mirror of
https://github.com/ItzCrazyKns/Perplexica.git
synced 2025-09-18 07:11:34 +00:00
Compare commits
1 Commits
feat/deep-
...
463c8692da
Author | SHA1 | Date | |
---|---|---|---|
|
463c8692da |
1
data/.gitignore
vendored
1
data/.gitignore
vendored
@@ -1,2 +1,3 @@
|
||||
*
|
||||
!models.json
|
||||
!.gitignore
|
||||
|
157
data/models.json
Normal file
157
data/models.json
Normal file
@@ -0,0 +1,157 @@
|
||||
{
|
||||
"_comment": "Ollama models are fetched from the Ollama API, so they are not included here.",
|
||||
"chatModels": {
|
||||
"openai": [
|
||||
{
|
||||
"displayName": "GPT-3.5 Turbo",
|
||||
"key": "gpt-3.5-turbo"
|
||||
},
|
||||
{
|
||||
"displayName": "GPT-4",
|
||||
"key": "gpt-4"
|
||||
},
|
||||
{
|
||||
"displayName": "GPT-4 Turbo",
|
||||
"key": "gpt-4-turbo"
|
||||
},
|
||||
{
|
||||
"displayName": "GPT-4 Omni",
|
||||
"key": "gpt-4o"
|
||||
},
|
||||
{
|
||||
"displayName": "GPT-4 Omni Mini",
|
||||
"key": "gpt-4o-mini"
|
||||
}
|
||||
],
|
||||
"groq": [
|
||||
{
|
||||
"displayName": "Gemma2 9B IT",
|
||||
"key": "gemma2-9b-it"
|
||||
},
|
||||
{
|
||||
"displayName": "Llama 3.3 70B Versatile",
|
||||
"key": "llama-3.3-70b-versatile"
|
||||
},
|
||||
{
|
||||
"displayName": "Llama 3.1 8B Instant",
|
||||
"key": "llama-3.1-8b-instant"
|
||||
},
|
||||
{
|
||||
"displayName": "Llama3 70B 8192",
|
||||
"key": "llama3-70b-8192"
|
||||
},
|
||||
{
|
||||
"displayName": "Llama3 8B 8192",
|
||||
"key": "llama3-8b-8192"
|
||||
},
|
||||
{
|
||||
"displayName": "Mixtral 8x7B 32768",
|
||||
"key": "mixtral-8x7b-32768"
|
||||
},
|
||||
{
|
||||
"displayName": "Qwen QWQ 32B (Preview)",
|
||||
"key": "qwen-qwq-32b"
|
||||
},
|
||||
{
|
||||
"displayName": "Mistral Saba 24B (Preview)",
|
||||
"key": "mistral-saba-24b"
|
||||
},
|
||||
{
|
||||
"displayName": "DeepSeek R1 Distill Llama 70B (Preview)",
|
||||
"key": "deepseek-r1-distill-llama-70b"
|
||||
}
|
||||
],
|
||||
"gemini": [
|
||||
{
|
||||
"displayName": "Gemini 2.5 Pro Experimental",
|
||||
"key": "gemini-2.5-pro-exp-03-25"
|
||||
},
|
||||
{
|
||||
"displayName": "Gemini 2.0 Flash",
|
||||
"key": "gemini-2.0-flash"
|
||||
},
|
||||
{
|
||||
"displayName": "Gemini 2.0 Flash-Lite",
|
||||
"key": "gemini-2.0-flash-lite"
|
||||
},
|
||||
{
|
||||
"displayName": "Gemini 2.0 Flash Thinking Experimental",
|
||||
"key": "gemini-2.0-flash-thinking-exp-01-21"
|
||||
},
|
||||
{
|
||||
"displayName": "Gemini 1.5 Flash",
|
||||
"key": "gemini-1.5-flash"
|
||||
},
|
||||
{
|
||||
"displayName": "Gemini 1.5 Flash-8B",
|
||||
"key": "gemini-1.5-flash-8b"
|
||||
},
|
||||
{
|
||||
"displayName": "Gemini 1.5 Pro",
|
||||
"key": "gemini-1.5-pro"
|
||||
}
|
||||
],
|
||||
"anthropic": [
|
||||
{
|
||||
"displayName": "Claude 3.7 Sonnet",
|
||||
"key": "claude-3-7-sonnet-20250219"
|
||||
},
|
||||
{
|
||||
"displayName": "Claude 3.5 Haiku",
|
||||
"key": "claude-3-5-haiku-20241022"
|
||||
},
|
||||
{
|
||||
"displayName": "Claude 3.5 Sonnet v2",
|
||||
"key": "claude-3-5-sonnet-20241022"
|
||||
},
|
||||
{
|
||||
"displayName": "Claude 3.5 Sonnet",
|
||||
"key": "claude-3-5-sonnet-20240620"
|
||||
},
|
||||
{
|
||||
"displayName": "Claude 3 Opus",
|
||||
"key": "claude-3-opus-20240229"
|
||||
},
|
||||
{
|
||||
"displayName": "Claude 3 Sonnet",
|
||||
"key": "claude-3-sonnet-20240229"
|
||||
},
|
||||
{
|
||||
"displayName": "Claude 3 Haiku",
|
||||
"key": "claude-3-haiku-20240307"
|
||||
}
|
||||
]
|
||||
},
|
||||
"embeddingModels": {
|
||||
"openai": [
|
||||
{
|
||||
"displayName": "Text Embedding 3 Large",
|
||||
"key": "text-embedding-3-large"
|
||||
},
|
||||
{
|
||||
"displayName": "Text Embedding 3 Small",
|
||||
"key": "text-embedding-3-small"
|
||||
}
|
||||
],
|
||||
"gemini": [
|
||||
{
|
||||
"displayName": "Gemini Embedding",
|
||||
"key": "gemini-embedding-exp"
|
||||
}
|
||||
],
|
||||
"transformers": [
|
||||
{
|
||||
"displayName": "BGE Small",
|
||||
"key": "xenova-bge-small-en-v1.5"
|
||||
},
|
||||
{
|
||||
"displayName": "GTE Small",
|
||||
"key": "xenova-gte-small"
|
||||
},
|
||||
{
|
||||
"displayName": "Bert Multilingual",
|
||||
"key": "xenova-bert-base-multilingual-uncased"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
@@ -33,7 +33,6 @@ The API accepts a JSON object in the request body, where you define the focus mo
|
||||
["human", "Hi, how are you?"],
|
||||
["assistant", "I am doing well, how can I help you today?"]
|
||||
],
|
||||
"systemInstructions": "Focus on providing technical details about Perplexica's architecture.",
|
||||
"stream": false
|
||||
}
|
||||
```
|
||||
@@ -64,8 +63,6 @@ The API accepts a JSON object in the request body, where you define the focus mo
|
||||
|
||||
- **`query`** (string, required): The search query or question.
|
||||
|
||||
- **`systemInstructions`** (string, optional): Custom instructions provided by the user to guide the AI's response. These instructions are treated as user preferences and have lower priority than the system's core instructions. For example, you can specify a particular writing style, format, or focus area.
