mirror of
https://github.com/ItzCrazyKns/Perplexica.git
synced 2025-06-22 09:48:36 +00:00
Compare commits
52 Commits
941b72f307
...
v1.10.0
Author | SHA1 | Date | |
---|---|---|---|
74f7eaed6e | |||
dddd944a18 | |||
7eccd4d75b | |||
62e6c24840 | |||
04a0342b52 | |||
5c016127cb | |||
8b552010f9 | |||
97804e7b4d | |||
33b895b75e | |||
048de2cb74 | |||
274e6ca88c | |||
f628b6e416 | |||
cf7144db96 | |||
ffa793056d | |||
584d02b92a | |||
008c7cbec0 | |||
4d1ee79b8d | |||
ea638279e5 | |||
403d13eb50 | |||
217736d05a | |||
8a24572cd2 | |||
649c68f292 | |||
bab5dba6e1 | |||
c24edac16d | |||
3150c21f17 | |||
c46fd7a9c8 | |||
bab32e8d70 | |||
1130746f5d | |||
d1e9361665 | |||
3bf2337697 | |||
ee6e197ec0 | |||
32f26bb4e8 | |||
4cb20542a5 | |||
97f6196d9b | |||
6c227cab6f | |||
e9e34ddff9 | |||
e29a08dc46 | |||
5c313e9bed | |||
6b5bd9d79b | |||
64d2a467b0 | |||
9a2c4fe3b6 | |||
060c68a900 | |||
e6b87f89ec | |||
89b5229ce9 | |||
7756340dd9 | |||
bbd2e9c359 | |||
a32eb1dda3 | |||
aa834f7f04 | |||
064c0fbe42 | |||
bf4cf8eaeb | |||
a24992a3db | |||
d584067bb1 |
122
.github/workflows/docker-build.yaml
vendored
122
.github/workflows/docker-build.yaml
vendored
@ -8,18 +8,12 @@ on:
|
||||
types: [published]
|
||||
|
||||
jobs:
|
||||
build-and-push:
|
||||
build-amd64:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
service: [backend, app]
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
with:
|
||||
@ -36,38 +30,104 @@ jobs:
|
||||
id: version
|
||||
run: echo "RELEASE_VERSION=${GITHUB_REF#refs/tags/}" >> $GITHUB_ENV
|
||||
|
||||
- name: Build and push Docker image for ${{ matrix.service }}
|
||||
- name: Build and push AMD64 Docker image
|
||||
if: github.ref == 'refs/heads/master' && github.event_name == 'push'
|
||||
run: |
|
||||
docker buildx create --use
|
||||
if [[ "${{ matrix.service }}" == "backend" ]]; then \
|
||||
DOCKERFILE=backend.dockerfile; \
|
||||
IMAGE_NAME=perplexica-backend; \
|
||||
else \
|
||||
DOCKERFILE=app.dockerfile; \
|
||||
IMAGE_NAME=perplexica-frontend; \
|
||||
fi
|
||||
docker buildx build --platform linux/amd64,linux/arm64 \
|
||||
--cache-from=type=registry,ref=itzcrazykns1337/${IMAGE_NAME}:main \
|
||||
DOCKERFILE=app.dockerfile
|
||||
IMAGE_NAME=perplexica
|
||||
docker buildx build --platform linux/amd64 \
|
||||
--cache-from=type=registry,ref=itzcrazykns1337/${IMAGE_NAME}:amd64 \
|
||||
--cache-to=type=inline \
|
||||
--provenance false \
|
||||
-f $DOCKERFILE \
|
||||
-t itzcrazykns1337/${IMAGE_NAME}:main \
|
||||
-t itzcrazykns1337/${IMAGE_NAME}:amd64 \
|
||||
--push .
|
||||
|
||||
- name: Build and push release Docker image for ${{ matrix.service }}
|
||||
- name: Build and push AMD64 release Docker image
|
||||
if: github.event_name == 'release'
|
||||
run: |
|
||||
docker buildx create --use
|
||||
if [[ "${{ matrix.service }}" == "backend" ]]; then \
|
||||
DOCKERFILE=backend.dockerfile; \
|
||||
IMAGE_NAME=perplexica-backend; \
|
||||
else \
|
||||
DOCKERFILE=app.dockerfile; \
|
||||
IMAGE_NAME=perplexica-frontend; \
|
||||
fi
|
||||
docker buildx build --platform linux/amd64,linux/arm64 \
|
||||
--cache-from=type=registry,ref=itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }} \
|
||||
DOCKERFILE=app.dockerfile
|
||||
IMAGE_NAME=perplexica
|
||||
docker buildx build --platform linux/amd64 \
|
||||
--cache-from=type=registry,ref=itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }}-amd64 \
|
||||
--cache-to=type=inline \
|
||||
--provenance false \
|
||||
-f $DOCKERFILE \
|
||||
-t itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }} \
|
||||
-t itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }}-amd64 \
|
||||
--push .
|
||||
|
||||
build-arm64:
|
||||
runs-on: ubuntu-24.04-arm
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
with:
|
||||
install: true
|
||||
|
||||
- name: Log in to DockerHub
|
||||
uses: docker/login-action@v2
|
||||
with:
|
||||
username: ${{ secrets.DOCKER_USERNAME }}
|
||||
password: ${{ secrets.DOCKER_PASSWORD }}
|
||||
|
||||
- name: Extract version from release tag
|
||||
if: github.event_name == 'release'
|
||||
id: version
|
||||
run: echo "RELEASE_VERSION=${GITHUB_REF#refs/tags/}" >> $GITHUB_ENV
|
||||
|
||||
- name: Build and push ARM64 Docker image
|
||||
if: github.ref == 'refs/heads/master' && github.event_name == 'push'
|
||||
run: |
|
||||
DOCKERFILE=app.dockerfile
|
||||
IMAGE_NAME=perplexica
|
||||
docker buildx build --platform linux/arm64 \
|
||||
--cache-from=type=registry,ref=itzcrazykns1337/${IMAGE_NAME}:arm64 \
|
||||
--cache-to=type=inline \
|
||||
--provenance false \
|
||||
-f $DOCKERFILE \
|
||||
-t itzcrazykns1337/${IMAGE_NAME}:arm64 \
|
||||
--push .
|
||||
|
||||
- name: Build and push ARM64 release Docker image
|
||||
if: github.event_name == 'release'
|
||||
run: |
|
||||
DOCKERFILE=app.dockerfile
|
||||
IMAGE_NAME=perplexica
|
||||
docker buildx build --platform linux/arm64 \
|
||||
--cache-from=type=registry,ref=itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }}-arm64 \
|
||||
--cache-to=type=inline \
|
||||
--provenance false \
|
||||
-f $DOCKERFILE \
|
||||
-t itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }}-arm64 \
|
||||
--push .
|
||||
|
||||
manifest:
|
||||
needs: [build-amd64, build-arm64]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Log in to DockerHub
|
||||
uses: docker/login-action@v2
|
||||
with:
|
||||
username: ${{ secrets.DOCKER_USERNAME }}
|
||||
password: ${{ secrets.DOCKER_PASSWORD }}
|
||||
|
||||
- name: Create and push multi-arch manifest for main
|
||||
if: github.ref == 'refs/heads/master' && github.event_name == 'push'
|
||||
run: |
|
||||
IMAGE_NAME=perplexica
|
||||
docker manifest create itzcrazykns1337/${IMAGE_NAME}:main \
|
||||
--amend itzcrazykns1337/${IMAGE_NAME}:amd64 \
|
||||
--amend itzcrazykns1337/${IMAGE_NAME}:arm64
|
||||
docker manifest push itzcrazykns1337/${IMAGE_NAME}:main
|
||||
|
||||
- name: Create and push multi-arch manifest for releases
|
||||
if: github.event_name == 'release'
|
||||
run: |
|
||||
IMAGE_NAME=perplexica
|
||||
docker manifest create itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }} \
|
||||
--amend itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }}-amd64 \
|
||||
--amend itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }}-arm64
|
||||
docker manifest push itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }}
|
||||
|
6
.gitignore
vendored
6
.gitignore
vendored
@ -4,9 +4,9 @@ npm-debug.log
|
||||
yarn-error.log
|
||||
|
||||
# Build output
|
||||
/.next/
|
||||
/out/
|
||||
/dist/
|
||||
.next/
|
||||
out/
|
||||
dist/
|
||||
|
||||
# IDE/Editor specific
|
||||
.vscode/
|
||||
|
@ -6,7 +6,6 @@ const config = {
|
||||
endOfLine: 'auto',
|
||||
singleQuote: true,
|
||||
tabWidth: 2,
|
||||
semi: true,
|
||||
};
|
||||
|
||||
module.exports = config;
|
||||
|
@ -1,32 +1,43 @@
|
||||
# How to Contribute to Perplexica
|
||||
|
||||
Hey there, thanks for deciding to contribute to Perplexica. Anything you help with will support the development of Perplexica and will make it better. Let's walk you through the key aspects to ensure your contributions are effective and in harmony with the project's setup.
|
||||
Thanks for your interest in contributing to Perplexica! Your help makes this project better. This guide explains how to contribute effectively.
|
||||
|
||||
Perplexica is a modern AI chat application with advanced search capabilities.
|
||||
|
||||
## Project Structure
|
||||
|
||||
Perplexica's design consists of two main domains:
|
||||
Perplexica's codebase is organized as follows:
|
||||
|
||||
- **Frontend (`ui` directory)**: This is a Next.js application holding all user interface components. It's a self-contained environment that manages everything the user interacts with.
|
||||
- **Backend (root and `src` directory)**: The backend logic is situated in the `src` folder, but the root directory holds the main `package.json` for backend dependency management.
|
||||
- All of the focus modes are created using the Meta Search Agent class present in `src/search/metaSearchAgent.ts`. The main logic behind Perplexica lies there.
|
||||
- **UI Components and Pages**:
|
||||
- **Components (`src/components`)**: Reusable UI components.
|
||||
- **Pages and Routes (`src/app`)**: Next.js app directory structure with page components.
|
||||
- Main app routes include: home (`/`), chat (`/c`), discover (`/discover`), library (`/library`), and settings (`/settings`).
|
||||
- **API Routes (`src/app/api`)**: API endpoints implemented with Next.js API routes.
|
||||
- `/api/chat`: Handles chat interactions.
|
||||
- `/api/search`: Provides direct access to Perplexica's search capabilities.
|
||||
- Other endpoints for models, files, and suggestions.
|
||||
- **Backend Logic (`src/lib`)**: Contains all the backend functionality including search, database, and API logic.
|
||||
- The search functionality is present inside `src/lib/search` directory.
|
||||
- All of the focus modes are implemented using the Meta Search Agent class in `src/lib/search/metaSearchAgent.ts`.
|
||||
- Database functionality is in `src/lib/db`.
|
||||
- Chat model and embedding model providers are managed in `src/lib/providers`.
|
||||
- Prompt templates and LLM chain definitions are in `src/lib/prompts` and `src/lib/chains` respectively.
|
||||
|
||||
## API Documentation
|
||||
|
||||
Perplexica exposes several API endpoints for programmatic access, including:
|
||||
|
||||
- **Search API**: Access Perplexica's advanced search capabilities directly via the `/api/search` endpoint. For detailed documentation, see `docs/api/search.md`.
