch (error) {
reject(
Response.json(
{ message: 'Error parsing data' },
{ status: 500 },
),
);
}
});
emitter.on('end', () => {
resolve(Response.json({ message, sources }, { status: 200 }));
});
emitter.on('error', (error: any) => {
reject(
Response.json(
{ message: 'Search error', error },
{ status: 500 },
),
);
});
},
);
}
const encoder = new TextEncoder();
const abortController = new AbortController();
const { signal } = abortController;
const stream = new ReadableStream({
start(controller) {
let sources: any[] = [];
controller.enqueue(
encoder.encode(
JSON.stringify({
type: 'init',
data: 'Stream connected',
}) + '\n',
),
);
signal.addEventListener('abort', () => {
emitter.removeAllListeners();
try {
controller.close();
} catch (error) {}
});
emitter.on('data', (data: string) => {
if (signal.aborted) return;
try {
const parsedData = JSON.parse(data);
if (parsedData.type === 'response') {
controller.enqueue(
encoder.encode(
JSON.stringify({
type: 'response',
data: parsedData.data,
}) + '\n',
),
);
} else if (parsedData.type === 'sources') {
sources = parsedData.data;
controller.enqueue(
encoder.encode(
JSON.stringify({
type: 'sources',
data: sources,
}) + '\n',
),
);
}
} catch (error) {
controller.error(error);
}
});
emitter.on('end', () => {
if (signal.aborted) return;
controller.enqueue(
encoder.encode(
JSON.stringify({
type: 'done',
}) + '\n',
),
);
controller.close();
});
emitter.on('error', (error: any) => {
if (signal.aborted) return;
controller.error(error);
});
},
cancel() {
abortController.abort();
},
});
return new Response(stream, {
headers: {
'Content-Type': 'text/event-stream',
'Cache-Control': 'no-cache, no-transform',
Connection: 'keep-alive',
},
});
} catch (err: any) {
console.error(`Error in getting search results: ${err.message}`);
return Response.json(
{ message: 'An error has occurred.' },
{ status: 500 },
);
}
};

View File

@ -0,0 +1,81 @@
import generateSuggestions from '@/lib/chains/suggestionGeneratorAgent';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '@/lib/config';
import { getAvailableChatModelProviders } from '@/lib/providers';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
import { ChatOpenAI } from '@langchain/openai';
interface ChatModel {
provider: string;
model: string;
}
interface SuggestionsGenerationBody {
chatHistory: any[];
chatModel?: ChatModel;
}
export const POST = async (req: Request) => {
try {
const body: SuggestionsGenerationBody = await req.json();
const chatHistory = body.chatHistory
.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
return new AIMessage(msg.content);
}
})
.filter((msg) => msg !== undefined) as BaseMessage[];
const chatModelProviders = await getAvailableChatModelProviders();
const chatModelProvider =
chatModelProviders[
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
];
const chatModel =
chatModelProvider[
body.chatModel?.model || Object.keys(chatModelProvider)[0]
];
let llm: BaseChatModel | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
openAIApiKey: getCustomOpenaiApiKey(),
modelName: getCustomOpenaiModelName(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (chatModelProvider && chatModel) {
llm = chatModel.model;
}
if (!llm) {
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
}
const suggestions = await generateSuggestions(
{
chat_history: chatHistory,
},
llm,
);
return Response.json({ suggestions }, { status: 200 });
} catch (err) {
console.error(`An error occurred while generating suggestions: ${err}`);
return Response.json(
{ message: 'An error occurred while generating suggestions' },
{ status: 500 },
);
}
};

View File

@ -0,0 +1,134 @@
import { NextResponse } from 'next/server';
import fs from 'fs';
import path from 'path';
import crypto from 'crypto';
import { getAvailableEmbeddingModelProviders } from '@/lib/providers';
import { PDFLoader } from '@langchain/community/document_loaders/fs/pdf';
import { DocxLoader } from '@langchain/community/document_loaders/fs/docx';
import { RecursiveCharacterTextSplitter } from '@langchain/textsplitters';
import { Document } from 'langchain/document';
interface FileRes {
fileName: string;
fileExtension: string;
fileId: string;
}
const uploadDir = path.join(process.cwd(), 'uploads');
if (!fs.existsSync(uploadDir)) {
fs.mkdirSync(uploadDir, { recursive: true });
}
const splitter = new RecursiveCharacterTextSplitter({
chunkSize: 500,
chunkOverlap: 100,
});
export async function POST(req: Request) {
try {
const formData = await req.formData();
const files = formData.getAll('files') as File[];
const embedding_model = formData.get('embedding_model');
const embedding_model_provider = formData.get('embedding_model_provider');
if (!embedding_model || !embedding_model_provider) {
return NextResponse.json(
{ message: 'Missing embedding model or provider' },
{ status: 400 },
);
}
const embeddingModels = await getAvailableEmbeddingModelProviders();
const provider =
embedding_model_provider ?? Object.keys(embeddingModels)[0];
const embeddingModel =
embedding_model ?? Object.keys(embeddingModels[provider as string])[0];
let embeddingsModel =
embeddingModels[provider as string]?.[embeddingModel as string]?.model;
if (!embeddingsModel) {
return NextResponse.json(
{ message: 'Invalid embedding model selected' },
{ status: 400 },
);
}
const processedFiles: FileRes[] = [];
await Promise.all(
files.map(async (file: any) => {
const fileExtension = file.name.split('.').pop();
if (!['pdf', 'docx', 'txt'].includes(fileExtension!)) {
return NextResponse.json(
{ message: 'File type not supported' },
{ status: 400 },
);
}
const uniqueFileName = `${crypto.randomBytes(16).toString('hex')}.${fileExtension}`;
const filePath = path.join(uploadDir, uniqueFileName);
const buffer = Buffer.from(await file.arrayBuffer());
fs.writeFileSync(filePath, new Uint8Array(buffer));
let docs: any[] = [];
if (fileExtension === 'pdf') {
const loader = new PDFLoader(filePath);
docs = await loader.load();
} else if (fileExtension === 'docx') {
const loader = new DocxLoader(filePath);
docs = await loader.load();
} else if (fileExtension === 'txt') {
const text = fs.readFileSync(filePath, 'utf-8');
docs = [
new Document({ pageContent: text, metadata: { title: file.name } }),
];
}
const splitted = await splitter.splitDocuments(docs);
const extractedDataPath = filePath.replace(/\.\w+$/, '-extracted.json');
fs.writeFileSync(
extractedDataPath,
JSON.stringify({
title: file.name,
contents: splitted.map((doc) => doc.pageContent),
}),
);
const embeddings = await embeddingsModel.embedDocuments(
splitted.map((doc) => doc.pageContent),
);
const embeddingsDataPath = filePath.replace(
/\.\w+$/,
'-embeddings.json',
);
fs.writeFileSync(
embeddingsDataPath,
JSON.stringify({
title: file.name,
embeddings,
}),
);
processedFiles.push({
fileName: file.name,
fileExtension: fileExtension,
fileId: uniqueFileName.replace(/\.\w+$/, ''),
});
}),
);
return NextResponse.json({
files: processedFiles,
});
} catch (error) {
console.error('Error uploading file:', error);
return NextResponse.json(
{ message: 'An error has occurred.' },
{ status: 500 },
);
}
}

View File

@ -0,0 +1,83 @@
import handleVideoSearch from '@/lib/chains/videoSearchAgent';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '@/lib/config';
import { getAvailableChatModelProviders } from '@/lib/providers';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
import { ChatOpenAI } from '@langchain/openai';
interface ChatModel {
provider: string;
model: string;
}
interface VideoSearchBody {
query: string;
chatHistory: any[];
chatModel?: ChatModel;
}
export const POST = async (req: Request) => {
try {
const body: VideoSearchBody = await req.json();
const chatHistory = body.chatHistory
.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
return new AIMessage(msg.content);
}
})
.filter((msg) => msg !== undefined) as BaseMessage[];
const chatModelProviders = await getAvailableChatModelProviders();
const chatModelProvider =
chatModelProviders[
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
];
const chatModel =
chatModelProvider[
body.chatModel?.model || Object.keys(chatModelProvider)[0]
];
let llm: BaseChatModel | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
openAIApiKey: getCustomOpenaiApiKey(),
modelName: getCustomOpenaiModelName(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (chatModelProvider && chatModel) {
llm = chatModel.model;
}
if (!llm) {
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
}
const videos = await handleVideoSearch(
{
chat_history: chatHistory,
query: body.query,
},
llm,
);
return Response.json({ videos }, { status: 200 });
} catch (err) {
console.error(`An error occurred while searching videos: ${err}`);
return Response.json(
{ message: 'An error occurred while searching videos' },
{ status: 500 },
);
}
};

View File

@ -0,0 +1,9 @@
import ChatWindow from '@/components/ChatWindow';
import React from 'react';
const Page = ({ params }: { params: Promise<{ chatId: string }> }) => {
const { chatId } = React.use(params);
return <ChatWindow id={chatId} />;
};
export default Page;

113
src/app/discover/page.tsx Normal file
View File

@ -0,0 +1,113 @@
'use client';
import { Search } from 'lucide-react';
import { useEffect, useState } from 'react';
import Link from 'next/link';
import { toast } from 'sonner';
interface Discover {
title: string;
content: string;
url: string;
thumbnail: string;
}
const Page = () => {
const [discover, setDiscover] = useState<Discover[] | null>(null);
const [loading, setLoading] = useState(true);
useEffect(() => {
const fetchData = async () => {
try {
const res = await fetch(`/api/discover`, {
method: 'GET',
headers: {
'Content-Type': 'application/json',
},
});
const data = await res.json();
if (!res.ok) {
throw new Error(data.message);
}
data.blogs = data.blogs.filter((blog: Discover) => blog.thumbnail);
setDiscover(data.blogs);
} catch (err: any) {
console.error('Error fetching data:', err.message);
toast.error('Error fetching data');
} finally {
setLoading(false);
}
};
fetchData();
}, []);
return loading ? (
<div className="flex flex-row items-center justify-center min-h-screen">
<svg
aria-hidden="true"
className="w-8 h-8 text-light-200 fill-light-secondary dark:text-[#202020] animate-spin dark:fill-[#ffffff3b]"
viewBox="0 0 100 101"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<path
d="M100 50.5908C100.003 78.2051 78.1951 100.003 50.5908 100C22.9765 99.9972 0.997224 78.018 1 50.4037C1.00281 22.7993 22.8108 0.997224 50.4251 1C78.0395 1.00281 100.018 22.8108 100 50.4251ZM9.08164 50.594C9.06312 73.3997 27.7909 92.1272 50.5966 92.1457C73.4023 92.1642 92.1298 73.4365 92.1483 50.6308C92.1669 27.8251 73.4392 9.0973 50.6335 9.07878C27.8278 9.06026 9.10003 27.787 9.08164 50.594Z"
fill="currentColor"
/>
<path
d="M93.9676 39.0409C96.393 38.4037 97.8624 35.9116 96.9801 33.5533C95.1945 28.8227 92.871 24.3692 90.0681 20.348C85.6237 14.1775 79.4473 9.36872 72.0454 6.45794C64.6435 3.54717 56.3134 2.65431 48.3133 3.89319C45.869 4.27179 44.3768 6.77534 45.014 9.20079C45.6512 11.6262 48.1343 13.0956 50.5786 12.717C56.5073 11.8281 62.5542 12.5399 68.0406 14.7911C73.527 17.0422 78.2187 20.7487 81.5841 25.4923C83.7976 28.5886 85.4467 32.059 86.4416 35.7474C87.1273 38.1189 89.5423 39.6781 91.9676 39.0409Z"
fill="currentFill"
/>
</svg>
</div>
) : (
<>
<div>
<div className="flex flex-col pt-4">
<div className="flex items-center">
<Search />
<h1 className="text-3xl font-medium p-2">Discover</h1>
</div>
<hr className="border-t border-[#2B2C2C] my-4 w-full" />
</div>
<div className="grid lg:grid-cols-3 sm:grid-cols-2 grid-cols-1 gap-4 pb-28 lg:pb-8 w-full justify-items-center lg:justify-items-start">
{discover &&
discover?.map((item, i) => (
<Link
href={`/?q=Summary: ${item.url}`}
key={i}
className="max-w-sm rounded-lg overflow-hidden bg-light-secondary dark:bg-dark-secondary hover:-translate-y-[1px] transition duration-200"
target="_blank"
>
<img
className="object-cover w-full aspect-video"
src={
new URL(item.thumbnail).origin +
new URL(item.thumbnail).pathname +
`?id=${new URL(item.thumbnail).searchParams.get('id')}`
}
alt={item.title}
/>
<div className="px-6 py-4">
<div className="font-bold text-lg mb-2">
{item.title.slice(0, 100)}...
</div>
<p className="text-black-70 dark:text-white/70 text-sm">
{item.content.slice(0, 100)}...
</p>
</div>
</Link>
))}
</div>
</div>
</>
);
};
export default Page;

View File

Before

Width:  |  Height:  |  Size: 25 KiB

After

Width:  |  Height:  |  Size: 25 KiB

View File

@ -3,6 +3,8 @@ import { Montserrat } from 'next/font/google';
import './globals.css';
import { cn } from '@/lib/utils';
import Sidebar from '@/components/Sidebar';
import { Toaster } from 'sonner';
import ThemeProvider from '@/components/theme/Provider';
const montserrat = Montserrat({
weight: ['300', '400', '500', '700'],
@ -23,9 +25,20 @@ export default function RootLayout({
children: React.ReactNode;
}>) {
return (
<html className="h-full" lang="en">
<html className="h-full" lang="en" suppressHydrationWarning>
<body className={cn('h-full', montserrat.className)}>
<Sidebar>{children}</Sidebar>
<ThemeProvider>
<Sidebar>{children}</Sidebar>
<Toaster
toastOptions={{
unstyled: true,
classNames: {
toast:
'bg-light-primary dark:bg-dark-secondary dark:text-white/70 text-black-70 rounded-lg p-4 flex flex-row items-center space-x-2',
},
}}
/>
</ThemeProvider>
</body>
</html>
);

View File

@ -0,0 +1,12 @@
import { Metadata } from 'next';
import React from 'react';
export const metadata: Metadata = {
title: 'Library - Perplexica',
};
const Layout = ({ children }: { children: React.ReactNode }) => {
return <div>{children}</div>;
};
export default Layout;

114
src/app/library/page.tsx Normal file
View File

@ -0,0 +1,114 @@
'use client';
import DeleteChat from '@/components/DeleteChat';
import { cn, formatTimeDifference } from '@/lib/utils';
import { BookOpenText, ClockIcon, Delete, ScanEye } from 'lucide-react';
import Link from 'next/link';
import { useEffect, useState } from 'react';
export interface Chat {
id: string;
title: string;
createdAt: string;
focusMode: string;
}
const Page = () => {
const [chats, setChats] = useState<Chat[]>([]);
const [loading, setLoading] = useState(true);
useEffect(() => {
const fetchChats = async () => {
setLoading(true);
const res = await fetch(`/api/chats`, {
method: 'GET',
headers: {
'Content-Type': 'application/json',
},
});
const data = await res.json();
setChats(data.chats);
setLoading(false);
};
fetchChats();
}, []);
return loading ? (
<div className="flex flex-row items-center justify-center min-h-screen">
<svg
aria-hidden="true"
className="w-8 h-8 text-light-200 fill-light-secondary dark:text-[#202020] animate-spin dark:fill-[#ffffff3b]"
viewBox="0 0 100 101"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<path
d="M100 50.5908C100.003 78.2051 78.1951 100.003 50.5908 100C22.9765 99.9972 0.997224 78.018 1 50.4037C1.00281 22.7993 22.8108 0.997224 50.4251 1C78.0395 1.00281 100.018 22.8108 100 50.4251ZM9.08164 50.594C9.06312 73.3997 27.7909 92.1272 50.5966 92.1457C73.4023 92.1642 92.1298 73.4365 92.1483 50.6308C92.1669 27.8251 73.4392 9.0973 50.6335 9.07878C27.8278 9.06026 9.10003 27.787 9.08164 50.594Z"
fill="currentColor"
/>
<path
d="M93.9676 39.0409C96.393 38.4037 97.8624 35.9116 96.9801 33.5533C95.1945 28.8227 92.871 24.3692 90.0681 20.348C85.6237 14.1775 79.4473 9.36872 72.0454 6.45794C64.6435 3.54717 56.3134 2.65431 48.3133 3.89319C45.869 4.27179 44.3768 6.77534 45.014 9.20079C45.6512 11.6262 48.1343 13.0956 50.5786 12.717C56.5073 11.8281 62.5542 12.5399 68.0406 14.7911C73.527 17.0422 78.2187 20.7487 81.5841 25.4923C83.7976 28.5886 85.4467 32.059 86.4416 35.7474C87.1273 38.1189 89.5423 39.6781 91.9676 39.0409Z"
fill="currentFill"
/>
</svg>
</div>
) : (
<div>
<div className="flex flex-col pt-4">
<div className="flex items-center">
<BookOpenText />
<h1 className="text-3xl font-medium p-2">Library</h1>
</div>
<hr className="border-t border-[#2B2C2C] my-4 w-full" />
</div>
{chats.length === 0 && (
<div className="flex flex-row items-center justify-center min-h-screen">
<p className="text-black/70 dark:text-white/70 text-sm">
No chats found.
</p>
</div>
)}
{chats.length > 0 && (
<div className="flex flex-col pb-20 lg:pb-2">
{chats.map((chat, i) => (
<div
className={cn(
'flex flex-col space-y-4 py-6',
i !== chats.length - 1
? 'border-b border-white-200 dark:border-dark-200'
: '',
)}
key={i}
>
<Link
href={`/c/${chat.id}`}
className="text-black dark:text-white lg:text-xl font-medium truncate transition duration-200 hover:text-[#24A0ED] dark:hover:text-[#24A0ED] cursor-pointer"
>
{chat.title}
</Link>
<div className="flex flex-row items-center justify-between w-full">
<div className="flex flex-row items-center space-x-1 lg:space-x-1.5 text-black/70 dark:text-white/70">
<ClockIcon size={15} />
<p className="text-xs">
{formatTimeDifference(new Date(), chat.createdAt)} Ago
</p>
</div>
<DeleteChat
chatId={chat.id}
chats={chats}
setChats={setChats}
/>
</div>
</div>
))}
</div>
)}
</div>
);
};
export default Page;

View File

@ -1,5 +1,6 @@
import ChatWindow from '@/components/ChatWindow';
import { Metadata } from 'next';
import { Suspense } from 'react';
export const metadata: Metadata = {
title: 'Chat - Perplexica',
@ -9,7 +10,9 @@ export const metadata: Metadata = {
const Home = () => {
return (
<div>
<ChatWindow />
<Suspense>
<ChatWindow />
</Suspense>
</div>
);
};

