Compare commits

..

3 Commits

Author SHA1 Message Date
ItzCrazyKns
463c8692da feat(providers): add models.json for models list 2025-04-08 16:00:45 +05:30
ItzCrazyKns
09661ae11d feat(prompts): fix typo, closes #715 2025-04-02 13:02:28 +05:30
ItzCrazyKns
a8d410bc2f Merge pull request #716 from ItzCrazyKns/feat/system-instructions
Feat/system instructions
2025-04-01 15:59:18 +05:30
11 changed files with 328 additions and 280 deletions

1
data/.gitignore vendored
View File

@@ -1,2 +1,3 @@
*
!models.json
!.gitignore

157
data/models.json Normal file
View File

@@ -0,0 +1,157 @@
{
"_comment": "Ollama models are fetched from the Ollama API, so they are not included here.",
"chatModels": {
"openai": [
{
"displayName": "GPT-3.5 Turbo",
"key": "gpt-3.5-turbo"
},
{
"displayName": "GPT-4",
"key": "gpt-4"
},
{
"displayName": "GPT-4 Turbo",
"key": "gpt-4-turbo"
},
{
"displayName": "GPT-4 Omni",
"key": "gpt-4o"
},
{
"displayName": "GPT-4 Omni Mini",
"key": "gpt-4o-mini"
}
],
"groq": [
{
"displayName": "Gemma2 9B IT",
"key": "gemma2-9b-it"
},
{
"displayName": "Llama 3.3 70B Versatile",
"key": "llama-3.3-70b-versatile"
},
{
"displayName": "Llama 3.1 8B Instant",
"key": "llama-3.1-8b-instant"
},
{
"displayName": "Llama3 70B 8192",
"key": "llama3-70b-8192"
},
{
"displayName": "Llama3 8B 8192",
"key": "llama3-8b-8192"
},
{
"displayName": "Mixtral 8x7B 32768",
"key": "mixtral-8x7b-32768"
},
{
"displayName": "Qwen QWQ 32B (Preview)",
"key": "qwen-qwq-32b"
},
{
"displayName": "Mistral Saba 24B (Preview)",
"key": "mistral-saba-24b"
},
{
"displayName": "DeepSeek R1 Distill Llama 70B (Preview)",
"key": "deepseek-r1-distill-llama-70b"
}
],
"gemini": [
{
"displayName": "Gemini 2.5 Pro Experimental",
"key": "gemini-2.5-pro-exp-03-25"
},
{
"displayName": "Gemini 2.0 Flash",
"key": "gemini-2.0-flash"
},
{
"displayName": "Gemini 2.0 Flash-Lite",
"key": "gemini-2.0-flash-lite"
},
{
"displayName": "Gemini 2.0 Flash Thinking Experimental",
"key": "gemini-2.0-flash-thinking-exp-01-21"
},
{
"displayName": "Gemini 1.5 Flash",
"key": "gemini-1.5-flash"
},
{
"displayName": "Gemini 1.5 Flash-8B",
"key": "gemini-1.5-flash-8b"
},
{
"displayName": "Gemini 1.5 Pro",
"key": "gemini-1.5-pro"
}
],
"anthropic": [
{
"displayName": "Claude 3.7 Sonnet",
"key": "claude-3-7-sonnet-20250219"
},
{
"displayName": "Claude 3.5 Haiku",
"key": "claude-3-5-haiku-20241022"
},
{
"displayName": "Claude 3.5 Sonnet v2",
"key": "claude-3-5-sonnet-20241022"
},
{
"displayName": "Claude 3.5 Sonnet",
"key": "claude-3-5-sonnet-20240620"
},
{
"displayName": "Claude 3 Opus",
"key": "claude-3-opus-20240229"
},
{
"displayName": "Claude 3 Sonnet",
"key": "claude-3-sonnet-20240229"
},
{
"displayName": "Claude 3 Haiku",
"key": "claude-3-haiku-20240307"
}
]
},
"embeddingModels": {
"openai": [
{
"displayName": "Text Embedding 3 Large",
"key": "text-embedding-3-large"
},
{
"displayName": "Text Embedding 3 Small",
"key": "text-embedding-3-small"
}
],
"gemini": [
{
"displayName": "Gemini Embedding",
"key": "gemini-embedding-exp"
}
],
"transformers": [
{
"displayName": "BGE Small",
"key": "xenova-bge-small-en-v1.5"
},
{
"displayName": "GTE Small",
"key": "xenova-gte-small"
},
{
"displayName": "Bert Multilingual",
"key": "xenova-bert-base-multilingual-uncased"
}
]
}
}

View File

@@ -125,7 +125,7 @@ export const POST = async (req: Request) => {
embeddings,
body.optimizationMode,
[],
"",
'',
);
if (!body.stream) {

View File

@@ -1,6 +1,6 @@
export const webSearchRetrieverPrompt = `
You are an AI question rephraser. You will be given a conversation and a follow-up question, you will have to rephrase the follow up question so it is a standalone question and can be used by another LLM to search the web for information to answer it.
If it is a smple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
If it is a simple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block.
You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response.

