Compare commits

..

1 Commits

Author SHA1 Message Date
ItzCrazyKns
463c8692da feat(providers): add models.json for models list 2025-04-08 16:00:45 +05:30
22 changed files with 607 additions and 779 deletions

1
data/.gitignore vendored
View File

@@ -1,2 +1,3 @@
*
!models.json
!.gitignore

157
data/models.json Normal file
View File

@@ -0,0 +1,157 @@
{
"_comment": "Ollama models are fetched from the Ollama API, so they are not included here.",
"chatModels": {
"openai": [
{
"displayName": "GPT-3.5 Turbo",
"key": "gpt-3.5-turbo"
},
{
"displayName": "GPT-4",
"key": "gpt-4"
},
{
"displayName": "GPT-4 Turbo",
"key": "gpt-4-turbo"
},
{
"displayName": "GPT-4 Omni",
"key": "gpt-4o"
},
{
"displayName": "GPT-4 Omni Mini",
"key": "gpt-4o-mini"
}
],
"groq": [
{
"displayName": "Gemma2 9B IT",
"key": "gemma2-9b-it"
},
{
"displayName": "Llama 3.3 70B Versatile",
"key": "llama-3.3-70b-versatile"
},
{
"displayName": "Llama 3.1 8B Instant",
"key": "llama-3.1-8b-instant"
},
{
"displayName": "Llama3 70B 8192",
"key": "llama3-70b-8192"
},
{
"displayName": "Llama3 8B 8192",
"key": "llama3-8b-8192"
},
{
"displayName": "Mixtral 8x7B 32768",
"key": "mixtral-8x7b-32768"
},
{
"displayName": "Qwen QWQ 32B (Preview)",
"key": "qwen-qwq-32b"
},
{
"displayName": "Mistral Saba 24B (Preview)",
"key": "mistral-saba-24b"
},
{
"displayName": "DeepSeek R1 Distill Llama 70B (Preview)",
"key": "deepseek-r1-distill-llama-70b"
}
],
"gemini": [
{
"displayName": "Gemini 2.5 Pro Experimental",
"key": "gemini-2.5-pro-exp-03-25"
},
{
"displayName": "Gemini 2.0 Flash",
"key": "gemini-2.0-flash"
},
{
"displayName": "Gemini 2.0 Flash-Lite",
"key": "gemini-2.0-flash-lite"
},
{
"displayName": "Gemini 2.0 Flash Thinking Experimental",
"key": "gemini-2.0-flash-thinking-exp-01-21"
},
{
"displayName": "Gemini 1.5 Flash",
"key": "gemini-1.5-flash"
},
{
"displayName": "Gemini 1.5 Flash-8B",
"key": "gemini-1.5-flash-8b"
},
{
"displayName": "Gemini 1.5 Pro",
"key": "gemini-1.5-pro"
}
],
"anthropic": [
{
"displayName": "Claude 3.7 Sonnet",
"key": "claude-3-7-sonnet-20250219"
},
{
"displayName": "Claude 3.5 Haiku",
"key": "claude-3-5-haiku-20241022"
},
{
"displayName": "Claude 3.5 Sonnet v2",
"key": "claude-3-5-sonnet-20241022"
},
{
"displayName": "Claude 3.5 Sonnet",
"key": "claude-3-5-sonnet-20240620"
},
{
"displayName": "Claude 3 Opus",
"key": "claude-3-opus-20240229"
},
{
"displayName": "Claude 3 Sonnet",
"key": "claude-3-sonnet-20240229"
},
{
"displayName": "Claude 3 Haiku",
"key": "claude-3-haiku-20240307"
}
]
},
"embeddingModels": {
"openai": [
{
"displayName": "Text Embedding 3 Large",
"key": "text-embedding-3-large"
},
{
"displayName": "Text Embedding 3 Small",
"key": "text-embedding-3-small"
}
],
"gemini": [
{
"displayName": "Gemini Embedding",
"key": "gemini-embedding-exp"
}
],
"transformers": [
{
"displayName": "BGE Small",
"key": "xenova-bge-small-en-v1.5"
},
{
"displayName": "GTE Small",
"key": "xenova-gte-small"
},
{
"displayName": "Bert Multilingual",
"key": "xenova-bert-base-multilingual-uncased"
}
]
}
}

View File

@@ -33,7 +33,6 @@ The API accepts a JSON object in the request body, where you define the focus mo
["human", "Hi, how are you?"],
["assistant", "I am doing well, how can I help you today?"]
],
"systemInstructions": "Focus on providing technical details about Perplexica's architecture.",
"stream": false
}
```
@@ -64,8 +63,6 @@ The API accepts a JSON object in the request body, where you define the focus mo
- **`query`** (string, required): The search query or question.
- **`systemInstructions`** (string, optional): Custom instructions provided by the user to guide the AI's response. These instructions are treated as user preferences and have lower priority than the system's core instructions. For example, you can specify a particular writing style, format, or focus area.
- **`history`** (array, optional): An array of message pairs representing the conversation history. Each pair consists of a role (either 'human' or 'assistant') and the message content. This allows the system to use the context of the conversation to refine results. Example:
```json

View File

@@ -1,6 +1,6 @@
{
"name": "perplexica-frontend",
"version": "1.10.2",
"version": "1.10.1",
"license": "MIT",
"author": "ItzCrazyKns",
"scripts": {

View File

@@ -22,8 +22,5 @@ MODEL_NAME = ""
[MODELS.OLLAMA]
API_URL = "" # Ollama API URL - http://host.docker.internal:11434
[MODELS.DEEPSEEK]
API_KEY = ""
[API_ENDPOINTS]
SEARXNG = "" # SearxNG API URL - http://localhost:32768