|
||||
|
||||
- **`history`** (array, optional): An array of message pairs representing the conversation history. Each pair consists of a role (either 'human' or 'assistant') and the message content. This allows the system to use the context of the conversation to refine results. Example:
|
||||
|
||||
```json
|
||||
|
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "perplexica-frontend",
|
||||
"version": "1.10.2",
|
||||
"version": "1.10.1",
|
||||
"license": "MIT",
|
||||
"author": "ItzCrazyKns",
|
||||
"scripts": {
|
||||
|
@@ -22,8 +22,5 @@ MODEL_NAME = ""
|
||||
[MODELS.OLLAMA]
|
||||
API_URL = "" # Ollama API URL - http://host.docker.internal:11434
|
||||
|
||||
[MODELS.DEEPSEEK]
|
||||
API_KEY = ""
|
||||
|
||||
[API_ENDPOINTS]
|
||||
SEARXNG = "" # SearxNG API URL - http://localhost:32768
|
@@ -7,7 +7,6 @@ import {
|
||||
getGroqApiKey,
|
||||
getOllamaApiEndpoint,
|
||||
getOpenaiApiKey,
|
||||
getDeepseekApiKey,
|
||||
updateConfig,
|
||||
} from '@/lib/config';
|
||||
import {
|
||||
@@ -54,7 +53,6 @@ export const GET = async (req: Request) => {
|
||||
config['anthropicApiKey'] = getAnthropicApiKey();
|
||||
config['groqApiKey'] = getGroqApiKey();
|
||||
config['geminiApiKey'] = getGeminiApiKey();
|
||||
config['deepseekApiKey'] = getDeepseekApiKey();
|
||||
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
|
||||
config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
|
||||
config['customOpenaiModelName'] = getCustomOpenaiModelName();
|
||||
@@ -90,9 +88,6 @@ export const POST = async (req: Request) => {
|
||||
OLLAMA: {
|
||||
API_URL: config.ollamaApiUrl,
|
||||
},
|
||||
DEEPSEEK: {
|
||||
API_KEY: config.deepseekApiKey,
|
||||
},
|
||||
CUSTOM_OPENAI: {
|
||||
API_URL: config.customOpenaiApiUrl,
|
||||
API_KEY: config.customOpenaiApiKey,
|
||||
|
@@ -34,7 +34,6 @@ interface ChatRequestBody {
|
||||
query: string;
|
||||
history: Array<[string, string]>;
|
||||
stream?: boolean;
|
||||
systemInstructions?: string;
|
||||
}
|
||||
|
||||
export const POST = async (req: Request) => {
|
||||
@@ -126,7 +125,7 @@ export const POST = async (req: Request) => {
|
||||
embeddings,
|
||||
body.optimizationMode,
|
||||
[],
|
||||
body.systemInstructions || '',
|
||||
'',
|
||||
);
|
||||
|
||||
if (!body.stream) {
|
||||
|
@@ -20,7 +20,6 @@ interface SettingsType {
|
||||
anthropicApiKey: string;
|
||||
geminiApiKey: string;
|
||||
ollamaApiUrl: string;
|
||||
deepseekApiKey: string;
|
||||
customOpenaiApiKey: string;
|
||||
customOpenaiApiUrl: string;
|
||||
customOpenaiModelName: string;
|
||||
@@ -839,25 +838,6 @@ const Page = () => {
|
||||
onSave={(value) => saveConfig('geminiApiKey', value)}
|
||||
/>
|
||||
</div>
|
||||
|
||||
<div className="flex flex-col space-y-1">
|
||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||
Deepseek API Key
|
||||
</p>
|
||||
<Input
|
||||
type="text"
|
||||
placeholder="Deepseek API Key"
|
||||
value={config.deepseekApiKey}
|
||||
isSaving={savingStates['deepseekApiKey']}
|
||||
onChange={(e) => {
|
||||
setConfig((prev) => ({
|
||||
...prev!,
|
||||
deepseekApiKey: e.target.value,
|
||||
}));
|
||||
}}
|
||||
onSave={(value) => saveConfig('deepseekApiKey', value)}
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
</SettingsSection>
|
||||
</div>
|
||||
|
@@ -363,6 +363,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
||||
|
||||
if (data.type === 'sources') {
|
||||
sources = data.data;
|
||||
if (!added) {
|
||||
setMessages((prevMessages) => [
|
||||
...prevMessages,
|
||||
{
|
||||
@@ -375,6 +376,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
||||
},
|
||||
]);
|
||||
added = true;
|
||||
}
|
||||
setMessageAppeared(true);
|
||||
}
|
||||
|
||||
@@ -392,8 +394,8 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
||||
},
|
||||
]);
|
||||
added = true;
|
||||
setMessageAppeared(true);
|
||||
} else {
|
||||
}
|
||||
|
||||
setMessages((prev) =>
|
||||
prev.map((message) => {
|
||||
if (message.messageId === data.messageId) {
|
||||
@@ -403,9 +405,9 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
||||
return message;
|
||||
}),
|
||||
);
|
||||
}
|
||||
|
||||
recievedMessage += data.data;
|
||||
setMessageAppeared(true);
|
||||
}
|
||||
|
||||
if (data.type === 'messageEnd') {
|
||||
|
@@ -48,7 +48,6 @@ const MessageBox = ({
|
||||
const [speechMessage, setSpeechMessage] = useState(message.content);
|
||||
|
||||
useEffect(() => {
|
||||
const citationRegex = /\[([^\]]+)\]/g;
|
||||
const regex = /\[(\d+)\]/g;
|
||||
let processedMessage = message.content;
|
||||
|
||||
@@ -68,33 +67,11 @@ const MessageBox = ({
|
||||
) {
|
||||
setParsedMessage(
|
||||
processedMessage.replace(
|
||||
citationRegex,
|
||||
(_, capturedContent: string) => {
|
||||
const numbers = capturedContent
|
||||
.split(',')
|
||||
.map((numStr) => numStr.trim());
|
||||
|
||||
const linksHtml = numbers
|
||||
.map((numStr) => {
|
||||
const number = parseInt(numStr);
|
||||
|
||||
if (isNaN(number) || number <= 0) {
|
||||
return `[${numStr}]`;
|
||||
}
|
||||
|
||||
const source = message.sources?.[number - 1];
|
||||
const url = source?.metadata?.url;
|
||||
|
||||
if (url) {
|
||||
return `<a href="${url}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${numStr}</a>`;
|
||||
} else {
|
||||
return `[${numStr}]`;
|
||||
}
|
||||
})
|
||||
.join('');
|
||||
|
||||
return linksHtml;
|
||||
},
|
||||
regex,
|
||||
(_, number) =>
|
||||
`<a href="${
|
||||
message.sources?.[number - 1]?.metadata?.url
|
||||
}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${number}</a>`,
|
||||
),
|
||||
);
|
||||
return;
|
||||
|
@@ -76,11 +76,13 @@ const Optimization = ({
|
||||
<PopoverButton
|
||||
onClick={() => setOptimizationMode(mode.key)}
|
||||
key={i}
|
||||
disabled={mode.key === 'quality'}
|
||||
className={cn(
|
||||
'p-2 rounded-lg flex flex-col items-start justify-start text-start space-y-1 duration-200 cursor-pointer transition',
|
||||
optimizationMode === mode.key
|
||||