View File

@@ -1,48 +1,22 @@
import { ChatAnthropic } from '@langchain/anthropic';
import { ChatModel } from '.';
import { ChatModel, getModelsList, RawModel } from '.';
import { getAnthropicApiKey } from '../config';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const anthropicChatModels: Record<string, string>[] = [
{
displayName: 'Claude 3.7 Sonnet',
key: 'claude-3-7-sonnet-20250219',
},
{
displayName: 'Claude 3.5 Haiku',
key: 'claude-3-5-haiku-20241022',
},
{
displayName: 'Claude 3.5 Sonnet v2',
key: 'claude-3-5-sonnet-20241022',
},
{
displayName: 'Claude 3.5 Sonnet',
key: 'claude-3-5-sonnet-20240620',
},
{
displayName: 'Claude 3 Opus',
key: 'claude-3-opus-20240229',
},
{
displayName: 'Claude 3 Sonnet',
key: 'claude-3-sonnet-20240229',
},
{
displayName: 'Claude 3 Haiku',
key: 'claude-3-haiku-20240307',
},
];
const loadModels = () => {
return getModelsList()?.['chatModels']['anthropic'] as unknown as RawModel[]
}
export const loadAnthropicChatModels = async () => {
const anthropicApiKey = getAnthropicApiKey();
if (!anthropicApiKey) return {};
const models = loadModels()
try {
const chatModels: Record<string, ChatModel> = {};
anthropicChatModels.forEach((model) => {
models.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatAnthropic({

View File

@@ -3,57 +3,24 @@ import {
GoogleGenerativeAIEmbeddings,
} from '@langchain/google-genai';
import { getGeminiApiKey } from '../config';
import { ChatModel, EmbeddingModel } from '.';
import { ChatModel, EmbeddingModel, getModelsList, RawModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { Embeddings } from '@langchain/core/embeddings';
const geminiChatModels: Record<string, string>[] = [
{
displayName: 'Gemini 2.5 Pro Experimental',
key: 'gemini-2.5-pro-exp-03-25',
},
{
displayName: 'Gemini 2.0 Flash',
key: 'gemini-2.0-flash',
},
{
displayName: 'Gemini 2.0 Flash-Lite',
key: 'gemini-2.0-flash-lite',
},
{
displayName: 'Gemini 2.0 Flash Thinking Experimental',
key: 'gemini-2.0-flash-thinking-exp-01-21',
},
{
displayName: 'Gemini 1.5 Flash',
key: 'gemini-1.5-flash',
},
{
displayName: 'Gemini 1.5 Flash-8B',
key: 'gemini-1.5-flash-8b',
},
{
displayName: 'Gemini 1.5 Pro',
key: 'gemini-1.5-pro',
},
];
const geminiEmbeddingModels: Record<string, string>[] = [
{
displayName: 'Gemini Embedding',
key: 'gemini-embedding-exp',
},
];
const loadModels = (modelType: 'chat' | 'embedding') => {
return getModelsList()?.[modelType === 'chat' ? 'chatModels' : 'embeddingModels']['gemini'] as unknown as RawModel[]
}
export const loadGeminiChatModels = async () => {
const geminiApiKey = getGeminiApiKey();
if (!geminiApiKey) return {};
const models = loadModels('chat');
try {
const chatModels: Record<string, ChatModel> = {};
geminiChatModels.forEach((model) => {
models.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatGoogleGenerativeAI({
@@ -73,13 +40,14 @@ export const loadGeminiChatModels = async () => {
export const loadGeminiEmbeddingModels = async () => {
const geminiApiKey = getGeminiApiKey();
if (!geminiApiKey) return {};
const models = loadModels('embedding');
try {
const embeddingModels: Record<string, EmbeddingModel> = {};
geminiEmbeddingModels.forEach((model) => {
models.forEach((model) => {
embeddingModels[model.key] = {
displayName: model.displayName,
model: new GoogleGenerativeAIEmbeddings({