View File

@@ -7,7 +7,6 @@ import {
getGroqApiKey,
getOllamaApiEndpoint,
getOpenaiApiKey,
getDeepseekApiKey,
updateConfig,
} from '@/lib/config';
import {
@@ -54,7 +53,6 @@ export const GET = async (req: Request) => {
config['anthropicApiKey'] = getAnthropicApiKey();
config['groqApiKey'] = getGroqApiKey();
config['geminiApiKey'] = getGeminiApiKey();
config['deepseekApiKey'] = getDeepseekApiKey();
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
config['customOpenaiModelName'] = getCustomOpenaiModelName();
@@ -90,9 +88,6 @@ export const POST = async (req: Request) => {
OLLAMA: {
API_URL: config.ollamaApiUrl,
},
DEEPSEEK: {
API_KEY: config.deepseekApiKey,
},
CUSTOM_OPENAI: {
API_URL: config.customOpenaiApiUrl,
API_KEY: config.customOpenaiApiKey,

View File

@@ -34,7 +34,6 @@ interface ChatRequestBody {
query: string;
history: Array<[string, string]>;
stream?: boolean;
systemInstructions?: string;
}
export const POST = async (req: Request) => {
@@ -126,7 +125,7 @@ export const POST = async (req: Request) => {
embeddings,
body.optimizationMode,
[],
body.systemInstructions || '',
'',
);
if (!body.stream) {

View File

@@ -20,7 +20,6 @@ interface SettingsType {
anthropicApiKey: string;
geminiApiKey: string;
ollamaApiUrl: string;
deepseekApiKey: string;
customOpenaiApiKey: string;
customOpenaiApiUrl: string;
customOpenaiModelName: string;
@@ -839,25 +838,6 @@ const Page = () => {
onSave={(value) => saveConfig('geminiApiKey', value)}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Deepseek API Key
</p>
<Input
type="text"
placeholder="Deepseek API Key"
value={config.deepseekApiKey}
isSaving={savingStates['deepseekApiKey']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
deepseekApiKey: e.target.value,
}));
}}
onSave={(value) => saveConfig('deepseekApiKey', value)}
/>
</div>
</div>
</SettingsSection>
</div>

View File

@@ -363,18 +363,20 @@ const ChatWindow = ({ id }: { id?: string }) => {
if (data.type === 'sources') {
sources = data.data;
setMessages((prevMessages) => [
...prevMessages,
{
content: '',
messageId: data.messageId,
chatId: chatId!,
role: 'assistant',
sources: sources,
createdAt: new Date(),
},
]);
added = true;
if (!added) {
setMessages((prevMessages) => [
...prevMessages,
{
content: '',
messageId: data.messageId,
chatId: chatId!,
role: 'assistant',
sources: sources,
createdAt: new Date(),
},
]);
added = true;
}
setMessageAppeared(true);
}
@@ -392,20 +394,20 @@ const ChatWindow = ({ id }: { id?: string }) => {
},
]);
added = true;
setMessageAppeared(true);
} else {
setMessages((prev) =>
prev.map((message) => {
if (message.messageId === data.messageId) {
return { ...message, content: message.content + data.data };
}
return message;
}),
);
}
setMessages((prev) =>
prev.map((message) => {
if (message.messageId === data.messageId) {
return { ...message, content: message.content + data.data };
}
return message;
}),
);
recievedMessage += data.data;
setMessageAppeared(true);
}
if (data.type === 'messageEnd') {

View File

@@ -48,7 +48,6 @@ const MessageBox = ({
const [speechMessage, setSpeechMessage] = useState(message.content);
useEffect(() => {
const citationRegex = /\[([^\]]+)\]/g;
const regex = /\[(\d+)\]/g;
let processedMessage = message.content;
@@ -68,33 +67,11 @@ const MessageBox = ({
) {
setParsedMessage(
processedMessage.replace(
citationRegex,
(_, capturedContent: string) => {
const numbers = capturedContent
.split(',')
.map((numStr) => numStr.trim());
const linksHtml = numbers
.map((numStr) => {
const number = parseInt(numStr);
if (isNaN(number) || number <= 0) {
return `[${numStr}]`;
}
const source = message.sources?.[number - 1];
const url = source?.metadata?.url;
if (url) {
return `<a href="${url}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${numStr}</a>`;
} else {
return `[${numStr}]`;
}
})
.join('');
return linksHtml;
},
regex,
(_, number) =>
`<a href="${
message.sources?.[number - 1]?.metadata?.url
}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${number}</a>`,
),
);
return;

View File

@@ -76,11 +76,13 @@ const Optimization = ({
<PopoverButton
onClick={() => setOptimizationMode(mode.key)}
key={i}
disabled={mode.key === 'quality'}
className={cn(
'p-2 rounded-lg flex flex-col items-start justify-start text-start space-y-1 duration-200 cursor-pointer transition',
optimizationMode === mode.key
? 'bg-light-secondary dark:bg-dark-secondary'
: 'hover:bg-light-secondary dark:hover:bg-dark-secondary',
mode.key === 'quality' && 'opacity-50 cursor-not-allowed',
)}
>
<div className="flex flex-row items-center space-x-1 text-black dark:text-white">

View File

@@ -25,9 +25,6 @@ interface Config {
OLLAMA: {
API_URL: string;
};
DEEPSEEK: {
API_KEY: string;
};
CUSTOM_OPENAI: {
API_URL: string;
API_KEY: string;
@@ -66,8 +63,6 @@ export const getSearxngApiEndpoint = () =>
export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL;
export const getDeepseekApiKey = () => loadConfig().MODELS.DEEPSEEK.API_KEY;
export const getCustomOpenaiApiKey = () =>
loadConfig().MODELS.CUSTOM_OPENAI.API_KEY;

View File

@@ -1,48 +1,22 @@
import { ChatAnthropic } from '@langchain/anthropic';
import { ChatModel } from '.';
import { ChatModel, getModelsList, RawModel } from '.';
import { getAnthropicApiKey } from '../config';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const anthropicChatModels: Record<string, string>[] = [
{
displayName: 'Claude 3.7 Sonnet',
key: 'claude-3-7-sonnet-20250219',
},
{
displayName: 'Claude 3.5 Haiku',
key: 'claude-3-5-haiku-20241022',
},
{
displayName: 'Claude 3.5 Sonnet v2',
key: 'claude-3-5-sonnet-20241022',
},
{
displayName: 'Claude 3.5 Sonnet',
key: 'claude-3-5-sonnet-20240620',
},
{
displayName: 'Claude 3 Opus',
key: 'claude-3-opus-20240229',
},
{
displayName: 'Claude 3 Sonnet',
key: 'claude-3-sonnet-20240229',
},
{
displayName: 'Claude 3 Haiku',
key: 'claude-3-haiku-20240307',
},
];
const loadModels = () => {
return getModelsList()?.['chatModels']['anthropic'] as unknown as RawModel[]
}
export const loadAnthropicChatModels = async () => {
const anthropicApiKey = getAnthropicApiKey();
if (!anthropicApiKey) return {};
const models = loadModels()
try {
const chatModels: Record<string, ChatModel> = {};
anthropicChatModels.forEach((model) => {
models.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatAnthropic({