? 'bg-light-secondary dark:bg-dark-secondary'
|
||||
: 'hover:bg-light-secondary dark:hover:bg-dark-secondary',
|
||||
mode.key === 'quality' && 'opacity-50 cursor-not-allowed',
|
||||
)}
|
||||
>
|
||||
<div className="flex flex-row items-center space-x-1 text-black dark:text-white">
|
||||
|
@@ -25,9 +25,6 @@ interface Config {
|
||||
OLLAMA: {
|
||||
API_URL: string;
|
||||
};
|
||||
DEEPSEEK: {
|
||||
API_KEY: string;
|
||||
};
|
||||
CUSTOM_OPENAI: {
|
||||
API_URL: string;
|
||||
API_KEY: string;
|
||||
@@ -66,8 +63,6 @@ export const getSearxngApiEndpoint = () =>
|
||||
|
||||
export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL;
|
||||
|
||||
export const getDeepseekApiKey = () => loadConfig().MODELS.DEEPSEEK.API_KEY;
|
||||
|
||||
export const getCustomOpenaiApiKey = () =>
|
||||
loadConfig().MODELS.CUSTOM_OPENAI.API_KEY;
|
||||
|
||||
|
@@ -1,48 +1,22 @@
|
||||
import { ChatAnthropic } from '@langchain/anthropic';
|
||||
import { ChatModel } from '.';
|
||||
import { ChatModel, getModelsList, RawModel } from '.';
|
||||
import { getAnthropicApiKey } from '../config';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
|
||||
const anthropicChatModels: Record<string, string>[] = [
|
||||
{
|
||||
displayName: 'Claude 3.7 Sonnet',
|
||||
key: 'claude-3-7-sonnet-20250219',
|
||||
},
|
||||
{
|
||||
displayName: 'Claude 3.5 Haiku',
|
||||
key: 'claude-3-5-haiku-20241022',
|
||||
},
|
||||
{
|
||||
displayName: 'Claude 3.5 Sonnet v2',
|
||||
key: 'claude-3-5-sonnet-20241022',
|
||||
},
|
||||
{
|
||||
displayName: 'Claude 3.5 Sonnet',
|
||||
key: 'claude-3-5-sonnet-20240620',
|
||||
},
|
||||
{
|
||||
displayName: 'Claude 3 Opus',
|
||||
key: 'claude-3-opus-20240229',
|
||||
},
|
||||
{
|
||||
displayName: 'Claude 3 Sonnet',
|
||||
key: 'claude-3-sonnet-20240229',
|
||||
},
|
||||
{
|
||||
displayName: 'Claude 3 Haiku',
|
||||
key: 'claude-3-haiku-20240307',
|
||||
},
|
||||
];
|
||||
const loadModels = () => {
|
||||
return getModelsList()?.['chatModels']['anthropic'] as unknown as RawModel[]
|
||||
}
|
||||
|
||||
export const loadAnthropicChatModels = async () => {
|
||||
const anthropicApiKey = getAnthropicApiKey();
|
||||
|
||||
if (!anthropicApiKey) return {};
|
||||
|
||||
const models = loadModels()
|
||||
|
||||
try {
|
||||
const chatModels: Record<string, ChatModel> = {};
|
||||
|
||||
anthropicChatModels.forEach((model) => {
|
||||
models.forEach((model) => {
|
||||
chatModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new ChatAnthropic({
|
||||
|
@@ -1,44 +0,0 @@
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
import { getDeepseekApiKey } from '../config';
|
||||
import { ChatModel } from '.';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
|
||||
const deepseekChatModels: Record<string, string>[] = [
|
||||
{
|
||||
displayName: 'Deepseek Chat (Deepseek V3)',
|
||||
key: 'deepseek-chat',
|
||||
},
|
||||
{
|
||||
displayName: 'Deepseek Reasoner (Deepseek R1)',
|
||||
key: 'deepseek-reasoner',
|
||||
},
|
||||
];
|
||||
|
||||
export const loadDeepseekChatModels = async () => {
|
||||
const deepseekApiKey = getDeepseekApiKey();
|
||||
|
||||
if (!deepseekApiKey) return {};
|
||||
|
||||
try {
|
||||
const chatModels: Record<string, ChatModel> = {};
|
||||
|
||||
deepseekChatModels.forEach((model) => {
|
||||
chatModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey: deepseekApiKey,
|
||||
modelName: model.key,
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
baseURL: 'https://api.deepseek.com',
|
||||
},
|
||||
}) as unknown as BaseChatModel,
|
||||
};
|
||||
});
|
||||
|
||||
return chatModels;
|
||||
} catch (err) {
|
||||
console.error(`Error loading Deepseek models: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
@@ -3,61 +3,24 @@ import {
|
||||
GoogleGenerativeAIEmbeddings,
|
||||
} from '@langchain/google-genai';
|
||||
import { getGeminiApiKey } from '../config';
|
||||
import { ChatModel, EmbeddingModel } from '.';
|
||||
import { ChatModel, EmbeddingModel, getModelsList, RawModel } from '.';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { Embeddings } from '@langchain/core/embeddings';
|
||||
|
||||
const geminiChatModels: Record<string, string>[] = [
|
||||
{
|
||||
displayName: 'Gemini 2.5 Pro Experimental',
|
||||
key: 'gemini-2.5-pro-exp-03-25',
|
||||
},
|
||||
{
|
||||
displayName: 'Gemini 2.0 Flash',
|
||||
key: 'gemini-2.0-flash',
|
||||
},
|
||||
{
|
||||
displayName: 'Gemini 2.0 Flash-Lite',
|
||||
key: 'gemini-2.0-flash-lite',
|
||||
},
|
||||
{
|
||||
displayName: 'Gemini 2.0 Flash Thinking Experimental',
|
||||
key: 'gemini-2.0-flash-thinking-exp-01-21',
|
||||
},
|
||||
{
|
||||
displayName: 'Gemini 1.5 Flash',
|
||||
key: 'gemini-1.5-flash',
|
||||
},
|
||||
{
|
||||
displayName: 'Gemini 1.5 Flash-8B',
|
||||
key: 'gemini-1.5-flash-8b',
|
||||
},
|
||||
{
|
||||
displayName: 'Gemini 1.5 Pro',
|
||||
key: 'gemini-1.5-pro',
|
||||
},
|
||||
];
|
||||
|
||||
const geminiEmbeddingModels: Record<string, string>[] = [
|
||||
{
|
||||
displayName: 'Text Embedding 004',
|
||||
key: 'models/text-embedding-004',
|
||||
},
|
||||
{
|
||||
displayName: 'Embedding 001',
|
||||
key: 'models/embedding-001',
|
||||
},
|
||||
];
|
||||
const loadModels = (modelType: 'chat' | 'embedding') => {
|
||||
return getModelsList()?.[modelType === 'chat' ? 'chatModels' : 'embeddingModels']['gemini'] as unknown as RawModel[]
|
||||
}
|
||||
|
||||
export const loadGeminiChatModels = async () => {
|
||||
const geminiApiKey = getGeminiApiKey();
|
||||
|
||||
if (!geminiApiKey) return {};
|
||||
|
||||
const models = loadModels('chat');
|
||||
|
||||
try {
|
||||
const chatModels: Record<string, ChatModel> = {};
|
||||
|
||||
geminiChatModels.forEach((model) => {
|
||||
models.forEach((model) => {
|
||||
chatModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new ChatGoogleGenerativeAI({
|
||||
@@ -77,13 +40,14 @@ export const loadGeminiChatModels = async () => {
|
||||
|
||||