View File

@@ -1,88 +1,22 @@
import { ChatOpenAI } from '@langchain/openai';
import { getGroqApiKey } from '../config';
import { ChatModel } from '.';
import { ChatModel, getModelsList, RawModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const groqChatModels: Record<string, string>[] = [
{
displayName: 'Gemma2 9B IT',
key: 'gemma2-9b-it',
},
{
displayName: 'Llama 3.3 70B Versatile',
key: 'llama-3.3-70b-versatile',
},
{
displayName: 'Llama 3.1 8B Instant',
key: 'llama-3.1-8b-instant',
},
{
displayName: 'Llama3 70B 8192',
key: 'llama3-70b-8192',
},
{
displayName: 'Llama3 8B 8192',
key: 'llama3-8b-8192',
},
{
displayName: 'Mixtral 8x7B 32768',
key: 'mixtral-8x7b-32768',
},
{
displayName: 'Qwen QWQ 32B (Preview)',
key: 'qwen-qwq-32b',
},
{
displayName: 'Mistral Saba 24B (Preview)',
key: 'mistral-saba-24b',
},
{
displayName: 'Qwen 2.5 Coder 32B (Preview)',
key: 'qwen-2.5-coder-32b',
},
{
displayName: 'Qwen 2.5 32B (Preview)',
key: 'qwen-2.5-32b',
},
{
displayName: 'DeepSeek R1 Distill Qwen 32B (Preview)',
key: 'deepseek-r1-distill-qwen-32b',
},
{
displayName: 'DeepSeek R1 Distill Llama 70B (Preview)',
key: 'deepseek-r1-distill-llama-70b',
},
{
displayName: 'Llama 3.3 70B SpecDec (Preview)',
key: 'llama-3.3-70b-specdec',
},
{
displayName: 'Llama 3.2 1B Preview (Preview)',
key: 'llama-3.2-1b-preview',
},
{
displayName: 'Llama 3.2 3B Preview (Preview)',
key: 'llama-3.2-3b-preview',
},
{
displayName: 'Llama 3.2 11B Vision Preview (Preview)',
key: 'llama-3.2-11b-vision-preview',
},
{
displayName: 'Llama 3.2 90B Vision Preview (Preview)',
key: 'llama-3.2-90b-vision-preview',
},
];
const loadModels = () => {
return getModelsList()?.chatModels['groq'] as unknown as RawModel[]
}
export const loadGroqChatModels = async () => {
const groqApiKey = getGroqApiKey();
if (!groqApiKey) return {};
const models = loadModels()
try {
const chatModels: Record<string, ChatModel> = {};
groqChatModels.forEach((model) => {
models.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatOpenAI({