|
||||
|
||||
## Setting Up Your Environment
|
||||
|
||||
Before diving into coding, setting up your local environment is key. Here's what you need to do:
|
||||
|
||||
### Backend
|
||||
|
||||
1. In the root directory, locate the `sample.config.toml` file.
|
||||
2. Rename it to `config.toml` and fill in the necessary configuration fields specific to the backend.
|
||||
3. Run `npm install` to install dependencies.
|
||||
4. Run `npm run db:push` to set up the local sqlite.
|
||||
5. Use `npm run dev` to start the backend in development mode.
|
||||
|
||||
### Frontend
|
||||
|
||||
1. Navigate to the `ui` folder and repeat the process of renaming `.env.example` to `.env`, making sure to provide the frontend-specific variables.
|
||||
2. Execute `npm install` within the `ui` directory to get the frontend dependencies ready.
|
||||
3. Launch the frontend development server with `npm run dev`.
|
||||
2. Rename it to `config.toml` and fill in the necessary configuration fields.
|
||||
3. Run `npm install` to install all dependencies.
|
||||
4. Run `npm run db:push` to set up the local sqlite database.
|
||||
5. Use `npm run dev` to start the application in development mode.
|
||||
|
||||
**Please note**: Docker configurations are present for setting up production environments, whereas `npm run dev` is used for development purposes.
|
||||
|
||||
|
26
README.md
26
README.md
@ -1,5 +1,21 @@
|
||||
# 🚀 Perplexica - An AI-powered search engine 🔎 <!-- omit in toc -->
|
||||
|
||||
<div align="center" markdown="1">
|
||||
<sup>Special thanks to:</sup>
|
||||
<br>
|
||||
<br>
|
||||
<a href="https://www.warp.dev/perplexica">
|
||||
<img alt="Warp sponsorship" width="400" src="https://github.com/user-attachments/assets/775dd593-9b5f-40f1-bf48-479faff4c27b">
|
||||
</a>
|
||||
|
||||
### [Warp, the AI Devtool that lives in your terminal](https://www.warp.dev/perplexica)
|
||||
|
||||
[Available for MacOS, Linux, & Windows](https://www.warp.dev/perplexica)
|
||||
|
||||
</div>
|
||||
|
||||
<hr/>
|
||||
|
||||
[](https://discord.gg/26aArMy8tT)
|
||||
|
||||

|
||||
@ -93,14 +109,13 @@ There are mainly 2 ways of installing Perplexica - With Docker, Without Docker.
|
||||
|
||||
1. Install SearXNG and allow `JSON` format in the SearXNG settings.
|
||||
2. Clone the repository and rename the `sample.config.toml` file to `config.toml` in the root directory. Ensure you complete all required fields in this file.
|
||||
3. Rename the `.env.example` file to `.env` in the `ui` folder and fill in all necessary fields.
|
||||
4. After populating the configuration and environment files, run `npm i` in both the `ui` folder and the root directory.
|
||||
5. Install the dependencies and then execute `npm run build` in both the `ui` folder and the root directory.
|
||||
6. Finally, start both the frontend and the backend by running `npm run start` in both the `ui` folder and the root directory.
|
||||
3. After populating the configuration run `npm i`.
|
||||
4. Install the dependencies and then execute `npm run build`.
|
||||
5. Finally, start the app by running `npm rum start`
|
||||
|
||||
**Note**: Using Docker is recommended as it simplifies the setup process, especially for managing environment variables and dependencies.
|
||||
|
||||
See the [installation documentation](https://github.com/ItzCrazyKns/Perplexica/tree/master/docs/installation) for more information like exposing it your network, etc.
|
||||
See the [installation documentation](https://github.com/ItzCrazyKns/Perplexica/tree/master/docs/installation) for more information like updating, etc.
|
||||
|
||||
### Ollama Connection Errors
|
||||
|
||||
@ -142,6 +157,7 @@ You can access Perplexica over your home network by following our networking gui
|
||||
|
||||
## One-Click Deployment
|
||||
|
||||
[](https://usw.sealos.io/?openapp=system-template%3FtemplateName%3Dperplexica)
|
||||
[](https://repocloud.io/details/?app_id=267)
|
||||
|
||||
## Upcoming Features
|
||||
|
@ -1,15 +1,27 @@
|
||||
FROM node:20.18.0-alpine
|
||||
|
||||
ARG NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
|
||||
ARG NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
|
||||
ENV NEXT_PUBLIC_WS_URL=${NEXT_PUBLIC_WS_URL}
|
||||
ENV NEXT_PUBLIC_API_URL=${NEXT_PUBLIC_API_URL}
|
||||
FROM node:20.18.0-alpine AS builder
|
||||
|
||||
WORKDIR /home/perplexica
|
||||
|
||||
COPY ui /home/perplexica/
|
||||
COPY package.json yarn.lock ./
|
||||
RUN yarn install --frozen-lockfile --network-timeout 600000
|
||||
|
||||
RUN yarn install --frozen-lockfile
|
||||
COPY tsconfig.json next.config.mjs next-env.d.ts postcss.config.js drizzle.config.ts tailwind.config.ts ./
|
||||
COPY src ./src
|
||||
COPY public ./public
|
||||
|
||||
RUN mkdir -p /home/perplexica/data
|
||||
RUN yarn build
|
||||
|
||||
CMD ["yarn", "start"]
|
||||
FROM node:20.18.0-alpine
|
||||
|
||||
WORKDIR /home/perplexica
|
||||
|
||||
COPY --from=builder /home/perplexica/public ./public
|
||||
COPY --from=builder /home/perplexica/.next/static ./public/_next/static
|
||||
|
||||
COPY --from=builder /home/perplexica/.next/standalone ./
|
||||
COPY --from=builder /home/perplexica/data ./data
|
||||
|
||||
RUN mkdir /home/perplexica/uploads
|
||||
|
||||
CMD ["node", "server.js"]
|
@ -1,17 +0,0 @@
|
||||
FROM node:18-slim
|
||||
|
||||
WORKDIR /home/perplexica
|
||||
|
||||
COPY src /home/perplexica/src
|
||||
COPY tsconfig.json /home/perplexica/
|
||||
COPY drizzle.config.ts /home/perplexica/
|
||||
COPY package.json /home/perplexica/
|
||||
COPY yarn.lock /home/perplexica/
|
||||
|
||||
RUN mkdir /home/perplexica/data
|
||||
RUN mkdir /home/perplexica/uploads
|
||||
|
||||
RUN yarn install --frozen-lockfile --network-timeout 600000
|
||||
RUN yarn build
|
||||
|
||||
CMD ["yarn", "start"]
|
@ -9,41 +9,21 @@ services:
|
||||
- perplexica-network
|
||||
restart: unless-stopped
|
||||
|
||||
perplexica-backend:
|
||||
build:
|
||||
context: .
|
||||
dockerfile: backend.dockerfile
|
||||
image: itzcrazykns1337/perplexica-backend:main
|
||||
environment:
|
||||
- SEARXNG_API_URL=http://searxng:8080
|
||||
depends_on:
|
||||
- searxng
|
||||
ports:
|
||||
- 3001:3001
|
||||
volumes:
|
||||
- backend-dbstore:/home/perplexica/data
|
||||
- uploads:/home/perplexica/uploads
|
||||
- ./config.toml:/home/perplexica/config.toml
|
||||
extra_hosts:
|
||||
- 'host.docker.internal:host-gateway'
|
||||
networks:
|
||||
- perplexica-network
|
||||
restart: unless-stopped
|
||||
|
||||
perplexica-frontend:
|
||||
app:
|
||||
image: itzcrazykns1337/perplexica:main
|
||||
build:
|
||||
context: .
|
||||
dockerfile: app.dockerfile
|
||||
args:
|
||||
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
|
||||
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
|
||||
image: itzcrazykns1337/perplexica-frontend:main
|
||||
depends_on:
|
||||
- perplexica-backend
|
||||
environment:
|
||||
- SEARXNG_API_URL=http://searxng:8080
|
||||
ports:
|
||||
- 3000:3000
|
||||
networks:
|
||||
- perplexica-network
|
||||
volumes:
|
||||
- backend-dbstore:/home/perplexica/data
|
||||
- uploads:/home/perplexica/uploads
|
||||
- ./config.toml:/home/perplexica/config.toml
|
||||
restart: unless-stopped
|
||||
|
||||
networks:
|
||||
|
@ -6,9 +6,9 @@ Perplexica’s Search API makes it easy to use our AI-powered search engine. You
|
||||
|
||||
## Endpoint
|
||||
|
||||
### **POST** `http://localhost:3001/api/search`
|
||||
### **POST** `http://localhost:3000/api/search`
|
||||
|
||||
**Note**: Replace `3001` with any other port if you've changed the default PORT
|
||||
**Note**: Replace `3000` with any other port if you've changed the default PORT
|
||||
|
||||
### Request
|
||||
|
||||
@ -20,11 +20,11 @@ The API accepts a JSON object in the request body, where you define the focus mo
|
||||
{
|
||||
"chatModel": {
|
||||
"provider": "openai",
|
||||
"model": "gpt-4o-mini"
|
||||
"name": "gpt-4o-mini"
|
||||
},
|
||||
"embeddingModel": {
|
||||
"provider": "openai",
|
||||
"model": "text-embedding-3-large"
|
||||
"name": "text-embedding-3-large"
|
||||
},
|
||||
"optimizationMode": "speed",
|
||||
"focusMode": "webSearch",
|
||||
@ -38,18 +38,18 @@ The API accepts a JSON object in the request body, where you define the focus mo
|
||||
|
||||
### Request Parameters
|
||||
|
||||
- **`chatModel`** (object, optional): Defines the chat model to be used for the query. For model details you can send a GET request at `http://localhost:3001/api/models`. Make sure to use the key value (For example "gpt-4o-mini" instead of the display name "GPT 4 omni mini").
|
||||
- **`chatModel`** (object, optional): Defines the chat model to be used for the query. For model details you can send a GET request at `http://localhost:3000/api/models`. Make sure to use the key value (For example "gpt-4o-mini" instead of the display name "GPT 4 omni mini").
|
||||
|
||||
- `provider`: Specifies the provider for the chat model (e.g., `openai`, `ollama`).
|
||||
- `model`: The specific model from the chosen provider (e.g., `gpt-4o-mini`).
|
||||
- `name`: The specific model from the chosen provider (e.g., `gpt-4o-mini`).
|
||||
- Optional fields for custom OpenAI configuration:
|
||||
- `customOpenAIBaseURL`: If you’re using a custom OpenAI instance, provide the base URL.
|
||||
- `customOpenAIKey`: The API key for a custom OpenAI instance.
|
||||
|
||||
- **`embeddingModel`** (object, optional): Defines the embedding model for similarity-based searching. For model details you can send a GET request at `http://localhost:3001/api/models`. Make sure to use the key value (For example "text-embedding-3-large" instead of the display name "Text Embedding 3 Large").