893
src/app/settings/page.tsx Normal file
View File

@ -0,0 +1,893 @@
'use client';
import { Settings as SettingsIcon, ArrowLeft, Loader2 } from 'lucide-react';
import { useEffect, useState } from 'react';
import { cn } from '@/lib/utils';
import { Switch } from '@headlessui/react';
import ThemeSwitcher from '@/components/theme/Switcher';
import { ImagesIcon, VideoIcon } from 'lucide-react';
import Link from 'next/link';
import { PROVIDER_METADATA } from '@/lib/providers';
interface SettingsType {
chatModelProviders: {
[key: string]: [Record<string, any>];
};
embeddingModelProviders: {
[key: string]: [Record<string, any>];
};
openaiApiKey: string;
groqApiKey: string;
anthropicApiKey: string;
geminiApiKey: string;
ollamaApiUrl: string;
lmStudioApiUrl: string;
deepseekApiKey: string;
customOpenaiApiKey: string;
customOpenaiApiUrl: string;
customOpenaiModelName: string;
}
interface InputProps extends React.InputHTMLAttributes<HTMLInputElement> {
isSaving?: boolean;
onSave?: (value: string) => void;
}
const Input = ({ className, isSaving, onSave, ...restProps }: InputProps) => {
return (
<div className="relative">
<input
{...restProps}
className={cn(
'bg-light-secondary dark:bg-dark-secondary w-full px-3 py-2 flex items-center overflow-hidden border border-light-200 dark:border-dark-200 dark:text-white rounded-lg text-sm',
isSaving && 'pr-10',
className,
)}
onBlur={(e) => onSave?.(e.target.value)}
/>
{isSaving && (
<div className="absolute right-3 top-1/2 -translate-y-1/2">
<Loader2
size={16}
className="animate-spin text-black/70 dark:text-white/70"
/>
</div>
)}
</div>
);
};
interface TextareaProps extends React.InputHTMLAttributes<HTMLTextAreaElement> {
isSaving?: boolean;
onSave?: (value: string) => void;
}
const Textarea = ({
className,
isSaving,
onSave,
...restProps
}: TextareaProps) => {
return (
<div className="relative">
<textarea
placeholder="Any special instructions for the LLM"
className="placeholder:text-sm text-sm w-full flex items-center justify-between p-3 bg-light-secondary dark:bg-dark-secondary rounded-lg hover:bg-light-200 dark:hover:bg-dark-200 transition-colors"
rows={4}
onBlur={(e) => onSave?.(e.target.value)}
{...restProps}
/>
{isSaving && (
<div className="absolute right-3 top-3">
<Loader2
size={16}
className="animate-spin text-black/70 dark:text-white/70"
/>
</div>
)}
</div>
);
};
const Select = ({
className,
options,
...restProps
}: React.SelectHTMLAttributes<HTMLSelectElement> & {
options: { value: string; label: string; disabled?: boolean }[];
}) => {
return (
<select
{...restProps}
className={cn(
'bg-light-secondary dark:bg-dark-secondary px-3 py-2 flex items-center overflow-hidden border border-light-200 dark:border-dark-200 dark:text-white rounded-lg text-sm',
className,
)}
>
{options.map(({ label, value, disabled }) => (
<option key={value} value={value} disabled={disabled}>
{label}
</option>
))}
</select>
);
};
const SettingsSection = ({
title,
children,
}: {
title: string;
children: React.ReactNode;
}) => (
<div className="flex flex-col space-y-4 p-4 bg-light-secondary/50 dark:bg-dark-secondary/50 rounded-xl border border-light-200 dark:border-dark-200">
<h2 className="text-black/90 dark:text-white/90 font-medium">{title}</h2>
{children}
</div>
);
const Page = () => {
const [config, setConfig] = useState<SettingsType | null>(null);
const [chatModels, setChatModels] = useState<Record<string, any>>({});
const [embeddingModels, setEmbeddingModels] = useState<Record<string, any>>(
{},
);
const [selectedChatModelProvider, setSelectedChatModelProvider] = useState<
string | null
>(null);
const [selectedChatModel, setSelectedChatModel] = useState<string | null>(
null,
);
const [selectedEmbeddingModelProvider, setSelectedEmbeddingModelProvider] =
useState<string | null>(null);
const [selectedEmbeddingModel, setSelectedEmbeddingModel] = useState<
string | null
>(null);
const [isLoading, setIsLoading] = useState(false);
const [automaticImageSearch, setAutomaticImageSearch] = useState(false);
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
const [systemInstructions, setSystemInstructions] = useState<string>('');
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
useEffect(() => {
const fetchConfig = async () => {
setIsLoading(true);
const res = await fetch(`/api/config`, {
headers: {
'Content-Type': 'application/json',
},
});
const data = (await res.json()) as SettingsType;
setConfig(data);
const chatModelProvidersKeys = Object.keys(data.chatModelProviders || {});
const embeddingModelProvidersKeys = Object.keys(
data.embeddingModelProviders || {},
);
const defaultChatModelProvider =
chatModelProvidersKeys.length > 0 ? chatModelProvidersKeys[0] : '';
const defaultEmbeddingModelProvider =
embeddingModelProvidersKeys.length > 0
? embeddingModelProvidersKeys[0]
: '';
const chatModelProvider =
localStorage.getItem('chatModelProvider') ||
defaultChatModelProvider ||
'';
const chatModel =
localStorage.getItem('chatModel') ||
(data.chatModelProviders &&
data.chatModelProviders[chatModelProvider]?.length > 0
? data.chatModelProviders[chatModelProvider][0].name
: undefined) ||
'';
const embeddingModelProvider =
localStorage.getItem('embeddingModelProvider') ||
defaultEmbeddingModelProvider ||
'';
const embeddingModel =
localStorage.getItem('embeddingModel') ||
(data.embeddingModelProviders &&
data.embeddingModelProviders[embeddingModelProvider]?.[0].name) ||
'';
setSelectedChatModelProvider(chatModelProvider);
setSelectedChatModel(chatModel);
setSelectedEmbeddingModelProvider(embeddingModelProvider);
setSelectedEmbeddingModel(embeddingModel);
setChatModels(data.chatModelProviders || {});
setEmbeddingModels(data.embeddingModelProviders || {});
setAutomaticImageSearch(
localStorage.getItem('autoImageSearch') === 'true',
);
setAutomaticVideoSearch(
localStorage.getItem('autoVideoSearch') === 'true',
);
setSystemInstructions(localStorage.getItem('systemInstructions')!);
setIsLoading(false);
};
fetchConfig();
}, []);
const saveConfig = async (key: string, value: any) => {
setSavingStates((prev) => ({ ...prev, [key]: true }));
try {
const updatedConfig = {
...config,
[key]: value,
} as SettingsType;
const response = await fetch(`/api/config`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify(updatedConfig),
});
if (!response.ok) {
throw new Error('Failed to update config');
}
setConfig(updatedConfig);
if (
key.toLowerCase().includes('api') ||
key.toLowerCase().includes('url')
) {
const res = await fetch(`/api/config`, {
headers: {
'Content-Type': 'application/json',
},
});
if (!res.ok) {
throw new Error('Failed to fetch updated config');
}
const data = await res.json();
setChatModels(data.chatModelProviders || {});
setEmbeddingModels(data.embeddingModelProviders || {});
const currentChatProvider = selectedChatModelProvider;
const newChatProviders = Object.keys(data.chatModelProviders || {});
if (!currentChatProvider && newChatProviders.length > 0) {
const firstProvider = newChatProviders[0];
const firstModel = data.chatModelProviders[firstProvider]?.[0]?.name;
if (firstModel) {
setSelectedChatModelProvider(firstProvider);
setSelectedChatModel(firstModel);
localStorage.setItem('chatModelProvider', firstProvider);
localStorage.setItem('chatModel', firstModel);
}
} else if (
currentChatProvider &&
(!data.chatModelProviders ||
!data.chatModelProviders[currentChatProvider] ||
!Array.isArray(data.chatModelProviders[currentChatProvider]) ||
data.chatModelProviders[currentChatProvider].length === 0)
) {
const firstValidProvider = Object.entries(
data.chatModelProviders || {},
).find(
([_, models]) => Array.isArray(models) && models.length > 0,
)?.[0];
if (firstValidProvider) {
setSelectedChatModelProvider(firstValidProvider);
setSelectedChatModel(
data.chatModelProviders[firstValidProvider][0].name,
);
localStorage.setItem('chatModelProvider', firstValidProvider);
localStorage.setItem(
'chatModel',
data.chatModelProviders[firstValidProvider][0].name,
);
} else {
setSelectedChatModelProvider(null);
setSelectedChatModel(null);
localStorage.removeItem('chatModelProvider');
localStorage.removeItem('chatModel');
}
}
const currentEmbeddingProvider = selectedEmbeddingModelProvider;
const newEmbeddingProviders = Object.keys(
data.embeddingModelProviders || {},
);
if (!currentEmbeddingProvider && newEmbeddingProviders.length > 0) {
const firstProvider = newEmbeddingProviders[0];
const firstModel =
data.embeddingModelProviders[firstProvider]?.[0]?.name;
if (firstModel) {
setSelectedEmbeddingModelProvider(firstProvider);
setSelectedEmbeddingModel(firstModel);
localStorage.setItem('embeddingModelProvider', firstProvider);
localStorage.setItem('embeddingModel', firstModel);
}
} else if (
currentEmbeddingProvider &&
(!data.embeddingModelProviders ||
!data.embeddingModelProviders[currentEmbeddingProvider] ||
!Array.isArray(
data.embeddingModelProviders[currentEmbeddingProvider],
) ||
data.embeddingModelProviders[currentEmbeddingProvider].length === 0)
) {
const firstValidProvider = Object.entries(
data.embeddingModelProviders || {},
).find(
([_, models]) => Array.isArray(models) && models.length > 0,
)?.[0];
if (firstValidProvider) {
setSelectedEmbeddingModelProvider(firstValidProvider);
setSelectedEmbeddingModel(
data.embeddingModelProviders[firstValidProvider][0].name,
);
localStorage.setItem('embeddingModelProvider', firstValidProvider);
localStorage.setItem(
'embeddingModel',
data.embeddingModelProviders[firstValidProvider][0].name,
);
} else {
setSelectedEmbeddingModelProvider(null);
setSelectedEmbeddingModel(null);
localStorage.removeItem('embeddingModelProvider');
localStorage.removeItem('embeddingModel');
}
}
setConfig(data);
}
if (key === 'automaticImageSearch') {
localStorage.setItem('autoImageSearch', value.toString());
} else if (key === 'automaticVideoSearch') {
localStorage.setItem('autoVideoSearch', value.toString());
} else if (key === 'chatModelProvider') {
localStorage.setItem('chatModelProvider', value);
} else if (key === 'chatModel') {
localStorage.setItem('chatModel', value);
} else if (key === 'embeddingModelProvider') {
localStorage.setItem('embeddingModelProvider', value);
} else if (key === 'embeddingModel') {
localStorage.setItem('embeddingModel', value);
} else if (key === 'systemInstructions') {
localStorage.setItem('systemInstructions', value);
}
} catch (err) {
console.error('Failed to save:', err);
setConfig((prev) => ({ ...prev! }));
} finally {
setTimeout(() => {
setSavingStates((prev) => ({ ...prev, [key]: false }));
}, 500);
}
};
return (
<div className="max-w-3xl mx-auto">
<div className="flex flex-col pt-4">
<div className="flex items-center space-x-2">
<Link href="/" className="lg:hidden">
<ArrowLeft className="text-black/70 dark:text-white/70" />
</Link>
<div className="flex flex-row space-x-0.5 items-center">
<SettingsIcon size={23} />
<h1 className="text-3xl font-medium p-2">Settings</h1>
</div>
</div>
<hr className="border-t border-[#2B2C2C] my-4 w-full" />
</div>
{isLoading ? (
<div className="flex flex-row items-center justify-center min-h-[50vh]">
<svg
aria-hidden="true"
className="w-8 h-8 text-light-200 fill-light-secondary dark:text-[#202020] animate-spin dark:fill-[#ffffff3b]"
viewBox="0 0 100 101"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<path
d="M100 50.5908C100.003 78.2051 78.1951 100.003 50.5908 100C22.9765 99.9972 0.997224 78.018 1 50.4037C1.00281 22.7993 22.8108 0.997224 50.4251 1C78.0395 1.00281 100.018 22.8108 100 50.4251ZM9.08164 50.594C9.06312 73.3997 27.7909 92.1272 50.5966 92.1457C73.4023 92.1642 92.1298 73.4365 92.1483 50.6308C92.1669 27.8251 73.4392 9.0973 50.6335 9.07878C27.8278 9.06026 9.10003 27.787 9.08164 50.594Z"
fill="currentColor"
/>
<path
d="M93.9676 39.0409C96.393 38.4037 97.8624 35.9116 96.9801 33.5533C95.1945 28.8227 92.871 24.3692 90.0681 20.348C85.6237 14.1775 79.4473 9.36872 72.0454 6.45794C64.6435 3.54717 56.3134 2.65431 48.3133 3.89319C45.869 4.27179 44.3768 6.77534 45.014 9.20079C45.6512 11.6262 48.1343 13.0956 50.5786 12.717C56.5073 11.8281 62.5542 12.5399 68.0406 14.7911C73.527 17.0422 78.2187 20.7487 81.5841 25.4923C83.7976 28.5886 85.4467 32.059 86.4416 35.7474C87.1273 38.1189 89.5423 39.6781 91.9676 39.0409Z"
fill="currentFill"
/>
</svg>
</div>
) : (
config && (
<div className="flex flex-col space-y-6 pb-28 lg:pb-8">
<SettingsSection title="Appearance">
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Theme
</p>
<ThemeSwitcher />
</div>
</SettingsSection>
<SettingsSection title="Automatic Search">
<div className="flex flex-col space-y-4">
<div className="flex items-center justify-between p-3 bg-light-secondary dark:bg-dark-secondary rounded-lg hover:bg-light-200 dark:hover:bg-dark-200 transition-colors">
<div className="flex items-center space-x-3">
<div className="p-2 bg-light-200 dark:bg-dark-200 rounded-lg">
<ImagesIcon
size={18}
className="text-black/70 dark:text-white/70"
/>
</div>
<div>
<p className="text-sm text-black/90 dark:text-white/90 font-medium">
Automatic Image Search
</p>
<p className="text-xs text-black/60 dark:text-white/60 mt-0.5">
Automatically search for relevant images in chat
responses
</p>
</div>
</div>
<Switch
checked={automaticImageSearch}
onChange={(checked) => {
setAutomaticImageSearch(checked);
saveConfig('automaticImageSearch', checked);
}}
className={cn(
automaticImageSearch
? 'bg-[#24A0ED]'
: 'bg-light-200 dark:bg-dark-200',
'relative inline-flex h-6 w-11 items-center rounded-full transition-colors focus:outline-none',
)}
>
<span
className={cn(
automaticImageSearch
? 'translate-x-6'
: 'translate-x-1',
'inline-block h-4 w-4 transform rounded-full bg-white transition-transform',
)}
/>
</Switch>
</div>
<div className="flex items-center justify-between p-3 bg-light-secondary dark:bg-dark-secondary rounded-lg hover:bg-light-200 dark:hover:bg-dark-200 transition-colors">
<div className="flex items-center space-x-3">
<div className="p-2 bg-light-200 dark:bg-dark-200 rounded-lg">
<VideoIcon
size={18}
className="text-black/70 dark:text-white/70"
/>
</div>
<div>
<p className="text-sm text-black/90 dark:text-white/90 font-medium">
Automatic Video Search
</p>
<p className="text-xs text-black/60 dark:text-white/60 mt-0.5">
Automatically search for relevant videos in chat
responses
</p>
</div>
</div>
<Switch
checked={automaticVideoSearch}
onChange={(checked) => {
setAutomaticVideoSearch(checked);
saveConfig('automaticVideoSearch', checked);
}}
className={cn(
automaticVideoSearch
? 'bg-[#24A0ED]'
: 'bg-light-200 dark:bg-dark-200',
'relative inline-flex h-6 w-11 items-center rounded-full transition-colors focus:outline-none',
)}
>
<span
className={cn(
automaticVideoSearch
? 'translate-x-6'
: 'translate-x-1',
'inline-block h-4 w-4 transform rounded-full bg-white transition-transform',
)}
/>
</Switch>
</div>
</div>
</SettingsSection>
<SettingsSection title="System Instructions">
<div className="flex flex-col space-y-4">
<Textarea
value={systemInstructions}
isSaving={savingStates['systemInstructions']}
onChange={(e) => {
setSystemInstructions(e.target.value);
}}
onSave={(value) => saveConfig('systemInstructions', value)}
/>
</div>
</SettingsSection>
<SettingsSection title="Model Settings">
{config.chatModelProviders && (
<div className="flex flex-col space-y-4">
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Chat Model Provider
</p>
<Select
value={selectedChatModelProvider ?? undefined}
onChange={(e) => {
const value = e.target.value;
setSelectedChatModelProvider(value);
saveConfig('chatModelProvider', value);
const firstModel =
config.chatModelProviders[value]?.[0]?.name;
if (firstModel) {
setSelectedChatModel(firstModel);
saveConfig('chatModel', firstModel);
}
}}
options={Object.keys(config.chatModelProviders).map(
(provider) => ({
value: provider,
label:
(PROVIDER_METADATA as any)[provider]?.displayName ||
provider.charAt(0).toUpperCase() +
provider.slice(1),
}),
)}
/>
</div>
{selectedChatModelProvider &&
selectedChatModelProvider != 'custom_openai' && (
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Chat Model
</p>
<Select
value={selectedChatModel ?? undefined}
onChange={(e) => {
const value = e.target.value;
setSelectedChatModel(value);
saveConfig('chatModel', value);
}}
options={(() => {
const chatModelProvider =
config.chatModelProviders[
selectedChatModelProvider
];
return chatModelProvider
? chatModelProvider.length > 0
? chatModelProvider.map((model) => ({
value: model.name,
label: model.displayName,
}))
: [
{
value: '',
label: 'No models available',
disabled: true,
},
]
: [
{
value: '',
label:
'Invalid provider, please check backend logs',
disabled: true,
},
];
})()}
/>
</div>
)}
</div>
)}
{selectedChatModelProvider &&
selectedChatModelProvider === 'custom_openai' && (
<div className="flex flex-col space-y-4">
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Model Name
</p>
<Input
type="text"
placeholder="Model name"
value={config.customOpenaiModelName}
isSaving={savingStates['customOpenaiModelName']}
onChange={(e: React.ChangeEvent<HTMLInputElement>) => {
setConfig((prev) => ({
...prev!,
customOpenaiModelName: e.target.value,
}));
}}
onSave={(value) =>
saveConfig('customOpenaiModelName', value)
}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Custom OpenAI API Key
</p>
<Input
type="text"
placeholder="Custom OpenAI API Key"
value={config.customOpenaiApiKey}
isSaving={savingStates['customOpenaiApiKey']}
onChange={(e: React.ChangeEvent<HTMLInputElement>) => {
setConfig((prev) => ({
...prev!,
customOpenaiApiKey: e.target.value,
}));
}}
onSave={(value) =>
saveConfig('customOpenaiApiKey', value)
}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Custom OpenAI Base URL
</p>
<Input
type="text"
placeholder="Custom OpenAI Base URL"
value={config.customOpenaiApiUrl}
isSaving={savingStates['customOpenaiApiUrl']}
onChange={(e: React.ChangeEvent<HTMLInputElement>) => {
setConfig((prev) => ({
...prev!,
customOpenaiApiUrl: e.target.value,
}));
}}
onSave={(value) =>
saveConfig('customOpenaiApiUrl', value)
}
/>
</div>
</div>
)}
{config.embeddingModelProviders && (
<div className="flex flex-col space-y-4 mt-4 pt-4 border-t border-light-200 dark:border-dark-200">
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Embedding Model Provider
</p>
<Select
value={selectedEmbeddingModelProvider ?? undefined}
onChange={(e) => {
const value = e.target.value;
setSelectedEmbeddingModelProvider(value);
saveConfig('embeddingModelProvider', value);
const firstModel =
config.embeddingModelProviders[value]?.[0]?.name;
if (firstModel) {
setSelectedEmbeddingModel(firstModel);
saveConfig('embeddingModel', firstModel);
}
}}
options={Object.keys(config.embeddingModelProviders).map(
(provider) => ({
value: provider,
label:
(PROVIDER_METADATA as any)[provider]?.displayName ||
provider.charAt(0).toUpperCase() +
provider.slice(1),
}),
)}
/>
</div>
{selectedEmbeddingModelProvider && (
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Embedding Model
</p>
<Select
value={selectedEmbeddingModel ?? undefined}
onChange={(e) => {
const value = e.target.value;
setSelectedEmbeddingModel(value);
saveConfig('embeddingModel', value);
}}
options={(() => {
const embeddingModelProvider =
config.embeddingModelProviders[
selectedEmbeddingModelProvider
];
return embeddingModelProvider
? embeddingModelProvider.length > 0
? embeddingModelProvider.map((model) => ({
value: model.name,
label: model.displayName,
}))
: [
{
value: '',
label: 'No models available',
disabled: true,
},
]
: [
{
value: '',
label:
'Invalid provider, please check backend logs',
disabled: true,
},
];
})()}
/>
</div>
)}
</div>
)}
</SettingsSection>
<SettingsSection title="API Keys">
<div className="flex flex-col space-y-4">
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
OpenAI API Key
</p>
<Input
type="text"
placeholder="OpenAI API Key"
value={config.openaiApiKey}
isSaving={savingStates['openaiApiKey']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
openaiApiKey: e.target.value,
}));
}}
onSave={(value) => saveConfig('openaiApiKey', value)}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Ollama API URL
</p>
<Input
type="text"
placeholder="Ollama API URL"
value={config.ollamaApiUrl}
isSaving={savingStates['ollamaApiUrl']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
ollamaApiUrl: e.target.value,
}));
}}
onSave={(value) => saveConfig('ollamaApiUrl', value)}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
GROQ API Key
</p>
<Input
type="text"
placeholder="GROQ API Key"
value={config.groqApiKey}
isSaving={savingStates['groqApiKey']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
groqApiKey: e.target.value,
}));
}}
onSave={(value) => saveConfig('groqApiKey', value)}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Anthropic API Key
</p>
<Input
type="text"
placeholder="Anthropic API key"
value={config.anthropicApiKey}
isSaving={savingStates['anthropicApiKey']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
anthropicApiKey: e.target.value,
}));
}}
onSave={(value) => saveConfig('anthropicApiKey', value)}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Gemini API Key
</p>
<Input
type="text"
placeholder="Gemini API key"
value={config.geminiApiKey}
isSaving={savingStates['geminiApiKey']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
geminiApiKey: e.target.value,
}));
}}
onSave={(value) => saveConfig('geminiApiKey', value)}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Deepseek API Key
</p>
<Input
type="text"
placeholder="Deepseek API Key"
value={config.deepseekApiKey}
isSaving={savingStates['deepseekApiKey']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
deepseekApiKey: e.target.value,
}));
}}
onSave={(value) => saveConfig('deepseekApiKey', value)}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
LM Studio API URL
</p>
<Input
type="text"
placeholder="LM Studio API URL"
value={config.lmStudioApiUrl}
isSaving={savingStates['lmStudioApiUrl']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
lmStudioApiUrl: e.target.value,
}));
}}
onSave={(value) => saveConfig('lmStudioApiUrl', value)}
/>
</div>
</div>
</SettingsSection>
</div>
)
)}
</div>
);
};
export default Page;