export const loadGeminiEmbeddingModels = async () => {
|
||||
const geminiApiKey = getGeminiApiKey();
|
||||
|
||||
if (!geminiApiKey) return {};
|
||||
|
||||
const models = loadModels('embedding');
|
||||
|
||||
try {
|
||||
const embeddingModels: Record<string, EmbeddingModel> = {};
|
||||
|
||||
geminiEmbeddingModels.forEach((model) => {
|
||||
models.forEach((model) => {
|
||||
embeddingModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new GoogleGenerativeAIEmbeddings({
|
||||
|
@@ -1,96 +1,22 @@
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
import { getGroqApiKey } from '../config';
|
||||
import { ChatModel } from '.';
|
||||
import { ChatModel, getModelsList, RawModel } from '.';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
|
||||
const groqChatModels: Record<string, string>[] = [
|
||||
{
|
||||
displayName: 'Gemma2 9B IT',
|
||||
key: 'gemma2-9b-it',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama 3.3 70B Versatile',
|
||||
key: 'llama-3.3-70b-versatile',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama 3.1 8B Instant',
|
||||
key: 'llama-3.1-8b-instant',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama3 70B 8192',
|
||||
key: 'llama3-70b-8192',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama3 8B 8192',
|
||||
key: 'llama3-8b-8192',
|
||||
},
|
||||
{
|
||||
displayName: 'Mixtral 8x7B 32768',
|
||||
key: 'mixtral-8x7b-32768',
|
||||
},
|
||||
{
|
||||
displayName: 'Qwen QWQ 32B (Preview)',
|
||||
key: 'qwen-qwq-32b',
|
||||
},
|
||||
{
|
||||
displayName: 'Mistral Saba 24B (Preview)',
|
||||
key: 'mistral-saba-24b',
|
||||
},
|
||||
{
|
||||
displayName: 'Qwen 2.5 Coder 32B (Preview)',
|
||||
key: 'qwen-2.5-coder-32b',
|
||||
},
|
||||
{
|
||||
displayName: 'Qwen 2.5 32B (Preview)',
|
||||
key: 'qwen-2.5-32b',
|
||||
},
|
||||
{
|
||||
displayName: 'DeepSeek R1 Distill Qwen 32B (Preview)',
|
||||
key: 'deepseek-r1-distill-qwen-32b',
|
||||
},
|
||||
{
|
||||
displayName: 'DeepSeek R1 Distill Llama 70B (Preview)',
|
||||
key: 'deepseek-r1-distill-llama-70b',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama 3.3 70B SpecDec (Preview)',
|
||||
key: 'llama-3.3-70b-specdec',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama 3.2 1B Preview (Preview)',
|
||||
key: 'llama-3.2-1b-preview',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama 3.2 3B Preview (Preview)',
|
||||
key: 'llama-3.2-3b-preview',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama 3.2 11B Vision Preview (Preview)',
|
||||
key: 'llama-3.2-11b-vision-preview',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama 3.2 90B Vision Preview (Preview)',
|
||||
key: 'llama-3.2-90b-vision-preview',
|
||||
},
|
||||
/* {
|
||||
displayName: 'Llama 4 Maverick 17B 128E Instruct (Preview)',
|
||||
key: 'meta-llama/llama-4-maverick-17b-128e-instruct',
|
||||
}, */
|
||||
{
|
||||
displayName: 'Llama 4 Scout 17B 16E Instruct (Preview)',
|
||||
key: 'meta-llama/llama-4-scout-17b-16e-instruct',
|
||||
},
|
||||
];
|
||||
const loadModels = () => {
|
||||
return getModelsList()?.chatModels['groq'] as unknown as RawModel[]
|
||||
}
|
||||
|
||||
export const loadGroqChatModels = async () => {
|
||||
const groqApiKey = getGroqApiKey();
|
||||
|
||||
if (!groqApiKey) return {};
|
||||
|
||||
const models = loadModels()
|
||||
|
||||
try {
|
||||
const chatModels: Record<string, ChatModel> = {};
|
||||
|
||||
groqChatModels.forEach((model) => {
|
||||
models.forEach((model) => {
|
||||
chatModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new ChatOpenAI({
|
||||
|
@@ -1,27 +1,39 @@
|
||||
import { Embeddings } from '@langchain/core/embeddings';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { loadOpenAIChatModels, loadOpenAIEmbeddingModels } from './openai';
|
||||
import { Embeddings } from '@langchain/core/embeddings'
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models'
|
||||
import { loadOpenAIChatModels, loadOpenAIEmbeddingModels } from './openai'
|
||||
import {
|
||||
getCustomOpenaiApiKey,
|
||||
getCustomOpenaiApiUrl,
|
||||
getCustomOpenaiModelName,
|
||||
} from '../config';
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
import { loadOllamaChatModels, loadOllamaEmbeddingModels } from './ollama';
|
||||
import { loadGroqChatModels } from './groq';
|
||||
import { loadAnthropicChatModels } from './anthropic';
|
||||
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini';
|
||||
import { loadTransformersEmbeddingsModels } from './transformers';
|
||||
import { loadDeepseekChatModels } from './deepseek';
|
||||
} from '../config'
|
||||
import { ChatOpenAI } from '@langchain/openai'
|
||||
import { loadOllamaChatModels, loadOllamaEmbeddingModels } from './ollama'
|
||||
import { loadGroqChatModels } from './groq'
|
||||
import { loadAnthropicChatModels } from './anthropic'
|
||||
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini'
|
||||
import { loadTransformersEmbeddingsModels } from './transformers'
|
||||
import path from 'path'
|
||||
import fs from 'fs'
|
||||
|
||||
export interface ChatModel {
|
||||
displayName: string;
|
||||
model: BaseChatModel;
|
||||
displayName: string
|
||||
model: BaseChatModel
|
||||
}
|
||||
|
||||
export interface EmbeddingModel {
|
||||
displayName: string;
|
||||
model: Embeddings;
|
||||
displayName: string
|
||||
model: Embeddings
|
||||
}
|
||||
|
||||
export type RawModel = {
|
||||
displayName: string
|
||||
key: string
|
||||
}
|
||||
|
||||
type ModelsList = {
|
||||
[key in "chatModels" | "embeddingModels"]: {
|
||||
[key: string]: RawModel[]
|
||||
}
|
||||
}
|
||||
|
||||
export const chatModelProviders: Record<
|
||||
@@ -33,8 +45,7 @@ export const chatModelProviders: Record<
|
||||
groq: loadGroqChatModels,
|
||||
anthropic: loadAnthropicChatModels,
|
||||
gemini: loadGeminiChatModels,
|
||||
deepseek: loadDeepseekChatModels,
|
||||
};
|
||||
}
|
||||
|
||||
export const embeddingModelProviders: Record<
|
||||
string,
|
||||