|
||||
- **`embeddingModel`** (object, optional): Defines the embedding model for similarity-based searching. For model details you can send a GET request at `http://localhost:3000/api/models`. Make sure to use the key value (For example "text-embedding-3-large" instead of the display name "Text Embedding 3 Large").
|
||||
|
||||
- `provider`: The provider for the embedding model (e.g., `openai`).
|
||||
- `model`: The specific embedding model (e.g., `text-embedding-3-large`).
|
||||
- `name`: The specific embedding model (e.g., `text-embedding-3-large`).
|
||||
|
||||
- **`focusMode`** (string, required): Specifies which focus mode to use. Available modes:
|
||||
|
||||
|
@ -4,7 +4,7 @@ Curious about how Perplexica works? Don't worry, we'll cover it here. Before we
|
||||
|
||||
We'll understand how Perplexica works by taking an example of a scenario where a user asks: "How does an A.C. work?". We'll break down the process into steps to make it easier to understand. The steps are as follows:
|
||||
|
||||
1. The message is sent via WS to the backend server where it invokes the chain. The chain will depend on your focus mode. For this example, let's assume we use the "webSearch" focus mode.
|
||||
1. The message is sent to the `/api/chat` route where it invokes the chain. The chain will depend on your focus mode. For this example, let's assume we use the "webSearch" focus mode.
|
||||
2. The chain is now invoked; first, the message is passed to another chain where it first predicts (using the chat history and the question) whether there is a need for sources and searching the web. If there is, it will generate a query (in accordance with the chat history) for searching the web that we'll take up later. If not, the chain will end there, and then the answer generator chain, also known as the response generator, will be started.
|
||||
3. The query returned by the first chain is passed to SearXNG to search the web for information.
|
||||
4. After the information is retrieved, it is based on keyword-based search. We then convert the information into embeddings and the query as well, then we perform a similarity search to find the most relevant sources to answer the query.
|
||||
|
@ -1,109 +0,0 @@
|
||||
# Expose Perplexica to a network
|
||||
|
||||
This guide will show you how to make Perplexica available over a network. Follow these steps to allow computers on the same network to interact with Perplexica. Choose the instructions that match the operating system you are using.
|
||||
|
||||
## Windows
|
||||
|
||||
1. Open PowerShell as Administrator
|
||||
|
||||
2. Navigate to the directory containing the `docker-compose.yaml` file
|
||||
|
||||
3. Stop and remove the existing Perplexica containers and images:
|
||||
|
||||
```bash
|
||||
docker compose down --rmi all
|
||||
```
|
||||
|
||||
4. Open the `docker-compose.yaml` file in a text editor like Notepad++
|
||||
|
||||
5. Replace `127.0.0.1` with the IP address of the server Perplexica is running on in these two lines:
|
||||
|
||||
```bash
|
||||
args:
|
||||
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
|
||||
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
|
||||
```
|
||||
|
||||
6. Save and close the `docker-compose.yaml` file
|
||||
|
||||
7. Rebuild and restart the Perplexica container:
|
||||
|
||||
```bash
|
||||
docker compose up -d --build
|
||||
```
|
||||
|
||||
## macOS
|
||||
|
||||
1. Open the Terminal application
|
||||
|
||||
2. Navigate to the directory with the `docker-compose.yaml` file:
|
||||
|
||||
```bash
|
||||
cd /path/to/docker-compose.yaml
|
||||
```
|
||||
|
||||
3. Stop and remove existing containers and images:
|
||||
|
||||
```bash
|
||||
docker compose down --rmi all
|
||||
```
|
||||
|
||||
4. Open `docker-compose.yaml` in a text editor like Sublime Text:
|
||||
|
||||
```bash
|
||||
nano docker-compose.yaml
|
||||
```
|
||||
|
||||
5. Replace `127.0.0.1` with the server IP in these lines:
|
||||
|
||||
```bash
|
||||
args:
|
||||
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
|
||||
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
|
||||
```
|
||||
|
||||
6. Save and exit the editor
|
||||
|
||||
7. Rebuild and restart Perplexica:
|
||||
|
||||
```bash
|
||||
docker compose up -d --build
|
||||
```
|
||||
|
||||
## Linux
|
||||
|
||||
1. Open the terminal
|
||||
|
||||
2. Navigate to the `docker-compose.yaml` directory:
|
||||
|
||||
```bash
|
||||
cd /path/to/docker-compose.yaml
|
||||
```
|
||||
|
||||
3. Stop and remove containers and images:
|
||||
|
||||
```bash
|
||||
docker compose down --rmi all
|
||||
```
|
||||
|
||||
4. Edit `docker-compose.yaml`:
|
||||
|
||||
```bash
|
||||
nano docker-compose.yaml
|
||||
```
|
||||
|
||||
5. Replace `127.0.0.1` with the server IP:
|
||||
|
||||
```bash
|
||||
args:
|
||||
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
|
||||
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
|
||||
```
|
||||
|
||||
6. Save and exit the editor
|
||||
|
||||
7. Rebuild and restart Perplexica:
|
||||
|
||||
```bash
|
||||
docker compose up -d --build
|
||||
```
|
@ -39,11 +39,8 @@ To update Perplexica to the latest version, follow these steps:
|
||||
2. Navigate to the project directory.
|
||||
|
||||
3. Check for changes in the configuration files. If the `sample.config.toml` file contains new fields, delete your existing `config.toml` file, rename `sample.config.toml` to `config.toml`, and update the configuration accordingly.
|
||||
|
||||
4. Execute `npm i` in both the `ui` folder and the root directory.
|
||||
|
||||
5. Once the packages are updated, execute `npm run build` in both the `ui` folder and the root directory.
|
||||
|
||||
6. Finally, start both the frontend and the backend by running `npm run start` in both the `ui` folder and the root directory.
|
||||
4. After populating the configuration run `npm i`.
|
||||
5. Install the dependencies and then execute `npm run build`.
|
||||
6. Finally, start the app by running `npm rum start`
|
||||
|
||||
---
|
||||
|
@ -2,7 +2,7 @@ import { defineConfig } from 'drizzle-kit';
|
||||
|
||||
export default defineConfig({
|
||||
dialect: 'sqlite',
|
||||
schema: './src/db/schema.ts',
|
||||
schema: './src/lib/db/schema.ts',
|
||||
out: './drizzle',
|
||||
dbCredentials: {
|
||||
url: './data/db.sqlite',
|
||||
|
5
next-env.d.ts
vendored
Normal file
5
next-env.d.ts
vendored
Normal file
@ -0,0 +1,5 @@
|
||||
/// <reference types="next" />
|
||||
/// <reference types="next/image-types/global" />
|
||||
|
||||
// NOTE: This file should not be edited
|
||||
// see https://nextjs.org/docs/app/api-reference/config/typescript for more information.
|
@ -1,5 +1,6 @@
|
||||
/** @type {import('next').NextConfig} */
|
||||
const nextConfig = {
|
||||
output: 'standalone',
|
||||
images: {
|
||||
remotePatterns: [
|
||||
{
|
||||
@ -7,6 +8,7 @@ const nextConfig = {
|
||||
},
|
||||
],
|
||||
},
|
||||
serverExternalPackages: ['pdf-parse'],
|
||||
};
|
||||
|
||||
export default nextConfig;
|
84
package.json
84
package.json
@ -1,53 +1,63 @@
|
||||
{
|
||||
"name": "perplexica-backend",
|
||||
"version": "1.10.0-rc3",
|
||||
"name": "perplexica-frontend",
|
||||
"version": "1.10.0",
|
||||
"license": "MIT",
|
||||
"author": "ItzCrazyKns",
|
||||
"scripts": {
|
||||
"start": "npm run db:push && node dist/app.js",
|
||||
"build": "tsc",
|
||||
"dev": "nodemon --ignore uploads/ src/app.ts ",
|
||||
"db:push": "drizzle-kit push sqlite",
|
||||
"format": "prettier . --check",
|
||||
"format:write": "prettier . --write"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@types/better-sqlite3": "^7.6.10",
|
||||
"@types/cors": "^2.8.17",
|
||||
"@types/express": "^4.17.21",
|
||||
"@types/html-to-text": "^9.0.4",
|
||||
"@types/multer": "^1.4.12",
|
||||
"@types/pdf-parse": "^1.1.4",
|
||||
"@types/readable-stream": "^4.0.11",
|
||||
"@types/ws": "^8.5.12",
|
||||
"drizzle-kit": "^0.22.7",
|
||||
"nodemon": "^3.1.0",
|
||||
"prettier": "^3.2.5",
|
||||
"ts-node": "^10.9.2",
|
||||
"typescript": "^5.4.3"
|
||||
"dev": "next dev",
|
||||
"build": "npm run db:push && next build",
|
||||
"start": "next start",
|
||||
"lint": "next lint",
|
||||
"format:write": "prettier . --write",
|
||||
"db:push": "drizzle-kit push"
|
||||
},
|
||||
"dependencies": {
|
||||
"@headlessui/react": "^2.2.0",
|
||||
"@iarna/toml": "^2.2.5",
|
||||
"@langchain/anthropic": "^0.2.3",
|
||||
"@langchain/community": "^0.2.16",
|
||||
"@icons-pack/react-simple-icons": "^12.3.0",
|
||||
"@langchain/community": "^0.3.36",
|
||||
"@langchain/core": "^0.3.42",
|
||||
"@langchain/openai": "^0.0.25",
|
||||
"@langchain/google-genai": "^0.0.23",
|
||||
"@xenova/transformers": "^2.17.1",
|
||||
"axios": "^1.6.8",
|
||||
"better-sqlite3": "^11.0.0",
|
||||
"@langchain/textsplitters": "^0.1.0",
|
||||
"@tailwindcss/typography": "^0.5.12",
|
||||
"@xenova/transformers": "^2.17.2",
|
||||
"axios": "^1.8.3",
|
||||
"better-sqlite3": "^11.9.1",
|
||||
"clsx": "^2.1.0",
|
||||
"compute-cosine-similarity": "^1.1.0",
|
||||
"compute-dot": "^1.1.0",
|
||||
"cors": "^2.8.5",
|
||||
"dotenv": "^16.4.5",
|
||||
"drizzle-orm": "^0.31.2",
|
||||
"express": "^4.19.2",
|
||||
"drizzle-orm": "^0.40.1",
|
||||
"html-to-text": "^9.0.5",
|
||||
"langchain": "^0.1.30",
|
||||
"mammoth": "^1.8.0",
|
||||
"multer": "^1.4.5-lts.1",
|
||||
"lucide-react": "^0.363.0",
|
||||
"markdown-to-jsx": "^7.7.2",
|
||||
"next": "^15.2.2",
|
||||
"next-themes": "^0.3.0",