View File

@@ -1,44 +0,0 @@
import { ChatOpenAI } from '@langchain/openai';
import { getDeepseekApiKey } from '../config';
import { ChatModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const deepseekChatModels: Record<string, string>[] = [
{
displayName: 'Deepseek Chat (Deepseek V3)',
key: 'deepseek-chat',
},
{
displayName: 'Deepseek Reasoner (Deepseek R1)',
key: 'deepseek-reasoner',
},
];
export const loadDeepseekChatModels = async () => {
const deepseekApiKey = getDeepseekApiKey();
if (!deepseekApiKey) return {};
try {
const chatModels: Record<string, ChatModel> = {};
deepseekChatModels.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatOpenAI({
openAIApiKey: deepseekApiKey,
modelName: model.key,
temperature: 0.7,
configuration: {
baseURL: 'https://api.deepseek.com',
},
}) as unknown as BaseChatModel,
};
});
return chatModels;
} catch (err) {
console.error(`Error loading Deepseek models: ${err}`);
return {};
}
};

View File

@@ -3,61 +3,24 @@ import {
GoogleGenerativeAIEmbeddings,
} from '@langchain/google-genai';
import { getGeminiApiKey } from '../config';
import { ChatModel, EmbeddingModel } from '.';
import { ChatModel, EmbeddingModel, getModelsList, RawModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { Embeddings } from '@langchain/core/embeddings';
const geminiChatModels: Record<string, string>[] = [
{
displayName: 'Gemini 2.5 Pro Experimental',
key: 'gemini-2.5-pro-exp-03-25',
},
{
displayName: 'Gemini 2.0 Flash',
key: 'gemini-2.0-flash',
},
{
displayName: 'Gemini 2.0 Flash-Lite',
key: 'gemini-2.0-flash-lite',
},
{
displayName: 'Gemini 2.0 Flash Thinking Experimental',
key: 'gemini-2.0-flash-thinking-exp-01-21',
},
{
displayName: 'Gemini 1.5 Flash',
key: 'gemini-1.5-flash',
},
{
displayName: 'Gemini 1.5 Flash-8B',
key: 'gemini-1.5-flash-8b',
},
{
displayName: 'Gemini 1.5 Pro',
key: 'gemini-1.5-pro',
},
];
const geminiEmbeddingModels: Record<string, string>[] = [
{
displayName: 'Text Embedding 004',
key: 'models/text-embedding-004',
},
{
displayName: 'Embedding 001',
key: 'models/embedding-001',
},
];
const loadModels = (modelType: 'chat' | 'embedding') => {
return getModelsList()?.[modelType === 'chat' ? 'chatModels' : 'embeddingModels']['gemini'] as unknown as RawModel[]
}
export const loadGeminiChatModels = async () => {
const geminiApiKey = getGeminiApiKey();
if (!geminiApiKey) return {};
const models = loadModels('chat');
try {
const chatModels: Record<string, ChatModel> = {};
geminiChatModels.forEach((model) => {
models.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatGoogleGenerativeAI({
@@ -77,13 +40,14 @@ export const loadGeminiChatModels = async () => {
export const loadGeminiEmbeddingModels = async () => {
const geminiApiKey = getGeminiApiKey();
if (!geminiApiKey) return {};
const models = loadModels('embedding');
try {
const embeddingModels: Record<string, EmbeddingModel> = {};
geminiEmbeddingModels.forEach((model) => {
models.forEach((model) => {
embeddingModels[model.key] = {
displayName: model.displayName,
model: new GoogleGenerativeAIEmbeddings({

View File

@@ -1,96 +1,22 @@
import { ChatOpenAI } from '@langchain/openai';
import { getGroqApiKey } from '../config';
import { ChatModel } from '.';
import { ChatModel, getModelsList, RawModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const groqChatModels: Record<string, string>[] = [
{
displayName: 'Gemma2 9B IT',
key: 'gemma2-9b-it',
},
{
displayName: 'Llama 3.3 70B Versatile',
key: 'llama-3.3-70b-versatile',
},
{
displayName: 'Llama 3.1 8B Instant',
key: 'llama-3.1-8b-instant',
},
{
displayName: 'Llama3 70B 8192',
key: 'llama3-70b-8192',
},
{
displayName: 'Llama3 8B 8192',
key: 'llama3-8b-8192',
},
{
displayName: 'Mixtral 8x7B 32768',
key: 'mixtral-8x7b-32768',
},
{
displayName: 'Qwen QWQ 32B (Preview)',
key: 'qwen-qwq-32b',
},
{
displayName: 'Mistral Saba 24B (Preview)',
key: 'mistral-saba-24b',
},
{
displayName: 'Qwen 2.5 Coder 32B (Preview)',
key: 'qwen-2.5-coder-32b',
},
{
displayName: 'Qwen 2.5 32B (Preview)',
key: 'qwen-2.5-32b',
},
{
displayName: 'DeepSeek R1 Distill Qwen 32B (Preview)',
key: 'deepseek-r1-distill-qwen-32b',
},
{
displayName: 'DeepSeek R1 Distill Llama 70B (Preview)',
key: 'deepseek-r1-distill-llama-70b',
},
{
displayName: 'Llama 3.3 70B SpecDec (Preview)',
key: 'llama-3.3-70b-specdec',
},
{
displayName: 'Llama 3.2 1B Preview (Preview)',
key: 'llama-3.2-1b-preview',
},
{
displayName: 'Llama 3.2 3B Preview (Preview)',
key: 'llama-3.2-3b-preview',
},
{
displayName: 'Llama 3.2 11B Vision Preview (Preview)',
key: 'llama-3.2-11b-vision-preview',
},
{
displayName: 'Llama 3.2 90B Vision Preview (Preview)',
key: 'llama-3.2-90b-vision-preview',
},
/* {
displayName: 'Llama 4 Maverick 17B 128E Instruct (Preview)',
key: 'meta-llama/llama-4-maverick-17b-128e-instruct',
}, */
{
displayName: 'Llama 4 Scout 17B 16E Instruct (Preview)',
key: 'meta-llama/llama-4-scout-17b-16e-instruct',
},
];
const loadModels = () => {
return getModelsList()?.chatModels['groq'] as unknown as RawModel[]
}
export const loadGroqChatModels = async () => {
const groqApiKey = getGroqApiKey();
if (!groqApiKey) return {};
const models = loadModels()
try {
const chatModels: Record<string, ChatModel> = {};
groqChatModels.forEach((model) => {
models.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatOpenAI({

