mirror of
https://github.com/ItzCrazyKns/Perplexica.git
synced 2025-04-30 08:12:26 +00:00
feat(app): add search API
This commit is contained in:
@ -20,11 +20,11 @@ The API accepts a JSON object in the request body, where you define the focus mo
|
||||
{
|
||||
"chatModel": {
|
||||
"provider": "openai",
|
||||
"model": "gpt-4o-mini"
|
||||
"name": "gpt-4o-mini"
|
||||
},
|
||||
"embeddingModel": {
|
||||
"provider": "openai",
|
||||
"model": "text-embedding-3-large"
|
||||
"name": "text-embedding-3-large"
|
||||
},
|
||||
"optimizationMode": "speed",
|
||||
"focusMode": "webSearch",
|
||||
@ -38,18 +38,18 @@ The API accepts a JSON object in the request body, where you define the focus mo
|
||||
|
||||
### Request Parameters
|
||||
|
||||
- **`chatModel`** (object, optional): Defines the chat model to be used for the query. For model details you can send a GET request at `http://localhost:3001/api/models`. Make sure to use the key value (For example "gpt-4o-mini" instead of the display name "GPT 4 omni mini").
|
||||
- **`chatModel`** (object, optional): Defines the chat model to be used for the query. For model details you can send a GET request at `http://localhost:3000/api/models`. Make sure to use the key value (For example "gpt-4o-mini" instead of the display name "GPT 4 omni mini").
|
||||
|
||||
- `provider`: Specifies the provider for the chat model (e.g., `openai`, `ollama`).
|
||||
- `model`: The specific model from the chosen provider (e.g., `gpt-4o-mini`).
|
||||
- `name`: The specific model from the chosen provider (e.g., `gpt-4o-mini`).
|
||||
- Optional fields for custom OpenAI configuration:
|
||||
- `customOpenAIBaseURL`: If you’re using a custom OpenAI instance, provide the base URL.
|
||||
- `customOpenAIKey`: The API key for a custom OpenAI instance.
|
||||
|
||||
- **`embeddingModel`** (object, optional): Defines the embedding model for similarity-based searching. For model details you can send a GET request at `http://localhost:3001/api/models`. Make sure to use the key value (For example "text-embedding-3-large" instead of the display name "Text Embedding 3 Large").
|
||||
- **`embeddingModel`** (object, optional): Defines the embedding model for similarity-based searching. For model details you can send a GET request at `http://localhost:3000/api/models`. Make sure to use the key value (For example "text-embedding-3-large" instead of the display name "Text Embedding 3 Large").
|
||||
|
||||
- `provider`: The provider for the embedding model (e.g., `openai`).
|
||||
- `model`: The specific embedding model (e.g., `text-embedding-3-large`).
|
||||
- `name`: The specific embedding model (e.g., `text-embedding-3-large`).
|
||||
|
||||
- **`focusMode`** (string, required): Specifies which focus mode to use. Available modes:
|
||||
|
||||
|
@ -20,67 +20,11 @@ import {
|
||||
getCustomOpenaiApiUrl,
|
||||
getCustomOpenaiModelName,
|
||||
} from '@/lib/config';
|
||||
import { searchHandlers } from '@/lib/search';
|
||||
|
||||
export const runtime = 'nodejs';
|
||||
export const dynamic = 'force-dynamic';
|
||||
|
||||
const searchHandlers: Record<string, MetaSearchAgent> = {
|
||||
webSearch: new MetaSearchAgent({
|
||||
activeEngines: [],
|
||||
queryGeneratorPrompt: prompts.webSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.webSearchResponsePrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0.3,
|
||||
searchWeb: true,
|
||||
summarizer: true,
|
||||
}),
|
||||
academicSearch: new MetaSearchAgent({
|
||||
activeEngines: ['arxiv', 'google scholar', 'pubmed'],
|
||||
queryGeneratorPrompt: prompts.academicSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.academicSearchResponsePrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0,
|
||||
searchWeb: true,
|
||||
summarizer: false,
|
||||
}),
|
||||
writingAssistant: new MetaSearchAgent({
|
||||
activeEngines: [],
|
||||
queryGeneratorPrompt: '',
|
||||
responsePrompt: prompts.writingAssistantPrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0,
|
||||
searchWeb: false,
|
||||
summarizer: false,
|
||||
}),
|
||||
wolframAlphaSearch: new MetaSearchAgent({
|
||||
activeEngines: ['wolframalpha'],
|
||||