|
||||
"pdf-parse": "^1.1.1",
|
||||
"winston": "^3.13.0",
|
||||
"ws": "^8.17.1",
|
||||
"react": "^18",
|
||||
"react-dom": "^18",
|
||||
"react-text-to-speech": "^0.14.5",
|
||||
"react-textarea-autosize": "^8.5.3",
|
||||
"sonner": "^1.4.41",
|
||||
"tailwind-merge": "^2.2.2",
|
||||
"winston": "^3.17.0",
|
||||
"yet-another-react-lightbox": "^3.17.2",
|
||||
"zod": "^3.22.4"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@types/better-sqlite3": "^7.6.12",
|
||||
"@types/html-to-text": "^9.0.4",
|
||||
"@types/node": "^20",
|
||||
"@types/pdf-parse": "^1.1.4",
|
||||
"@types/react": "^18",
|
||||
"@types/react-dom": "^18",
|
||||
"autoprefixer": "^10.0.1",
|
||||
"drizzle-kit": "^0.30.5",
|
||||
"eslint": "^8",
|
||||
"eslint-config-next": "14.1.4",
|
||||
"postcss": "^8",
|
||||
"prettier": "^3.2.5",
|
||||
"tailwindcss": "^3.3.0",
|
||||
"typescript": "^5"
|
||||
}
|
||||
}
|
||||
|
Before Width: | Height: | Size: 1.3 KiB After Width: | Height: | Size: 1.3 KiB |
Before Width: | Height: | Size: 629 B After Width: | Height: | Size: 629 B |
@ -1,5 +1,4 @@
|
||||
[GENERAL]
|
||||
PORT = 3001 # Port to run the server on
|
||||
SIMILARITY_MEASURE = "cosine" # "cosine" or "dot"
|
||||
KEEP_ALIVE = "5m" # How long to keep Ollama models loaded into memory. (Instead of using -1 use "-1m")
|
||||
|
||||
@ -18,9 +17,10 @@ API_KEY = ""
|
||||
[MODELS.CUSTOM_OPENAI]
|
||||
API_KEY = ""
|
||||
API_URL = ""
|
||||
MODEL_NAME = ""
|
||||
|
||||
[MODELS.OLLAMA]
|
||||
API_URL = "" # Ollama API URL - http://host.docker.internal:11434
|
||||
|
||||
[API_ENDPOINTS]
|
||||
SEARXNG = "http://localhost:32768" # SearxNG API URL
|
||||
SEARXNG = "" # SearxNG API URL - http://localhost:32768
|
38
src/app.ts
38
src/app.ts
@ -1,38 +0,0 @@
|
||||
import { startWebSocketServer } from './websocket';
|
||||
import express from 'express';
|
||||
import cors from 'cors';
|
||||
import http from 'http';
|
||||
import routes from './routes';
|
||||
import { getPort } from './config';
|
||||
import logger from './utils/logger';
|
||||
|
||||
const port = getPort();
|
||||
|
||||
const app = express();
|
||||
const server = http.createServer(app);
|
||||
|
||||
const corsOptions = {
|
||||
origin: '*',
|
||||
};
|
||||
|
||||
app.use(cors(corsOptions));
|
||||
app.use(express.json());
|
||||
|
||||
app.use('/api', routes);
|
||||
app.get('/api', (_, res) => {
|
||||
res.status(200).json({ status: 'ok' });
|
||||
});
|
||||
|
||||
server.listen(port, () => {
|
||||
logger.info(`Server is running on port ${port}`);
|
||||
});
|
||||
|
||||
startWebSocketServer(server);
|
||||
|
||||
process.on('uncaughtException', (err, origin) => {
|
||||
logger.error(`Uncaught Exception at ${origin}: ${err}`);
|
||||
});
|
||||
|
||||
process.on('unhandledRejection', (reason, promise) => {
|
||||
logger.error(`Unhandled Rejection at: ${promise}, reason: ${reason}`);
|
||||
});
|
304
src/app/api/chat/route.ts
Normal file
304
src/app/api/chat/route.ts
Normal file
@ -0,0 +1,304 @@
|
||||
import prompts from '@/lib/prompts';
|
||||
import MetaSearchAgent from '@/lib/search/metaSearchAgent';
|
||||
import crypto from 'crypto';
|
||||
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
|
||||
import { EventEmitter } from 'stream';
|
||||
import {
|
||||
chatModelProviders,
|
||||
embeddingModelProviders,
|
||||
getAvailableChatModelProviders,
|
||||
getAvailableEmbeddingModelProviders,
|
||||
} from '@/lib/providers';
|
||||
import db from '@/lib/db';
|
||||
import { chats, messages as messagesSchema } from '@/lib/db/schema';
|
||||
import { and, eq, gt } from 'drizzle-orm';
|
||||
import { getFileDetails } from '@/lib/utils/files';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
import {
|
||||
getCustomOpenaiApiKey,
|
||||
getCustomOpenaiApiUrl,
|
||||
getCustomOpenaiModelName,
|
||||
} from '@/lib/config';
|
||||
import { searchHandlers } from '@/lib/search';
|
||||
|
||||
export const runtime = 'nodejs';
|
||||
export const dynamic = 'force-dynamic';
|
||||
|
||||
type Message = {
|
||||
messageId: string;
|
||||
chatId: string;
|
||||
content: string;
|
||||
};
|
||||
|
||||
type ChatModel = {
|
||||
provider: string;
|
||||
name: string;
|
||||
};
|
||||
|
||||
type EmbeddingModel = {
|
||||
provider: string;
|
||||
name: string;
|
||||
};
|
||||
|
||||
type Body = {
|
||||
message: Message;
|
||||
optimizationMode: 'speed' | 'balanced' | 'quality';
|
||||
focusMode: string;
|
||||
history: Array<[string, string]>;
|
||||
files: Array<string>;
|
||||
chatModel: ChatModel;
|
||||
embeddingModel: EmbeddingModel;
|
||||
};
|
||||
|
||||
const handleEmitterEvents = async (
|
||||
stream: EventEmitter,
|
||||
writer: WritableStreamDefaultWriter,
|
||||
encoder: TextEncoder,
|
||||
aiMessageId: string,
|
||||
chatId: string,
|
||||
) => {
|
||||
let recievedMessage = '';
|
||||
let sources: any[] = [];
|
||||
|
||||
stream.on('data', (data) => {
|
||||
const parsedData = JSON.parse(data);
|
||||
if (parsedData.type === 'response') {
|
||||
writer.write(
|
||||
encoder.encode(
|
||||
JSON.stringify({
|
||||
type: 'message',
|
||||
data: parsedData.data,
|
||||
messageId: aiMessageId,
|
||||
}) + '\n',
|
||||
),
|
||||
);
|
||||
|
||||
recievedMessage += parsedData.data;
|
||||
} else if (parsedData.type === 'sources') {
|
||||
writer.write(
|
||||
encoder.encode(
|
||||
JSON.stringify({
|
||||
type: 'sources',
|
||||
data: parsedData.data,
|
||||
messageId: aiMessageId,
|
||||
}) + '\n',
|
||||
),
|
||||
);
|
||||
|
||||
sources = parsedData.data;
|
||||
}
|
||||
});
|
||||
stream.on('end', () => {
|
||||
writer.write(
|
||||
encoder.encode(
|
||||
JSON.stringify({
|
||||
type: 'messageEnd',
|
||||
messageId: aiMessageId,
|
||||
}) + '\n',
|
||||
),
|
||||
);
|
||||
writer.close();
|
||||
|
||||
db.insert(messagesSchema)
|
||||
.values({
|
||||
content: recievedMessage,
|
||||
chatId: chatId,
|
||||
messageId: aiMessageId,
|
||||
role: 'assistant',
|
||||
metadata: JSON.stringify({
|
||||
createdAt: new Date(),
|
||||
...(sources && sources.length > 0 && { sources }),
|
||||
}),
|
||||
})
|
||||
.execute();
|
||||
});
|
||||
stream.on('error', (data) => {
|
||||
const parsedData = JSON.parse(data);
|
||||
writer.write(
|
||||
encoder.encode(
|
||||
JSON.stringify({
|
||||
type: 'error',
|
||||
data: parsedData.data,
|
||||
}),
|
||||
),
|
||||
);
|
||||
writer.close();
|
||||
});
|
||||
};
|
||||
|
||||
const handleHistorySave = async (
|
||||
message: Message,
|
||||
humanMessageId: string,
|
||||
focusMode: string,
|
||||
files: string[],
|
||||
) => {
|
||||
const chat = await db.query.chats.findFirst({
|
||||
where: eq(chats.id, message.chatId),
|
||||
});
|
||||
|
||||
if (!chat) {
|
||||
await db
|
||||
.insert(chats)
|
||||
.values({
|
||||
id: message.chatId,
|
||||
title: message.content,
|
||||
createdAt: new Date().toString(),
|
||||
focusMode: focusMode,
|
||||
files: files.map(getFileDetails),
|
||||
})
|
||||
.execute();
|
||||
}
|
||||
|
||||
const messageExists = await db.query.messages.findFirst({
|
||||
where: eq(messagesSchema.messageId, humanMessageId),
|
||||
});
|
||||
|
||||
if (!messageExists) {
|
||||
await db
|
||||
.insert(messagesSchema)
|
||||
.values({
|
||||
content: message.content,
|
||||
chatId: message.chatId,
|
||||
messageId: humanMessageId,
|
||||
role: 'user',
|
||||
metadata: JSON.stringify({
|
||||
createdAt: new Date(),
|
||||
}),
|
||||
})
|
||||
.execute();
|
||||
} else {
|
||||
await db
|
||||
.delete(messagesSchema)
|
||||
.where(
|
||||
and(
|
||||
gt(messagesSchema.id, messageExists.id),
|
||||
eq(messagesSchema.chatId, message.chatId),
|
||||
),
|
||||
)
|
||||
.execute();
|
||||
}
|
||||
};
|
||||
|
||||
export const POST = async (req: Request) => {
|
||||
try {
|
||||
const body = (await req.json()) as Body;
|
||||
const { message } = body;
|
||||
|
||||
if (message.content === '') {
|
||||
return Response.json(
|
||||
{
|
||||
message: 'Please provide a message to process',
|
||||
},
|
||||
{ status: 400 },
|
||||
);
|
||||
}
|
||||
|
||||
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
|
||||
getAvailableChatModelProviders(),
|
||||
getAvailableEmbeddingModelProviders(),
|
||||
]);
|
||||
|
||||
const chatModelProvider =
|
||||
chatModelProviders[
|
||||
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
|
||||
];
|
||||
const chatModel =
|
||||
chatModelProvider[
|
||||
body.chatModel?.name || Object.keys(chatModelProvider)[0]
|
||||
];
|
||||
|
||||
const embeddingProvider =
|
||||
embeddingModelProviders[
|
||||
body.embeddingModel?.provider || Object.keys(embeddingModelProviders)[0]
|
||||
];
|
||||
const embeddingModel =
|
||||
embeddingProvider[
|
||||
body.embeddingModel?.name || Object.keys(embeddingProvider)[0]
|
||||
];
|
||||
|
||||
let llm: BaseChatModel | undefined;
|
||||
let embedding = embeddingModel.model;
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
openAIApiKey: getCustomOpenaiApiKey(),
|
||||
modelName: getCustomOpenaiModelName(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
baseURL: getCustomOpenaiApiUrl(),
|
||||
},
|
||||
}) as unknown as BaseChatModel;
|
||||
} else if (chatModelProvider && chatModel) {
|
||||
llm = chatModel.model;
|
||||
}
|
||||
|
||||
if (!llm) {
|
||||
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
|
||||
}
|
||||
|
||||
if (!embedding) {
|
||||
return Response.json(
|
||||
{ error: 'Invalid embedding model' },
|
||||
{ status: 400 },
|
||||
);
|
||||
}
|
||||
|
||||
const humanMessageId =
|
||||