View File

@@ -1,27 +1,39 @@
import { Embeddings } from '@langchain/core/embeddings';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { loadOpenAIChatModels, loadOpenAIEmbeddingModels } from './openai';
import { Embeddings } from '@langchain/core/embeddings'
import { BaseChatModel } from '@langchain/core/language_models/chat_models'
import { loadOpenAIChatModels, loadOpenAIEmbeddingModels } from './openai'
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '../config';
import { ChatOpenAI } from '@langchain/openai';
import { loadOllamaChatModels, loadOllamaEmbeddingModels } from './ollama';
import { loadGroqChatModels } from './groq';
import { loadAnthropicChatModels } from './anthropic';
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini';
import { loadTransformersEmbeddingsModels } from './transformers';
import { loadDeepseekChatModels } from './deepseek';
} from '../config'
import { ChatOpenAI } from '@langchain/openai'
import { loadOllamaChatModels, loadOllamaEmbeddingModels } from './ollama'
import { loadGroqChatModels } from './groq'
import { loadAnthropicChatModels } from './anthropic'
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini'
import { loadTransformersEmbeddingsModels } from './transformers'
import path from 'path'
import fs from 'fs'
export interface ChatModel {
displayName: string;
model: BaseChatModel;
displayName: string
model: BaseChatModel
}
export interface EmbeddingModel {
displayName: string;
model: Embeddings;
displayName: string
model: Embeddings
}
export type RawModel = {
displayName: string
key: string
}
type ModelsList = {
[key in "chatModels" | "embeddingModels"]: {
[key: string]: RawModel[]
}
}
export const chatModelProviders: Record<
@@ -33,8 +45,7 @@ export const chatModelProviders: Record<
groq: loadGroqChatModels,
anthropic: loadAnthropicChatModels,
gemini: loadGeminiChatModels,
deepseek: loadDeepseekChatModels,
};
}
export const embeddingModelProviders: Record<
string,
@@ -44,21 +55,43 @@ export const embeddingModelProviders: Record<
ollama: loadOllamaEmbeddingModels,
gemini: loadGeminiEmbeddingModels,
transformers: loadTransformersEmbeddingsModels,
};
}
export const getModelsList = (): ModelsList | null => {
const modelFile = path.join(process.cwd(), 'data/models.json')
try {
const content = fs.readFileSync(modelFile, 'utf-8')
return JSON.parse(content) as ModelsList
} catch (err) {
console.error(`Error reading models file: ${err}`)
return null
}
}
export const updateModelsList = (models: ModelsList) => {
try {
const modelFile = path.join(process.cwd(), 'data/models.json')
const content = JSON.stringify(models, null, 2)
fs.writeFileSync(modelFile, content, 'utf-8')
} catch(err) {
console.error(`Error updating models file: ${err}`)
}
}
export const getAvailableChatModelProviders = async () => {
const models: Record<string, Record<string, ChatModel>> = {};
const models: Record<string, Record<string, ChatModel>> = {}
for (const provider in chatModelProviders) {
const providerModels = await chatModelProviders[provider]();
const providerModels = await chatModelProviders[provider]()
if (Object.keys(providerModels).length > 0) {
models[provider] = providerModels;
models[provider] = providerModels
}
}
const customOpenAiApiKey = getCustomOpenaiApiKey();
const customOpenAiApiUrl = getCustomOpenaiApiUrl();
const customOpenAiModelName = getCustomOpenaiModelName();
const customOpenAiApiKey = getCustomOpenaiApiKey()
const customOpenAiApiUrl = getCustomOpenaiApiUrl()
const customOpenAiModelName = getCustomOpenaiModelName()
models['custom_openai'] = {
...(customOpenAiApiKey && customOpenAiApiUrl && customOpenAiModelName
@@ -76,20 +109,20 @@ export const getAvailableChatModelProviders = async () => {
},
}
: {}),
};
}
return models;
};
return models
}
export const getAvailableEmbeddingModelProviders = async () => {
const models: Record<string, Record<string, EmbeddingModel>> = {};
const models: Record<string, Record<string, EmbeddingModel>> = {}
for (const provider in embeddingModelProviders) {
const providerModels = await embeddingModelProviders[provider]();
const providerModels = await embeddingModelProviders[provider]()
if (Object.keys(providerModels).length > 0) {
models[provider] = providerModels;
models[provider] = providerModels
}
}
return models;
};
return models
}