View File

@@ -1,26 +1,39 @@
import { Embeddings } from '@langchain/core/embeddings';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { loadOpenAIChatModels, loadOpenAIEmbeddingModels } from './openai';
import { Embeddings } from '@langchain/core/embeddings'
import { BaseChatModel } from '@langchain/core/language_models/chat_models'
import { loadOpenAIChatModels, loadOpenAIEmbeddingModels } from './openai'
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '../config';
import { ChatOpenAI } from '@langchain/openai';
import { loadOllamaChatModels, loadOllamaEmbeddingModels } from './ollama';
import { loadGroqChatModels } from './groq';
import { loadAnthropicChatModels } from './anthropic';
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini';
import { loadTransformersEmbeddingsModels } from './transformers';
} from '../config'
import { ChatOpenAI } from '@langchain/openai'
import { loadOllamaChatModels, loadOllamaEmbeddingModels } from './ollama'
import { loadGroqChatModels } from './groq'
import { loadAnthropicChatModels } from './anthropic'
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini'
import { loadTransformersEmbeddingsModels } from './transformers'
import path from 'path'
import fs from 'fs'
export interface ChatModel {
displayName: string;
model: BaseChatModel;
displayName: string
model: BaseChatModel
}
export interface EmbeddingModel {
displayName: string;
model: Embeddings;
displayName: string
model: Embeddings
}
export type RawModel = {
displayName: string
key: string
}
type ModelsList = {
[key in "chatModels" | "embeddingModels"]: {
[key: string]: RawModel[]
}
}
export const chatModelProviders: Record<
@@ -32,7 +45,7 @@ export const chatModelProviders: Record<
groq: loadGroqChatModels,
anthropic: loadAnthropicChatModels,
gemini: loadGeminiChatModels,
};
}
export const embeddingModelProviders: Record<
string,
@@ -42,21 +55,43 @@ export const embeddingModelProviders: Record<
ollama: loadOllamaEmbeddingModels,
gemini: loadGeminiEmbeddingModels,
transformers: loadTransformersEmbeddingsModels,
};
}
export const getModelsList = (): ModelsList | null => {
const modelFile = path.join(process.cwd(), 'data/models.json')
try {
const content = fs.readFileSync(modelFile, 'utf-8')
return JSON.parse(content) as ModelsList
} catch (err) {
console.error(`Error reading models file: ${err}`)
return null
}
}
export const updateModelsList = (models: ModelsList) => {
try {
const modelFile = path.join(process.cwd(), 'data/models.json')
const content = JSON.stringify(models, null, 2)
fs.writeFileSync(modelFile, content, 'utf-8')
} catch(err) {
console.error(`Error updating models file: ${err}`)
}
}
export const getAvailableChatModelProviders = async () => {
const models: Record<string, Record<string, ChatModel>> = {};
const models: Record<string, Record<string, ChatModel>> = {}
for (const provider in chatModelProviders) {
const providerModels = await chatModelProviders[provider]();
const providerModels = await chatModelProviders[provider]()
if (Object.keys(providerModels).length > 0) {
models[provider] = providerModels;
models[provider] = providerModels
}
}
const customOpenAiApiKey = getCustomOpenaiApiKey();
const customOpenAiApiUrl = getCustomOpenaiApiUrl();
const customOpenAiModelName = getCustomOpenaiModelName();
const customOpenAiApiKey = getCustomOpenaiApiKey()
const customOpenAiApiUrl = getCustomOpenaiApiUrl()
const customOpenAiModelName = getCustomOpenaiModelName()
models['custom_openai'] = {
...(customOpenAiApiKey && customOpenAiApiUrl && customOpenAiModelName
@@ -74,20 +109,20 @@ export const getAvailableChatModelProviders = async () => {
},
}
: {}),
};
}
return models;
};
return models
}
export const getAvailableEmbeddingModelProviders = async () => {
const models: Record<string, Record<string, EmbeddingModel>> = {};
const models: Record<string, Record<string, EmbeddingModel>> = {}
for (const provider in embeddingModelProviders) {
const providerModels = await embeddingModelProviders[provider]();
const providerModels = await embeddingModelProviders[provider]()
if (Object.keys(providerModels).length > 0) {
models[provider] = providerModels;
models[provider] = providerModels
}
}
return models;
};
return models
}

View File

@@ -1,24 +1,39 @@
import axios from 'axios';
import { getKeepAlive, getOllamaApiEndpoint } from '../config';
import { ChatModel, EmbeddingModel } from '.';
import { ChatOllama } from '@langchain/community/chat_models/ollama';
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
export const loadOllamaChatModels = async () => {
const ollamaApiEndpoint = getOllamaApiEndpoint();
if (!ollamaApiEndpoint) return {};
import axios from 'axios'
import { getKeepAlive, getOllamaApiEndpoint } from '../config'
import { ChatModel, EmbeddingModel } from '.'
import { ChatOllama } from '@langchain/community/chat_models/ollama'
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama'
const loadModels = async (apiURL: string) => {
try {
const res = await axios.get(`${ollamaApiEndpoint}/api/tags`, {
const res = await axios.get(`${apiURL}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
})
const { models } = res.data;
if (res.status !== 200) {
console.error(`Failed to load Ollama models: ${res.data}`)
return []
}
const chatModels: Record<string, ChatModel> = {};
const { models } = res.data
return models
} catch (err) {
console.error(`Error loading Ollama models: ${err}`)
return []
}
}
export const loadOllamaChatModels = async () => {
const ollamaApiEndpoint = getOllamaApiEndpoint()
if (!ollamaApiEndpoint) return {}
const models = await loadModels(ollamaApiEndpoint)
try {
const chatModels: Record<string, ChatModel> = {}
models.forEach((model: any) => {
chatModels[model.model] = {
@@ -29,31 +44,24 @@ export const loadOllamaChatModels = async () => {
temperature: 0.7,
keepAlive: getKeepAlive(),
}),
};
});
}
})
return chatModels;
return chatModels
} catch (err) {
console.error(`Error loading Ollama models: ${err}`);
return {};
console.error(`Error loading Ollama models: ${err}`)
return {}
}
};
}
export const loadOllamaEmbeddingModels = async () => {
const ollamaApiEndpoint = getOllamaApiEndpoint();
const ollamaApiEndpoint = getOllamaApiEndpoint()
if (!ollamaApiEndpoint) return {}
if (!ollamaApiEndpoint) return {};
const models = await loadModels(ollamaApiEndpoint)
try {
const res = await axios.get(`${ollamaApiEndpoint}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
const { models } = res.data;
const embeddingModels: Record<string, EmbeddingModel> = {};
const embeddingModels: Record<string, EmbeddingModel> = {}
models.forEach((model: any) => {
embeddingModels[model.model] = {
@@ -62,12 +70,12 @@ export const loadOllamaEmbeddingModels = async () => {
baseUrl: ollamaApiEndpoint,
model: model.model,
}),
};
});
}
})
return embeddingModels;
return embeddingModels
} catch (err) {
console.error(`Error loading Ollama embeddings models: ${err}`);
return {};
console.error(`Error loading Ollama embeddings models: ${err}`)
return {}
}
};
}