message.messageId ?? crypto.randomBytes(7).toString('hex');
|
||||
const aiMessageId = crypto.randomBytes(7).toString('hex');
|
||||
|
||||
const history: BaseMessage[] = body.history.map((msg) => {
|
||||
if (msg[0] === 'human') {
|
||||
return new HumanMessage({
|
||||
content: msg[1],
|
||||
});
|
||||
} else {
|
||||
return new AIMessage({
|
||||
content: msg[1],
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
const handler = searchHandlers[body.focusMode];
|
||||
|
||||
if (!handler) {
|
||||
return Response.json(
|
||||
{
|
||||
message: 'Invalid focus mode',
|
||||
},
|
||||
{ status: 400 },
|
||||
);
|
||||
}
|
||||
|
||||
const stream = await handler.searchAndAnswer(
|
||||
message.content,
|
||||
history,
|
||||
llm,
|
||||
embedding,
|
||||
body.optimizationMode,
|
||||
body.files,
|
||||
);
|
||||
|
||||
const responseStream = new TransformStream();
|
||||
const writer = responseStream.writable.getWriter();
|
||||
const encoder = new TextEncoder();
|
||||
|
||||
handleEmitterEvents(stream, writer, encoder, aiMessageId, message.chatId);
|
||||
handleHistorySave(message, humanMessageId, body.focusMode, body.files);
|
||||
|
||||
return new Response(responseStream.readable, {
|
||||
headers: {
|
||||
'Content-Type': 'text/event-stream',
|
||||
Connection: 'keep-alive',
|
||||
'Cache-Control': 'no-cache, no-transform',
|
||||
},
|
||||
});
|
||||
} catch (err) {
|
||||
console.error('An error ocurred while processing chat request:', err);
|
||||
return Response.json(
|
||||
{ message: 'An error ocurred while processing chat request' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
69
src/app/api/chats/[id]/route.ts
Normal file
69
src/app/api/chats/[id]/route.ts
Normal file
@ -0,0 +1,69 @@
|
||||
import db from '@/lib/db';
|
||||
import { chats, messages } from '@/lib/db/schema';
|
||||
import { eq } from 'drizzle-orm';
|
||||
|
||||
export const GET = async (
|
||||
req: Request,
|
||||
{ params }: { params: Promise<{ id: string }> },
|
||||
) => {
|
||||
try {
|
||||
const { id } = await params;
|
||||
|
||||
const chatExists = await db.query.chats.findFirst({
|
||||
where: eq(chats.id, id),
|
||||
});
|
||||
|
||||
if (!chatExists) {
|
||||
return Response.json({ message: 'Chat not found' }, { status: 404 });
|
||||
}
|
||||
|
||||
const chatMessages = await db.query.messages.findMany({
|
||||
where: eq(messages.chatId, id),
|
||||
});
|
||||
|
||||
return Response.json(
|
||||
{
|
||||
chat: chatExists,
|
||||
messages: chatMessages,
|
||||
},
|
||||
{ status: 200 },
|
||||
);
|
||||
} catch (err) {
|
||||
console.error('Error in getting chat by id: ', err);
|
||||
return Response.json(
|
||||
{ message: 'An error has occurred.' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
export const DELETE = async (
|
||||
req: Request,
|
||||
{ params }: { params: Promise<{ id: string }> },
|
||||
) => {
|
||||
try {
|
||||
const { id } = await params;
|
||||
|
||||
const chatExists = await db.query.chats.findFirst({
|
||||
where: eq(chats.id, id),
|
||||
});
|
||||
|
||||
if (!chatExists) {
|
||||
return Response.json({ message: 'Chat not found' }, { status: 404 });
|
||||
}
|
||||
|
||||
await db.delete(chats).where(eq(chats.id, id)).execute();
|
||||
await db.delete(messages).where(eq(messages.chatId, id)).execute();
|
||||
|
||||
return Response.json(
|
||||
{ message: 'Chat deleted successfully' },
|
||||
{ status: 200 },
|
||||
);
|
||||
} catch (err) {
|
||||
console.error('Error in deleting chat by id: ', err);
|
||||
return Response.json(
|
||||
{ message: 'An error has occurred.' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
15
src/app/api/chats/route.ts
Normal file
15
src/app/api/chats/route.ts
Normal file
@ -0,0 +1,15 @@
|
||||
import db from '@/lib/db';
|
||||
|
||||
export const GET = async (req: Request) => {
|
||||
try {
|
||||
let chats = await db.query.chats.findMany();
|
||||
chats = chats.reverse();
|
||||
return Response.json({ chats: chats }, { status: 200 });
|
||||
} catch (err) {
|
||||
console.error('Error in getting chats: ', err);
|
||||
return Response.json(
|
||||
{ message: 'An error has occurred.' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
@ -1,26 +1,22 @@
|
||||
import express from 'express';
|
||||
import {
|
||||
getAnthropicApiKey,
|
||||
getCustomOpenaiApiKey,
|
||||
getCustomOpenaiApiUrl,
|
||||
getCustomOpenaiModelName,
|
||||
getGeminiApiKey,
|
||||
getGroqApiKey,
|
||||
getOllamaApiEndpoint,
|
||||
getOpenaiApiKey,
|
||||
updateConfig,
|
||||
} from '@/lib/config';
|
||||
import {
|
||||
getAvailableChatModelProviders,
|
||||
getAvailableEmbeddingModelProviders,
|
||||
} from '../lib/providers';
|
||||
import {
|
||||
getGroqApiKey,
|
||||
getOllamaApiEndpoint,
|
||||
getAnthropicApiKey,
|
||||
getGeminiApiKey,
|
||||
getOpenaiApiKey,
|
||||
updateConfig,
|
||||
getCustomOpenaiApiUrl,
|
||||
getCustomOpenaiApiKey,
|
||||
getCustomOpenaiModelName,
|
||||
} from '../config';
|
||||
import logger from '../utils/logger';
|
||||
} from '@/lib/providers';
|
||||
|
||||
const router = express.Router();
|
||||
|
||||
router.get('/', async (_, res) => {
|
||||
export const GET = async (req: Request) => {
|
||||
try {
|
||||
const config = {};
|
||||
const config: Record<string, any> = {};
|
||||
|
||||
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
|
||||
getAvailableChatModelProviders(),
|
||||
@ -61,44 +57,53 @@ router.get('/', async (_, res) => {
|
||||
config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
|
||||
config['customOpenaiModelName'] = getCustomOpenaiModelName();
|
||||
|
||||
res.status(200).json(config);
|
||||
} catch (err: any) {
|
||||
res.status(500).json({ message: 'An error has occurred.' });
|
||||
logger.error(`Error getting config: ${err.message}`);
|
||||
return Response.json({ ...config }, { status: 200 });
|
||||
} catch (err) {
|
||||
console.error('An error ocurred while getting config:', err);
|
||||
return Response.json(
|
||||
{ message: 'An error ocurred while getting config' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
});
|
||||
};
|
||||
|
||||
router.post('/', async (req, res) => {
|
||||
const config = req.body;
|
||||
export const POST = async (req: Request) => {
|
||||
try {
|
||||
const config = await req.json();
|
||||
|
||||
const updatedConfig = {
|
||||
MODELS: {
|
||||
OPENAI: {
|
||||
API_KEY: config.openaiApiKey,
|
||||
const updatedConfig = {
|
||||
MODELS: {
|
||||
OPENAI: {
|
||||
API_KEY: config.openaiApiKey,
|
||||
},
|
||||
GROQ: {
|
||||
API_KEY: config.groqApiKey,
|
||||
},
|
||||
ANTHROPIC: {
|
||||
API_KEY: config.anthropicApiKey,
|
||||
},
|
||||
GEMINI: {
|
||||
API_KEY: config.geminiApiKey,
|
||||
},
|
||||
OLLAMA: {
|
||||
API_URL: config.ollamaApiUrl,
|
||||
},
|
||||
CUSTOM_OPENAI: {
|
||||
API_URL: config.customOpenaiApiUrl,
|
||||
API_KEY: config.customOpenaiApiKey,
|
||||
MODEL_NAME: config.customOpenaiModelName,
|
||||
},
|
||||
},
|
||||
GROQ: {
|
||||
API_KEY: config.groqApiKey,
|
||||
},
|
||||
ANTHROPIC: {
|
||||
API_KEY: config.anthropicApiKey,
|
||||
},
|
||||
GEMINI: {
|
||||
API_KEY: config.geminiApiKey,
|
||||
},
|
||||
OLLAMA: {
|
||||
API_URL: config.ollamaApiUrl,
|
||||
},
|
||||
CUSTOM_OPENAI: {
|
||||
API_URL: config.customOpenaiApiUrl,
|
||||
API_KEY: config.customOpenaiApiKey,
|
||||
MODEL_NAME: config.customOpenaiModelName,
|
||||
},
|
||||
},
|
||||
};
|
||||
};
|
||||
|
||||
updateConfig(updatedConfig);
|
||||
updateConfig(updatedConfig);
|
||||
|
||||
res.status(200).json({ message: 'Config updated' });
|
||||
});
|
||||
|
||||
export default router;
|
||||
return Response.json({ message: 'Config updated' }, { status: 200 });
|
||||
} catch (err) {
|
||||
console.error('An error ocurred while updating config:', err);
|
||||
return Response.json(
|
||||
{ message: 'An error ocurred while updating config' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
61
src/app/api/discover/route.ts
Normal file
61
src/app/api/discover/route.ts
Normal file
@ -0,0 +1,61 @@
|
||||
import { searchSearxng } from '@/lib/searxng';
|
||||
|
||||
const articleWebsites = [
|
||||
'yahoo.com',
|
||||
'www.exchangewire.com',
|
||||
'businessinsider.com',
|
||||
/* 'wired.com',
|
||||
'mashable.com',
|
||||
'theverge.com',
|
||||
'gizmodo.com',
|
||||
'cnet.com',
|
||||
'venturebeat.com', */
|
||||
];
|
||||
|
||||
const topics = ['AI', 'tech']; /* TODO: Add UI to customize this */
|
||||
|
||||
export const GET = async (req: Request) => {
|
||||
try {
|
||||
const data = (
|
||||
await Promise.all([
|
||||
...new Array(articleWebsites.length * topics.length)
|
||||
.fill(0)
|
||||
.map(async (_, i) => {
|
||||
return (
|
||||
await searchSearxng(
|
||||
`site:${articleWebsites[i % articleWebsites.length]} ${
|
||||
topics[i % topics.length]
|
||||
}`,
|
||||
{
|
||||
engines: ['bing news'],
|
||||
pageno: 1,
|
||||
},
|
||||
)
|
||||
).results;
|
||||
}),
|
||||
])
|
||||
)
|
||||
.map((result) => result)
|
||||
.flat()
|
||||
.sort(() => Math.random() - 0.5);
|
||||
|
||||
return Response.json(
|
||||
{
|
||||
blogs: data,
|
||||
},
|
||||
{
|
||||
status: 200,
|
||||
},
|
||||
);
|
||||
} catch (err) {
|
||||
console.error(`An error ocurred in discover route: ${err}`);
|
||||
return Response.json(
|
||||
{
|
||||
message: 'An error has occurred',
|
||||
},
|
||||
{
|
||||
status: 500,
|
||||
},
|
||||
);
|
||||
}
|
||||
};
|
83
src/app/api/images/route.ts
Normal file
83
src/app/api/images/route.ts
Normal file
@ -0,0 +1,83 @@
|
||||