queryGeneratorPrompt: prompts.wolframAlphaSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.wolframAlphaSearchResponsePrompt,
|
||||
rerank: false,
|
||||
rerankThreshold: 0,
|
||||
searchWeb: true,
|
||||
summarizer: false,
|
||||
}),
|
||||
youtubeSearch: new MetaSearchAgent({
|
||||
activeEngines: ['youtube'],
|
||||
queryGeneratorPrompt: prompts.youtubeSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.youtubeSearchResponsePrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0.3,
|
||||
searchWeb: true,
|
||||
summarizer: false,
|
||||
}),
|
||||
redditSearch: new MetaSearchAgent({
|
||||
activeEngines: ['reddit'],
|
||||
queryGeneratorPrompt: prompts.redditSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.redditSearchResponsePrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0.3,
|
||||
searchWeb: true,
|
||||
summarizer: false,
|
||||
}),
|
||||
};
|
||||
|
||||
type Message = {
|
||||
messageId: string;
|
||||
chatId: string;
|
||||
|
164
src/app/api/search/route.ts
Normal file
164
src/app/api/search/route.ts
Normal file
@ -0,0 +1,164 @@
|
||||
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import type { Embeddings } from '@langchain/core/embeddings';
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
import {
|
||||
getAvailableChatModelProviders,
|
||||
getAvailableEmbeddingModelProviders,
|
||||
} from '@/lib/providers';
|
||||
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
|
||||
import { MetaSearchAgentType } from '@/lib/search/metaSearchAgent';
|
||||
import {
|
||||
getCustomOpenaiApiKey,
|
||||
getCustomOpenaiApiUrl,
|
||||
getCustomOpenaiModelName,
|
||||
} from '@/lib/config';
|
||||
import { searchHandlers } from '@/lib/search';
|
||||
|
||||
interface chatModel {
|
||||
provider: string;
|
||||
name: string;
|
||||
customOpenAIKey?: string;
|
||||
customOpenAIBaseURL?: string;
|
||||
}
|
||||
|
||||
interface embeddingModel {
|
||||
provider: string;
|
||||
name: string;
|
||||
}
|
||||
|
||||
interface ChatRequestBody {
|
||||
optimizationMode: 'speed' | 'balanced';
|
||||
focusMode: string;
|
||||
chatModel?: chatModel;
|
||||
embeddingModel?: embeddingModel;
|
||||
query: string;
|
||||
history: Array<[string, string]>;
|
||||
}
|
||||
|
||||
export const POST = async (req: Request) => {
|
||||
try {
|
||||
const body: ChatRequestBody = await req.json();
|
||||
|
||||
if (!body.focusMode || !body.query) {
|
||||
return Response.json(
|
||||
{ message: 'Missing focus mode or query' },
|
||||
{ status: 400 },
|
||||
);
|
||||
}
|
||||
|
||||
body.history = body.history || [];
|
||||
body.optimizationMode = body.optimizationMode || 'balanced';
|
||||
|
||||
const history: BaseMessage[] = body.history.map((msg) => {
|
||||
return msg[0] === 'human'
|
||||
? new HumanMessage({ content: msg[1] })
|
||||
: new AIMessage({ content: msg[1] });
|
||||
});
|
||||
|
||||
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
|
||||
getAvailableChatModelProviders(),
|
||||
getAvailableEmbeddingModelProviders(),
|
||||
]);
|
||||
|
||||
const chatModelProvider =
|
||||
body.chatModel?.provider || Object.keys(chatModelProviders)[0];
|
||||
const chatModel =
|
||||
body.chatModel?.name ||
|
||||
Object.keys(chatModelProviders[chatModelProvider])[0];
|
||||
|
||||
const embeddingModelProvider =
|
||||
body.embeddingModel?.provider || Object.keys(embeddingModelProviders)[0];
|
||||
const embeddingModel =
|
||||
body.embeddingModel?.name ||
|
||||
Object.keys(embeddingModelProviders[embeddingModelProvider])[0];
|
||||
|
||||
let llm: BaseChatModel | undefined;
|
||||
let embeddings: Embeddings | undefined;
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
modelName: body.chatModel?.name || getCustomOpenaiModelName(),
|
||||
openAIApiKey:
|
||||
body.chatModel?.customOpenAIKey || getCustomOpenaiApiKey(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
baseURL:
|
||||
body.chatModel?.customOpenAIBaseURL || getCustomOpenaiApiUrl(),
|
||||
},
|
||||
}) as unknown as BaseChatModel;
|
||||
} else if (
|
||||
chatModelProviders[chatModelProvider] &&
|
||||
chatModelProviders[chatModelProvider][chatModel]
|
||||
) {
|
||||
llm = chatModelProviders[chatModelProvider][chatModel]
|
||||