View File

@ -1,8 +1,8 @@
'use client';
import { useEffect, useRef, useState } from 'react';
import { Fragment, useEffect, useRef, useState } from 'react';
import MessageInput from './MessageInput';
import { Message } from './ChatWindow';
import { File, Message } from './ChatWindow';
import MessageBox from './MessageBox';
import MessageBoxLoading from './MessageBoxLoading';
@ -12,12 +12,20 @@ const Chat = ({
sendMessage,
messageAppeared,
rewrite,
fileIds,
setFileIds,
files,
setFiles,
}: {
messages: Message[];
sendMessage: (message: string) => void;
loading: boolean;
messageAppeared: boolean;
rewrite: (messageId: string) => void;
fileIds: string[];
setFileIds: (fileIds: string[]) => void;
files: File[];
setFiles: (files: File[]) => void;
}) => {
const [dividerWidth, setDividerWidth] = useState(0);
const dividerRef = useRef<HTMLDivElement | null>(null);
@ -40,11 +48,17 @@ const Chat = ({
});
useEffect(() => {
messageEnd.current?.scrollIntoView({ behavior: 'smooth' });
const scroll = () => {
messageEnd.current?.scrollIntoView({ behavior: 'smooth' });
};
if (messages.length === 1) {
document.title = `${messages[0].content.substring(0, 30)} - Perplexica`;
}
if (messages[messages.length - 1]?.role == 'user') {
scroll();
}
}, [messages]);
return (
@ -53,7 +67,7 @@ const Chat = ({
const isLast = i === messages.length - 1;
return (
<>
<Fragment key={msg.messageId}>
<MessageBox
key={i}
message={msg}
@ -63,11 +77,12 @@ const Chat = ({
dividerRef={isLast ? dividerRef : undefined}
isLast={isLast}
rewrite={rewrite}
sendMessage={sendMessage}
/>
{!isLast && msg.role === 'assistant' && (
<div className="h-px w-full bg-[#1C1C1C]" />
<div className="h-px w-full bg-light-secondary dark:bg-dark-secondary" />
)}
</>
</Fragment>
);
})}
{loading && !messageAppeared && <MessageBoxLoading />}
@ -77,7 +92,14 @@ const Chat = ({
className="bottom-24 lg:bottom-10 fixed z-40"
style={{ width: dividerWidth }}
>
<MessageInput loading={loading} sendMessage={sendMessage} />
<MessageInput
loading={loading}
sendMessage={sendMessage}
fileIds={fileIds}
setFileIds={setFileIds}
files={files}
setFiles={setFiles}
/>
</div>
)}
</div>

View File

@ -0,0 +1,612 @@
'use client';
import { useEffect, useRef, useState } from 'react';
import { Document } from '@langchain/core/documents';
import Navbar from './Navbar';
import Chat from './Chat';
import EmptyChat from './EmptyChat';
import crypto from 'crypto';
import { toast } from 'sonner';
import { useSearchParams } from 'next/navigation';
import { getSuggestions } from '@/lib/actions';
import { Settings } from 'lucide-react';
import Link from 'next/link';
import NextError from 'next/error';
export type Message = {
messageId: string;
chatId: string;
createdAt: Date;
content: string;
role: 'user' | 'assistant';
suggestions?: string[];
sources?: Document[];
};
export interface File {
fileName: string;
fileExtension: string;
fileId: string;
}
interface ChatModelProvider {
name: string;
provider: string;
}
interface EmbeddingModelProvider {
name: string;
provider: string;
}
const checkConfig = async (
setChatModelProvider: (provider: ChatModelProvider) => void,
setEmbeddingModelProvider: (provider: EmbeddingModelProvider) => void,
setIsConfigReady: (ready: boolean) => void,
setHasError: (hasError: boolean) => void,
) => {
try {
let chatModel = localStorage.getItem('chatModel');
let chatModelProvider = localStorage.getItem('chatModelProvider');
let embeddingModel = localStorage.getItem('embeddingModel');
let embeddingModelProvider = localStorage.getItem('embeddingModelProvider');
const autoImageSearch = localStorage.getItem('autoImageSearch');
const autoVideoSearch = localStorage.getItem('autoVideoSearch');
if (!autoImageSearch) {
localStorage.setItem('autoImageSearch', 'true');
}
if (!autoVideoSearch) {
localStorage.setItem('autoVideoSearch', 'false');
}
const providers = await fetch(`/api/models`, {
headers: {
'Content-Type': 'application/json',
},
}).then(async (res) => {
if (!res.ok)
throw new Error(
`Failed to fetch models: ${res.status} ${res.statusText}`,
);
return res.json();
});
if (
!chatModel ||
!chatModelProvider ||
!embeddingModel ||
!embeddingModelProvider
) {
if (!chatModel || !chatModelProvider) {
const chatModelProviders = providers.chatModelProviders;
chatModelProvider =
chatModelProvider || Object.keys(chatModelProviders)[0];
chatModel = Object.keys(chatModelProviders[chatModelProvider])[0];
if (!chatModelProviders || Object.keys(chatModelProviders).length === 0)
return toast.error('No chat models available');
}
if (!embeddingModel || !embeddingModelProvider) {
const embeddingModelProviders = providers.embeddingModelProviders;
if (
!embeddingModelProviders ||
Object.keys(embeddingModelProviders).length === 0
)
return toast.error('No embedding models available');
embeddingModelProvider = Object.keys(embeddingModelProviders)[0];
embeddingModel = Object.keys(
embeddingModelProviders[embeddingModelProvider],
)[0];
}
localStorage.setItem('chatModel', chatModel!);
localStorage.setItem('chatModelProvider', chatModelProvider);
localStorage.setItem('embeddingModel', embeddingModel!);
localStorage.setItem('embeddingModelProvider', embeddingModelProvider);
} else {
const chatModelProviders = providers.chatModelProviders;
const embeddingModelProviders = providers.embeddingModelProviders;
if (
Object.keys(chatModelProviders).length > 0 &&
!chatModelProviders[chatModelProvider]
) {
const chatModelProvidersKeys = Object.keys(chatModelProviders);
chatModelProvider =
chatModelProvidersKeys.find(
(key) => Object.keys(chatModelProviders[key]).length > 0,
) || chatModelProvidersKeys[0];
localStorage.setItem('chatModelProvider', chatModelProvider);
}
if (
chatModelProvider &&
!chatModelProviders[chatModelProvider][chatModel]
) {
chatModel = Object.keys(
chatModelProviders[
Object.keys(chatModelProviders[chatModelProvider]).length > 0
? chatModelProvider
: Object.keys(chatModelProviders)[0]
],
)[0];
localStorage.setItem('chatModel', chatModel);
}
if (
Object.keys(embeddingModelProviders).length > 0 &&
!embeddingModelProviders[embeddingModelProvider]
) {
embeddingModelProvider = Object.keys(embeddingModelProviders)[0];
localStorage.setItem('embeddingModelProvider', embeddingModelProvider);
}
if (
embeddingModelProvider &&
!embeddingModelProviders[embeddingModelProvider][embeddingModel]
) {
embeddingModel = Object.keys(
embeddingModelProviders[embeddingModelProvider],
)[0];
localStorage.setItem('embeddingModel', embeddingModel);
}
}
setChatModelProvider({
name: chatModel!,
provider: chatModelProvider,
});
setEmbeddingModelProvider({
name: embeddingModel!,
provider: embeddingModelProvider,
});
setIsConfigReady(true);
} catch (err) {
console.error('An error occurred while checking the configuration:', err);
setIsConfigReady(false);
setHasError(true);
}
};
const loadMessages = async (
chatId: string,
setMessages: (messages: Message[]) => void,
setIsMessagesLoaded: (loaded: boolean) => void,
setChatHistory: (history: [string, string][]) => void,
setFocusMode: (mode: string) => void,
setNotFound: (notFound: boolean) => void,
setFiles: (files: File[]) => void,
setFileIds: (fileIds: string[]) => void,
) => {
const res = await fetch(`/api/chats/${chatId}`, {
method: 'GET',
headers: {
'Content-Type': 'application/json',
},
});
if (res.status === 404) {
setNotFound(true);
setIsMessagesLoaded(true);
return;
}
const data = await res.json();
const messages = data.messages.map((msg: any) => {
return {
...msg,
...JSON.parse(msg.metadata),
};
}) as Message[];
setMessages(messages);
const history = messages.map((msg) => {
return [msg.role, msg.content];
}) as [string, string][];
console.debug(new Date(), 'app:messages_loaded');
document.title = messages[0].content;
const files = data.chat.files.map((file: any) => {
return {
fileName: file.name,
fileExtension: file.name.split('.').pop(),
fileId: file.fileId,
};
});
setFiles(files);
setFileIds(files.map((file: File) => file.fileId));
setChatHistory(history);
setFocusMode(data.chat.focusMode);
setIsMessagesLoaded(true);
};
const ChatWindow = ({ id }: { id?: string }) => {
const searchParams = useSearchParams();
const initialMessage = searchParams.get('q');
const [chatId, setChatId] = useState<string | undefined>(id);
const [newChatCreated, setNewChatCreated] = useState(false);
const [chatModelProvider, setChatModelProvider] = useState<ChatModelProvider>(
{
name: '',
provider: '',
},
);
const [embeddingModelProvider, setEmbeddingModelProvider] =
useState<EmbeddingModelProvider>({
name: '',
provider: '',
});
const [isConfigReady, setIsConfigReady] = useState(false);
const [hasError, setHasError] = useState(false);
const [isReady, setIsReady] = useState(false);
useEffect(() => {
checkConfig(
setChatModelProvider,
setEmbeddingModelProvider,
setIsConfigReady,
setHasError,
);
// eslint-disable-next-line react-hooks/exhaustive-deps
}, []);
const [loading, setLoading] = useState(false);
const [messageAppeared, setMessageAppeared] = useState(false);
const [chatHistory, setChatHistory] = useState<[string, string][]>([]);
const [messages, setMessages] = useState<Message[]>([]);
const [files, setFiles] = useState<File[]>([]);
const [fileIds, setFileIds] = useState<string[]>([]);
const [focusMode, setFocusMode] = useState('webSearch');
const [optimizationMode, setOptimizationMode] = useState('speed');
const [isMessagesLoaded, setIsMessagesLoaded] = useState(false);
const [notFound, setNotFound] = useState(false);
useEffect(() => {
if (
chatId &&
!newChatCreated &&
!isMessagesLoaded &&
messages.length === 0
) {
loadMessages(
chatId,
setMessages,
setIsMessagesLoaded,
setChatHistory,
setFocusMode,
setNotFound,
setFiles,
setFileIds,
);
} else if (!chatId) {
setNewChatCreated(true);
setIsMessagesLoaded(true);
setChatId(crypto.randomBytes(20).toString('hex'));
}
// eslint-disable-next-line react-hooks/exhaustive-deps
}, []);
const messagesRef = useRef<Message[]>([]);
useEffect(() => {
messagesRef.current = messages;
}, [messages]);
useEffect(() => {
if (isMessagesLoaded && isConfigReady) {
setIsReady(true);
console.debug(new Date(), 'app:ready');
} else {
setIsReady(false);
}
}, [isMessagesLoaded, isConfigReady]);
const sendMessage = async (message: string, messageId?: string) => {
if (loading) return;
if (!isConfigReady) {
toast.error('Cannot send message before the configuration is ready');
return;
}
setLoading(true);
setMessageAppeared(false);
let sources: Document[] | undefined = undefined;
let recievedMessage = '';
let added = false;
messageId = messageId ?? crypto.randomBytes(7).toString('hex');
setMessages((prevMessages) => [
...prevMessages,
{
content: message,
messageId: messageId,
chatId: chatId!,
role: 'user',
createdAt: new Date(),
},
]);
const messageHandler = async (data: any) => {
if (data.type === 'error') {
toast.error(data.data);
setLoading(false);
return;
}
if (data.type === 'sources') {
sources = data.data;
if (!added) {
setMessages((prevMessages) => [
...prevMessages,
{
content: '',
messageId: data.messageId,
chatId: chatId!,
role: 'assistant',
sources: sources,
createdAt: new Date(),
},
]);
added = true;
}
setMessageAppeared(true);
}
if (data.type === 'message') {
if (!added) {
setMessages((prevMessages) => [
...prevMessages,
{
content: data.data,
messageId: data.messageId,
chatId: chatId!,
role: 'assistant',
sources: sources,
createdAt: new Date(),
},
]);
added = true;
}
setMessages((prev) =>
prev.map((message) => {
if (message.messageId === data.messageId) {
return { ...message, content: message.content + data.data };
}
return message;
}),
);
recievedMessage += data.data;
setMessageAppeared(true);
}
if (data.type === 'messageEnd') {
setChatHistory((prevHistory) => [
...prevHistory,
['human', message],
['assistant', recievedMessage],
]);
setLoading(false);
const lastMsg = messagesRef.current[messagesRef.current.length - 1];
const autoImageSearch = localStorage.getItem('autoImageSearch');
const autoVideoSearch = localStorage.getItem('autoVideoSearch');
if (autoImageSearch === 'true') {
document
.getElementById(`search-images-${lastMsg.messageId}`)
?.click();
}
if (autoVideoSearch === 'true') {
document
.getElementById(`search-videos-${lastMsg.messageId}`)
?.click();
}
if (
lastMsg.role === 'assistant' &&
lastMsg.sources &&
lastMsg.sources.length > 0 &&
!lastMsg.suggestions
) {
const suggestions = await getSuggestions(messagesRef.current);
setMessages((prev) =>
prev.map((msg) => {
if (msg.messageId === lastMsg.messageId) {
return { ...msg, suggestions: suggestions };
}
return msg;
}),
);
}
}
};
const res = await fetch('/api/chat', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
content: message,
message: {
messageId: messageId,
chatId: chatId!,
content: message,
},
chatId: chatId!,
files: fileIds,
focusMode: focusMode,
optimizationMode: optimizationMode,
history: chatHistory,
chatModel: {
name: chatModelProvider.name,
provider: chatModelProvider.provider,
},
embeddingModel: {
name: embeddingModelProvider.name,
provider: embeddingModelProvider.provider,
},
systemInstructions: localStorage.getItem('systemInstructions'),
}),
});
if (!res.body) throw new Error('No response body');
const reader = res.body?.getReader();
const decoder = new TextDecoder('utf-8');
let partialChunk = '';
while (true) {
const { value, done } = await reader.read();
if (done) break;
partialChunk += decoder.decode(value, { stream: true });
try {
const messages = partialChunk.split('\n');
for (const msg of messages) {
if (!msg.trim()) continue;
const json = JSON.parse(msg);
messageHandler(json);
}
partialChunk = '';
} catch (error) {
console.warn('Incomplete JSON, waiting for next chunk...');
}
}
};
const rewrite = (messageId: string) => {
const index = messages.findIndex((msg) => msg.messageId === messageId);
if (index === -1) return;
const message = messages[index - 1];
setMessages((prev) => {
return [...prev.slice(0, messages.length > 2 ? index - 1 : 0)];
});
setChatHistory((prev) => {
return [...prev.slice(0, messages.length > 2 ? index - 1 : 0)];
});
sendMessage(message.content, message.messageId);
};
useEffect(() => {
if (isReady && initialMessage && isConfigReady) {
sendMessage(initialMessage);
}
// eslint-disable-next-line react-hooks/exhaustive-deps
}, [isConfigReady, isReady, initialMessage]);
if (hasError) {
return (
<div className="relative">
<div className="absolute w-full flex flex-row items-center justify-end mr-5 mt-5">
<Link href="/settings">
<Settings className="cursor-pointer lg:hidden" />
</Link>
</div>
<div className="flex flex-col items-center justify-center min-h-screen">
<p className="dark:text-white/70 text-black/70 text-sm">
Failed to connect to the server. Please try again later.
</p>
</div>
</div>
);
}
return isReady ? (
notFound ? (
<NextError statusCode={404} />
) : (
<div>
{messages.length > 0 ? (
<>
<Navbar chatId={chatId!} messages={messages} />
<Chat
loading={loading}
messages={messages}
sendMessage={sendMessage}
messageAppeared={messageAppeared}
rewrite={rewrite}
fileIds={fileIds}
setFileIds={setFileIds}
files={files}
setFiles={setFiles}
/>
</>
) : (
<EmptyChat
sendMessage={sendMessage}
focusMode={focusMode}
setFocusMode={setFocusMode}
optimizationMode={optimizationMode}
setOptimizationMode={setOptimizationMode}
fileIds={fileIds}
setFileIds={setFileIds}
files={files}
setFiles={setFiles}
/>
)}
</div>
)
) : (
<div className="flex flex-row items-center justify-center min-h-screen">
<svg
aria-hidden="true"
className="w-8 h-8 text-light-200 fill-light-secondary dark:text-[#202020] animate-spin dark:fill-[#ffffff3b]"
viewBox="0 0 100 101"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<path
d="M100 50.5908C100.003 78.2051 78.1951 100.003 50.5908 100C22.9765 99.9972 0.997224 78.018 1 50.4037C1.00281 22.7993 22.8108 0.997224 50.4251 1C78.0395 1.00281 100.018 22.8108 100 50.4251ZM9.08164 50.594C9.06312 73.3997 27.7909 92.1272 50.5966 92.1457C73.4023 92.1642 92.1298 73.4365 92.1483 50.6308C92.1669 27.8251 73.4392 9.0973 50.6335 9.07878C27.8278 9.06026 9.10003 27.787 9.08164 50.594Z"
fill="currentColor"
/>
<path
d="M93.9676 39.0409C96.393 38.4037 97.8624 35.9116 96.9801 33.5533C95.1945 28.8227 92.871 24.3692 90.0681 20.348C85.6237 14.1775 79.4473 9.36872 72.0454 6.45794C64.6435 3.54717 56.3134 2.65431 48.3133 3.89319C45.869 4.27179 44.3768 6.77534 45.014 9.20079C45.6512 11.6262 48.1343 13.0956 50.5786 12.717C56.5073 11.8281 62.5542 12.5399 68.0406 14.7911C73.527 17.0422 78.2187 20.7487 81.5841 25.4923C83.7976 28.5886 85.4467 32.059 86.4416 35.7474C87.1273 38.1189 89.5423 39.6781 91.9676 39.0409Z"
fill="currentFill"
/>
</svg>
</div>
);
};
export default ChatWindow;