import handleImageSearch from '@/lib/chains/imageSearchAgent';
|
||||
import {
|
||||
getCustomOpenaiApiKey,
|
||||
getCustomOpenaiApiUrl,
|
||||
getCustomOpenaiModelName,
|
||||
} from '@/lib/config';
|
||||
import { getAvailableChatModelProviders } from '@/lib/providers';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
|
||||
interface ChatModel {
|
||||
provider: string;
|
||||
model: string;
|
||||
}
|
||||
|
||||
interface ImageSearchBody {
|
||||
query: string;
|
||||
chatHistory: any[];
|
||||
chatModel?: ChatModel;
|
||||
}
|
||||
|
||||
export const POST = async (req: Request) => {
|
||||
try {
|
||||
const body: ImageSearchBody = await req.json();
|
||||
|
||||
const chatHistory = body.chatHistory
|
||||
.map((msg: any) => {
|
||||
if (msg.role === 'user') {
|
||||
return new HumanMessage(msg.content);
|
||||
} else if (msg.role === 'assistant') {
|
||||
return new AIMessage(msg.content);
|
||||
}
|
||||
})
|
||||
.filter((msg) => msg !== undefined) as BaseMessage[];
|
||||
|
||||
const chatModelProviders = await getAvailableChatModelProviders();
|
||||
|
||||
const chatModelProvider =
|
||||
chatModelProviders[
|
||||
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
|
||||
];
|
||||
const chatModel =
|
||||
chatModelProvider[
|
||||
body.chatModel?.model || Object.keys(chatModelProvider)[0]
|
||||
];
|
||||
|
||||
let llm: BaseChatModel | undefined;
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
openAIApiKey: getCustomOpenaiApiKey(),
|
||||
modelName: getCustomOpenaiModelName(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
baseURL: getCustomOpenaiApiUrl(),
|
||||
},
|
||||
}) as unknown as BaseChatModel;
|
||||
} else if (chatModelProvider && chatModel) {
|
||||
llm = chatModel.model;
|
||||
}
|
||||
|
||||
if (!llm) {
|
||||
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
|
||||
}
|
||||
|
||||
const images = await handleImageSearch(
|
||||
{
|
||||
chat_history: chatHistory,
|
||||
query: body.query,
|
||||
},
|
||||
llm,
|
||||
);
|
||||
|
||||
return Response.json({ images }, { status: 200 });
|
||||
} catch (err) {
|
||||
console.error(`An error ocurred while searching images: ${err}`);
|
||||
return Response.json(
|
||||
{ message: 'An error ocurred while searching images' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
47
src/app/api/models/route.ts
Normal file
47
src/app/api/models/route.ts
Normal file
@ -0,0 +1,47 @@
|
||||
import {
|
||||
getAvailableChatModelProviders,
|
||||
getAvailableEmbeddingModelProviders,
|
||||
} from '@/lib/providers';
|
||||
|
||||
export const GET = async (req: Request) => {
|
||||
try {
|
||||
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
|
||||
getAvailableChatModelProviders(),
|
||||
getAvailableEmbeddingModelProviders(),
|
||||
]);
|
||||
|
||||
Object.keys(chatModelProviders).forEach((provider) => {
|
||||
Object.keys(chatModelProviders[provider]).forEach((model) => {
|
||||
delete (chatModelProviders[provider][model] as { model?: unknown })
|
||||
.model;
|
||||
});
|
||||
});
|
||||
|
||||
Object.keys(embeddingModelProviders).forEach((provider) => {
|
||||
Object.keys(embeddingModelProviders[provider]).forEach((model) => {
|
||||
delete (embeddingModelProviders[provider][model] as { model?: unknown })
|
||||
.model;
|
||||
});
|
||||
});
|
||||
|
||||
return Response.json(
|
||||
{
|
||||
chatModelProviders,
|
||||
embeddingModelProviders,
|
||||
},
|
||||
{
|
||||
status: 200,
|
||||
},
|
||||
);
|
||||
} catch (err) {
|
||||
console.error('An error ocurred while fetching models', err);
|
||||
return Response.json(
|
||||
{
|
||||
message: 'An error has occurred.',
|
||||
},
|
||||
{
|
||||
status: 500,
|
||||
},
|
||||
);
|
||||
}
|
||||
};
|
@ -1,35 +1,29 @@
|
||||
import express from 'express';
|
||||
import logger from '../utils/logger';
|
||||
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import type { Embeddings } from '@langchain/core/embeddings';
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
import {
|
||||
getAvailableChatModelProviders,
|
||||
getAvailableEmbeddingModelProviders,
|
||||
} from '../lib/providers';
|
||||
import { searchHandlers } from '../websocket/messageHandler';
|
||||
} from '@/lib/providers';
|
||||
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
|
||||
import { MetaSearchAgentType } from '../search/metaSearchAgent';
|
||||
import { MetaSearchAgentType } from '@/lib/search/metaSearchAgent';
|
||||
import {
|
||||
getCustomOpenaiApiKey,
|
||||
getCustomOpenaiApiUrl,
|
||||
getCustomOpenaiModelName,
|
||||
} from '../config';
|
||||
import { ChatOllama } from '@langchain/community/chat_models/ollama';
|
||||
|
||||
const router = express.Router();
|
||||
} from '@/lib/config';
|
||||
import { searchHandlers } from '@/lib/search';
|
||||
|
||||
interface chatModel {
|
||||
provider: string;
|
||||
model: string;
|
||||
ollamaContextWindow?: number;
|
||||
name: string;
|
||||
customOpenAIKey?: string;
|
||||
customOpenAIBaseURL?: string;
|
||||
}
|
||||
|
||||
interface embeddingModel {
|
||||
provider: string;
|
||||
model: string;
|
||||
name: string;
|
||||
}
|
||||
|
||||
interface ChatRequestBody {
|
||||
@ -41,27 +35,24 @@ interface ChatRequestBody {
|
||||
history: Array<[string, string]>;
|
||||
}
|
||||
|
||||
router.post('/', async (req, res) => {
|
||||
export const POST = async (req: Request) => {
|
||||
try {
|
||||
const body: ChatRequestBody = req.body;
|
||||
const body: ChatRequestBody = await req.json();
|
||||
|
||||
if (!body.focusMode || !body.query) {
|
||||
return res.status(400).json({ message: 'Missing focus mode or query' });
|
||||
return Response.json(
|
||||
{ message: 'Missing focus mode or query' },
|
||||
{ status: 400 },
|
||||
);
|
||||
}
|
||||
|
||||
body.history = body.history || [];
|
||||
body.optimizationMode = body.optimizationMode || 'balanced';
|
||||
|
||||
const history: BaseMessage[] = body.history.map((msg) => {
|
||||
if (msg[0] === 'human') {
|
||||
return new HumanMessage({
|
||||
content: msg[1],
|
||||
});
|
||||
} else {
|
||||
return new AIMessage({
|
||||
content: msg[1],
|
||||
});
|
||||
}
|
||||
return msg[0] === 'human'
|
||||
? new HumanMessage({ content: msg[1] })
|
||||
: new AIMessage({ content: msg[1] });
|
||||
});
|
||||
|
||||
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
|
||||
@ -72,22 +63,21 @@ router.post('/', async (req, res) => {
|
||||
const chatModelProvider =
|
||||
body.chatModel?.provider || Object.keys(chatModelProviders)[0];
|
||||
const chatModel =
|
||||
body.chatModel?.model ||
|
||||
body.chatModel?.name ||
|
||||
Object.keys(chatModelProviders[chatModelProvider])[0];
|
||||
|
||||
const embeddingModelProvider =
|
||||
body.embeddingModel?.provider || Object.keys(embeddingModelProviders)[0];
|
||||
const embeddingModel =
|
||||
body.embeddingModel?.model ||
|
||||
body.embeddingModel?.name ||
|
||||
Object.keys(embeddingModelProviders[embeddingModelProvider])[0];
|
||||
const ollamaContextWindow = body.chatModel?.ollamaContextWindow || 2048;
|
||||
|
||||
let llm: BaseChatModel | undefined;
|
||||
let embeddings: Embeddings | undefined;
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
modelName: body.chatModel?.model || getCustomOpenaiModelName(),
|
||||
modelName: body.chatModel?.name || getCustomOpenaiModelName(),
|
||||
openAIApiKey:
|
||||
body.chatModel?.customOpenAIKey || getCustomOpenaiApiKey(),
|
||||
temperature: 0.7,
|
||||
@ -102,9 +92,6 @@ router.post('/', async (req, res) => {
|
||||
) {
|
||||
llm = chatModelProviders[chatModelProvider][chatModel]
|
||||
.model as unknown as BaseChatModel | undefined;
|
||||
if (llm instanceof ChatOllama) {
|
||||
llm.numCtx = ollamaContextWindow;
|
||||
}
|
||||
}
|
||||
|
||||
if (
|
||||
@ -117,13 +104,16 @@ router.post('/', async (req, res) => {
|
||||
}
|
||||
|
||||
if (!llm || !embeddings) {
|
||||
return res.status(400).json({ message: 'Invalid model selected' });
|
||||
return Response.json(
|
||||
{ message: 'Invalid model selected' },
|
||||
{ status: 400 },
|
||||
);
|
||||
}
|
||||
|
||||
const searchHandler: MetaSearchAgentType = searchHandlers[body.focusMode];
|
||||
|
||||
if (!searchHandler) {
|
||||
return res.status(400).json({ message: 'Invalid focus mode' });
|
||||
return Response.json({ message: 'Invalid focus mode' }, { status: 400 });
|
||||
}
|
||||
|
||||
const emitter = await searchHandler.searchAndAnswer(
|
||||
@ -135,30 +125,45 @@ router.post('/', async (req, res) => {
|
||||
[],
|
||||
);
|
||||
|
||||
let message = '';
|
||||
let sources = [];
|
||||
return new Promise(
|
||||
(
|
||||
resolve: (value: Response) => void,
|
||||
reject: (value: Response) => void,
|
||||
) => {
|
||||
let message = '';
|
||||
let sources: any[] = [];
|
||||
|
||||
emitter.on('data', (data) => {
|
||||
const parsedData = JSON.parse(data);
|
||||
if (parsedData.type === 'response') {
|
||||
message += parsedData.data;
|
||||
} else if (parsedData.type === 'sources') {
|
||||
sources = parsedData.data;
|
||||
}
|
||||
});
|
||||
emitter.on('data', (data) => {
|
||||
try {
|
||||
const parsedData = JSON.parse(data);
|
||||
if (parsedData.type === 'response') {
|
||||
message += parsedData.data;
|
||||
} else if (parsedData.type === 'sources') {
|
||||
sources = parsedData.data;
|
||||
}
|
||||
} catch (error) {
|
||||
reject(
|
||||
Response.json({ message: 'Error parsing data' }, { status: 500 }),
|
||||
);
|
||||
}
|
||||
});
|
||||
|
||||
emitter.on('end', () => {
|
||||