@@ -44,21 +55,43 @@ export const embeddingModelProviders: Record<
|
||||
ollama: loadOllamaEmbeddingModels,
|
||||
gemini: loadGeminiEmbeddingModels,
|
||||
transformers: loadTransformersEmbeddingsModels,
|
||||
};
|
||||
}
|
||||
|
||||
export const getModelsList = (): ModelsList | null => {
|
||||
const modelFile = path.join(process.cwd(), 'data/models.json')
|
||||
try {
|
||||
const content = fs.readFileSync(modelFile, 'utf-8')
|
||||
return JSON.parse(content) as ModelsList
|
||||
} catch (err) {
|
||||
console.error(`Error reading models file: ${err}`)
|
||||
return null
|
||||
}
|
||||
}
|
||||
|
||||
export const updateModelsList = (models: ModelsList) => {
|
||||
try {
|
||||
const modelFile = path.join(process.cwd(), 'data/models.json')
|
||||
const content = JSON.stringify(models, null, 2)
|
||||
|
||||
fs.writeFileSync(modelFile, content, 'utf-8')
|
||||
} catch(err) {
|
||||
console.error(`Error updating models file: ${err}`)
|
||||
}
|
||||
}
|
||||
|
||||
export const getAvailableChatModelProviders = async () => {
|
||||
const models: Record<string, Record<string, ChatModel>> = {};
|
||||
const models: Record<string, Record<string, ChatModel>> = {}
|
||||
|
||||
for (const provider in chatModelProviders) {
|
||||
const providerModels = await chatModelProviders[provider]();
|
||||
const providerModels = await chatModelProviders[provider]()
|
||||
if (Object.keys(providerModels).length > 0) {
|
||||
models[provider] = providerModels;
|
||||
models[provider] = providerModels
|
||||
}
|
||||
}
|
||||
|
||||
const customOpenAiApiKey = getCustomOpenaiApiKey();
|
||||
const customOpenAiApiUrl = getCustomOpenaiApiUrl();
|
||||
const customOpenAiModelName = getCustomOpenaiModelName();
|
||||
const customOpenAiApiKey = getCustomOpenaiApiKey()
|
||||
const customOpenAiApiUrl = getCustomOpenaiApiUrl()
|
||||
const customOpenAiModelName = getCustomOpenaiModelName()
|
||||
|
||||
models['custom_openai'] = {
|
||||
...(customOpenAiApiKey && customOpenAiApiUrl && customOpenAiModelName
|
||||
@@ -76,20 +109,20 @@ export const getAvailableChatModelProviders = async () => {
|
||||
},
|
||||
}
|
||||
: {}),
|
||||
};
|
||||
}
|
||||
|
||||
return models;
|
||||
};
|
||||
return models
|
||||
}
|
||||
|
||||
export const getAvailableEmbeddingModelProviders = async () => {
|
||||
const models: Record<string, Record<string, EmbeddingModel>> = {};
|
||||
const models: Record<string, Record<string, EmbeddingModel>> = {}
|
||||
|
||||
for (const provider in embeddingModelProviders) {
|
||||
const providerModels = await embeddingModelProviders[provider]();
|
||||
const providerModels = await embeddingModelProviders[provider]()
|
||||
if (Object.keys(providerModels).length > 0) {
|
||||
models[provider] = providerModels;
|
||||
models[provider] = providerModels
|
||||
}
|
||||
}
|
||||
|
||||
return models;
|
||||
};
|
||||
return models
|
||||
}
|
||||
|
@@ -1,24 +1,39 @@
|
||||
import axios from 'axios';
|
||||
import { getKeepAlive, getOllamaApiEndpoint } from '../config';
|
||||
import { ChatModel, EmbeddingModel } from '.';
|
||||
import { ChatOllama } from '@langchain/community/chat_models/ollama';
|
||||
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
|
||||
|
||||
export const loadOllamaChatModels = async () => {
|
||||
const ollamaApiEndpoint = getOllamaApiEndpoint();
|
||||
|
||||
if (!ollamaApiEndpoint) return {};
|
||||
import axios from 'axios'
|
||||
import { getKeepAlive, getOllamaApiEndpoint } from '../config'
|
||||
import { ChatModel, EmbeddingModel } from '.'
|
||||
import { ChatOllama } from '@langchain/community/chat_models/ollama'
|
||||
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama'
|
||||
|
||||
const loadModels = async (apiURL: string) => {
|
||||
try {
|
||||
const res = await axios.get(`${ollamaApiEndpoint}/api/tags`, {
|
||||
const res = await axios.get(`${apiURL}/api/tags`, {
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
});
|
||||
})
|
||||
|
||||
const { models } = res.data;
|
||||
if (res.status !== 200) {
|
||||
console.error(`Failed to load Ollama models: ${res.data}`)
|
||||
return []
|
||||
}
|
||||
|
||||
const chatModels: Record<string, ChatModel> = {};
|
||||
const { models } = res.data
|
||||
|
||||
return models
|
||||
} catch (err) {
|
||||
console.error(`Error loading Ollama models: ${err}`)
|
||||
return []
|
||||
}
|
||||
}
|
||||
|
||||
export const loadOllamaChatModels = async () => {
|
||||
const ollamaApiEndpoint = getOllamaApiEndpoint()
|
||||
if (!ollamaApiEndpoint) return {}
|
||||
|
||||
const models = await loadModels(ollamaApiEndpoint)
|
||||
|
||||
try {
|
||||
const chatModels: Record<string, ChatModel> = {}
|
||||
|
||||
models.forEach((model: any) => {
|
||||
chatModels[model.model] = {
|
||||
@@ -29,31 +44,24 @@ export const loadOllamaChatModels = async () => {
|
||||
temperature: 0.7,
|
||||
keepAlive: getKeepAlive(),
|
||||
}),
|
||||
};
|
||||
});
|
||||
|
||||
return chatModels;
|
||||
} catch (err) {
|
||||
console.error(`Error loading Ollama models: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
||||
})
|
||||
|
||||
return chatModels
|
||||
} catch (err) {
|
||||
console.error(`Error loading Ollama models: ${err}`)
|
||||
return {}
|
||||
}
|
||||
}
|
||||
|
||||
export const loadOllamaEmbeddingModels = async () => {
|
||||
const ollamaApiEndpoint = getOllamaApiEndpoint();
|
||||
const ollamaApiEndpoint = getOllamaApiEndpoint()
|
||||
if (!ollamaApiEndpoint) return {}
|
||||
|
||||
if (!ollamaApiEndpoint) return {};
|
||||
const models = await loadModels(ollamaApiEndpoint)
|
||||
|
||||
try {
|
||||
const res = await axios.get(`${ollamaApiEndpoint}/api/tags`, {
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
});
|
||||
|
||||
const { models } = res.data;
|
||||
|
||||
const embeddingModels: Record<string, EmbeddingModel> = {};
|
||||
const embeddingModels: Record<string, EmbeddingModel> = {}
|
||||
|
||||
models.forEach((model: any) => {
|
||||
embeddingModels[model.model] = {