View File

@ -0,0 +1,125 @@
import { Trash } from 'lucide-react';
import {
Description,
Dialog,
DialogBackdrop,
DialogPanel,
DialogTitle,
Transition,
TransitionChild,
} from '@headlessui/react';
import { Fragment, useState } from 'react';
import { toast } from 'sonner';
import { Chat } from '@/app/library/page';
const DeleteChat = ({
chatId,
chats,
setChats,
redirect = false,
}: {
chatId: string;
chats: Chat[];
setChats: (chats: Chat[]) => void;
redirect?: boolean;
}) => {
const [confirmationDialogOpen, setConfirmationDialogOpen] = useState(false);
const [loading, setLoading] = useState(false);
const handleDelete = async () => {
setLoading(true);
try {
const res = await fetch(`/api/chats/${chatId}`, {
method: 'DELETE',
headers: {
'Content-Type': 'application/json',
},
});
if (res.status != 200) {
throw new Error('Failed to delete chat');
}
const newChats = chats.filter((chat) => chat.id !== chatId);
setChats(newChats);
if (redirect) {
window.location.href = '/';
}
} catch (err: any) {
toast.error(err.message);
} finally {
setConfirmationDialogOpen(false);
setLoading(false);
}
};
return (
<>
<button
onClick={() => {
setConfirmationDialogOpen(true);
}}
className="bg-transparent text-red-400 hover:scale-105 transition duration-200"
>
<Trash size={17} />
</button>
<Transition appear show={confirmationDialogOpen} as={Fragment}>
<Dialog
as="div"
className="relative z-50"
onClose={() => {
if (!loading) {
setConfirmationDialogOpen(false);
}
}}
>
<DialogBackdrop className="fixed inset-0 bg-black/30" />
<div className="fixed inset-0 overflow-y-auto">
<div className="flex min-h-full items-center justify-center p-4 text-center">
<TransitionChild
as={Fragment}
enter="ease-out duration-200"
enterFrom="opacity-0 scale-95"
enterTo="opacity-100 scale-100"
leave="ease-in duration-100"
leaveFrom="opacity-100 scale-200"
leaveTo="opacity-0 scale-95"
>
<DialogPanel className="w-full max-w-md transform rounded-2xl bg-light-secondary dark:bg-dark-secondary border border-light-200 dark:border-dark-200 p-6 text-left align-middle shadow-xl transition-all">
<DialogTitle className="text-lg font-medium leading-6 dark:text-white">
Delete Confirmation
</DialogTitle>
<Description className="text-sm dark:text-white/70 text-black/70">
Are you sure you want to delete this chat?
</Description>
<div className="flex flex-row items-end justify-end space-x-4 mt-6">
<button
onClick={() => {
if (!loading) {
setConfirmationDialogOpen(false);
}
}}
className="text-black/50 dark:text-white/50 text-sm hover:text-black/70 hover:dark:text-white/70 transition duration-200"
>
Cancel
</button>
<button
onClick={handleDelete}
className="text-red-400 text-sm hover:text-red-500 transition duration200"
>
Delete
</button>
</div>
</DialogPanel>
</TransitionChild>
</div>
</div>
</Dialog>
</Transition>
</>
);
};
export default DeleteChat;

View File

@ -0,0 +1,57 @@
import { Settings } from 'lucide-react';
import EmptyChatMessageInput from './EmptyChatMessageInput';
import { useState } from 'react';
import { File } from './ChatWindow';
import Link from 'next/link';
const EmptyChat = ({
sendMessage,
focusMode,
setFocusMode,
optimizationMode,
setOptimizationMode,
fileIds,
setFileIds,
files,
setFiles,
}: {
sendMessage: (message: string) => void;
focusMode: string;
setFocusMode: (mode: string) => void;
optimizationMode: string;
setOptimizationMode: (mode: string) => void;
fileIds: string[];
setFileIds: (fileIds: string[]) => void;
files: File[];
setFiles: (files: File[]) => void;
}) => {
const [isSettingsOpen, setIsSettingsOpen] = useState(false);
return (
<div className="relative">
<div className="absolute w-full flex flex-row items-center justify-end mr-5 mt-5">
<Link href="/settings">
<Settings className="cursor-pointer lg:hidden" />
</Link>
</div>
<div className="flex flex-col items-center justify-center min-h-screen max-w-screen-sm mx-auto p-2 space-y-8">
<h2 className="text-black/70 dark:text-white/70 text-3xl font-medium -mt-8">
Research begins here.
</h2>
<EmptyChatMessageInput
sendMessage={sendMessage}
focusMode={focusMode}
setFocusMode={setFocusMode}
optimizationMode={optimizationMode}
setOptimizationMode={setOptimizationMode}
fileIds={fileIds}
setFileIds={setFileIds}
files={files}
setFiles={setFiles}
/>
</div>
</div>
);
};
export default EmptyChat;

View File

@ -0,0 +1,114 @@
import { ArrowRight } from 'lucide-react';
import { useEffect, useRef, useState } from 'react';
import TextareaAutosize from 'react-textarea-autosize';
import CopilotToggle from './MessageInputActions/Copilot';
import Focus from './MessageInputActions/Focus';
import Optimization from './MessageInputActions/Optimization';
import Attach from './MessageInputActions/Attach';
import { File } from './ChatWindow';
const EmptyChatMessageInput = ({
sendMessage,
focusMode,
setFocusMode,
optimizationMode,
setOptimizationMode,
fileIds,
setFileIds,
files,
setFiles,
}: {
sendMessage: (message: string) => void;
focusMode: string;
setFocusMode: (mode: string) => void;
optimizationMode: string;
setOptimizationMode: (mode: string) => void;
fileIds: string[];
setFileIds: (fileIds: string[]) => void;
files: File[];
setFiles: (files: File[]) => void;
}) => {
const [copilotEnabled, setCopilotEnabled] = useState(false);
const [message, setMessage] = useState('');
const inputRef = useRef<HTMLTextAreaElement | null>(null);
useEffect(() => {
const handleKeyDown = (e: KeyboardEvent) => {
const activeElement = document.activeElement;
const isInputFocused =
activeElement?.tagName === 'INPUT' ||
activeElement?.tagName === 'TEXTAREA' ||
activeElement?.hasAttribute('contenteditable');
if (e.key === '/' && !isInputFocused) {
e.preventDefault();
inputRef.current?.focus();
}
};
document.addEventListener('keydown', handleKeyDown);
inputRef.current?.focus();
return () => {
document.removeEventListener('keydown', handleKeyDown);
};
}, []);
return (
<form
onSubmit={(e) => {
e.preventDefault();
sendMessage(message);
setMessage('');
}}
onKeyDown={(e) => {
if (e.key === 'Enter' && !e.shiftKey) {
e.preventDefault();
sendMessage(message);
setMessage('');
}
}}
className="w-full"
>
<div className="flex flex-col bg-light-secondary dark:bg-dark-secondary px-5 pt-5 pb-2 rounded-lg w-full border border-light-200 dark:border-dark-200">
<TextareaAutosize
ref={inputRef}
value={message}
onChange={(e) => setMessage(e.target.value)}
minRows={2}
className="bg-transparent placeholder:text-black/50 dark:placeholder:text-white/50 text-sm text-black dark:text-white resize-none focus:outline-none w-full max-h-24 lg:max-h-36 xl:max-h-48"
placeholder="Ask anything..."
/>
<div className="flex flex-row items-center justify-between mt-4">
<div className="flex flex-row items-center space-x-2 lg:space-x-4">
<Focus focusMode={focusMode} setFocusMode={setFocusMode} />
<Attach
fileIds={fileIds}
setFileIds={setFileIds}
files={files}
setFiles={setFiles}
showText
/>
</div>
<div className="flex flex-row items-center space-x-1 sm:space-x-4">
<Optimization
optimizationMode={optimizationMode}
setOptimizationMode={setOptimizationMode}
/>
<button
disabled={message.trim().length === 0}
className="bg-[#24A0ED] text-white disabled:text-black/50 dark:disabled:text-white/50 disabled:bg-[#e0e0dc] dark:disabled:bg-[#ececec21] hover:bg-opacity-85 transition duration-100 rounded-full p-2"
>
<ArrowRight className="bg-background" size={17} />
</button>
</div>
</div>
</div>
</form>
);
};
export default EmptyChatMessageInput;

View File

@ -1,6 +1,6 @@
const Layout = ({ children }: { children: React.ReactNode }) => {
return (
<main className="lg:pl-20 bg-[#0A0A0A] min-h-screen">
<main className="lg:pl-20 bg-light-primary dark:bg-dark-primary min-h-screen">
<div className="max-w-screen-lg lg:mx-auto mx-4">{children}</div>
</main>
);

View File

@ -19,7 +19,7 @@ const Copy = ({
setCopied(true);
setTimeout(() => setCopied(false), 1000);
}}
className="p-2 text-white/70 rounded-xl hover:bg-[#1c1c1c] transition duration-200 hover:text-white"
className="p-2 text-black/70 dark:text-white/70 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary transition duration-200 hover:text-black dark:hover:text-white"
>
{copied ? <Check size={18} /> : <ClipboardList size={18} />}
</button>

View File

@ -10,9 +10,10 @@ const Rewrite = ({
return (
<button
onClick={() => rewrite(messageId)}
className="p-2 text-white/70 rounded-xl hover:bg-[#1c1c1c] transition duration-200 hover:text-white"
className="py-2 px-3 text-black/70 dark:text-white/70 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary transition duration-200 hover:text-black dark:hover:text-white flex flex-row items-center space-x-1"
>
<ArrowLeftRight size={18} />
<p className="text-xs font-medium">Rewrite</p>
</button>
);
};

View File

@ -0,0 +1,262 @@
'use client';
/* eslint-disable @next/next/no-img-element */
import React, { MutableRefObject, useEffect, useState } from 'react';
import { Message } from './ChatWindow';
import { cn } from '@/lib/utils';
import {
BookCopy,
Disc3,
Volume2,
StopCircle,
Layers3,
Plus,
} from 'lucide-react';
import Markdown, { MarkdownToJSX } from 'markdown-to-jsx';
import Copy from './MessageActions/Copy';
import Rewrite from './MessageActions/Rewrite';
import MessageSources from './MessageSources';
import SearchImages from './SearchImages';
import SearchVideos from './SearchVideos';
import { useSpeech } from 'react-text-to-speech';
import ThinkBox from './ThinkBox';
const ThinkTagProcessor = ({ children }: { children: React.ReactNode }) => {
return <ThinkBox content={children as string} />;
};
const MessageBox = ({
message,
messageIndex,
history,
loading,
dividerRef,
isLast,
rewrite,
sendMessage,
}: {
message: Message;
messageIndex: number;
history: Message[];
loading: boolean;
dividerRef?: MutableRefObject<HTMLDivElement | null>;
isLast: boolean;
rewrite: (messageId: string) => void;
sendMessage: (message: string) => void;
}) => {
const [parsedMessage, setParsedMessage] = useState(message.content);
const [speechMessage, setSpeechMessage] = useState(message.content);
useEffect(() => {
const citationRegex = /\[([^\]]+)\]/g;
const regex = /\[(\d+)\]/g;
let processedMessage = message.content;
if (message.role === 'assistant' && message.content.includes('<think>')) {
const openThinkTag = processedMessage.match(/<think>/g)?.length || 0;
const closeThinkTag = processedMessage.match(/<\/think>/g)?.length || 0;
if (openThinkTag > closeThinkTag) {
processedMessage += '</think> <a> </a>'; // The extra <a> </a> is to prevent the the think component from looking bad
}
}
if (
message.role === 'assistant' &&
message?.sources &&
message.sources.length > 0
) {
setParsedMessage(
processedMessage.replace(
citationRegex,
(_, capturedContent: string) => {
const numbers = capturedContent
.split(',')
.map((numStr) => numStr.trim());
const linksHtml = numbers
.map((numStr) => {
const number = parseInt(numStr);
if (isNaN(number) || number <= 0) {
return `[${numStr}]`;
}
const source = message.sources?.[number - 1];
const url = source?.metadata?.url;
if (url) {
return `<a href="${url}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${numStr}</a>`;
} else {
return `[${numStr}]`;
}
})
.join('');
return linksHtml;
},
),
);
setSpeechMessage(message.content.replace(regex, ''));
return;
}
setSpeechMessage(message.content.replace(regex, ''));
setParsedMessage(processedMessage);
}, [message.content, message.sources, message.role]);
const { speechStatus, start, stop } = useSpeech({ text: speechMessage });
const markdownOverrides: MarkdownToJSX.Options = {
overrides: {
think: {
component: ThinkTagProcessor,
},
},
};
return (
<div>
{message.role === 'user' && (
<div
className={cn(
'w-full',
messageIndex === 0 ? 'pt-16' : 'pt-8',
'break-words',
)}
>
<h2 className="text-black dark:text-white font-medium text-3xl lg:w-9/12">
{message.content}
</h2>
</div>
)}
{message.role === 'assistant' && (
<div className="flex flex-col space-y-9 lg:space-y-0 lg:flex-row lg:justify-between lg:space-x-9">
<div
ref={dividerRef}
className="flex flex-col space-y-6 w-full lg:w-9/12"
>
{message.sources && message.sources.length > 0 && (
<div className="flex flex-col space-y-2">
<div className="flex flex-row items-center space-x-2">
<BookCopy className="text-black dark:text-white" size={20} />
<h3 className="text-black dark:text-white font-medium text-xl">
Sources
</h3>
</div>
<MessageSources sources={message.sources} />
</div>
)}
<div className="flex flex-col space-y-2">
<div className="flex flex-row items-center space-x-2">
<Disc3
className={cn(
'text-black dark:text-white',
isLast && loading ? 'animate-spin' : 'animate-none',
)}
size={20}
/>
<h3 className="text-black dark:text-white font-medium text-xl">
Answer
</h3>
</div>
<Markdown
className={cn(
'prose prose-h1:mb-3 prose-h2:mb-2 prose-h2:mt-6 prose-h2:font-[800] prose-h3:mt-4 prose-h3:mb-1.5 prose-h3:font-[600] dark:prose-invert prose-p:leading-relaxed prose-pre:p-0 font-[400]',
'max-w-none break-words text-black dark:text-white',
)}
options={markdownOverrides}
>
{parsedMessage}
</Markdown>
{loading && isLast ? null : (
<div className="flex flex-row items-center justify-between w-full text-black dark:text-white py-4 -mx-2">
<div className="flex flex-row items-center space-x-1">
{/* <button className="p-2 text-black/70 dark:text-white/70 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary transition duration-200 hover:text-black text-black dark:hover:text-white">
<Share size={18} />
</button> */}
<Rewrite rewrite={rewrite} messageId={message.messageId} />
</div>
<div className="flex flex-row items-center space-x-1">
<Copy initialMessage={message.content} message={message} />
<button
onClick={() => {
if (speechStatus === 'started') {
stop();
} else {
start();
}
}}
className="p-2 text-black/70 dark:text-white/70 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary transition duration-200 hover:text-black dark:hover:text-white"
>
{speechStatus === 'started' ? (
<StopCircle size={18} />
) : (
<Volume2 size={18} />
)}
</button>
</div>
</div>
)}
{isLast &&
message.suggestions &&
message.suggestions.length > 0 &&
message.role === 'assistant' &&
!loading && (
<>
<div className="h-px w-full bg-light-secondary dark:bg-dark-secondary" />
<div className="flex flex-col space-y-3 text-black dark:text-white">
<div className="flex flex-row items-center space-x-2 mt-4">
<Layers3 />
<h3 className="text-xl font-medium">Related</h3>
</div>
<div className="flex flex-col space-y-3">
{message.suggestions.map((suggestion, i) => (
<div
className="flex flex-col space-y-3 text-sm"
key={i}
>
<div className="h-px w-full bg-light-secondary dark:bg-dark-secondary" />
<div
onClick={() => {
sendMessage(suggestion);
}}
className="cursor-pointer flex flex-row justify-between font-medium space-x-2 items-center"
>
<p className="transition duration-200 hover:text-[#24A0ED]">
{suggestion}
</p>
<Plus
size={20}
className="text-[#24A0ED] flex-shrink-0"
/>
</div>
</div>
))}
</div>
</div>
</>
)}
</div>
</div>
<div className="lg:sticky lg:top-20 flex flex-col items-center space-y-3 w-full lg:w-3/12 z-30 h-full pb-4">
<SearchImages
query={history[messageIndex - 1].content}
chatHistory={history.slice(0, messageIndex - 1)}
messageId={message.messageId}
/>
<SearchVideos
chatHistory={history.slice(0, messageIndex - 1)}
query={history[messageIndex - 1].content}
messageId={message.messageId}
/>
</div>
</div>
)}
</div>
);
};
export default MessageBox;

View File

@ -0,0 +1,11 @@
const MessageBoxLoading = () => {
return (
<div className="flex flex-col space-y-2 w-full lg:w-9/12 bg-light-primary dark:bg-dark-primary animate-pulse rounded-lg py-3">
<div className="h-2 rounded-full w-full bg-light-secondary dark:bg-dark-secondary" />
<div className="h-2 rounded-full w-9/12 bg-light-secondary dark:bg-dark-secondary" />
<div className="h-2 rounded-full w-10/12 bg-light-secondary dark:bg-dark-secondary" />
</div>
);
};
export default MessageBoxLoading;