View File

@@ -1,24 +1,39 @@
import axios from 'axios';
import { getKeepAlive, getOllamaApiEndpoint } from '../config';
import { ChatModel, EmbeddingModel } from '.';
import { ChatOllama } from '@langchain/community/chat_models/ollama';
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
export const loadOllamaChatModels = async () => {
const ollamaApiEndpoint = getOllamaApiEndpoint();
if (!ollamaApiEndpoint) return {};
import axios from 'axios'
import { getKeepAlive, getOllamaApiEndpoint } from '../config'
import { ChatModel, EmbeddingModel } from '.'
import { ChatOllama } from '@langchain/community/chat_models/ollama'
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama'
const loadModels = async (apiURL: string) => {
try {
const res = await axios.get(`${ollamaApiEndpoint}/api/tags`, {
const res = await axios.get(`${apiURL}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
})
const { models } = res.data;
if (res.status !== 200) {
console.error(`Failed to load Ollama models: ${res.data}`)
return []
}
const chatModels: Record<string, ChatModel> = {};
const { models } = res.data
return models
} catch (err) {
console.error(`Error loading Ollama models: ${err}`)
return []
}
}
export const loadOllamaChatModels = async () => {
const ollamaApiEndpoint = getOllamaApiEndpoint()
if (!ollamaApiEndpoint) return {}
const models = await loadModels(ollamaApiEndpoint)
try {
const chatModels: Record<string, ChatModel> = {}
models.forEach((model: any) => {
chatModels[model.model] = {
@@ -29,31 +44,24 @@ export const loadOllamaChatModels = async () => {
temperature: 0.7,
keepAlive: getKeepAlive(),
}),
};
});
}
})
return chatModels;
return chatModels
} catch (err) {
console.error(`Error loading Ollama models: ${err}`);
return {};
console.error(`Error loading Ollama models: ${err}`)
return {}
}
};
}
export const loadOllamaEmbeddingModels = async () => {
const ollamaApiEndpoint = getOllamaApiEndpoint();
const ollamaApiEndpoint = getOllamaApiEndpoint()
if (!ollamaApiEndpoint) return {}
if (!ollamaApiEndpoint) return {};
const models = await loadModels(ollamaApiEndpoint)
try {
const res = await axios.get(`${ollamaApiEndpoint}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
const { models } = res.data;
const embeddingModels: Record<string, EmbeddingModel> = {};
const embeddingModels: Record<string, EmbeddingModel> = {}
models.forEach((model: any) => {
embeddingModels[model.model] = {
@@ -62,12 +70,12 @@ export const loadOllamaEmbeddingModels = async () => {
baseUrl: ollamaApiEndpoint,
model: model.model,
}),
};
});
}
})
return embeddingModels;
return embeddingModels
} catch (err) {
console.error(`Error loading Ollama embeddings models: ${err}`);
return {};
console.error(`Error loading Ollama embeddings models: ${err}`)
return {}
}
};
}

View File

@@ -1,52 +1,23 @@
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
import { getOpenaiApiKey } from '../config';
import { ChatModel, EmbeddingModel } from '.';
import { ChatModel, EmbeddingModel, getModelsList, RawModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { Embeddings } from '@langchain/core/embeddings';
const openaiChatModels: Record<string, string>[] = [
{
displayName: 'GPT-3.5 Turbo',
key: 'gpt-3.5-turbo',
},
{
displayName: 'GPT-4',
key: 'gpt-4',
},
{
displayName: 'GPT-4 turbo',
key: 'gpt-4-turbo',
},
{
displayName: 'GPT-4 omni',
key: 'gpt-4o',
},
{
displayName: 'GPT-4 omni mini',
key: 'gpt-4o-mini',
},
];
const openaiEmbeddingModels: Record<string, string>[] = [
{
displayName: 'Text Embedding 3 Small',
key: 'text-embedding-3-small',
},
{
displayName: 'Text Embedding 3 Large',
key: 'text-embedding-3-large',
},
];
const loadModels = (modelType: 'chat' | 'embedding') => {
return getModelsList()?.[modelType === 'chat' ? 'chatModels' : 'embeddingModels']['openai'] as unknown as RawModel[]
}
export const loadOpenAIChatModels = async () => {
const openaiApiKey = getOpenaiApiKey();
const models = loadModels('chat');
if (!openaiApiKey) return {};
if (!openaiApiKey || !models) return {};
try {
const chatModels: Record<string, ChatModel> = {};
openaiChatModels.forEach((model) => {
models.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatOpenAI({
@@ -66,13 +37,14 @@ export const loadOpenAIChatModels = async () => {
export const loadOpenAIEmbeddingModels = async () => {
const openaiApiKey = getOpenaiApiKey();
const models = loadModels('embedding');
if (!openaiApiKey) return {};
if (!openaiApiKey || !models) return {};
try {
const embeddingModels: Record<string, EmbeddingModel> = {};
openaiEmbeddingModels.forEach((model) => {
models.forEach((model) => {
embeddingModels[model.key] = {
displayName: model.displayName,
model: new OpenAIEmbeddings({

View File

@@ -1,31 +1,30 @@
import { HuggingFaceTransformersEmbeddings } from '../huggingfaceTransformer';
import { EmbeddingModel, getModelsList, RawModel } from '.'
import { HuggingFaceTransformersEmbeddings } from '../huggingfaceTransformer'
const loadModels = () => {
return getModelsList()?.embeddingModels[
'transformers'
] as unknown as RawModel[]
}
export const loadTransformersEmbeddingsModels = async () => {
try {
const embeddingModels = {
'xenova-bge-small-en-v1.5': {
displayName: 'BGE Small',
model: new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/bge-small-en-v1.5',
}),
},
'xenova-gte-small': {
displayName: 'GTE Small',
model: new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/gte-small',
}),
},
'xenova-bert-base-multilingual-uncased': {
displayName: 'Bert Multilingual',
model: new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/bert-base-multilingual-uncased',
}),
},
};
const models = loadModels()
return embeddingModels;
const embeddingModels: Record<string, EmbeddingModel> = {}
models.forEach(model => {
embeddingModels[model.key] = {
displayName: model.displayName,
model: new HuggingFaceTransformersEmbeddings({
modelName: model.key,
}),
}
})
return embeddingModels
} catch (err) {
console.error(`Error loading Transformers embeddings model: ${err}`);
return {};
console.error(`Error loading Transformers embeddings model: ${err}`)
return {}
}
};
}