View File

@@ -1,52 +1,23 @@
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
import { getOpenaiApiKey } from '../config';
import { ChatModel, EmbeddingModel } from '.';
import { ChatModel, EmbeddingModel, getModelsList, RawModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { Embeddings } from '@langchain/core/embeddings';
const openaiChatModels: Record<string, string>[] = [
{
displayName: 'GPT-3.5 Turbo',
key: 'gpt-3.5-turbo',
},
{
displayName: 'GPT-4',
key: 'gpt-4',
},
{
displayName: 'GPT-4 turbo',
key: 'gpt-4-turbo',
},
{
displayName: 'GPT-4 omni',
key: 'gpt-4o',
},
{
displayName: 'GPT-4 omni mini',
key: 'gpt-4o-mini',
},
];
const openaiEmbeddingModels: Record<string, string>[] = [
{
displayName: 'Text Embedding 3 Small',
key: 'text-embedding-3-small',
},
{
displayName: 'Text Embedding 3 Large',
key: 'text-embedding-3-large',
},
];
const loadModels = (modelType: 'chat' | 'embedding') => {
return getModelsList()?.[modelType === 'chat' ? 'chatModels' : 'embeddingModels']['openai'] as unknown as RawModel[]
}
export const loadOpenAIChatModels = async () => {
const openaiApiKey = getOpenaiApiKey();
const models = loadModels('chat');
if (!openaiApiKey) return {};
if (!openaiApiKey || !models) return {};
try {
const chatModels: Record<string, ChatModel> = {};
openaiChatModels.forEach((model) => {
models.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatOpenAI({
@@ -66,13 +37,14 @@ export const loadOpenAIChatModels = async () => {
export const loadOpenAIEmbeddingModels = async () => {
const openaiApiKey = getOpenaiApiKey();
const models = loadModels('embedding');
if (!openaiApiKey) return {};
if (!openaiApiKey || !models) return {};
try {
const embeddingModels: Record<string, EmbeddingModel> = {};
openaiEmbeddingModels.forEach((model) => {
models.forEach((model) => {
embeddingModels[model.key] = {
displayName: model.displayName,
model: new OpenAIEmbeddings({

View File

@@ -1,31 +1,30 @@
import { HuggingFaceTransformersEmbeddings } from '../huggingfaceTransformer';
import { EmbeddingModel, getModelsList, RawModel } from '.'
import { HuggingFaceTransformersEmbeddings } from '../huggingfaceTransformer'
const loadModels = () => {
return getModelsList()?.embeddingModels[
'transformers'
] as unknown as RawModel[]
}
export const loadTransformersEmbeddingsModels = async () => {
try {
const embeddingModels = {
'xenova-bge-small-en-v1.5': {
displayName: 'BGE Small',
model: new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/bge-small-en-v1.5',
}),
},
'xenova-gte-small': {
displayName: 'GTE Small',
model: new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/gte-small',
}),
},
'xenova-bert-base-multilingual-uncased': {
displayName: 'Bert Multilingual',
model: new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/bert-base-multilingual-uncased',
}),
},
};
const models = loadModels()
return embeddingModels;
const embeddingModels: Record<string, EmbeddingModel> = {}
models.forEach(model => {
embeddingModels[model.key] = {
displayName: model.displayName,
model: new HuggingFaceTransformersEmbeddings({
modelName: model.key,
}),
}
})
return embeddingModels
} catch (err) {
console.error(`Error loading Transformers embeddings model: ${err}`);
return {};
console.error(`Error loading Transformers embeddings model: ${err}`)
return {}
}
};
}