View File

@ -1,15 +1,26 @@
import { cn } from '@/lib/utils';
import { ArrowUp } from 'lucide-react';
import { useEffect, useState } from 'react';
import { useEffect, useRef, useState } from 'react';
import TextareaAutosize from 'react-textarea-autosize';
import { Attach, CopilotToggle } from './MessageInputActions';
import Attach from './MessageInputActions/Attach';
import CopilotToggle from './MessageInputActions/Copilot';
import { File } from './ChatWindow';
import AttachSmall from './MessageInputActions/AttachSmall';
const MessageInput = ({
sendMessage,
loading,
fileIds,
setFileIds,
files,
setFiles,
}: {
sendMessage: (message: string) => void;
loading: boolean;
fileIds: string[];
setFileIds: (fileIds: string[]) => void;
files: File[];
setFiles: (files: File[]) => void;
}) => {
const [copilotEnabled, setCopilotEnabled] = useState(false);
const [message, setMessage] = useState('');
@ -24,6 +35,30 @@ const MessageInput = ({
}
}, [textareaRows, mode, message]);
const inputRef = useRef<HTMLTextAreaElement | null>(null);
useEffect(() => {
const handleKeyDown = (e: KeyboardEvent) => {
const activeElement = document.activeElement;
const isInputFocused =
activeElement?.tagName === 'INPUT' ||
activeElement?.tagName === 'TEXTAREA' ||
activeElement?.hasAttribute('contenteditable');
if (e.key === '/' && !isInputFocused) {
e.preventDefault();
inputRef.current?.focus();
}
};
document.addEventListener('keydown', handleKeyDown);
return () => {
document.removeEventListener('keydown', handleKeyDown);
};
}, []);
return (
<form
onSubmit={(e) => {
@ -40,18 +75,26 @@ const MessageInput = ({
}
}}
className={cn(
'bg-[#111111] p-4 flex items-center overflow-hidden border border-[#1C1C1C]',
'bg-light-secondary dark:bg-dark-secondary p-4 flex items-center overflow-hidden border border-light-200 dark:border-dark-200',
mode === 'multi' ? 'flex-col rounded-lg' : 'flex-row rounded-full',
)}
>
{mode === 'single' && <Attach />}
{mode === 'single' && (
<AttachSmall
fileIds={fileIds}
setFileIds={setFileIds}
files={files}
setFiles={setFiles}
/>
)}
<TextareaAutosize
ref={inputRef}
value={message}
onChange={(e) => setMessage(e.target.value)}
onHeightChange={(height, props) => {
setTextareaRows(Math.ceil(height / props.rowHeight));
}}
className="transition bg-transparent placeholder:text-white/50 placeholder:text-sm text-sm text-white resize-none focus:outline-none w-full px-2 max-h-24 lg:max-h-36 xl:max-h-48 flex-grow flex-shrink"
className="transition bg-transparent dark:placeholder:text-white/50 placeholder:text-sm text-sm dark:text-white resize-none focus:outline-none w-full px-2 max-h-24 lg:max-h-36 xl:max-h-48 flex-grow flex-shrink"
placeholder="Ask a follow-up"
/>
{mode === 'single' && (
@ -62,7 +105,7 @@ const MessageInput = ({
/>
<button
disabled={message.trim().length === 0 || loading}
className="bg-[#24A0ED] text-white disabled:text-white/50 hover:bg-opacity-85 transition duration-100 disabled:bg-[#ececec21] rounded-full p-2"
className="bg-[#24A0ED] text-white disabled:text-black/50 dark:disabled:text-white/50 hover:bg-opacity-85 transition duration-100 disabled:bg-[#e0e0dc79] dark:disabled:bg-[#ececec21] rounded-full p-2"
>
<ArrowUp className="bg-background" size={17} />
</button>
@ -70,7 +113,12 @@ const MessageInput = ({
)}
{mode === 'multi' && (
<div className="flex flex-row items-center justify-between w-full pt-2">
<Attach />
<AttachSmall
fileIds={fileIds}
setFileIds={setFileIds}
files={files}
setFiles={setFiles}
/>
<div className="flex flex-row items-center space-x-4">
<CopilotToggle
copilotEnabled={copilotEnabled}
@ -78,7 +126,7 @@ const MessageInput = ({
/>
<button
disabled={message.trim().length === 0 || loading}
className="bg-[#24A0ED] text-white disabled:text-white/50 hover:bg-opacity-85 transition duration-100 disabled:bg-[#ececec21] rounded-full p-2"
className="bg-[#24A0ED] text-white text-black/50 dark:disabled:text-white/50 hover:bg-opacity-85 transition duration-100 disabled:bg-[#e0e0dc79] dark:disabled:bg-[#ececec21] rounded-full p-2"
>
<ArrowUp className="bg-background" size={17} />
</button>

View File

@ -0,0 +1,185 @@
import { cn } from '@/lib/utils';
import {
Popover,
PopoverButton,
PopoverPanel,
Transition,
} from '@headlessui/react';
import { CopyPlus, File, LoaderCircle, Plus, Trash } from 'lucide-react';
import { Fragment, useRef, useState } from 'react';
import { File as FileType } from '../ChatWindow';
const Attach = ({
fileIds,
setFileIds,
showText,
files,
setFiles,
}: {
fileIds: string[];
setFileIds: (fileIds: string[]) => void;
showText?: boolean;
files: FileType[];
setFiles: (files: FileType[]) => void;
}) => {
const [loading, setLoading] = useState(false);
const fileInputRef = useRef<any>();
const handleChange = async (e: React.ChangeEvent<HTMLInputElement>) => {
setLoading(true);
const data = new FormData();
for (let i = 0; i < e.target.files!.length; i++) {
data.append('files', e.target.files![i]);
}
const embeddingModelProvider = localStorage.getItem(
'embeddingModelProvider',
);
const embeddingModel = localStorage.getItem('embeddingModel');
data.append('embedding_model_provider', embeddingModelProvider!);
data.append('embedding_model', embeddingModel!);
const res = await fetch(`/api/uploads`, {
method: 'POST',
body: data,
});
const resData = await res.json();
setFiles([...files, ...resData.files]);
setFileIds([...fileIds, ...resData.files.map((file: any) => file.fileId)]);
setLoading(false);
};
return loading ? (
<div className="flex flex-row items-center justify-between space-x-1">
<LoaderCircle size={18} className="text-sky-400 animate-spin" />
<p className="text-sky-400 inline whitespace-nowrap text-xs font-medium">
Uploading..
</p>
</div>
) : files.length > 0 ? (
<Popover className="relative w-full max-w-[15rem] md:max-w-md lg:max-w-lg">
<PopoverButton
type="button"
className={cn(
'flex flex-row items-center justify-between space-x-1 p-2 text-black/50 dark:text-white/50 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary active:scale-95 transition duration-200 hover:text-black dark:hover:text-white',
files.length > 0 ? '-ml-2 lg:-ml-3' : '',
)}
>
{files.length > 1 && (
<>
<File size={19} className="text-sky-400" />
<p className="text-sky-400 inline whitespace-nowrap text-xs font-medium">
{files.length} files
</p>
</>
)}
{files.length === 1 && (
<>
<File size={18} className="text-sky-400" />
<p className="text-sky-400 text-xs font-medium">
{files[0].fileName.length > 10
? files[0].fileName.replace(/\.\w+$/, '').substring(0, 3) +
'...' +
files[0].fileExtension
: files[0].fileName}
</p>
</>
)}
</PopoverButton>
<Transition
as={Fragment}
enter="transition ease-out duration-150"
enterFrom="opacity-0 translate-y-1"
enterTo="opacity-100 translate-y-0"
leave="transition ease-in duration-150"
leaveFrom="opacity-100 translate-y-0"
leaveTo="opacity-0 translate-y-1"
>
<PopoverPanel className="absolute z-10 w-64 md:w-[350px] right-0">
<div className="bg-light-primary dark:bg-dark-primary border rounded-md border-light-200 dark:border-dark-200 w-full max-h-[200px] md:max-h-none overflow-y-auto flex flex-col">
<div className="flex flex-row items-center justify-between px-3 py-2">
<h4 className="text-black dark:text-white font-medium text-sm">
Attached files
</h4>
<div className="flex flex-row items-center space-x-4">
<button
type="button"
onClick={() => fileInputRef.current.click()}
className="flex flex-row items-center space-x-1 text-black/70 dark:text-white/70 hover:text-black hover:dark:text-white transition duration-200"
>
<input
type="file"
onChange={handleChange}
ref={fileInputRef}
accept=".pdf,.docx,.txt"
multiple
hidden
/>
<Plus size={18} />
<p className="text-xs">Add</p>
</button>
<button
onClick={() => {
setFiles([]);
setFileIds([]);
}}
className="flex flex-row items-center space-x-1 text-black/70 dark:text-white/70 hover:text-black hover:dark:text-white transition duration-200"
>
<Trash size={14} />
<p className="text-xs">Clear</p>
</button>
</div>
</div>
<div className="h-[0.5px] mx-2 bg-white/10" />
<div className="flex flex-col items-center">
{files.map((file, i) => (
<div
key={i}
className="flex flex-row items-center justify-start w-full space-x-3 p-3"
>
<div className="bg-dark-100 flex items-center justify-center w-10 h-10 rounded-md">
<File size={16} className="text-white/70" />
</div>
<p className="text-black/70 dark:text-white/70 text-sm">
{file.fileName.length > 25
? file.fileName.replace(/\.\w+$/, '').substring(0, 25) +
'...' +
file.fileExtension
: file.fileName}
</p>
</div>
))}
</div>
</div>
</PopoverPanel>
</Transition>
</Popover>
) : (
<button
type="button"
onClick={() => fileInputRef.current.click()}
className={cn(
'flex flex-row items-center space-x-1 text-black/50 dark:text-white/50 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary transition duration-200 hover:text-black dark:hover:text-white',
showText ? '' : 'p-2',
)}
>
<input
type="file"
onChange={handleChange}
ref={fileInputRef}
accept=".pdf,.docx,.txt"
multiple
hidden
/>
<CopyPlus size={showText ? 18 : undefined} />
{showText && <p className="text-xs font-medium pl-[1px]">Attach</p>}
</button>
);
};
export default Attach;

View File

@ -0,0 +1,153 @@
import { cn } from '@/lib/utils';
import {
Popover,
PopoverButton,
PopoverPanel,
Transition,
} from '@headlessui/react';
import { CopyPlus, File, LoaderCircle, Plus, Trash } from 'lucide-react';
import { Fragment, useRef, useState } from 'react';
import { File as FileType } from '../ChatWindow';
const AttachSmall = ({
fileIds,
setFileIds,
files,
setFiles,
}: {
fileIds: string[];
setFileIds: (fileIds: string[]) => void;
files: FileType[];
setFiles: (files: FileType[]) => void;
}) => {
const [loading, setLoading] = useState(false);
const fileInputRef = useRef<any>();
const handleChange = async (e: React.ChangeEvent<HTMLInputElement>) => {
setLoading(true);
const data = new FormData();
for (let i = 0; i < e.target.files!.length; i++) {
data.append('files', e.target.files![i]);
}
const embeddingModelProvider = localStorage.getItem(
'embeddingModelProvider',
);
const embeddingModel = localStorage.getItem('embeddingModel');
data.append('embedding_model_provider', embeddingModelProvider!);
data.append('embedding_model', embeddingModel!);
const res = await fetch(`/api/uploads`, {
method: 'POST',
body: data,
});
const resData = await res.json();
setFiles([...files, ...resData.files]);
setFileIds([...fileIds, ...resData.files.map((file: any) => file.fileId)]);
setLoading(false);
};
return loading ? (
<div className="flex flex-row items-center justify-between space-x-1 p-1">
<LoaderCircle size={20} className="text-sky-400 animate-spin" />
</div>
) : files.length > 0 ? (
<Popover className="max-w-[15rem] md:max-w-md lg:max-w-lg">
<PopoverButton
type="button"
className="flex flex-row items-center justify-between space-x-1 p-1 text-black/50 dark:text-white/50 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary active:scale-95 transition duration-200 hover:text-black dark:hover:text-white"
>
<File size={20} className="text-sky-400" />
</PopoverButton>
<Transition
as={Fragment}
enter="transition ease-out duration-150"
enterFrom="opacity-0 translate-y-1"
enterTo="opacity-100 translate-y-0"
leave="transition ease-in duration-150"
leaveFrom="opacity-100 translate-y-0"
leaveTo="opacity-0 translate-y-1"
>
<PopoverPanel className="absolute z-10 w-64 md:w-[350px] bottom-14 -ml-3">
<div className="bg-light-primary dark:bg-dark-primary border rounded-md border-light-200 dark:border-dark-200 w-full max-h-[200px] md:max-h-none overflow-y-auto flex flex-col">
<div className="flex flex-row items-center justify-between px-3 py-2">
<h4 className="text-black dark:text-white font-medium text-sm">
Attached files
</h4>
<div className="flex flex-row items-center space-x-4">
<button
type="button"
onClick={() => fileInputRef.current.click()}
className="flex flex-row items-center space-x-1 text-black/70 dark:text-white/70 hover:text-black hover:dark:text-white transition duration-200"
>
<input
type="file"
onChange={handleChange}
ref={fileInputRef}
accept=".pdf,.docx,.txt"
multiple
hidden
/>
<Plus size={18} />
<p className="text-xs">Add</p>
</button>
<button
onClick={() => {
setFiles([]);
setFileIds([]);
}}
className="flex flex-row items-center space-x-1 text-black/70 dark:text-white/70 hover:text-black hover:dark:text-white transition duration-200"
>
<Trash size={14} />
<p className="text-xs">Clear</p>
</button>
</div>
</div>
<div className="h-[0.5px] mx-2 bg-white/10" />
<div className="flex flex-col items-center">
{files.map((file, i) => (
<div
key={i}
className="flex flex-row items-center justify-start w-full space-x-3 p-3"
>
<div className="bg-dark-100 flex items-center justify-center w-10 h-10 rounded-md">
<File size={16} className="text-white/70" />
</div>
<p className="text-black/70 dark:text-white/70 text-sm">
{file.fileName.length > 25
? file.fileName.replace(/\.\w+$/, '').substring(0, 25) +
'...' +
file.fileExtension
: file.fileName}
</p>
</div>
))}
</div>
</div>
</PopoverPanel>
</Transition>
</Popover>
) : (
<button
type="button"
onClick={() => fileInputRef.current.click()}
className="flex flex-row items-center space-x-1 text-black/50 dark:text-white/50 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary transition duration-200 hover:text-black dark:hover:text-white p-1"
>
<input
type="file"
onChange={handleChange}
ref={fileInputRef}
accept=".pdf,.docx,.txt"
multiple
hidden
/>
<CopyPlus size={20} />
</button>
);
};
export default AttachSmall;

View File

@ -0,0 +1,43 @@
import { cn } from '@/lib/utils';
import { Switch } from '@headlessui/react';
const CopilotToggle = ({
copilotEnabled,
setCopilotEnabled,
}: {
copilotEnabled: boolean;
setCopilotEnabled: (enabled: boolean) => void;
}) => {
return (
<div className="group flex flex-row items-center space-x-1 active:scale-95 duration-200 transition cursor-pointer">
<Switch
checked={copilotEnabled}
onChange={setCopilotEnabled}
className="bg-light-secondary dark:bg-dark-secondary border border-light-200/70 dark:border-dark-200 relative inline-flex h-5 w-10 sm:h-6 sm:w-11 items-center rounded-full"
>
<span className="sr-only">Copilot</span>
<span
className={cn(
copilotEnabled
? 'translate-x-6 bg-[#24A0ED]'
: 'translate-x-1 bg-black/50 dark:bg-white/50',
'inline-block h-3 w-3 sm:h-4 sm:w-4 transform rounded-full transition-all duration-200',
)}
/>
</Switch>
<p
onClick={() => setCopilotEnabled(!copilotEnabled)}
className={cn(
'text-xs font-medium transition-colors duration-150 ease-in-out',
copilotEnabled
? 'text-[#24A0ED]'
: 'text-black/50 dark:text-white/50 group-hover:text-black dark:group-hover:text-white',
)}
>
Copilot
</p>
</div>
);
};
export default CopilotToggle;

View File

@ -0,0 +1,131 @@
import {
BadgePercent,
ChevronDown,
Globe,
Pencil,
ScanEye,
SwatchBook,
} from 'lucide-react';
import { cn } from '@/lib/utils';
import {
Popover,
PopoverButton,
PopoverPanel,
Transition,
} from '@headlessui/react';
import { SiReddit, SiYoutube } from '@icons-pack/react-simple-icons';
import { Fragment } from 'react';
const focusModes = [
{
key: 'webSearch',
title: 'All',
description: 'Searches across all of the internet',
icon: <Globe size={20} />,
},
{
key: 'academicSearch',
title: 'Academic',
description: 'Search in published academic papers',
icon: <SwatchBook size={20} />,
},
{
key: 'writingAssistant',
title: 'Writing',
description: 'Chat without searching the web',
icon: <Pencil size={16} />,
},
{
key: 'wolframAlphaSearch',
title: 'Wolfram Alpha',
description: 'Computational knowledge engine',
icon: <BadgePercent size={20} />,
},
{
key: 'youtubeSearch',
title: 'Youtube',
description: 'Search and watch videos',
icon: <SiYoutube className="h-5 w-auto mr-0.5" />,
},
{
key: 'redditSearch',
title: 'Reddit',
description: 'Search for discussions and opinions',
icon: <SiReddit className="h-5 w-auto mr-0.5" />,
},
];
const Focus = ({
focusMode,
setFocusMode,
}: {
focusMode: string;
setFocusMode: (mode: string) => void;
}) => {
return (
<Popover className="relative w-full max-w-[15rem] md:max-w-md lg:max-w-lg mt-[6.5px]">
<PopoverButton
type="button"
className=" text-black/50 dark:text-white/50 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary active:scale-95 transition duration-200 hover:text-black dark:hover:text-white"
>
{focusMode !== 'webSearch' ? (
<div className="flex flex-row items-center space-x-1">
{focusModes.find((mode) => mode.key === focusMode)?.icon}
<p className="text-xs font-medium hidden lg:block">
{focusModes.find((mode) => mode.key === focusMode)?.title}
</p>
<ChevronDown size={20} className="-translate-x-1" />
</div>
) : (
<div className="flex flex-row items-center space-x-1">
<ScanEye size={20} />
<p className="text-xs font-medium hidden lg:block">Focus</p>
</div>
)}
</PopoverButton>
<Transition
as={Fragment}
enter="transition ease-out duration-150"
enterFrom="opacity-0 translate-y-1"
enterTo="opacity-100 translate-y-0"
leave="transition ease-in duration-150"
leaveFrom="opacity-100 translate-y-0"
leaveTo="opacity-0 translate-y-1"
>
<PopoverPanel className="absolute z-10 w-64 md:w-[500px] left-0">
<div className="grid grid-cols-1 md:grid-cols-2 lg:grid-cols-3 gap-2 bg-light-primary dark:bg-dark-primary border rounded-lg border-light-200 dark:border-dark-200 w-full p-4 max-h-[200px] md:max-h-none overflow-y-auto">
{focusModes.map((mode, i) => (
<PopoverButton
onClick={() => setFocusMode(mode.key)}
key={i}
className={cn(
'p-2 rounded-lg flex flex-col items-start justify-start text-start space-y-2 duration-200 cursor-pointer transition',
focusMode === mode.key
? 'bg-light-secondary dark:bg-dark-secondary'
: 'hover:bg-light-secondary dark:hover:bg-dark-secondary',
)}
>
<div
className={cn(
'flex flex-row items-center space-x-1',
focusMode === mode.key
? 'text-[#24A0ED]'
: 'text-black dark:text-white',
)}
>
{mode.icon}
<p className="text-sm font-medium">{mode.title}</p>
</div>
<p className="text-black/70 dark:text-white/70 text-xs">
{mode.description}
</p>
</PopoverButton>
))}
</div>
</PopoverPanel>
</Transition>
</Popover>
);
};
export default Focus;

View File

@ -0,0 +1,104 @@
import { ChevronDown, Sliders, Star, Zap } from 'lucide-react';
import { cn } from '@/lib/utils';
import {
Popover,
PopoverButton,
PopoverPanel,
Transition,
} from '@headlessui/react';
import { Fragment } from 'react';
const OptimizationModes = [
{
key: 'speed',
title: 'Speed',
description: 'Prioritize speed and get the quickest possible answer.',
icon: <Zap size={20} className="text-[#FF9800]" />,
},
{
key: 'balanced',
title: 'Balanced',
description: 'Find the right balance between speed and accuracy',
icon: <Sliders size={20} className="text-[#4CAF50]" />,
},
{
key: 'quality',
title: 'Quality (Soon)',
description: 'Get the most thorough and accurate answer',
icon: (
<Star
size={16}
className="text-[#2196F3] dark:text-[#BBDEFB] fill-[#BBDEFB] dark:fill-[#2196F3]"
/>
),
},
];
const Optimization = ({
optimizationMode,
setOptimizationMode,
}: {
optimizationMode: string;
setOptimizationMode: (mode: string) => void;
}) => {
return (
<Popover className="relative w-full max-w-[15rem] md:max-w-md lg:max-w-lg">
<PopoverButton
type="button"
className="p-2 text-black/50 dark:text-white/50 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary active:scale-95 transition duration-200 hover:text-black dark:hover:text-white"
>
<div className="flex flex-row items-center space-x-1">
{
OptimizationModes.find((mode) => mode.key === optimizationMode)
?.icon
}
<p className="text-xs font-medium">
{
OptimizationModes.find((mode) => mode.key === optimizationMode)
?.title
}
</p>
<ChevronDown size={20} />
</div>
</PopoverButton>
<Transition
as={Fragment}
enter="transition ease-out duration-150"
enterFrom="opacity-0 translate-y-1"
enterTo="opacity-100 translate-y-0"
leave="transition ease-in duration-150"
leaveFrom="opacity-100 translate-y-0"
leaveTo="opacity-0 translate-y-1"
>
<PopoverPanel className="absolute z-10 w-64 md:w-[250px] right-0">
<div className="flex flex-col gap-2 bg-light-primary dark:bg-dark-primary border rounded-lg border-light-200 dark:border-dark-200 w-full p-4 max-h-[200px] md:max-h-none overflow-y-auto">
{OptimizationModes.map((mode, i) => (
<PopoverButton
onClick={() => setOptimizationMode(mode.key)}
key={i}
disabled={mode.key === 'quality'}
className={cn(
'p-2 rounded-lg flex flex-col items-start justify-start text-start space-y-1 duration-200 cursor-pointer transition',
optimizationMode === mode.key
? 'bg-light-secondary dark:bg-dark-secondary'
: 'hover:bg-light-secondary dark:hover:bg-dark-secondary',
mode.key === 'quality' && 'opacity-50 cursor-not-allowed',
)}
>
<div className="flex flex-row items-center space-x-1 text-black dark:text-white">
{mode.icon}
<p className="text-sm font-medium">{mode.title}</p>
</div>
<p className="text-black/70 dark:text-white/70 text-xs">
{mode.description}
</p>
</PopoverButton>
))}
</div>
</PopoverPanel>
</Transition>
</Popover>
);
};
export default Optimization;