|
||||
@@ -62,12 +70,12 @@ export const loadOllamaEmbeddingModels = async () => {
|
||||
baseUrl: ollamaApiEndpoint,
|
||||
model: model.model,
|
||||
}),
|
||||
};
|
||||
});
|
||||
|
||||
return embeddingModels;
|
||||
} catch (err) {
|
||||
console.error(`Error loading Ollama embeddings models: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
||||
})
|
||||
|
||||
return embeddingModels
|
||||
} catch (err) {
|
||||
console.error(`Error loading Ollama embeddings models: ${err}`)
|
||||
return {}
|
||||
}
|
||||
}
|
||||
|
@@ -1,52 +1,23 @@
|
||||
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
|
||||
import { getOpenaiApiKey } from '../config';
|
||||
import { ChatModel, EmbeddingModel } from '.';
|
||||
import { ChatModel, EmbeddingModel, getModelsList, RawModel } from '.';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { Embeddings } from '@langchain/core/embeddings';
|
||||
|
||||
const openaiChatModels: Record<string, string>[] = [
|
||||
{
|
||||
displayName: 'GPT-3.5 Turbo',
|
||||
key: 'gpt-3.5-turbo',
|
||||
},
|
||||
{
|
||||
displayName: 'GPT-4',
|
||||
key: 'gpt-4',
|
||||
},
|
||||
{
|
||||
displayName: 'GPT-4 turbo',
|
||||
key: 'gpt-4-turbo',
|
||||
},
|
||||
{
|
||||
displayName: 'GPT-4 omni',
|
||||
key: 'gpt-4o',
|
||||
},
|
||||
{
|
||||
displayName: 'GPT-4 omni mini',
|
||||
key: 'gpt-4o-mini',
|
||||
},
|
||||
];
|
||||
|
||||
const openaiEmbeddingModels: Record<string, string>[] = [
|
||||
{
|
||||
displayName: 'Text Embedding 3 Small',
|
||||
key: 'text-embedding-3-small',
|
||||
},
|
||||
{
|
||||
displayName: 'Text Embedding 3 Large',
|
||||
key: 'text-embedding-3-large',
|
||||
},
|
||||
];
|
||||
const loadModels = (modelType: 'chat' | 'embedding') => {
|
||||
return getModelsList()?.[modelType === 'chat' ? 'chatModels' : 'embeddingModels']['openai'] as unknown as RawModel[]
|
||||
}
|
||||
|
||||
export const loadOpenAIChatModels = async () => {
|
||||
const openaiApiKey = getOpenaiApiKey();
|
||||
const models = loadModels('chat');
|
||||
|
||||
if (!openaiApiKey) return {};
|
||||
if (!openaiApiKey || !models) return {};
|
||||
|
||||
try {
|
||||
const chatModels: Record<string, ChatModel> = {};
|
||||
|
||||
openaiChatModels.forEach((model) => {
|
||||
models.forEach((model) => {
|
||||
chatModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new ChatOpenAI({
|
||||
@@ -66,13 +37,14 @@ export const loadOpenAIChatModels = async () => {
|
||||
|
||||
export const loadOpenAIEmbeddingModels = async () => {
|
||||
const openaiApiKey = getOpenaiApiKey();
|
||||
const models = loadModels('embedding');
|
||||
|
||||
if (!openaiApiKey) return {};
|
||||
if (!openaiApiKey || !models) return {};
|
||||
|
||||
try {
|
||||
const embeddingModels: Record<string, EmbeddingModel> = {};
|
||||
|
||||
openaiEmbeddingModels.forEach((model) => {
|
||||
models.forEach((model) => {
|
||||
embeddingModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new OpenAIEmbeddings({
|
||||
|
@@ -1,31 +1,30 @@
|
||||
import { HuggingFaceTransformersEmbeddings } from '../huggingfaceTransformer';
|
||||
import { EmbeddingModel, getModelsList, RawModel } from '.'
|
||||
import { HuggingFaceTransformersEmbeddings } from '../huggingfaceTransformer'
|
||||
|
||||
const loadModels = () => {
|
||||
return getModelsList()?.embeddingModels[
|
||||
'transformers'
|
||||
] as unknown as RawModel[]
|
||||
}
|
||||
|
||||
export const loadTransformersEmbeddingsModels = async () => {
|
||||
try {
|
||||
const embeddingModels = {
|
||||
'xenova-bge-small-en-v1.5': {
|
||||
displayName: 'BGE Small',
|
||||
model: new HuggingFaceTransformersEmbeddings({
|
||||
modelName: 'Xenova/bge-small-en-v1.5',
|
||||
}),
|
||||
},
|
||||
'xenova-gte-small': {
|
||||
displayName: 'GTE Small',
|
||||
model: new HuggingFaceTransformersEmbeddings({
|
||||
modelName: 'Xenova/gte-small',
|
||||
}),
|
||||
},
|
||||
'xenova-bert-base-multilingual-uncased': {
|
||||
displayName: 'Bert Multilingual',
|
||||
model: new HuggingFaceTransformersEmbeddings({
|
||||
modelName: 'Xenova/bert-base-multilingual-uncased',
|
||||
}),
|
||||
},
|
||||
};
|
||||
const models = loadModels()
|
||||
|
||||
return embeddingModels;
|
||||
} catch (err) {
|
||||
console.error(`Error loading Transformers embeddings model: ${err}`);
|
||||
return {};
|
||||
const embeddingModels: Record<string, EmbeddingModel> = {}
|
||||
|
||||
models.forEach(model => {
|
||||
embeddingModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new HuggingFaceTransformersEmbeddings({
|
||||
modelName: model.key,
|
||||
}),
|
||||
}
|
||||
})
|
||||
|
||||
return embeddingModels
|
||||
} catch (err) {
|
||||
console.error(`Error loading Transformers embeddings model: ${err}`)
|
||||
return {}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
@@ -6,20 +6,24 @@ import {
|
||||
MessagesPlaceholder,
|
||||
PromptTemplate,
|
||||
} from '@langchain/core/prompts';
|
||||
import {
|
||||
RunnableLambda,
|
||||
RunnableMap,
|
||||
RunnableSequence,
|
||||
} from '@langchain/core/runnables';
|
||||
import { BaseMessage } from '@langchain/core/messages';
|
||||
import { StringOutputParser } from '@langchain/core/output_parsers';
|
||||
import LineListOutputParser from '../outputParsers/listLineOutputParser';
|
||||
import LineOutputParser from '../outputParsers/lineOutputParser';
|
||||
import { getDocumentsFromLinks } from '../utils/documents';
|
||||
import { Document } from 'langchain/document';
|
||||
import { searchSearxng, SearxngSearchResult } from '../searxng';
|
||||
import { searchSearxng } from '../searxng';
|
||||
import path from 'node:path';
|
||||
import fs from 'node:fs';
|
||||
import computeSimilarity from '../utils/computeSimilarity';
|
||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||
import eventEmitter from 'events';
|
||||
import { StreamEvent } from '@langchain/core/tracers/log_stream';
|
||||
import { EventEmitter } from 'node:stream';
|
||||
|
||||
export interface MetaSearchAgentType {