res.status(200).json({ message, sources });
|
||||
});
|
||||
emitter.on('end', () => {
|
||||
resolve(Response.json({ message, sources }, { status: 200 }));
|
||||
});
|
||||
|
||||
emitter.on('error', (data) => {
|
||||
const parsedData = JSON.parse(data);
|
||||
res.status(500).json({ message: parsedData.data });
|
||||
});
|
||||
emitter.on('error', (error) => {
|
||||
reject(
|
||||
Response.json({ message: 'Search error', error }, { status: 500 }),
|
||||
);
|
||||
});
|
||||
},
|
||||
);
|
||||
} catch (err: any) {
|
||||
logger.error(`Error in getting search results: ${err.message}`);
|
||||
res.status(500).json({ message: 'An error has occurred.' });
|
||||
console.error(`Error in getting search results: ${err.message}`);
|
||||
return Response.json(
|
||||
{ message: 'An error has occurred.' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
});
|
||||
|
||||
export default router;
|
||||
};
|
81
src/app/api/suggestions/route.ts
Normal file
81
src/app/api/suggestions/route.ts
Normal file
@ -0,0 +1,81 @@
|
||||
import generateSuggestions from '@/lib/chains/suggestionGeneratorAgent';
|
||||
import {
|
||||
getCustomOpenaiApiKey,
|
||||
getCustomOpenaiApiUrl,
|
||||
getCustomOpenaiModelName,
|
||||
} from '@/lib/config';
|
||||
import { getAvailableChatModelProviders } from '@/lib/providers';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
|
||||
interface ChatModel {
|
||||
provider: string;
|
||||
model: string;
|
||||
}
|
||||
|
||||
interface SuggestionsGenerationBody {
|
||||
chatHistory: any[];
|
||||
chatModel?: ChatModel;
|
||||
}
|
||||
|
||||
export const POST = async (req: Request) => {
|
||||
try {
|
||||
const body: SuggestionsGenerationBody = await req.json();
|
||||
|
||||
const chatHistory = body.chatHistory
|
||||
.map((msg: any) => {
|
||||
if (msg.role === 'user') {
|
||||
return new HumanMessage(msg.content);
|
||||
} else if (msg.role === 'assistant') {
|
||||
return new AIMessage(msg.content);
|
||||
}
|
||||
})
|
||||
.filter((msg) => msg !== undefined) as BaseMessage[];
|
||||
|
||||
const chatModelProviders = await getAvailableChatModelProviders();
|
||||
|
||||
const chatModelProvider =
|
||||
chatModelProviders[
|
||||
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
|
||||
];
|
||||
const chatModel =
|
||||
chatModelProvider[
|
||||
body.chatModel?.model || Object.keys(chatModelProvider)[0]
|
||||
];
|
||||
|
||||
let llm: BaseChatModel | undefined;
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
openAIApiKey: getCustomOpenaiApiKey(),
|
||||
modelName: getCustomOpenaiModelName(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
baseURL: getCustomOpenaiApiUrl(),
|
||||
},
|
||||
}) as unknown as BaseChatModel;
|
||||
} else if (chatModelProvider && chatModel) {
|
||||
llm = chatModel.model;
|
||||
}
|
||||
|
||||
if (!llm) {
|
||||
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
|
||||
}
|
||||
|
||||
const suggestions = await generateSuggestions(
|
||||
{
|
||||
chat_history: chatHistory,
|
||||
},
|
||||
llm,
|
||||
);
|
||||
|
||||
return Response.json({ suggestions }, { status: 200 });
|
||||
} catch (err) {
|
||||
console.error(`An error ocurred while generating suggestions: ${err}`);
|
||||
return Response.json(
|
||||
{ message: 'An error ocurred while generating suggestions' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
134
src/app/api/uploads/route.ts
Normal file
134
src/app/api/uploads/route.ts
Normal file
@ -0,0 +1,134 @@
|
||||
import { NextResponse } from 'next/server';
|
||||
import fs from 'fs';
|
||||
import path from 'path';
|
||||
import crypto from 'crypto';
|
||||
import { getAvailableEmbeddingModelProviders } from '@/lib/providers';
|
||||
import { PDFLoader } from '@langchain/community/document_loaders/fs/pdf';
|
||||
import { DocxLoader } from '@langchain/community/document_loaders/fs/docx';
|
||||
import { RecursiveCharacterTextSplitter } from '@langchain/textsplitters';
|
||||
import { Document } from 'langchain/document';
|
||||
|
||||
interface FileRes {
|
||||
fileName: string;
|
||||
fileExtension: string;
|
||||
fileId: string;
|
||||
}
|
||||
|
||||
const uploadDir = path.join(process.cwd(), 'uploads');
|
||||
|
||||
if (!fs.existsSync(uploadDir)) {
|
||||
fs.mkdirSync(uploadDir, { recursive: true });
|
||||
}
|
||||
|
||||
const splitter = new RecursiveCharacterTextSplitter({
|
||||
chunkSize: 500,
|
||||
chunkOverlap: 100,
|
||||
});
|
||||
|
||||
export async function POST(req: Request) {
|
||||
try {
|
||||
const formData = await req.formData();
|
||||
|
||||
const files = formData.getAll('files') as File[];
|
||||
const embedding_model = formData.get('embedding_model');
|
||||
const embedding_model_provider = formData.get('embedding_model_provider');
|
||||
|
||||
if (!embedding_model || !embedding_model_provider) {
|
||||
return NextResponse.json(
|
||||
{ message: 'Missing embedding model or provider' },
|
||||
{ status: 400 },
|
||||
);
|
||||
}
|
||||
|
||||
const embeddingModels = await getAvailableEmbeddingModelProviders();
|
||||
const provider =
|
||||
embedding_model_provider ?? Object.keys(embeddingModels)[0];
|
||||
const embeddingModel =
|
||||
embedding_model ?? Object.keys(embeddingModels[provider as string])[0];
|
||||
|
||||
let embeddingsModel =
|
||||
embeddingModels[provider as string]?.[embeddingModel as string]?.model;
|
||||
if (!embeddingsModel) {
|
||||
return NextResponse.json(
|
||||
{ message: 'Invalid embedding model selected' },
|
||||
{ status: 400 },
|
||||
);
|
||||
}
|
||||
|
||||
const processedFiles: FileRes[] = [];
|
||||
|
||||
await Promise.all(
|
||||
files.map(async (file: any) => {
|
||||
const fileExtension = file.name.split('.').pop();
|
||||
if (!['pdf', 'docx', 'txt'].includes(fileExtension!)) {
|
||||
return NextResponse.json(
|
||||
{ message: 'File type not supported' },
|
||||
{ status: 400 },
|
||||
);
|
||||
}
|
||||
|
||||
const uniqueFileName = `${crypto.randomBytes(16).toString('hex')}.${fileExtension}`;
|
||||
const filePath = path.join(uploadDir, uniqueFileName);
|
||||
|
||||
const buffer = Buffer.from(await file.arrayBuffer());
|
||||
fs.writeFileSync(filePath, new Uint8Array(buffer));
|
||||
|
||||
let docs: any[] = [];
|
||||
if (fileExtension === 'pdf') {
|
||||
const loader = new PDFLoader(filePath);
|
||||
docs = await loader.load();
|
||||
} else if (fileExtension === 'docx') {
|
||||
const loader = new DocxLoader(filePath);
|
||||
docs = await loader.load();
|
||||
} else if (fileExtension === 'txt') {
|
||||
const text = fs.readFileSync(filePath, 'utf-8');
|
||||
docs = [
|
||||
new Document({ pageContent: text, metadata: { title: file.name } }),
|
||||
];
|
||||
}
|
||||
|
||||
const splitted = await splitter.splitDocuments(docs);
|
||||
|
||||
const extractedDataPath = filePath.replace(/\.\w+$/, '-extracted.json');
|
||||
fs.writeFileSync(
|
||||
extractedDataPath,
|
||||
JSON.stringify({
|
||||
title: file.name,
|
||||
contents: splitted.map((doc) => doc.pageContent),
|
||||
}),
|
||||
);
|
||||
|
||||
const embeddings = await embeddingsModel.embedDocuments(
|
||||
splitted.map((doc) => doc.pageContent),
|
||||
);
|
||||
const embeddingsDataPath = filePath.replace(
|
||||
/\.\w+$/,
|
||||
'-embeddings.json',
|
||||
);
|
||||
fs.writeFileSync(
|
||||
embeddingsDataPath,
|
||||
JSON.stringify({
|
||||
title: file.name,
|
||||
embeddings,
|
||||
}),
|
||||
);
|
||||
|
||||
processedFiles.push({
|
||||
fileName: file.name,
|
||||
fileExtension: fileExtension,
|
||||
fileId: uniqueFileName.replace(/\.\w+$/, ''),
|
||||
});
|
||||
}),
|
||||
);
|
||||
|
||||
return NextResponse.json({
|
||||
files: processedFiles,
|
||||
});
|
||||
} catch (error) {
|
||||
console.error('Error uploading file:', error);
|
||||
return NextResponse.json(
|
||||
{ message: 'An error has occurred.' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
}
|
83
src/app/api/videos/route.ts
Normal file
83
src/app/api/videos/route.ts
Normal file
@ -0,0 +1,83 @@
|
||||
import handleVideoSearch from '@/lib/chains/videoSearchAgent';
|
||||
import {
|
||||
getCustomOpenaiApiKey,
|
||||
getCustomOpenaiApiUrl,
|
||||
getCustomOpenaiModelName,
|
||||
} from '@/lib/config';
|
||||
import { getAvailableChatModelProviders } from '@/lib/providers';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
|
||||
interface ChatModel {
|
||||
provider: string;
|
||||
model: string;
|
||||
}
|
||||
|
||||
interface VideoSearchBody {
|
||||
query: string;
|
||||
chatHistory: any[];
|
||||
chatModel?: ChatModel;
|
||||
}
|
||||
|
||||
export const POST = async (req: Request) => {
|
||||
try {
|
||||
const body: VideoSearchBody = await req.json();
|
||||
|
||||
const chatHistory = body.chatHistory
|
||||
.map((msg: any) => {
|
||||
if (msg.role === 'user') {
|
||||
return new HumanMessage(msg.content);
|
||||
} else if (msg.role === 'assistant') {
|
||||
return new AIMessage(msg.content);
|
||||
}
|
||||
})
|
||||
.filter((msg) => msg !== undefined) as BaseMessage[];
|
||||
|
||||
const chatModelProviders = await getAvailableChatModelProviders();
|
||||
|
||||
const chatModelProvider =
|
||||
chatModelProviders[
|
||||
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
|
||||
];
|
||||
const chatModel =
|
||||
chatModelProvider[
|
||||
body.chatModel?.model || Object.keys(chatModelProvider)[0]
|
||||
];
|
||||
|
||||
let llm: BaseChatModel | undefined;
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
openAIApiKey: getCustomOpenaiApiKey(),
|
||||