View File

@ -0,0 +1,163 @@
/* eslint-disable @next/next/no-img-element */
import {
Dialog,
DialogPanel,
DialogTitle,
Transition,
TransitionChild,
} from '@headlessui/react';
import { Document } from '@langchain/core/documents';
import { File } from 'lucide-react';
import { Fragment, useState } from 'react';
const MessageSources = ({ sources }: { sources: Document[] }) => {
const [isDialogOpen, setIsDialogOpen] = useState(false);
const closeModal = () => {
setIsDialogOpen(false);
document.body.classList.remove('overflow-hidden-scrollable');
};
const openModal = () => {
setIsDialogOpen(true);
document.body.classList.add('overflow-hidden-scrollable');
};
return (
<div className="grid grid-cols-2 lg:grid-cols-4 gap-2">
{sources.slice(0, 3).map((source, i) => (
<a
className="bg-light-100 hover:bg-light-200 dark:bg-dark-100 dark:hover:bg-dark-200 transition duration-200 rounded-lg p-3 flex flex-col space-y-2 font-medium"
key={i}
href={source.metadata.url}
target="_blank"
>
<p className="dark:text-white text-xs overflow-hidden whitespace-nowrap text-ellipsis">
{source.metadata.title}
</p>
<div className="flex flex-row items-center justify-between">
<div className="flex flex-row items-center space-x-1">
{source.metadata.url === 'File' ? (
<div className="bg-dark-200 hover:bg-dark-100 transition duration-200 flex items-center justify-center w-6 h-6 rounded-full">
<File size={12} className="text-white/70" />
</div>
) : (
<img
src={`https://s2.googleusercontent.com/s2/favicons?domain_url=${source.metadata.url}`}
width={16}
height={16}
alt="favicon"
className="rounded-lg h-4 w-4"
/>
)}
<p className="text-xs text-black/50 dark:text-white/50 overflow-hidden whitespace-nowrap text-ellipsis">
{source.metadata.url.replace(/.+\/\/|www.|\..+/g, '')}
</p>
</div>
<div className="flex flex-row items-center space-x-1 text-black/50 dark:text-white/50 text-xs">
<div className="bg-black/50 dark:bg-white/50 h-[4px] w-[4px] rounded-full" />
<span>{i + 1}</span>
</div>
</div>
</a>
))}
{sources.length > 3 && (
<button
onClick={openModal}
className="bg-light-100 hover:bg-light-200 dark:bg-dark-100 dark:hover:bg-dark-200 transition duration-200 rounded-lg p-3 flex flex-col space-y-2 font-medium"
>
<div className="flex flex-row items-center space-x-1">
{sources.slice(3, 6).map((source, i) => {
return source.metadata.url === 'File' ? (
<div
key={i}
className="bg-dark-200 hover:bg-dark-100 transition duration-200 flex items-center justify-center w-6 h-6 rounded-full"
>
<File size={12} className="text-white/70" />
</div>
) : (
<img
key={i}
src={`https://s2.googleusercontent.com/s2/favicons?domain_url=${source.metadata.url}`}
width={16}
height={16}
alt="favicon"
className="rounded-lg h-4 w-4"
/>
);
})}
</div>
<p className="text-xs text-black/50 dark:text-white/50">
View {sources.length - 3} more
</p>
</button>
)}
<Transition appear show={isDialogOpen} as={Fragment}>
<Dialog as="div" className="relative z-50" onClose={closeModal}>
<div className="fixed inset-0 overflow-y-auto">
<div className="flex min-h-full items-center justify-center p-4 text-center">
<TransitionChild
as={Fragment}
enter="ease-out duration-200"
enterFrom="opacity-0 scale-95"
enterTo="opacity-100 scale-100"
leave="ease-in duration-100"
leaveFrom="opacity-100 scale-200"
leaveTo="opacity-0 scale-95"
>
<DialogPanel className="w-full max-w-md transform rounded-2xl bg-light-secondary dark:bg-dark-secondary border border-light-200 dark:border-dark-200 p-6 text-left align-middle shadow-xl transition-all">
<DialogTitle className="text-lg font-medium leading-6 dark:text-white">
Sources
</DialogTitle>
<div className="grid grid-cols-2 gap-2 overflow-auto max-h-[300px] mt-2 pr-2">
{sources.map((source, i) => (
<a
className="bg-light-secondary hover:bg-light-200 dark:bg-dark-secondary dark:hover:bg-dark-200 border border-light-200 dark:border-dark-200 transition duration-200 rounded-lg p-3 flex flex-col space-y-2 font-medium"
key={i}
href={source.metadata.url}
target="_blank"
>
<p className="dark:text-white text-xs overflow-hidden whitespace-nowrap text-ellipsis">
{source.metadata.title}
</p>
<div className="flex flex-row items-center justify-between">
<div className="flex flex-row items-center space-x-1">
{source.metadata.url === 'File' ? (
<div className="bg-dark-200 hover:bg-dark-100 transition duration-200 flex items-center justify-center w-6 h-6 rounded-full">
<File size={12} className="text-white/70" />
</div>
) : (
<img
src={`https://s2.googleusercontent.com/s2/favicons?domain_url=${source.metadata.url}`}
width={16}
height={16}
alt="favicon"
className="rounded-lg h-4 w-4"
/>
)}
<p className="text-xs text-black/50 dark:text-white/50 overflow-hidden whitespace-nowrap text-ellipsis">
{source.metadata.url.replace(
/.+\/\/|www.|\..+/g,
'',
)}
</p>
</div>
<div className="flex flex-row items-center space-x-1 text-black/50 dark:text-white/50 text-xs">
<div className="bg-black/50 dark:bg-white/50 h-[4px] w-[4px] rounded-full" />
<span>{i + 1}</span>
</div>
</div>
</a>
))}
</div>
</DialogPanel>
</TransitionChild>
</div>
</div>
</Dialog>
</Transition>
</div>
);
};
export default MessageSources;

View File

@ -2,8 +2,15 @@ import { Clock, Edit, Share, Trash } from 'lucide-react';
import { Message } from './ChatWindow';
import { useEffect, useState } from 'react';
import { formatTimeDifference } from '@/lib/utils';
import DeleteChat from './DeleteChat';
const Navbar = ({ messages }: { messages: Message[] }) => {
const Navbar = ({
chatId,
messages,
}: {
messages: Message[];
chatId: string;
}) => {
const [title, setTitle] = useState<string>('');
const [timeAgo, setTimeAgo] = useState<string>('');
@ -38,25 +45,25 @@ const Navbar = ({ messages }: { messages: Message[] }) => {
}, []);
return (
<div className="fixed z-40 top-0 left-0 right-0 px-4 lg:pl-[104px] lg:pr-6 lg:px-8 flex flex-row items-center justify-between w-full py-4 text-sm text-white/70 border-b bg-[#0A0A0A] border-[#1C1C1C]">
<Edit
size={17}
<div className="fixed z-40 top-0 left-0 right-0 px-4 lg:pl-[104px] lg:pr-6 lg:px-8 flex flex-row items-center justify-between w-full py-4 text-sm text-black dark:text-white/70 border-b bg-light-primary dark:bg-dark-primary border-light-100 dark:border-dark-200">
<a
href="/"
className="active:scale-95 transition duration-100 cursor-pointer lg:hidden"
/>
>
<Edit size={17} />
</a>
<div className="hidden lg:flex flex-row items-center justify-center space-x-2">
<Clock size={17} />
<p className="text-xs">{timeAgo} ago</p>
</div>
<p className="hidden lg:flex">{title}</p>
<div className="flex flex-row items-center space-x-4">
<Share
size={17}
className="active:scale-95 transition duration-100 cursor-pointer"
/>
<Trash
size={17}
className="text-red-400 active:scale-95 transition duration-100 cursor-pointer"
/>
<DeleteChat redirect chatId={chatId} chats={[]} setChats={() => {}} />
</div>
</div>
);

View File

@ -13,10 +13,12 @@ type Image = {
const SearchImages = ({
query,
chat_history,
chatHistory,
messageId,
}: {
query: string;
chat_history: Message[];
chatHistory: Message[];
messageId: string;
}) => {
const [images, setImages] = useState<Image[] | null>(null);
const [loading, setLoading] = useState(false);
@ -27,31 +29,38 @@ const SearchImages = ({
<>
{!loading && images === null && (
<button
id={`search-images-${messageId}`}
onClick={async () => {
setLoading(true);
const chatModelProvider = localStorage.getItem('chatModelProvider');
const chatModel = localStorage.getItem('chatModel');
const res = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/images`,
{
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
query: query,
chat_history: chat_history,
chat_model_provider: chatModelProvider,
chat_model: chatModel,
}),
const customOpenAIBaseURL = localStorage.getItem('openAIBaseURL');
const customOpenAIKey = localStorage.getItem('openAIApiKey');
const res = await fetch(`/api/images`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
);
body: JSON.stringify({
query: query,
chatHistory: chatHistory,
chatModel: {
provider: chatModelProvider,
model: chatModel,
...(chatModelProvider === 'custom_openai' && {
customOpenAIBaseURL: customOpenAIBaseURL,
customOpenAIKey: customOpenAIKey,
}),
},
}),
});
const data = await res.json();
const images = data.images;
const images = data.images ?? [];
setImages(images);
setSlides(
images.map((image: Image) => {
@ -62,7 +71,7 @@ const SearchImages = ({
);
setLoading(false);
}}
className="border border-dashed border-[#1C1C1C] hover:bg-[#1c1c1c] active:scale-95 duration-200 transition px-4 py-2 flex flex-row items-center justify-between rounded-lg text-white text-sm w-full"
className="border border-dashed border-light-200 dark:border-dark-200 hover:bg-light-200 dark:hover:bg-dark-200 active:scale-95 duration-200 transition px-4 py-2 flex flex-row items-center justify-between rounded-lg dark:text-white text-sm w-full"
>
<div className="flex flex-row items-center space-x-2">
<ImagesIcon size={17} />
@ -76,7 +85,7 @@ const SearchImages = ({
{[...Array(4)].map((_, i) => (
<div
key={i}
className="bg-[#1C1C1C] h-32 w-full rounded-lg animate-pulse aspect-video object-cover"
className="bg-light-secondary dark:bg-dark-secondary h-32 w-full rounded-lg animate-pulse aspect-video object-cover"
/>
))}
</div>
@ -120,7 +129,7 @@ const SearchImages = ({
{images.length > 4 && (
<button
onClick={() => setOpen(true)}
className="bg-[#111111] hover:bg-[#1c1c1c] transition duration-200 active:scale-95 hover:scale-[1.02] h-auto w-full rounded-lg flex flex-col justify-between text-white p-2"
className="bg-light-100 hover:bg-light-200 dark:bg-dark-100 dark:hover:bg-dark-200 transition duration-200 active:scale-95 hover:scale-[1.02] h-auto w-full rounded-lg flex flex-col justify-between text-white p-2"
>
<div className="flex flex-row items-center space-x-1">
{images.slice(3, 6).map((image, i) => (
@ -132,7 +141,7 @@ const SearchImages = ({
/>
))}
</div>
<p className="text-white/70 text-xs">
<p className="text-black/70 dark:text-white/70 text-xs">
View {images.length - 3} more
</p>
</button>

View File

@ -1,6 +1,6 @@
/* eslint-disable @next/next/no-img-element */
import { PlayCircle, PlayIcon, PlusIcon, VideoIcon } from 'lucide-react';
import { useState } from 'react';
import { useRef, useState } from 'react';
import Lightbox, { GenericSlide, VideoSlide } from 'yet-another-react-lightbox';
import 'yet-another-react-lightbox/styles.css';
import { Message } from './ChatWindow';
@ -26,45 +26,56 @@ declare module 'yet-another-react-lightbox' {
const Searchvideos = ({
query,
chat_history,
chatHistory,
messageId,
}: {
query: string;
chat_history: Message[];
chatHistory: Message[];
messageId: string;
}) => {
const [videos, setVideos] = useState<Video[] | null>(null);
const [loading, setLoading] = useState(false);
const [open, setOpen] = useState(false);
const [slides, setSlides] = useState<VideoSlide[]>([]);
const [currentIndex, setCurrentIndex] = useState(0);
const videoRefs = useRef<(HTMLIFrameElement | null)[]>([]);
return (
<>
{!loading && videos === null && (
<button
id={`search-videos-${messageId}`}
onClick={async () => {
setLoading(true);
const chatModelProvider = localStorage.getItem('chatModelProvider');
const chatModel = localStorage.getItem('chatModel');
const res = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/videos`,
{
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
query: query,
chat_history: chat_history,
chat_model_provider: chatModelProvider,
chat_model: chatModel,
}),
const customOpenAIBaseURL = localStorage.getItem('openAIBaseURL');
const customOpenAIKey = localStorage.getItem('openAIApiKey');
const res = await fetch(`/api/videos`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
);
body: JSON.stringify({
query: query,
chatHistory: chatHistory,
chatModel: {
provider: chatModelProvider,
model: chatModel,
...(chatModelProvider === 'custom_openai' && {
customOpenAIBaseURL: customOpenAIBaseURL,
customOpenAIKey: customOpenAIKey,
}),
},
}),
});
const data = await res.json();
const videos = data.videos;
const videos = data.videos ?? [];
setVideos(videos);
setSlides(
videos.map((video: Video) => {
@ -77,7 +88,7 @@ const Searchvideos = ({
);
setLoading(false);
}}
className="border border-dashed border-[#1C1C1C] hover:bg-[#1c1c1c] active:scale-95 duration-200 transition px-4 py-2 flex flex-row items-center justify-between rounded-lg text-white text-sm w-full"
className="border border-dashed border-light-200 dark:border-dark-200 hover:bg-light-200 dark:hover:bg-dark-200 active:scale-95 duration-200 transition px-4 py-2 flex flex-row items-center justify-between rounded-lg dark:text-white text-sm w-full"
>
<div className="flex flex-row items-center space-x-2">
<VideoIcon size={17} />
@ -91,7 +102,7 @@ const Searchvideos = ({
{[...Array(4)].map((_, i) => (
<div
key={i}
className="bg-[#1C1C1C] h-32 w-full rounded-lg animate-pulse aspect-video object-cover"
className="bg-light-secondary dark:bg-dark-secondary h-32 w-full rounded-lg animate-pulse aspect-video object-cover"
/>
))}
</div>
@ -118,7 +129,7 @@ const Searchvideos = ({
alt={video.title}
className="relative h-full w-full aspect-video object-cover rounded-lg"
/>
<div className="absolute bg-black/70 text-white/70 px-2 py-1 flex flex-row items-center space-x-1 bottom-1 right-1 rounded-md">
<div className="absolute bg-white/70 dark:bg-black/70 text-black/70 dark:text-white/70 px-2 py-1 flex flex-row items-center space-x-1 bottom-1 right-1 rounded-md">
<PlayCircle size={15} />
<p className="text-xs">Video</p>
</div>
@ -142,7 +153,7 @@ const Searchvideos = ({
alt={video.title}
className="relative h-full w-full aspect-video object-cover rounded-lg"
/>
<div className="absolute bg-black/70 text-white/70 px-2 py-1 flex flex-row items-center space-x-1 bottom-1 right-1 rounded-md">
<div className="absolute bg-white/70 dark:bg-black/70 text-black/70 dark:text-white/70 px-2 py-1 flex flex-row items-center space-x-1 bottom-1 right-1 rounded-md">
<PlayCircle size={15} />
<p className="text-xs">Video</p>
</div>
@ -151,7 +162,7 @@ const Searchvideos = ({
{videos.length > 4 && (
<button
onClick={() => setOpen(true)}
className="bg-[#111111] hover:bg-[#1c1c1c] transition duration-200 active:scale-95 hover:scale-[1.02] h-auto w-full rounded-lg flex flex-col justify-between text-white p-2"
className="bg-light-100 hover:bg-light-200 dark:bg-dark-100 dark:hover:bg-dark-200 transition duration-200 active:scale-95 hover:scale-[1.02] h-auto w-full rounded-lg flex flex-col justify-between text-white p-2"
>
<div className="flex flex-row items-center space-x-1">
{videos.slice(3, 6).map((video, i) => (
@ -163,7 +174,7 @@ const Searchvideos = ({
/>
))}
</div>
<p className="text-white/70 text-xs">
<p className="text-black/70 dark:text-white/70 text-xs">
View {videos.length - 3} more
</p>
</button>
@ -173,18 +184,39 @@ const Searchvideos = ({
open={open}
close={() => setOpen(false)}
slides={slides}
index={currentIndex}
on={{
view: ({ index }) => {
const previousIframe = videoRefs.current[currentIndex];
if (previousIframe?.contentWindow) {
previousIframe.contentWindow.postMessage(
'{"event":"command","func":"pauseVideo","args":""}',
'*',
);
}
setCurrentIndex(index);
},
}}
render={{
slide: ({ slide }) =>
slide.type === 'video-slide' ? (
slide: ({ slide }) => {
const index = slides.findIndex((s) => s === slide);
return slide.type === 'video-slide' ? (
<div className="h-full w-full flex flex-row items-center justify-center">
<iframe
src={slide.iframe_src}
src={`${slide.iframe_src}${slide.iframe_src.includes('?') ? '&' : '?'}enablejsapi=1`}
ref={(el) => {
if (el) {
videoRefs.current[index] = el;
}
}}
className="aspect-video max-h-[95vh] w-[95vw] rounded-2xl md:w-[80vw]"
allowFullScreen
allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture"
/>
</div>
) : null,
) : null;
},
}}
/>
</>