|
||||
searchAndAnswer: (
|
||||
@@ -43,7 +47,7 @@ interface Config {
|
||||
activeEngines: string[];
|
||||
}
|
||||
|
||||
type SearchInput = {
|
||||
type BasicChainInput = {
|
||||
chat_history: BaseMessage[];
|
||||
query: string;
|
||||
};
|
||||
@@ -56,25 +60,14 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
this.config = config;
|
||||
}
|
||||
|
||||
private async searchSources(
|
||||
llm: BaseChatModel,
|
||||
input: SearchInput,
|
||||
emitter: EventEmitter,
|
||||
) {
|
||||
private async createSearchRetrieverChain(llm: BaseChatModel) {
|
||||
(llm as unknown as ChatOpenAI).temperature = 0;
|
||||
|
||||
const chatPrompt = PromptTemplate.fromTemplate(
|
||||
this.config.queryGeneratorPrompt,
|
||||
);
|
||||
|
||||
const processedChatPrompt = await chatPrompt.invoke({
|
||||
chat_history: formatChatHistoryAsString(input.chat_history),
|
||||
query: input.query,
|
||||
});
|
||||
|
||||
const llmRes = await llm.invoke(processedChatPrompt);
|
||||
const messageStr = await this.strParser.invoke(llmRes);
|
||||
|
||||
return RunnableSequence.from([
|
||||
PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt),
|
||||
llm,
|
||||
this.strParser,
|
||||
RunnableLambda.from(async (input: string) => {
|
||||
const linksOutputParser = new LineListOutputParser({
|
||||
key: 'links',
|
||||
});
|
||||
@@ -83,10 +76,10 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
key: 'question',
|
||||
});
|
||||
|
||||
const links = await linksOutputParser.parse(messageStr);
|
||||
const links = await linksOutputParser.parse(input);
|
||||
let question = this.config.summarizer
|
||||
? await questionOutputParser.parse(messageStr)
|
||||
: messageStr;
|
||||
? await questionOutputParser.parse(input)
|
||||
: input;
|
||||
|
||||
if (question === 'not_needed') {
|
||||
return { query: '', docs: [] };
|
||||
@@ -106,7 +99,8 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
linkDocs.map((doc) => {
|
||||
const URLDocExists = docGroups.find(
|
||||
(d) =>
|
||||
d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10,
|
||||
d.metadata.url === doc.metadata.url &&
|
||||
d.metadata.totalDocs < 10,
|
||||
);
|
||||
|
||||
if (!URLDocExists) {
|
||||
@@ -121,7 +115,8 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
|
||||
const docIndex = docGroups.findIndex(
|
||||
(d) =>
|
||||
d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10,
|
||||
d.metadata.url === doc.metadata.url &&
|
||||
d.metadata.totalDocs < 10,
|
||||
);
|
||||
|
||||
if (docIndex !== -1) {
|
||||
@@ -233,162 +228,42 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
|
||||
return { query: question, docs: documents };
|
||||
}
|
||||
}
|
||||
|
||||
private async performDeepResearch(
|
||||
llm: BaseChatModel,
|
||||
input: SearchInput,
|
||||
emitter: EventEmitter,
|
||||
) {
|
||||
(llm as unknown as ChatOpenAI).temperature = 0;
|
||||
|
||||
const queryGenPrompt = PromptTemplate.fromTemplate(
|
||||
this.config.queryGeneratorPrompt,
|
||||
);
|
||||
|
||||
const formattedChatPrompt = await queryGenPrompt.invoke({
|
||||
chat_history: formatChatHistoryAsString(input.chat_history),
|
||||
query: input.query,
|
||||
});
|
||||
|
||||
let i = 0;
|
||||
let currentQuery = await this.strParser.invoke(
|
||||
await llm.invoke(formattedChatPrompt),
|
||||
);
|
||||
const originalQuery = currentQuery;
|
||||
const pastQueries: string[] = [];
|
||||
const results: SearxngSearchResult[] = [];
|
||||
|
||||
while (i < 10) {
|
||||
const res = await searchSearxng(currentQuery, {
|
||||
language: 'en',
|
||||
engines: this.config.activeEngines,
|
||||
});
|
||||
|
||||
results.push(...res.results);
|
||||
|
||||
const reflectorPrompt = PromptTemplate.fromTemplate(`
|
||||
You are an LLM that is tasked with reflecting on the results of a search query.
|
||||
|
||||
## Goal
|
||||
You will be given question of the user, a list of search results collected from the web to answer that question along with past queries made to collect those results. You have to analyze the results based on user's question and do the following:
|
||||
|
||||
1. Identify unexplored areas or areas with less detailed information in the results and generate a new query that focuses on those areas. The new queries should be more specific and a similar query shall not exist in past queries which will be provided to you. Make sure to include keywords that you're looking for because the new query will be used to search the web for information on that topic. Make sure the query contains only 1 question and is not too long to ensure it is Search Engine friendly.
|
||||
2. You'll have to generate a description explaining what you are doing for example "I am looking for more information about X" or "Understanding how X works" etc. The description should be short and concise.
|
||||
|
||||
## Output format
|
||||
|
||||
You need to output in XML format and do not generate any other text. ake sure to not include any other text in the output or start a conversation in the output. The output should be in the following format:
|
||||
|
||||
<query>(query)</query>
|
||||
<description>(description)</description>
|
||||
|
||||
## Example
|
||||
Say the user asked "What is Llama 4 by Meta?" and let search results contain information about Llama 4 being an LLM and very little information about its features. You can output:
|
||||
|
||||
<query>Llama 4 features</query> // Generate queries that capture keywords for SEO and not making words like "How", "What", "Why" etc.
|
||||
<description>Looking for new features in Llama 4</description>
|
||||
|
||||
or something like
|
||||
|
||||
<query>How is Llama 4 better than its previous generation models</query>
|
||||
<description>Understanding the difference between Llama 4 and previous generation models.</description>
|
||||
|
||||
## BELOW IS THE ACTUAL DATA YOU WILL BE WORKING WITH. IT IS NOT A PART OF EXAMPLES. YOU'LL HAVE TO GENERATE YOUR ANSWER BASED ON THIS DATA.