View File

@@ -6,20 +6,24 @@ import {
MessagesPlaceholder,
PromptTemplate,
} from '@langchain/core/prompts';
import {
RunnableLambda,
RunnableMap,
RunnableSequence,
} from '@langchain/core/runnables';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import LineListOutputParser from '../outputParsers/listLineOutputParser';
import LineOutputParser from '../outputParsers/lineOutputParser';
import { getDocumentsFromLinks } from '../utils/documents';
import { Document } from 'langchain/document';
import { searchSearxng, SearxngSearchResult } from '../searxng';
import { searchSearxng } from '../searxng';
import path from 'node:path';
import fs from 'node:fs';
import computeSimilarity from '../utils/computeSimilarity';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import { StreamEvent } from '@langchain/core/tracers/log_stream';
import { EventEmitter } from 'node:stream';
export interface MetaSearchAgentType {
searchAndAnswer: (
@@ -43,7 +47,7 @@ interface Config {
activeEngines: string[];
}
type SearchInput = {
type BasicChainInput = {
chat_history: BaseMessage[];
query: string;
};
@@ -56,385 +60,237 @@ class MetaSearchAgent implements MetaSearchAgentType {
this.config = config;
}
private async searchSources(
llm: BaseChatModel,
input: SearchInput,
emitter: EventEmitter,
) {
private async createSearchRetrieverChain(llm: BaseChatModel) {
(llm as unknown as ChatOpenAI).temperature = 0;
const chatPrompt = PromptTemplate.fromTemplate(
this.config.queryGeneratorPrompt,
);
return RunnableSequence.from([
PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt),
llm,
this.strParser,
RunnableLambda.from(async (input: string) => {
const linksOutputParser = new LineListOutputParser({
key: 'links',
});
const processedChatPrompt = await chatPrompt.invoke({
chat_history: formatChatHistoryAsString(input.chat_history),
query: input.query,
});
const questionOutputParser = new LineOutputParser({
key: 'question',
});
const llmRes = await llm.invoke(processedChatPrompt);
const messageStr = await this.strParser.invoke(llmRes);
const links = await linksOutputParser.parse(input);
let question = this.config.summarizer
? await questionOutputParser.parse(input)
: input;
const linksOutputParser = new LineListOutputParser({
key: 'links',
});
const questionOutputParser = new LineOutputParser({
key: 'question',
});
const links = await linksOutputParser.parse(messageStr);
let question = this.config.summarizer
? await questionOutputParser.parse(messageStr)
: messageStr;
if (question === 'not_needed') {
return { query: '', docs: [] };
}
if (links.length > 0) {
if (question.length === 0) {
question = 'summarize';
}
let docs: Document[] = [];
const linkDocs = await getDocumentsFromLinks({ links });
const docGroups: Document[] = [];
linkDocs.map((doc) => {
const URLDocExists = docGroups.find(
(d) =>
d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10,
);
if (!URLDocExists) {
docGroups.push({
...doc,
metadata: {
...doc.metadata,
totalDocs: 1,
},
});
if (question === 'not_needed') {
return { query: '', docs: [] };
}
const docIndex = docGroups.findIndex(
(d) =>
d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10,
);
if (links.length > 0) {
if (question.length === 0) {
question = 'summarize';
}
if (docIndex !== -1) {
docGroups[docIndex].pageContent =
docGroups[docIndex].pageContent + `\n\n` + doc.pageContent;
docGroups[docIndex].metadata.totalDocs += 1;
}
});
let docs: Document[] = [];
await Promise.all(
docGroups.map(async (doc) => {
const res = await llm.invoke(`
You are a web search summarizer, tasked with summarizing a piece of text retrieved from a web search. Your job is to summarize the
text into a detailed, 2-4 paragraph explanation that captures the main ideas and provides a comprehensive answer to the query.
If the query is \"summarize\", you should provide a detailed summary of the text. If the query is a specific question, you should answer it in the summary.
- **Journalistic tone**: The summary should sound professional and journalistic, not too casual or vague.
- **Thorough and detailed**: Ensure that every key point from the text is captured and that the summary directly answers the query.
- **Not too lengthy, but detailed**: The summary should be informative but not excessively long. Focus on providing detailed information in a concise format.
const linkDocs = await getDocumentsFromLinks({ links });
The text will be shared inside the \`text\` XML tag, and the query inside the \`query\` XML tag.
const docGroups: Document[] = [];
<example>
1. \`<text>
Docker is a set of platform-as-a-service products that use OS-level virtualization to deliver software in packages called containers.
It was first released in 2013 and is developed by Docker, Inc. Docker is designed to make it easier to create, deploy, and run applications
by using containers.
</text>
linkDocs.map((doc) => {
const URLDocExists = docGroups.find(
(d) =>
d.metadata.url === doc.metadata.url &&
d.metadata.totalDocs < 10,
);
<query>
What is Docker and how does it work?
</query>
if (!URLDocExists) {
docGroups.push({
...doc,
metadata: {
...doc.metadata,
totalDocs: 1,
},
});
}
Response:
Docker is a revolutionary platform-as-a-service product developed by Docker, Inc., that uses container technology to make application
deployment more efficient. It allows developers to package their software with all necessary dependencies, making it easier to run in
any environment. Released in 2013, Docker has transformed the way applications are built, deployed, and managed.
\`
2. \`<text>
The theory of relativity, or simply relativity, encompasses two interrelated theories of Albert Einstein: special relativity and general
relativity. However, the word "relativity" is sometimes used in reference to Galilean invariance. The term "theory of relativity" was based
on the expression "relative theory" used by Max Planck in 1906. The theory of relativity usually encompasses two interrelated theories by
Albert Einstein: special relativity and general relativity. Special relativity applies to all physical phenomena in the absence of gravity.
General relativity explains the law of gravitation and its relation to other forces of nature. It applies to the cosmological and astrophysical
realm, including astronomy.
</text>
const docIndex = docGroups.findIndex(
(d) =>
d.metadata.url === doc.metadata.url &&
d.metadata.totalDocs < 10,
);
<query>
summarize
</query>
Response:
The theory of relativity, developed by Albert Einstein, encompasses two main theories: special relativity and general relativity. Special
relativity applies to all physical phenomena in the absence of gravity, while general relativity explains the law of gravitation and its
relation to other forces of nature. The theory of relativity is based on the concept of "relative theory," as introduced by Max Planck in