View File

@ -4,21 +4,23 @@ import { cn } from '@/lib/utils';
import { BookOpenText, Home, Search, SquarePen, Settings } from 'lucide-react';
import Link from 'next/link';
import { useSelectedLayoutSegments } from 'next/navigation';
import React, { Fragment, useState } from 'react';
import React, { useState, type ReactNode } from 'react';
import Layout from './Layout';
import { Dialog, Transition } from '@headlessui/react';
import SettingsDialog from './SettingsDialog';
const VerticalIconContainer = ({ children }: { children: ReactNode }) => {
return (
<div className="flex flex-col items-center gap-y-3 w-full">{children}</div>
);
};
const Sidebar = ({ children }: { children: React.ReactNode }) => {
const segments = useSelectedLayoutSegments();
const [isSettingsOpen, setIsSettingsOpen] = useState(false);
const navLinks = [
{
icon: Home,
href: '/',
active: segments.length === 0,
active: segments.length === 0 || segments.includes('c'),
label: 'Home',
},
{
@ -38,50 +40,50 @@ const Sidebar = ({ children }: { children: React.ReactNode }) => {
return (
<div>
<div className="hidden lg:fixed lg:inset-y-0 lg:z-50 lg:flex lg:w-20 lg:flex-col">
<div className="flex grow flex-col items-center justify-between gap-y-5 overflow-y-auto bg-[#111111] px-2 py-8">
<div className="flex grow flex-col items-center justify-between gap-y-5 overflow-y-auto bg-light-secondary dark:bg-dark-secondary px-2 py-8">
<a href="/">
<SquarePen className="text-white cursor-pointer" />
<SquarePen className="cursor-pointer" />
</a>
<div className="flex flex-col items-center gap-y-3 w-full">
<VerticalIconContainer>
{navLinks.map((link, i) => (
<Link
key={i}
href={link.href}
className={cn(
'relative flex flex-row items-center justify-center cursor-pointer hover:bg-white/10 hover:text-white duration-150 transition w-full py-2 rounded-lg',
link.active ? 'text-white' : 'text-white/70',
'relative flex flex-row items-center justify-center cursor-pointer hover:bg-black/10 dark:hover:bg-white/10 duration-150 transition w-full py-2 rounded-lg',
link.active
? 'text-black dark:text-white'
: 'text-black/70 dark:text-white/70',
)}
>
<link.icon />
{link.active && (
<div className="absolute right-0 -mr-2 h-full w-1 rounded-l-lg bg-white" />
<div className="absolute right-0 -mr-2 h-full w-1 rounded-l-lg bg-black dark:bg-white" />
)}
</Link>
))}
</div>
<Settings
onClick={() => setIsSettingsOpen(!isSettingsOpen)}
className="text-white cursor-pointer"
/>
<SettingsDialog
isOpen={isSettingsOpen}
setIsOpen={setIsSettingsOpen}
/>
</VerticalIconContainer>
<Link href="/settings">
<Settings className="cursor-pointer" />
</Link>
</div>
</div>
<div className="fixed bottom-0 w-full z-50 flex flex-row items-center gap-x-6 bg-[#111111] px-4 py-4 shadow-sm lg:hidden">
<div className="fixed bottom-0 w-full z-50 flex flex-row items-center gap-x-6 bg-light-primary dark:bg-dark-primary px-4 py-4 shadow-sm lg:hidden">
{navLinks.map((link, i) => (
<Link
href={link.href}
key={i}
className={cn(
'relative flex flex-col items-center space-y-1 text-center w-full',
link.active ? 'text-white' : 'text-white/70',
link.active
? 'text-black dark:text-white'
: 'text-black dark:text-white/70',
)}
>
{link.active && (
<div className="absolute top-0 -mt-4 h-1 w-full rounded-b-lg bg-white" />
<div className="absolute top-0 -mt-4 h-1 w-full rounded-b-lg bg-black dark:bg-white" />
)}
<link.icon />
<p className="text-xs">{link.label}</p>

View File

@ -0,0 +1,43 @@
'use client';
import { useState } from 'react';
import { cn } from '@/lib/utils';
import { ChevronDown, ChevronUp, BrainCircuit } from 'lucide-react';
interface ThinkBoxProps {
content: string;
}
const ThinkBox = ({ content }: ThinkBoxProps) => {
const [isExpanded, setIsExpanded] = useState(false);
return (
<div className="my-4 bg-light-secondary/50 dark:bg-dark-secondary/50 rounded-xl border border-light-200 dark:border-dark-200 overflow-hidden">
<button
onClick={() => setIsExpanded(!isExpanded)}
className="w-full flex items-center justify-between px-4 py-1 text-black/90 dark:text-white/90 hover:bg-light-200 dark:hover:bg-dark-200 transition duration-200"
>
<div className="flex items-center space-x-2">
<BrainCircuit
size={20}
className="text-[#9C27B0] dark:text-[#CE93D8]"
/>
<p className="font-medium text-sm">Thinking Process</p>
</div>
{isExpanded ? (
<ChevronUp size={18} className="text-black/70 dark:text-white/70" />
) : (
<ChevronDown size={18} className="text-black/70 dark:text-white/70" />
)}
</button>
{isExpanded && (
<div className="px-4 py-3 text-black/80 dark:text-white/80 text-sm border-t border-light-200 dark:border-dark-200 bg-light-100/50 dark:bg-dark-100/50 whitespace-pre-wrap">
{content}
</div>
)}
</div>
);
};
export default ThinkBox;

View File

@ -0,0 +1,16 @@
'use client';
import { ThemeProvider } from 'next-themes';
const ThemeProviderComponent = ({
children,
}: {
children: React.ReactNode;
}) => {
return (
<ThemeProvider attribute="class" enableSystem={false} defaultTheme="dark">
{children}
</ThemeProvider>
);
};
export default ThemeProviderComponent;

View File

@ -0,0 +1,60 @@
'use client';
import { useTheme } from 'next-themes';
import { useCallback, useEffect, useState } from 'react';
import Select from '../ui/Select';
type Theme = 'dark' | 'light' | 'system';
const ThemeSwitcher = ({ className }: { className?: string }) => {
const [mounted, setMounted] = useState(false);
const { theme, setTheme } = useTheme();
const isTheme = useCallback((t: Theme) => t === theme, [theme]);
const handleThemeSwitch = (theme: Theme) => {
setTheme(theme);
};
useEffect(() => {
setMounted(true);
}, []);
useEffect(() => {
if (isTheme('system')) {
const preferDarkScheme = window.matchMedia(
'(prefers-color-scheme: dark)',
);
const detectThemeChange = (event: MediaQueryListEvent) => {
const theme: Theme = event.matches ? 'dark' : 'light';
setTheme(theme);
};
preferDarkScheme.addEventListener('change', detectThemeChange);
return () => {
preferDarkScheme.removeEventListener('change', detectThemeChange);
};
}
}, [isTheme, setTheme, theme]);
// Avoid Hydration Mismatch
if (!mounted) {
return null;
}
return (
<Select
className={className}
value={theme}
onChange={(e) => handleThemeSwitch(e.target.value as Theme)}
options={[
{ value: 'light', label: 'Light' },
{ value: 'dark', label: 'Dark' },
]}
/>
);
};
export default ThemeSwitcher;

View File

@ -0,0 +1,28 @@
import { cn } from '@/lib/utils';
import { SelectHTMLAttributes } from 'react';
interface SelectProps extends SelectHTMLAttributes<HTMLSelectElement> {
options: { value: string; label: string; disabled?: boolean }[];
}
export const Select = ({ className, options, ...restProps }: SelectProps) => {
return (
<select
{...restProps}
className={cn(
'bg-light-secondary dark:bg-dark-secondary px-3 py-2 flex items-center overflow-hidden border border-light-200 dark:border-dark-200 dark:text-white rounded-lg text-sm',
className,
)}
>
{options.map(({ label, value, disabled }) => {
return (
<option key={value} value={value} disabled={disabled}>
{label}
</option>
);
})}
</select>
);
};
export default Select;

View File

@ -1,69 +0,0 @@
import fs from 'fs';
import path from 'path';
import toml from '@iarna/toml';
const configFileName = 'config.toml';
interface Config {
GENERAL: {
PORT: number;
SIMILARITY_MEASURE: string;
};
API_KEYS: {
OPENAI: string;
GROQ: string;
};
API_ENDPOINTS: {
SEARXNG: string;
OLLAMA: string;
};
}
type RecursivePartial<T> = {
[P in keyof T]?: RecursivePartial<T[P]>;
};
const loadConfig = () =>
toml.parse(
fs.readFileSync(path.join(__dirname, `../${configFileName}`), 'utf-8'),
) as any as Config;
export const getPort = () => loadConfig().GENERAL.PORT;
export const getSimilarityMeasure = () =>
loadConfig().GENERAL.SIMILARITY_MEASURE;
export const getOpenaiApiKey = () => loadConfig().API_KEYS.OPENAI;
export const getGroqApiKey = () => loadConfig().API_KEYS.GROQ;
export const getSearxngApiEndpoint = () => loadConfig().API_ENDPOINTS.SEARXNG;
export const getOllamaApiEndpoint = () => loadConfig().API_ENDPOINTS.OLLAMA;
export const updateConfig = (config: RecursivePartial<Config>) => {
const currentConfig = loadConfig();
for (const key in currentConfig) {
if (!config[key]) config[key] = {};
if (typeof currentConfig[key] === 'object' && currentConfig[key] !== null) {
for (const nestedKey in currentConfig[key]) {
if (
!config[key][nestedKey] &&
currentConfig[key][nestedKey] &&
config[key][nestedKey] !== ''
) {
config[key][nestedKey] = currentConfig[key][nestedKey];
}
}
} else if (currentConfig[key] && config[key] !== '') {
config[key] = currentConfig[key];
}
}
fs.writeFileSync(
path.join(__dirname, `../${configFileName}`),
toml.stringify(config),
);
};

31
src/lib/actions.ts Normal file
View File

@ -0,0 +1,31 @@
import { Message } from '@/components/ChatWindow';
export const getSuggestions = async (chatHisory: Message[]) => {
const chatModel = localStorage.getItem('chatModel');
const chatModelProvider = localStorage.getItem('chatModelProvider');
const customOpenAIKey = localStorage.getItem('openAIApiKey');
const customOpenAIBaseURL = localStorage.getItem('openAIBaseURL');
const res = await fetch(`/api/suggestions`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
chatHistory: chatHisory,
chatModel: {
provider: chatModelProvider,
model: chatModel,
...(chatModelProvider === 'custom_openai' && {
customOpenAIKey,
customOpenAIBaseURL,
}),
},
}),
});
const data = (await res.json()) as { suggestions: string[] };
return data.suggestions;
};

View File

@ -7,7 +7,7 @@ import { PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { searchSearxng } from '../lib/searxng';
import { searchSearxng } from '../searxng';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
const imageSearchChainPrompt = `
@ -36,6 +36,12 @@ type ImageSearchChainInput = {
query: string;
};
interface ImageSearchResult {
img_src: string;
url: string;
title: string;
}
const strParser = new StringOutputParser();
const createImageSearchChain = (llm: BaseChatModel) => {
@ -52,11 +58,13 @@ const createImageSearchChain = (llm: BaseChatModel) => {
llm,
strParser,
RunnableLambda.from(async (input: string) => {
input = input.replace(/<think>.*?<\/think>/g, '');
const res = await searchSearxng(input, {
engines: ['bing images', 'google images'],
});
const images = [];
const images: ImageSearchResult[] = [];
res.results.forEach((result) => {
if (result.img_src && result.url && result.title) {

View File

@ -0,0 +1,55 @@
import { RunnableSequence, RunnableMap } from '@langchain/core/runnables';
import ListLineOutputParser from '../outputParsers/listLineOutputParser';
import { PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { ChatOpenAI } from '@langchain/openai';
const suggestionGeneratorPrompt = `
You are an AI suggestion generator for an AI powered search engine. You will be given a conversation below. You need to generate 4-5 suggestions based on the conversation. The suggestion should be relevant to the conversation that can be used by the user to ask the chat model for more information.
You need to make sure the suggestions are relevant to the conversation and are helpful to the user. Keep a note that the user might use these suggestions to ask a chat model for more information.
Make sure the suggestions are medium in length and are informative and relevant to the conversation.
Provide these suggestions separated by newlines between the XML tags <suggestions> and </suggestions>. For example:
<suggestions>
Tell me more about SpaceX and their recent projects
What is the latest news on SpaceX?
Who is the CEO of SpaceX?
</suggestions>
Conversation:
{chat_history}
`;
type SuggestionGeneratorInput = {
chat_history: BaseMessage[];
};
const outputParser = new ListLineOutputParser({
key: 'suggestions',
});
const createSuggestionGeneratorChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
RunnableMap.from({
chat_history: (input: SuggestionGeneratorInput) =>
formatChatHistoryAsString(input.chat_history),
}),
PromptTemplate.fromTemplate(suggestionGeneratorPrompt),
llm,
outputParser,
]);
};
const generateSuggestions = (
input: SuggestionGeneratorInput,
llm: BaseChatModel,
) => {
(llm as unknown as ChatOpenAI).temperature = 0;
const suggestionGeneratorChain = createSuggestionGeneratorChain(llm);
return suggestionGeneratorChain.invoke(input);
};
export default generateSuggestions;

View File

@ -7,7 +7,7 @@ import { PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { searchSearxng } from '../lib/searxng';
import { searchSearxng } from '../searxng';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
const VideoSearchChainPrompt = `
@ -36,6 +36,13 @@ type VideoSearchChainInput = {
query: string;
};
interface VideoSearchResult {
img_src: string;
url: string;
title: string;
iframe_src: string;
}
const strParser = new StringOutputParser();
const createVideoSearchChain = (llm: BaseChatModel) => {
@ -52,11 +59,13 @@ const createVideoSearchChain = (llm: BaseChatModel) => {
llm,
strParser,
RunnableLambda.from(async (input: string) => {
input = input.replace(/<think>.*?<\/think>/g, '');
const res = await searchSearxng(input, {
engines: ['youtube'],
});
const videos = [];
const videos: VideoSearchResult[] = [];
res.results.forEach((result) => {
if (

141
src/lib/config.ts Normal file
View File

@ -0,0 +1,141 @@
import toml from '@iarna/toml';
// Use dynamic imports for Node.js modules to prevent client-side errors
let fs: any;
let path: any;
if (typeof window === 'undefined') {
// We're on the server
fs = require('fs');
path = require('path');
}
const configFileName = 'config.toml';
interface Config {
GENERAL: {
SIMILARITY_MEASURE: string;
KEEP_ALIVE: string;
};
MODELS: {
OPENAI: {
API_KEY: string;
};
GROQ: {
API_KEY: string;
};
ANTHROPIC: {
API_KEY: string;
};
GEMINI: {
API_KEY: string;
};
OLLAMA: {
API_URL: string;
};
DEEPSEEK: {
API_KEY: string;
};
LM_STUDIO: {
API_URL: string;
};
CUSTOM_OPENAI: {
API_URL: string;
API_KEY: string;
MODEL_NAME: string;
};
};
API_ENDPOINTS: {
SEARXNG: string;
};
}
type RecursivePartial<T> = {
[P in keyof T]?: RecursivePartial<T[P]>;
};
const loadConfig = () => {
// Server-side only
if (typeof window === 'undefined') {
return toml.parse(
fs.readFileSync(path.join(process.cwd(), `${configFileName}`), 'utf-8'),
) as any as Config;
}
// Client-side fallback - settings will be loaded via API
return {} as Config;
};
export const getSimilarityMeasure = () =>
loadConfig().GENERAL.SIMILARITY_MEASURE;
export const getKeepAlive = () => loadConfig().GENERAL.KEEP_ALIVE;
export const getOpenaiApiKey = () => loadConfig().MODELS.OPENAI.API_KEY;
export const getGroqApiKey = () => loadConfig().MODELS.GROQ.API_KEY;
export const getAnthropicApiKey = () => loadConfig().MODELS.ANTHROPIC.API_KEY;
export const getGeminiApiKey = () => loadConfig().MODELS.GEMINI.API_KEY;
export const getSearxngApiEndpoint = () =>
process.env.SEARXNG_API_URL || loadConfig().API_ENDPOINTS.SEARXNG;
export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL;
export const getDeepseekApiKey = () => loadConfig().MODELS.DEEPSEEK.API_KEY;
export const getCustomOpenaiApiKey = () =>
loadConfig().MODELS.CUSTOM_OPENAI.API_KEY;
export const getCustomOpenaiApiUrl = () =>
loadConfig().MODELS.CUSTOM_OPENAI.API_URL;
export const getCustomOpenaiModelName = () =>
loadConfig().MODELS.CUSTOM_OPENAI.MODEL_NAME;
export const getLMStudioApiEndpoint = () =>
loadConfig().MODELS.LM_STUDIO.API_URL;
const mergeConfigs = (current: any, update: any): any => {
if (update === null || update === undefined) {
return current;
}
if (typeof current !== 'object' || current === null) {
return update;
}
const result = { ...current };
for (const key in update) {
if (Object.prototype.hasOwnProperty.call(update, key)) {
const updateValue = update[key];
if (
typeof updateValue === 'object' &&
updateValue !== null &&
typeof result[key] === 'object' &&
result[key] !== null
) {
result[key] = mergeConfigs(result[key], updateValue);
} else if (updateValue !== undefined) {
result[key] = updateValue;
}
}
}
return result;
};
export const updateConfig = (config: RecursivePartial<Config>) => {
// Server-side only
if (typeof window === 'undefined') {
const currentConfig = loadConfig();
const mergedConfig = mergeConfigs(currentConfig, config);
fs.writeFileSync(
path.join(path.join(process.cwd(), `${configFileName}`)),
toml.stringify(mergedConfig),
);
}
};

11
src/lib/db/index.ts Normal file
View File

@ -0,0 +1,11 @@
import { drizzle } from 'drizzle-orm/better-sqlite3';
import Database from 'better-sqlite3';
import * as schema from './schema';
import path from 'path';
const sqlite = new Database(path.join(process.cwd(), 'data/db.sqlite'));
const db = drizzle(sqlite, {
schema: schema,
});
export default db;

28
src/lib/db/schema.ts Normal file
View File

@ -0,0 +1,28 @@
import { sql } from 'drizzle-orm';
import { text, integer, sqliteTable } from 'drizzle-orm/sqlite-core';
export const messages = sqliteTable('messages', {
id: integer('id').primaryKey(),
content: text('content').notNull(),
chatId: text('chatId').notNull(),
messageId: text('messageId').notNull(),
role: text('type', { enum: ['assistant', 'user'] }),
metadata: text('metadata', {
mode: 'json',
}),
});
interface File {
name: string;
fileId: string;
}
export const chats = sqliteTable('chats', {
id: text('id').primaryKey(),
title: text('title').notNull(),
createdAt: text('createdAt').notNull(),
focusMode: text('focusMode').notNull(),
files: text('files', { mode: 'json' })
.$type<File[]>()
.default(sql`'[]'`),
});

View File

@ -0,0 +1,82 @@
import { Embeddings, type EmbeddingsParams } from '@langchain/core/embeddings';
import { chunkArray } from '@langchain/core/utils/chunk_array';
export interface HuggingFaceTransformersEmbeddingsParams
extends EmbeddingsParams {
modelName: string;
model: string;
timeout?: number;
batchSize?: number;
stripNewLines?: boolean;
}
export class HuggingFaceTransformersEmbeddings
extends Embeddings
implements HuggingFaceTransformersEmbeddingsParams
{
modelName = 'Xenova/all-MiniLM-L6-v2';
model = 'Xenova/all-MiniLM-L6-v2';
batchSize = 512;
stripNewLines = true;
timeout?: number;
private pipelinePromise: Promise<any> | undefined;
constructor(fields?: Partial<HuggingFaceTransformersEmbeddingsParams>) {
super(fields ?? {});
this.modelName = fields?.model ?? fields?.modelName ?? this.model;
this.model = this.modelName;
this.stripNewLines = fields?.stripNewLines ?? this.stripNewLines;
this.timeout = fields?.timeout;
}
async embedDocuments(texts: string[]): Promise<number[][]> {
const batches = chunkArray(
this.stripNewLines ? texts.map((t) => t.replace(/\n/g, ' ')) : texts,
this.batchSize,
);
const batchRequests = batches.map((batch) => this.runEmbedding(batch));
const batchResponses = await Promise.all(batchRequests);
const embeddings: number[][] = [];
for (let i = 0; i < batchResponses.length; i += 1) {
const batchResponse = batchResponses[i];
for (let j = 0; j < batchResponse.length; j += 1) {
embeddings.push(batchResponse[j]);
}
}
return embeddings;
}
async embedQuery(text: string): Promise<number[]> {
const data = await this.runEmbedding([
this.stripNewLines ? text.replace(/\n/g, ' ') : text,
]);
return data[0];
}
private async runEmbedding(texts: string[]) {
const { pipeline } = await import('@xenova/transformers');
const pipe = await (this.pipelinePromise ??= pipeline(
'feature-extraction',
this.model,
));
return this.caller.call(async () => {
const output = await pipe(texts, { pooling: 'mean', normalize: true });
return output.tolist();
});
}
}