|
||||
<user_question>\n{question}\n</user_question>
|
||||
<search_results>\n{search_results}\n</search_results>
|
||||
<past_queries>\n{past_queries}\n</past_queries>
|
||||
|
||||
Response:
|
||||
`);
|
||||
|
||||
const formattedReflectorPrompt = await reflectorPrompt.invoke({
|
||||
question: originalQuery,
|
||||
search_results: results
|
||||
.map(
|
||||
(result) => `<result>${result.title} - ${result.content}</result>`,
|
||||
)
|
||||
.join('\n'),
|
||||
past_queries: pastQueries.map((q) => `<query>${q}</query>`).join('\n'),
|
||||
});
|
||||
|
||||
const feedback = await this.strParser.invoke(
|
||||
await llm.invoke(formattedReflectorPrompt),
|
||||
);
|
||||
|
||||
console.log(`Feedback: ${feedback}`);
|
||||
|
||||
const queryOutputParser = new LineOutputParser({
|
||||
key: 'query',
|
||||
});
|
||||
|
||||
const descriptionOutputParser = new LineOutputParser({
|
||||
key: 'description',
|
||||
});
|
||||
|
||||
currentQuery = await queryOutputParser.parse(feedback);
|
||||
const description = await descriptionOutputParser.parse(feedback);
|
||||
console.log(`Query: ${currentQuery}`);
|
||||
console.log(`Description: ${description}`);
|
||||
|
||||
pastQueries.push(currentQuery);
|
||||
++i;
|
||||
}
|
||||
|
||||
const uniqueResults: SearxngSearchResult[] = [];
|
||||
|
||||
results.forEach((res) => {
|
||||
const exists = uniqueResults.find((r) => r.url === res.url);
|
||||
|
||||
if (!exists) {
|
||||
uniqueResults.push(res);
|
||||
} else {
|
||||
exists.content += `\n\n` + res.content;
|
||||
}
|
||||
});
|
||||
|
||||
const documents = uniqueResults /* .slice(0, 50) */
|
||||
.map(
|
||||
(r) =>
|
||||
new Document({
|
||||
pageContent: r.content || '',
|
||||
metadata: {
|
||||
title: r.title,
|
||||
url: r.url,
|
||||
...(r.img_src && { img_src: r.img_src }),
|
||||
},
|
||||
}),
|
||||
);
|
||||
|
||||
return documents;
|
||||
]);
|
||||
}
|
||||
|
||||
private async streamAnswer(
|
||||
private async createAnsweringChain(
|
||||
llm: BaseChatModel,
|
||||
fileIds: string[],
|
||||
embeddings: Embeddings,
|
||||
optimizationMode: 'speed' | 'balanced' | 'quality',
|
||||
systemInstructions: string,
|
||||
input: SearchInput,
|
||||
emitter: EventEmitter,
|
||||
) {
|
||||
const chatPrompt = ChatPromptTemplate.fromMessages([
|
||||
['system', this.config.responsePrompt],
|
||||
new MessagesPlaceholder('chat_history'),
|
||||
['user', '{query}'],
|
||||
]);
|
||||
return RunnableSequence.from([
|
||||
RunnableMap.from({
|
||||
systemInstructions: () => systemInstructions,
|
||||
query: (input: BasicChainInput) => input.query,
|
||||
chat_history: (input: BasicChainInput) => input.chat_history,
|
||||
date: () => new Date().toISOString(),
|
||||
context: RunnableLambda.from(async (input: BasicChainInput) => {
|
||||
const processedHistory = formatChatHistoryAsString(
|
||||
input.chat_history,
|
||||
);
|
||||
|
||||
let context = '';
|
||||
|
||||
if (optimizationMode === 'speed' || optimizationMode === 'balanced') {
|
||||
let docs: Document[] | null = null;
|
||||
let query = input.query;
|
||||
|
||||
if (this.config.searchWeb) {
|
||||
const searchResults = await this.searchSources(llm, input, emitter);
|
||||
const searchRetrieverChain =
|
||||
await this.createSearchRetrieverChain(llm);
|
||||
|
||||
query = searchResults.query;
|
||||
docs = searchResults.docs;
|
||||
const searchRetrieverResult = await searchRetrieverChain.invoke({
|
||||
chat_history: processedHistory,
|
||||
query,
|
||||
});
|
||||
|
||||
query = searchRetrieverResult.query;
|
||||
docs = searchRetrieverResult.docs;
|
||||
}
|
||||
|
||||
const sortedDocs = await this.rerankDocs(
|
||||
@@ -399,42 +274,23 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
optimizationMode,
|
||||
);
|
||||
|
||||
emitter.emit(
|
||||
'data',
|
||||
JSON.stringify({ type: 'sources', data: sortedDocs }),
|
||||
);
|
||||
|
||||
context = this.processDocs(sortedDocs);
|
||||
} else if (optimizationMode === 'quality') {
|
||||
let docs: Document[] = [];
|
||||
|
||||
docs = await this.performDeepResearch(llm, input, emitter);
|
||||
|
||||
emitter.emit('data', JSON.stringify({ type: 'sources', data: docs }));
|
||||
|
||||
context = this.processDocs(docs);
|
||||
}
|
||||
|
||||
const formattedChatPrompt = await chatPrompt.invoke({
|
||||
query: input.query,
|
||||
chat_history: input.chat_history,
|
||||
date: new Date().toISOString(),
|
||||
context: context,
|
||||
systemInstructions: systemInstructions,
|
||||
return sortedDocs;
|
||||
})
|
||||
.withConfig({
|
||||
runName: 'FinalSourceRetriever',
|
||||
})
|
||||
.pipe(this.processDocs),
|
||||
}),
|
||||
ChatPromptTemplate.fromMessages([
|
||||
['system', this.config.responsePrompt],
|
||||
new MessagesPlaceholder('chat_history'),
|
||||
['user', '{query}'],
|
||||
]),
|
||||
llm,
|
||||
this.strParser,
|
||||
]).withConfig({
|
||||
runName: 'FinalResponseGenerator',
|
||||
});
|
||||
|
||||
const llmRes = await llm.stream(formattedChatPrompt);
|
||||
|
||||
for await (const data of llmRes) {
|
||||
const messageStr = await this.strParser.invoke(data);
|
||||
|
||||
emitter.emit(
|
||||
'data',
|
||||
JSON.stringify({ type: 'response', data: messageStr }),
|
||||
);
|
||||
}
|
||||
|
||||
emitter.emit('end');
|
||||
}
|
||||
|
||||
private async rerankDocs(
|
||||
@@ -570,13 +426,44 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
return docs
|
||||
.map(
|
||||
(_, index) =>
|
||||
`${index + 1}. ${docs[index].metadata.title} ${
|
||||
docs[index].pageContent
|
||||
}`,
|
||||
`${index + 1}. ${docs[index].metadata.title} ${docs[index].pageContent}`,
|
||||
)
|
||||
.join('\n');
|
||||
}
|
||||
|
||||
private async handleStream(
|
||||
stream: AsyncGenerator<StreamEvent, any, any>,
|
||||
emitter: eventEmitter,
|
||||
) {
|
||||
for await (const event of stream) {
|
||||
if (
|
||||
event.event === 'on_chain_end' &&
|
||||
event.name === 'FinalSourceRetriever'
|
||||
) {
|
||||
``;
|
||||
emitter.emit(
|
||||
'data',
|
||||
JSON.stringify({ type: 'sources', data: event.data.output }),
|
||||
);
|
||||
}
|
||||
if (
|
||||
event.event === 'on_chain_stream' &&
|
||||
event.name === 'FinalResponseGenerator'
|
||||
) {
|
||||
emitter.emit(
|
||||
'data',
|
||||
JSON.stringify({ type: 'response', data: event.data.chunk }),
|
||||
);
|
||||
}
|
||||
if (
|
||||
event.event === 'on_chain_end' &&
|
||||
event.name === 'FinalResponseGenerator'
|
||||
) {
|
||||
emitter.emit('end');
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
async searchAndAnswer(
|
||||
message: string,
|
||||
history: BaseMessage[],
|
||||
@@ -588,19 +475,26 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
) {
|
||||
const emitter = new eventEmitter();
|
||||
|
||||
this.streamAnswer(
|
||||
const answeringChain = await this.createAnsweringChain(
|
||||
llm,
|
||||
fileIds,
|
||||
embeddings,
|
||||
optimizationMode,
|
||||
systemInstructions,
|
||||
);
|
||||
|
||||
const stream = answeringChain.streamEvents(
|
||||
{
|
||||
chat_history: history,
|
||||
query: message,
|
||||
},
|
||||
emitter,
|
||||
{
|
||||
version: 'v1',
|
||||
},
|
||||
);
|
||||
|
||||
this.handleStream(stream, emitter);
|
||||
|
||||
return emitter;
|
||||
}
|
||||
}
|
||||
|
@@ -8,7 +8,7 @@ interface SearxngSearchOptions {
|
||||
pageno?: number;
|
||||
}
|
||||
|
||||
export interface SearxngSearchResult {
|
||||
interface SearxngSearchResult {
|
||||
title: string;
|
||||
url: string;
|
||||
img_src?: string;
|
||||
|
Reference in New Issue
Block a user