1906. It is a fundamental theory in physics that has revolutionized our understanding of the universe.
\`
</example>
Everything below is the actual data you will be working with. Good luck!
<query>
${question}
</query>
<text>
${doc.pageContent}
</text>
Make sure to answer the query in the summary.
`);
const document = new Document({
pageContent: res.content as string,
metadata: {
title: doc.metadata.title,
url: doc.metadata.url,
},
if (docIndex !== -1) {
docGroups[docIndex].pageContent =
docGroups[docIndex].pageContent + `\n\n` + doc.pageContent;
docGroups[docIndex].metadata.totalDocs += 1;
}
});
docs.push(document);
}),
);
await Promise.all(
docGroups.map(async (doc) => {
const res = await llm.invoke(`
You are a web search summarizer, tasked with summarizing a piece of text retrieved from a web search. Your job is to summarize the
text into a detailed, 2-4 paragraph explanation that captures the main ideas and provides a comprehensive answer to the query.
If the query is \"summarize\", you should provide a detailed summary of the text. If the query is a specific question, you should answer it in the summary.
- **Journalistic tone**: The summary should sound professional and journalistic, not too casual or vague.
- **Thorough and detailed**: Ensure that every key point from the text is captured and that the summary directly answers the query.
- **Not too lengthy, but detailed**: The summary should be informative but not excessively long. Focus on providing detailed information in a concise format.
return { query: question, docs: docs };
} else {
question = question.replace(/<think>.*?<\/think>/g, '');
The text will be shared inside the \`text\` XML tag, and the query inside the \`query\` XML tag.
const res = await searchSearxng(question, {
language: 'en',
engines: this.config.activeEngines,
});
<example>
1. \`<text>
Docker is a set of platform-as-a-service products that use OS-level virtualization to deliver software in packages called containers.
It was first released in 2013 and is developed by Docker, Inc. Docker is designed to make it easier to create, deploy, and run applications
by using containers.
</text>
const documents = res.results.map(
(result) =>
new Document({
pageContent:
result.content ||
(this.config.activeEngines.includes('youtube')
? result.title
: '') /* Todo: Implement transcript grabbing using Youtubei (source: https://www.npmjs.com/package/youtubei) */,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
<query>
What is Docker and how does it work?
</query>
return { query: question, docs: documents };
}
Response:
Docker is a revolutionary platform-as-a-service product developed by Docker, Inc., that uses container technology to make application
deployment more efficient. It allows developers to package their software with all necessary dependencies, making it easier to run in
any environment. Released in 2013, Docker has transformed the way applications are built, deployed, and managed.
\`
2. \`<text>
The theory of relativity, or simply relativity, encompasses two interrelated theories of Albert Einstein: special relativity and general
relativity. However, the word "relativity" is sometimes used in reference to Galilean invariance. The term "theory of relativity" was based
on the expression "relative theory" used by Max Planck in 1906. The theory of relativity usually encompasses two interrelated theories by
Albert Einstein: special relativity and general relativity. Special relativity applies to all physical phenomena in the absence of gravity.
General relativity explains the law of gravitation and its relation to other forces of nature. It applies to the cosmological and astrophysical
realm, including astronomy.
</text>
<query>
summarize
</query>
Response:
The theory of relativity, developed by Albert Einstein, encompasses two main theories: special relativity and general relativity. Special
relativity applies to all physical phenomena in the absence of gravity, while general relativity explains the law of gravitation and its
relation to other forces of nature. The theory of relativity is based on the concept of "relative theory," as introduced by Max Planck in
1906. It is a fundamental theory in physics that has revolutionized our understanding of the universe.
\`
</example>
Everything below is the actual data you will be working with. Good luck!
<query>
${question}
</query>
<text>
${doc.pageContent}
</text>
Make sure to answer the query in the summary.
`);
const document = new Document({
pageContent: res.content as string,
metadata: {
title: doc.metadata.title,
url: doc.metadata.url,
},
});
docs.push(document);
}),
);
return { query: question, docs: docs };
} else {
question = question.replace(/<think>.*?<\/think>/g, '');
const res = await searchSearxng(question, {
language: 'en',
engines: this.config.activeEngines,
});
const documents = res.results.map(
(result) =>
new Document({
pageContent:
result.content ||
(this.config.activeEngines.includes('youtube')
? result.title
: '') /* Todo: Implement transcript grabbing using Youtubei (source: https://www.npmjs.com/package/youtubei) */,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: question, docs: documents };
}
}),
]);
}
private async performDeepResearch(
llm: BaseChatModel,
input: SearchInput,
emitter: EventEmitter,
) {
(llm as unknown as ChatOpenAI).temperature = 0;
const queryGenPrompt = PromptTemplate.fromTemplate(
this.config.queryGeneratorPrompt,
);
const formattedChatPrompt = await queryGenPrompt.invoke({
chat_history: formatChatHistoryAsString(input.chat_history),
query: input.query,
});
let i = 0;
let currentQuery = await this.strParser.invoke(
await llm.invoke(formattedChatPrompt),
);
const originalQuery = currentQuery;
const pastQueries: string[] = [];
const results: SearxngSearchResult[] = [];
while (i < 10) {
const res = await searchSearxng(currentQuery, {
language: 'en',
engines: this.config.activeEngines,
});
results.push(...res.results);
const reflectorPrompt = PromptTemplate.fromTemplate(`
You are an LLM that is tasked with reflecting on the results of a search query.
## Goal
You will be given question of the user, a list of search results collected from the web to answer that question along with past queries made to collect those results. You have to analyze the results based on user's question and do the following:
1. Identify unexplored areas or areas with less detailed information in the results and generate a new query that focuses on those areas. The new queries should be more specific and a similar query shall not exist in past queries which will be provided to you. Make sure to include keywords that you're looking for because the new query will be used to search the web for information on that topic. Make sure the query contains only 1 question and is not too long to ensure it is Search Engine friendly.