View File

@ -0,0 +1,48 @@
import { BaseOutputParser } from '@langchain/core/output_parsers';
interface LineOutputParserArgs {
key?: string;
}
class LineOutputParser extends BaseOutputParser<string> {
private key = 'questions';
constructor(args?: LineOutputParserArgs) {
super();
this.key = args?.key ?? this.key;
}
static lc_name() {
return 'LineOutputParser';
}
lc_namespace = ['langchain', 'output_parsers', 'line_output_parser'];
async parse(text: string): Promise<string> {
text = text.trim() || '';
const regex = /^(\s*(-|\*|\d+\.\s|\d+\)\s|\u2022)\s*)+/;
const startKeyIndex = text.indexOf(`<${this.key}>`);
const endKeyIndex = text.indexOf(`</${this.key}>`);
if (startKeyIndex === -1 || endKeyIndex === -1) {
return '';
}
const questionsStartIndex =
startKeyIndex === -1 ? 0 : startKeyIndex + `<${this.key}>`.length;
const questionsEndIndex = endKeyIndex === -1 ? text.length : endKeyIndex;
const line = text
.slice(questionsStartIndex, questionsEndIndex)
.trim()
.replace(regex, '');
return line;
}
getFormatInstructions(): string {
throw new Error('Not implemented.');
}
}
export default LineOutputParser;

View File

@ -0,0 +1,50 @@
import { BaseOutputParser } from '@langchain/core/output_parsers';
interface LineListOutputParserArgs {
key?: string;
}
class LineListOutputParser extends BaseOutputParser<string[]> {
private key = 'questions';
constructor(args?: LineListOutputParserArgs) {
super();
this.key = args?.key ?? this.key;
}
static lc_name() {
return 'LineListOutputParser';
}
lc_namespace = ['langchain', 'output_parsers', 'line_list_output_parser'];
async parse(text: string): Promise<string[]> {
text = text.trim() || '';
const regex = /^(\s*(-|\*|\d+\.\s|\d+\)\s|\u2022)\s*)+/;
const startKeyIndex = text.indexOf(`<${this.key}>`);
const endKeyIndex = text.indexOf(`</${this.key}>`);
if (startKeyIndex === -1 || endKeyIndex === -1) {
return [];
}
const questionsStartIndex =
startKeyIndex === -1 ? 0 : startKeyIndex + `<${this.key}>`.length;
const questionsEndIndex = endKeyIndex === -1 ? text.length : endKeyIndex;
const lines = text
.slice(questionsStartIndex, questionsEndIndex)
.trim()
.split('\n')
.filter((line) => line.trim() !== '')
.map((line) => line.replace(regex, ''));
return lines;
}
getFormatInstructions(): string {
throw new Error('Not implemented.');
}
}
export default LineListOutputParser;

View File

@ -0,0 +1,69 @@
export const academicSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
Example:
1. Follow up question: How does stable diffusion work?
Rephrased: Stable diffusion working
2. Follow up question: What is linear algebra?
Rephrased: Linear algebra
3. Follow up question: What is the third law of thermodynamics?
Rephrased: Third law of thermodynamics
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
export const academicSearchResponsePrompt = `
You are Perplexica, an AI model skilled in web search and crafting detailed, engaging, and well-structured answers. You excel at summarizing web pages and extracting relevant information to create professional, blog-style responses.
Your task is to provide answers that are:
- **Informative and relevant**: Thoroughly address the user's query using the given context.
- **Well-structured**: Include clear headings and subheadings, and use a professional tone to present information concisely and logically.
- **Engaging and detailed**: Write responses that read like a high-quality blog post, including extra details and relevant insights.
- **Cited and credible**: Use inline citations with [number] notation to refer to the context source(s) for each fact or detail included.
- **Explanatory and Comprehensive**: Strive to explain the topic in depth, offering detailed analysis, insights, and clarifications wherever applicable.
### Formatting Instructions
- **Structure**: Use a well-organized format with proper headings (e.g., "## Example heading 1" or "## Example heading 2"). Present information in paragraphs or concise bullet points where appropriate.
- **Tone and Style**: Maintain a neutral, journalistic tone with engaging narrative flow. Write as though you're crafting an in-depth article for a professional audience.
- **Markdown Usage**: Format your response with Markdown for clarity. Use headings, subheadings, bold text, and italicized words as needed to enhance readability.
- **Length and Depth**: Provide comprehensive coverage of the topic. Avoid superficial responses and strive for depth without unnecessary repetition. Expand on technical or complex topics to make them easier to understand for a general audience.
- **No main heading/title**: Start your response directly with the introduction unless asked to provide a specific title.
- **Conclusion or Summary**: Include a concluding paragraph that synthesizes the provided information or suggests potential next steps, where appropriate.
### Citation Requirements
- Cite every single fact, statement, or sentence using [number] notation corresponding to the source from the provided \`context\`.
- Integrate citations naturally at the end of sentences or clauses as appropriate. For example, "The Eiffel Tower is one of the most visited landmarks in the world[1]."
- Ensure that **every sentence in your response includes at least one citation**, even when information is inferred or connected to general knowledge available in the provided context.
- Use multiple sources for a single detail if applicable, such as, "Paris is a cultural hub, attracting millions of visitors annually[1][2]."
- Always prioritize credibility and accuracy by linking all statements back to their respective context sources.
- Avoid citing unsupported assumptions or personal interpretations; if no source supports a statement, clearly indicate the limitation.
### Special Instructions
- If the query involves technical, historical, or complex topics, provide detailed background and explanatory sections to ensure clarity.
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Academic', this means you will be searching for academic papers and articles on the web.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
- Provide explanations or historical context as needed to enhance understanding.
- End with a conclusion or overall perspective if relevant.
<context>
{context}
</context>
Current date & time in ISO format (UTC timezone) is: {date}.
`;

32
src/lib/prompts/index.ts Normal file
View File

@ -0,0 +1,32 @@
import {
academicSearchResponsePrompt,
academicSearchRetrieverPrompt,
} from './academicSearch';
import {
redditSearchResponsePrompt,
redditSearchRetrieverPrompt,
} from './redditSearch';
import { webSearchResponsePrompt, webSearchRetrieverPrompt } from './webSearch';
import {
wolframAlphaSearchResponsePrompt,
wolframAlphaSearchRetrieverPrompt,
} from './wolframAlpha';
import { writingAssistantPrompt } from './writingAssistant';
import {
youtubeSearchResponsePrompt,
youtubeSearchRetrieverPrompt,
} from './youtubeSearch';
export default {
webSearchResponsePrompt,
webSearchRetrieverPrompt,
academicSearchResponsePrompt,
academicSearchRetrieverPrompt,
redditSearchResponsePrompt,
redditSearchRetrieverPrompt,
wolframAlphaSearchResponsePrompt,
wolframAlphaSearchRetrieverPrompt,
writingAssistantPrompt,
youtubeSearchResponsePrompt,
youtubeSearchRetrieverPrompt,
};

View File

@ -0,0 +1,69 @@
export const redditSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
Example:
1. Follow up question: Which company is most likely to create an AGI
Rephrased: Which company is most likely to create an AGI
2. Follow up question: Is Earth flat?
Rephrased: Is Earth flat?
3. Follow up question: Is there life on Mars?
Rephrased: Is there life on Mars?
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
export const redditSearchResponsePrompt = `
You are Perplexica, an AI model skilled in web search and crafting detailed, engaging, and well-structured answers. You excel at summarizing web pages and extracting relevant information to create professional, blog-style responses.
Your task is to provide answers that are:
- **Informative and relevant**: Thoroughly address the user's query using the given context.
- **Well-structured**: Include clear headings and subheadings, and use a professional tone to present information concisely and logically.
- **Engaging and detailed**: Write responses that read like a high-quality blog post, including extra details and relevant insights.
- **Cited and credible**: Use inline citations with [number] notation to refer to the context source(s) for each fact or detail included.
- **Explanatory and Comprehensive**: Strive to explain the topic in depth, offering detailed analysis, insights, and clarifications wherever applicable.
### Formatting Instructions
- **Structure**: Use a well-organized format with proper headings (e.g., "## Example heading 1" or "## Example heading 2"). Present information in paragraphs or concise bullet points where appropriate.
- **Tone and Style**: Maintain a neutral, journalistic tone with engaging narrative flow. Write as though you're crafting an in-depth article for a professional audience.
- **Markdown Usage**: Format your response with Markdown for clarity. Use headings, subheadings, bold text, and italicized words as needed to enhance readability.
- **Length and Depth**: Provide comprehensive coverage of the topic. Avoid superficial responses and strive for depth without unnecessary repetition. Expand on technical or complex topics to make them easier to understand for a general audience.
- **No main heading/title**: Start your response directly with the introduction unless asked to provide a specific title.
- **Conclusion or Summary**: Include a concluding paragraph that synthesizes the provided information or suggests potential next steps, where appropriate.
### Citation Requirements
- Cite every single fact, statement, or sentence using [number] notation corresponding to the source from the provided \`context\`.
- Integrate citations naturally at the end of sentences or clauses as appropriate. For example, "The Eiffel Tower is one of the most visited landmarks in the world[1]."
- Ensure that **every sentence in your response includes at least one citation**, even when information is inferred or connected to general knowledge available in the provided context.
- Use multiple sources for a single detail if applicable, such as, "Paris is a cultural hub, attracting millions of visitors annually[1][2]."
- Always prioritize credibility and accuracy by linking all statements back to their respective context sources.
- Avoid citing unsupported assumptions or personal interpretations; if no source supports a statement, clearly indicate the limitation.
### Special Instructions
- If the query involves technical, historical, or complex topics, provide detailed background and explanatory sections to ensure clarity.
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Reddit', this means you will be searching for information, opinions and discussions on the web using Reddit.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
- Provide explanations or historical context as needed to enhance understanding.
- End with a conclusion or overall perspective if relevant.
<context>
{context}
</context>
Current date & time in ISO format (UTC timezone) is: {date}.
`;

View File

@ -0,0 +1,110 @@
export const webSearchRetrieverPrompt = `
You are an AI question rephraser. You will be given a conversation and a follow-up question, you will have to rephrase the follow up question so it is a standalone question and can be used by another LLM to search the web for information to answer it.
If it is a simple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block.
You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response.
There are several examples attached for your reference inside the below \`examples\` XML block
<examples>
1. Follow up question: What is the capital of France
Rephrased question:\`
<question>
Capital of france
</question>
\`
2. Hi, how are you?
Rephrased question\`
<question>
not_needed
</question>
\`
3. Follow up question: What is Docker?
Rephrased question: \`
<question>
What is Docker
</question>
\`
4. Follow up question: Can you tell me what is X from https://example.com
Rephrased question: \`
<question>
Can you tell me what is X?
</question>
<links>
https://example.com
</links>
\`
5. Follow up question: Summarize the content from https://example.com
Rephrased question: \`
<question>
summarize
</question>
<links>
https://example.com
</links>
\`
</examples>
Anything below is the part of the actual conversation and you need to use conversation and the follow-up question to rephrase the follow-up question as a standalone question based on the guidelines shared above.
<conversation>
{chat_history}
</conversation>
Follow up question: {query}
Rephrased question:
`;
export const webSearchResponsePrompt = `
You are Perplexica, an AI model skilled in web search and crafting detailed, engaging, and well-structured answers. You excel at summarizing web pages and extracting relevant information to create professional, blog-style responses.
Your task is to provide answers that are:
- **Informative and relevant**: Thoroughly address the user's query using the given context.
- **Well-structured**: Include clear headings and subheadings, and use a professional tone to present information concisely and logically.
- **Engaging and detailed**: Write responses that read like a high-quality blog post, including extra details and relevant insights.
- **Cited and credible**: Use inline citations with [number] notation to refer to the context source(s) for each fact or detail included.
- **Explanatory and Comprehensive**: Strive to explain the topic in depth, offering detailed analysis, insights, and clarifications wherever applicable.
### Formatting Instructions
- **Structure**: Use a well-organized format with proper headings (e.g., "## Example heading 1" or "## Example heading 2"). Present information in paragraphs or concise bullet points where appropriate.
- **Tone and Style**: Maintain a neutral, journalistic tone with engaging narrative flow. Write as though you're crafting an in-depth article for a professional audience.
- **Markdown Usage**: Format your response with Markdown for clarity. Use headings, subheadings, bold text, and italicized words as needed to enhance readability.
- **Length and Depth**: Provide comprehensive coverage of the topic. Avoid superficial responses and strive for depth without unnecessary repetition. Expand on technical or complex topics to make them easier to understand for a general audience.
- **No main heading/title**: Start your response directly with the introduction unless asked to provide a specific title.
- **Conclusion or Summary**: Include a concluding paragraph that synthesizes the provided information or suggests potential next steps, where appropriate.
### Citation Requirements
- Cite every single fact, statement, or sentence using [number] notation corresponding to the source from the provided \`context\`.
- Integrate citations naturally at the end of sentences or clauses as appropriate. For example, "The Eiffel Tower is one of the most visited landmarks in the world[1]."
- Ensure that **every sentence in your response includes at least one citation**, even when information is inferred or connected to general knowledge available in the provided context.
- Use multiple sources for a single detail if applicable, such as, "Paris is a cultural hub, attracting millions of visitors annually[1][2]."
- Always prioritize credibility and accuracy by linking all statements back to their respective context sources.
- Avoid citing unsupported assumptions or personal interpretations; if no source supports a statement, clearly indicate the limitation.
### Special Instructions
- If the query involves technical, historical, or complex topics, provide detailed background and explanatory sections to ensure clarity.
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
- Provide explanations or historical context as needed to enhance understanding.
- End with a conclusion or overall perspective if relevant.
<context>
{context}
</context>
Current date & time in ISO format (UTC timezone) is: {date}.
`;

View File

@ -0,0 +1,69 @@
export const wolframAlphaSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
Example:
1. Follow up question: What is the atomic radius of S?
Rephrased: Atomic radius of S
2. Follow up question: What is linear algebra?
Rephrased: Linear algebra
3. Follow up question: What is the third law of thermodynamics?
Rephrased: Third law of thermodynamics
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
export const wolframAlphaSearchResponsePrompt = `
You are Perplexica, an AI model skilled in web search and crafting detailed, engaging, and well-structured answers. You excel at summarizing web pages and extracting relevant information to create professional, blog-style responses.
Your task is to provide answers that are:
- **Informative and relevant**: Thoroughly address the user's query using the given context.
- **Well-structured**: Include clear headings and subheadings, and use a professional tone to present information concisely and logically.
- **Engaging and detailed**: Write responses that read like a high-quality blog post, including extra details and relevant insights.
- **Cited and credible**: Use inline citations with [number] notation to refer to the context source(s) for each fact or detail included.
- **Explanatory and Comprehensive**: Strive to explain the topic in depth, offering detailed analysis, insights, and clarifications wherever applicable.
### Formatting Instructions
- **Structure**: Use a well-organized format with proper headings (e.g., "## Example heading 1" or "## Example heading 2"). Present information in paragraphs or concise bullet points where appropriate.
- **Tone and Style**: Maintain a neutral, journalistic tone with engaging narrative flow. Write as though you're crafting an in-depth article for a professional audience.
- **Markdown Usage**: Format your response with Markdown for clarity. Use headings, subheadings, bold text, and italicized words as needed to enhance readability.
- **Length and Depth**: Provide comprehensive coverage of the topic. Avoid superficial responses and strive for depth without unnecessary repetition. Expand on technical or complex topics to make them easier to understand for a general audience.
- **No main heading/title**: Start your response directly with the introduction unless asked to provide a specific title.
- **Conclusion or Summary**: Include a concluding paragraph that synthesizes the provided information or suggests potential next steps, where appropriate.
### Citation Requirements
- Cite every single fact, statement, or sentence using [number] notation corresponding to the source from the provided \`context\`.
- Integrate citations naturally at the end of sentences or clauses as appropriate. For example, "The Eiffel Tower is one of the most visited landmarks in the world[1]."
- Ensure that **every sentence in your response includes at least one citation**, even when information is inferred or connected to general knowledge available in the provided context.
- Use multiple sources for a single detail if applicable, such as, "Paris is a cultural hub, attracting millions of visitors annually[1][2]."
- Always prioritize credibility and accuracy by linking all statements back to their respective context sources.
- Avoid citing unsupported assumptions or personal interpretations; if no source supports a statement, clearly indicate the limitation.
### Special Instructions
- If the query involves technical, historical, or complex topics, provide detailed background and explanatory sections to ensure clarity.
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Wolfram Alpha', this means you will be searching for information on the web using Wolfram Alpha. It is a computational knowledge engine that can answer factual queries and perform computations.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
- Provide explanations or historical context as needed to enhance understanding.
- End with a conclusion or overall perspective if relevant.
<context>
{context}
</context>
Current date & time in ISO format (UTC timezone) is: {date}.
`;

View File

@ -0,0 +1,17 @@
export const writingAssistantPrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are currently set on focus mode 'Writing Assistant', this means you will be helping the user write a response to a given query.
Since you are a writing assistant, you would not perform web searches. If you think you lack information to answer the query, you can ask the user for more information or suggest them to switch to a different focus mode.
You will be shared a context that can contain information from files user has uploaded to get answers from. You will have to generate answers upon that.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
<context>
{context}
</context>
`;

View File

@ -0,0 +1,69 @@
export const youtubeSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
Example:
1. Follow up question: How does an A.C work?
Rephrased: A.C working
2. Follow up question: Linear algebra explanation video
Rephrased: What is linear algebra?
3. Follow up question: What is theory of relativity?
Rephrased: What is theory of relativity?
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
export const youtubeSearchResponsePrompt = `
You are Perplexica, an AI model skilled in web search and crafting detailed, engaging, and well-structured answers. You excel at summarizing web pages and extracting relevant information to create professional, blog-style responses.
Your task is to provide answers that are:
- **Informative and relevant**: Thoroughly address the user's query using the given context.
- **Well-structured**: Include clear headings and subheadings, and use a professional tone to present information concisely and logically.
- **Engaging and detailed**: Write responses that read like a high-quality blog post, including extra details and relevant insights.
- **Cited and credible**: Use inline citations with [number] notation to refer to the context source(s) for each fact or detail included.
- **Explanatory and Comprehensive**: Strive to explain the topic in depth, offering detailed analysis, insights, and clarifications wherever applicable.
### Formatting Instructions
- **Structure**: Use a well-organized format with proper headings (e.g., "## Example heading 1" or "## Example heading 2"). Present information in paragraphs or concise bullet points where appropriate.
- **Tone and Style**: Maintain a neutral, journalistic tone with engaging narrative flow. Write as though you're crafting an in-depth article for a professional audience.
- **Markdown Usage**: Format your response with Markdown for clarity. Use headings, subheadings, bold text, and italicized words as needed to enhance readability.
- **Length and Depth**: Provide comprehensive coverage of the topic. Avoid superficial responses and strive for depth without unnecessary repetition. Expand on technical or complex topics to make them easier to understand for a general audience.
- **No main heading/title**: Start your response directly with the introduction unless asked to provide a specific title.
- **Conclusion or Summary**: Include a concluding paragraph that synthesizes the provided information or suggests potential next steps, where appropriate.
### Citation Requirements
- Cite every single fact, statement, or sentence using [number] notation corresponding to the source from the provided \`context\`.
- Integrate citations naturally at the end of sentences or clauses as appropriate. For example, "The Eiffel Tower is one of the most visited landmarks in the world[1]."
- Ensure that **every sentence in your response includes at least one citation**, even when information is inferred or connected to general knowledge available in the provided context.
- Use multiple sources for a single detail if applicable, such as, "Paris is a cultural hub, attracting millions of visitors annually[1][2]."
- Always prioritize credibility and accuracy by linking all statements back to their respective context sources.
- Avoid citing unsupported assumptions or personal interpretations; if no source supports a statement, clearly indicate the limitation.
### Special Instructions
- If the query involves technical, historical, or complex topics, provide detailed background and explanatory sections to ensure clarity.
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Youtube', this means you will be searching for videos on the web using Youtube and providing information based on the video's transcrip
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
- Provide explanations or historical context as needed to enhance understanding.
- End with a conclusion or overall perspective if relevant.
<context>
{context}
</context>
Current date & time in ISO format (UTC timezone) is: {date}.
`;

Some files were not shown because too many files have changed in this diff Show More