.model as unknown as BaseChatModel | undefined;
|
||||
}
|
||||
|
||||
if (
|
||||
embeddingModelProviders[embeddingModelProvider] &&
|
||||
embeddingModelProviders[embeddingModelProvider][embeddingModel]
|
||||
) {
|
||||
embeddings = embeddingModelProviders[embeddingModelProvider][
|
||||
embeddingModel
|
||||
].model as Embeddings | undefined;
|
||||
}
|
||||
|
||||
if (!llm || !embeddings) {
|
||||
return Response.json(
|
||||
{ message: 'Invalid model selected' },
|
||||
{ status: 400 },
|
||||
);
|
||||
}
|
||||
|
||||
const searchHandler: MetaSearchAgentType = searchHandlers[body.focusMode];
|
||||
|
||||
if (!searchHandler) {
|
||||
return Response.json({ message: 'Invalid focus mode' }, { status: 400 });
|
||||
}
|
||||
|
||||
const emitter = await searchHandler.searchAndAnswer(
|
||||
body.query,
|
||||
history,
|
||||
llm,
|
||||
embeddings,
|
||||
body.optimizationMode,
|
||||
[],
|
||||
);
|
||||
|
||||
return new Promise((resolve, reject) => {
|
||||
let message = '';
|
||||
let sources: any[] = [];
|
||||
|
||||
emitter.on('data', (data) => {
|
||||
try {
|
||||
const parsedData = JSON.parse(data);
|
||||
if (parsedData.type === 'response') {
|
||||
message += parsedData.data;
|
||||
} else if (parsedData.type === 'sources') {
|
||||
sources = parsedData.data;
|
||||
}
|
||||
} catch (error) {
|
||||
reject(
|
||||
Response.json({ message: 'Error parsing data' }, { status: 500 }),
|
||||
);
|
||||
}
|
||||
});
|
||||
|
||||
emitter.on('end', () => {
|
||||
resolve(Response.json({ message, sources }, { status: 200 }));
|
||||
});
|
||||
|
||||
emitter.on('error', (error) => {
|
||||
reject(
|
||||
Response.json({ message: 'Search error', error }, { status: 500 }),
|
||||
);
|
||||
});
|
||||
});
|
||||
} catch (err: any) {
|
||||
console.error(`Error in getting search results: ${err.message}`);
|
||||
return Response.json(
|
||||
{ message: 'An error has occurred.' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
59
src/lib/search/index.ts
Normal file
59
src/lib/search/index.ts
Normal file
@ -0,0 +1,59 @@
|
||||
import MetaSearchAgent from '@/lib/search/metaSearchAgent';
|
||||
import prompts from '../prompts';
|
||||
|
||||
export const searchHandlers: Record<string, MetaSearchAgent> = {
|
||||
webSearch: new MetaSearchAgent({
|
||||
activeEngines: [],
|
||||
queryGeneratorPrompt: prompts.webSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.webSearchResponsePrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0.3,
|
||||
searchWeb: true,
|
||||
summarizer: true,
|
||||
}),
|
||||
academicSearch: new MetaSearchAgent({
|
||||
activeEngines: ['arxiv', 'google scholar', 'pubmed'],
|
||||
queryGeneratorPrompt: prompts.academicSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.academicSearchResponsePrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0,
|
||||
searchWeb: true,
|
||||
summarizer: false,
|
||||
}),
|
||||
writingAssistant: new MetaSearchAgent({
|
||||
activeEngines: [],
|
||||
queryGeneratorPrompt: '',
|
||||
responsePrompt: prompts.writingAssistantPrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0,
|
||||
searchWeb: false,
|
||||
summarizer: false,
|
||||
}),
|
||||
wolframAlphaSearch: new MetaSearchAgent({
|
||||
activeEngines: ['wolframalpha'],
|
||||
queryGeneratorPrompt: prompts.wolframAlphaSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.wolframAlphaSearchResponsePrompt,
|
||||
rerank: false,
|
||||
rerankThreshold: 0,
|
||||
searchWeb: true,
|
||||
summarizer: false,
|
||||
}),
|
||||
youtubeSearch: new MetaSearchAgent({
|
||||
activeEngines: ['youtube'],
|
||||
queryGeneratorPrompt: prompts.youtubeSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.youtubeSearchResponsePrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0.3,
|
||||
searchWeb: true,
|
||||
summarizer: false,
|
||||
}),
|
||||
redditSearch: new MetaSearchAgent({
|
||||
activeEngines: ['reddit'],
|
||||
queryGeneratorPrompt: prompts.redditSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.redditSearchResponsePrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0.3,
|
||||
searchWeb: true,
|
||||
summarizer: false,
|
||||
}),
|
||||
};
|
Reference in New Issue
Block a user