2. You'll have to generate a description explaining what you are doing for example "I am looking for more information about X" or "Understanding how X works" etc. The description should be short and concise.
## Output format
You need to output in XML format and do not generate any other text. ake sure to not include any other text in the output or start a conversation in the output. The output should be in the following format:
<query>(query)</query>
<description>(description)</description>
## Example
Say the user asked "What is Llama 4 by Meta?" and let search results contain information about Llama 4 being an LLM and very little information about its features. You can output:
<query>Llama 4 features</query> // Generate queries that capture keywords for SEO and not making words like "How", "What", "Why" etc.
<description>Looking for new features in Llama 4</description>
or something like
<query>How is Llama 4 better than its previous generation models</query>
<description>Understanding the difference between Llama 4 and previous generation models.</description>
## BELOW IS THE ACTUAL DATA YOU WILL BE WORKING WITH. IT IS NOT A PART OF EXAMPLES. YOU'LL HAVE TO GENERATE YOUR ANSWER BASED ON THIS DATA.
<user_question>\n{question}\n</user_question>
<search_results>\n{search_results}\n</search_results>
<past_queries>\n{past_queries}\n</past_queries>
Response:
`);
const formattedReflectorPrompt = await reflectorPrompt.invoke({
question: originalQuery,
search_results: results
.map(
(result) => `<result>${result.title} - ${result.content}</result>`,
)
.join('\n'),
past_queries: pastQueries.map((q) => `<query>${q}</query>`).join('\n'),
});
const feedback = await this.strParser.invoke(
await llm.invoke(formattedReflectorPrompt),
);
console.log(`Feedback: ${feedback}`);
const queryOutputParser = new LineOutputParser({
key: 'query',
});
const descriptionOutputParser = new LineOutputParser({
key: 'description',
});
currentQuery = await queryOutputParser.parse(feedback);
const description = await descriptionOutputParser.parse(feedback);
console.log(`Query: ${currentQuery}`);
console.log(`Description: ${description}`);
pastQueries.push(currentQuery);
++i;
}
const uniqueResults: SearxngSearchResult[] = [];
results.forEach((res) => {
const exists = uniqueResults.find((r) => r.url === res.url);
if (!exists) {
uniqueResults.push(res);
} else {
exists.content += `\n\n` + res.content;
}
});
const documents = uniqueResults /* .slice(0, 50) */
.map(
(r) =>
new Document({
pageContent: r.content || '',
metadata: {
title: r.title,
url: r.url,
...(r.img_src && { img_src: r.img_src }),
},
}),
);
return documents;
}
private async streamAnswer(
private async createAnsweringChain(
llm: BaseChatModel,
fileIds: string[],
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
systemInstructions: string,
input: SearchInput,
emitter: EventEmitter,
) {
const chatPrompt = ChatPromptTemplate.fromMessages([
['system', this.config.responsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]);
return RunnableSequence.from([
RunnableMap.from({
systemInstructions: () => systemInstructions,
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
date: () => new Date().toISOString(),
context: RunnableLambda.from(async (input: BasicChainInput) => {
const processedHistory = formatChatHistoryAsString(
input.chat_history,
);
let context = '';
let docs: Document[] | null = null;
let query = input.query;
if (optimizationMode === 'speed' || optimizationMode === 'balanced') {
let docs: Document[] | null = null;
let query = input.query;
if (this.config.searchWeb) {
const searchRetrieverChain =
await this.createSearchRetrieverChain(llm);
if (this.config.searchWeb) {
const searchResults = await this.searchSources(llm, input, emitter);
const searchRetrieverResult = await searchRetrieverChain.invoke({
chat_history: processedHistory,
query,
});
query = searchResults.query;
docs = searchResults.docs;
}
query = searchRetrieverResult.query;
docs = searchRetrieverResult.docs;
}
const sortedDocs = await this.rerankDocs(
query,
docs ?? [],
fileIds,
embeddings,
optimizationMode,
);
const sortedDocs = await this.rerankDocs(
query,
docs ?? [],
fileIds,
embeddings,
optimizationMode,
);
emitter.emit(
'data',
JSON.stringify({ type: 'sources', data: sortedDocs }),
);
context = this.processDocs(sortedDocs);
} else if (optimizationMode === 'quality') {
let docs: Document[] = [];
docs = await this.performDeepResearch(llm, input, emitter);
emitter.emit('data', JSON.stringify({ type: 'sources', data: docs }));
context = this.processDocs(docs);
}
const formattedChatPrompt = await chatPrompt.invoke({
query: input.query,
chat_history: input.chat_history,
date: new Date().toISOString(),
context: context,
systemInstructions: systemInstructions,
return sortedDocs;
})
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(this.processDocs),
}),
ChatPromptTemplate.fromMessages([
['system', this.config.responsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
llm,
this.strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
const llmRes = await llm.stream(formattedChatPrompt);
for await (const data of llmRes) {
const messageStr = await this.strParser.invoke(data);
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: messageStr }),
);
}
emitter.emit('end');
}
private async rerankDocs(
@@ -570,13 +426,44 @@ class MetaSearchAgent implements MetaSearchAgentType {
return docs
.map(
(_, index) =>
`${index + 1}. ${docs[index].metadata.title} ${
docs[index].pageContent
}`,
`${index + 1}. ${docs[index].metadata.title} ${docs[index].pageContent}`,
)
.join('\n');
}
private async handleStream(
stream: AsyncGenerator<StreamEvent, any, any>,
emitter: eventEmitter,
) {
for await (const event of stream) {
if (
event.event === 'on_chain_end' &&
event.name === 'FinalSourceRetriever'
) {
``;
emitter.emit(
'data',
JSON.stringify({ type: 'sources', data: event.data.output }),
);
}
if (
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
);
}
if (
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit('end');
}
}
}
async searchAndAnswer(
message: string,
history: BaseMessage[],
@@ -588,19 +475,26 @@ class MetaSearchAgent implements MetaSearchAgentType {
) {
const emitter = new eventEmitter();
this.streamAnswer(
const answeringChain = await this.createAnsweringChain(
llm,
fileIds,
embeddings,
optimizationMode,
systemInstructions,
);
const stream = answeringChain.streamEvents(
{
chat_history: history,
query: message,
},
emitter,
{
version: 'v1',
},
);
this.handleStream(stream, emitter);
return emitter;
}
}

View File

@@ -8,7 +8,7 @@ interface SearxngSearchOptions {
pageno?: number;
}
export interface SearxngSearchResult {
interface SearxngSearchResult {
title: string;
url: string;
img_src?: string;