modelName: getCustomOpenaiModelName(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
baseURL: getCustomOpenaiApiUrl(),
|
||||
},
|
||||
}) as unknown as BaseChatModel;
|
||||
} else if (chatModelProvider && chatModel) {
|
||||
llm = chatModel.model;
|
||||
}
|
||||
|
||||
if (!llm) {
|
||||
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
|
||||
}
|
||||
|
||||
const videos = await handleVideoSearch(
|
||||
{
|
||||
chat_history: chatHistory,
|
||||
query: body.query,
|
||||
},
|
||||
llm,
|
||||
);
|
||||
|
||||
return Response.json({ videos }, { status: 200 });
|
||||
} catch (err) {
|
||||
console.error(`An error ocurred while searching videos: ${err}`);
|
||||
return Response.json(
|
||||
{ message: 'An error ocurred while searching videos' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
9
src/app/c/[chatId]/page.tsx
Normal file
9
src/app/c/[chatId]/page.tsx
Normal file
@ -0,0 +1,9 @@
|
||||
import ChatWindow from '@/components/ChatWindow';
|
||||
import React from 'react';
|
||||
|
||||
const Page = ({ params }: { params: Promise<{ chatId: string }> }) => {
|
||||
const { chatId } = React.use(params);
|
||||
return <ChatWindow id={chatId} />;
|
||||
};
|
||||
|
||||
export default Page;
|
@ -19,7 +19,7 @@ const Page = () => {
|
||||
useEffect(() => {
|
||||
const fetchData = async () => {
|
||||
try {
|
||||
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/discover`, {
|
||||
const res = await fetch(`/api/discover`, {
|
||||
method: 'GET',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
Before Width: | Height: | Size: 25 KiB After Width: | Height: | Size: 25 KiB |
@ -21,7 +21,7 @@ const Page = () => {
|
||||
const fetchChats = async () => {
|
||||
setLoading(true);
|
||||
|
||||
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/chats`, {
|
||||
const res = await fetch(`/api/chats`, {
|
||||
method: 'GET',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
@ -23,7 +23,6 @@ interface SettingsType {
|
||||
customOpenaiApiKey: string;
|
||||
customOpenaiApiUrl: string;
|
||||
customOpenaiModelName: string;
|
||||
ollamaContextWindow: number;
|
||||
}
|
||||
|
||||
interface InputProps extends React.InputHTMLAttributes<HTMLInputElement> {
|
||||
@ -113,23 +112,17 @@ const Page = () => {
|
||||
const [automaticImageSearch, setAutomaticImageSearch] = useState(false);
|
||||
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
|
||||
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
|
||||
const [contextWindowSize, setContextWindowSize] = useState(2048);
|
||||
const [isCustomContextWindow, setIsCustomContextWindow] = useState(false);
|
||||
const predefinedContextSizes = [
|
||||
1024, 2048, 3072, 4096, 8192, 16384, 32768, 65536, 131072,
|
||||
];
|
||||
|
||||
useEffect(() => {
|
||||
const fetchConfig = async () => {
|
||||
setIsLoading(true);
|
||||
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/config`, {
|
||||
const res = await fetch(`/api/config`, {
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
});
|
||||
|
||||
const data = (await res.json()) as SettingsType;
|
||||
|
||||
setConfig(data);
|
||||
|
||||
const chatModelProvidersKeys = Object.keys(data.chatModelProviders || {});
|
||||
@ -178,13 +171,6 @@ const Page = () => {
|
||||
setAutomaticVideoSearch(
|
||||
localStorage.getItem('autoVideoSearch') === 'true',
|
||||
);
|
||||
const storedContextWindow = parseInt(
|
||||
localStorage.getItem('ollamaContextWindow') ?? '2048',
|
||||
);
|
||||
setContextWindowSize(storedContextWindow);
|
||||
setIsCustomContextWindow(
|
||||
!predefinedContextSizes.includes(storedContextWindow),
|
||||
);
|
||||
|
||||
setIsLoading(false);
|
||||
};
|
||||
@ -201,16 +187,13 @@ const Page = () => {
|
||||
[key]: value,
|
||||
} as SettingsType;
|
||||
|
||||
const response = await fetch(
|
||||
`${process.env.NEXT_PUBLIC_API_URL}/config`,
|
||||
{
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
body: JSON.stringify(updatedConfig),
|
||||
const response = await fetch(`/api/config`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
);
|
||||
body: JSON.stringify(updatedConfig),
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
throw new Error('Failed to update config');
|
||||
@ -222,7 +205,7 @@ const Page = () => {
|
||||
key.toLowerCase().includes('api') ||
|
||||
key.toLowerCase().includes('url')
|
||||
) {
|
||||
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/config`, {
|
||||
const res = await fetch(`/api/config`, {
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
@ -345,8 +328,6 @@ const Page = () => {
|
||||
localStorage.setItem('embeddingModelProvider', value);
|
||||
} else if (key === 'embeddingModel') {
|
||||
localStorage.setItem('embeddingModel', value);
|
||||
} else if (key === 'ollamaContextWindow') {
|
||||
localStorage.setItem('ollamaContextWindow', value.toString());
|
||||
}
|
||||
} catch (err) {
|
||||
console.error('Failed to save:', err);
|
||||
@ -564,78 +545,6 @@ const Page = () => {
|
||||
];
|
||||
})()}
|
||||
/>
|
||||
{selectedChatModelProvider === 'ollama' && (
|
||||
<div className="flex flex-col space-y-1">
|
||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||
Chat Context Window Size
|
||||
</p>
|
||||
<Select
|
||||
value={
|
||||
isCustomContextWindow
|
||||
? 'custom'
|
||||
: contextWindowSize.toString()
|
||||
}
|
||||
onChange={(e) => {
|
||||
const value = e.target.value;
|
||||
if (value === 'custom') {
|
||||
setIsCustomContextWindow(true);
|
||||
} else {
|
||||
setIsCustomContextWindow(false);
|
||||
const numValue = parseInt(value);
|
||||
setContextWindowSize(numValue);
|
||||
setConfig((prev) => ({
|
||||
...prev!,
|
||||
ollamaContextWindow: numValue,
|
||||
}));
|
||||
saveConfig('ollamaContextWindow', numValue);
|
||||
}
|
||||
}}
|
||||
options={[
|
||||
...predefinedContextSizes.map((size) => ({
|
||||
value: size.toString(),
|
||||
label: `${size.toLocaleString()} tokens`,
|
||||
})),
|
||||
{ value: 'custom', label: 'Custom...' },
|
||||
]}
|
||||
/>
|
||||
{isCustomContextWindow && (
|
||||
<div className="mt-2">
|
||||
<Input
|
||||
type="number"
|
||||
min={512}
|
||||
value={contextWindowSize}
|
||||
placeholder="Custom context window size (minimum 512)"
|
||||
isSaving={savingStates['ollamaContextWindow']}
|
||||
onChange={(e) => {
|
||||
// Allow any value to be typed
|
||||
const value =
|
||||
parseInt(e.target.value) ||
|
||||
contextWindowSize;
|
||||
setContextWindowSize(value);
|
||||
}}
|
||||
onSave={(value) => {
|
||||
// Validate only when saving
|
||||
const numValue = Math.max(
|
||||
512,
|
||||
parseInt(value) || 2048,
|
||||
);
|
||||
setContextWindowSize(numValue);
|
||||
setConfig((prev) => ({
|
||||
...prev!,
|
||||
ollamaContextWindow: numValue,
|
||||
}));
|
||||
saveConfig('ollamaContextWindow', numValue);
|
||||
}}
|
||||
/>
|
||||
</div>
|
||||
)}
|
||||
<p className="text-xs text-black/60 dark:text-white/60 mt-0.5">
|
||||
{isCustomContextWindow
|
||||
? 'Adjust the context window size for Ollama models (minimum 512 tokens)'
|
||||
: 'Adjust the context window size for Ollama models'}
|
||||
</p>
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
)}
|
||||
</div>
|
@ -16,17 +16,9 @@ const Chat = ({
|
||||
setFileIds,
|
||||
files,
|
||||
setFiles,
|
||||
isCompact,
|
||||
setIsCompact,
|
||||
optimizationMode,
|
||||
setOptimizationMode,
|
||||
}: {
|
||||
messages: Message[];
|
||||
sendMessage: (
|
||||
message: string,
|
||||
messageId?: string,
|
||||
options?: { isCompact?: boolean },
|
||||
) => void;
|
||||
sendMessage: (message: string) => void;
|
||||
loading: boolean;
|
||||
messageAppeared: boolean;
|
||||
rewrite: (messageId: string) => void;
|
||||
@ -34,10 +26,6 @@ const Chat = ({
|
||||
setFileIds: (fileIds: string[]) => void;
|
||||
files: File[];
|
||||
setFiles: (files: File[]) => void;
|
||||
isCompact: boolean;
|
||||
setIsCompact: (isCompact: boolean) => void;
|
||||
optimizationMode: string;
|
||||
setOptimizationMode: (mode: string) => void;
|
||||
}) => {
|
||||
const [dividerWidth, setDividerWidth] = useState(0);
|
||||
const dividerRef = useRef<HTMLDivElement | null>(null);
|
||||
@ -60,11 +48,17 @@ const Chat = ({
|
||||
});
|
||||
|
||||
useEffect(() => {
|
||||
messageEnd.current?.scrollIntoView({ behavior: 'smooth' });
|
||||
const scroll = () => {
|
||||
messageEnd.current?.scrollIntoView({ behavior: 'smooth' });
|
||||
};
|
||||
|
||||
if (messages.length === 1) {
|
||||
document.title = `${messages[0].content.substring(0, 30)} - Perplexica`;
|
||||
}
|
||||
|
||||
if (messages[messages.length - 1]?.role == 'user') {
|
||||
scroll();
|
||||
}
|
||||
}, [messages]);
|
||||
|
||||
return (
|
||||
@ -83,7 +77,6 @@ const Chat = ({
|
||||
dividerRef={isLast ? dividerRef : undefined}
|
||||
isLast={isLast}
|
||||
rewrite={rewrite}
|
||||
isCompact={isCompact}
|
||||
sendMessage={sendMessage}
|
||||
/>
|
||||
{!isLast && msg.role === 'assistant' && (
|
||||
@ -96,7 +89,7 @@ const Chat = ({
|
||||
<div ref={messageEnd} className="h-0" />
|
||||
{dividerWidth > 0 && (
|
||||
<div
|
||||
className="bottom-24 lg:bottom-10 fixed"
|
||||
className="bottom-24 lg:bottom-10 fixed z-40"
|
||||
style={{ width: dividerWidth }}
|
||||
>
|
||||
<MessageInput
|
||||
@ -106,10 +99,6 @@ const Chat = ({
|
||||
setFileIds={setFileIds}
|
||||
files={files}
|
||||
setFiles={setFiles}
|
||||
isCompact={isCompact}
|
||||
setIsCompact={setIsCompact}
|
||||
optimizationMode={optimizationMode}
|
||||
setOptimizationMode={setOptimizationMode}
|
||||
/>
|
||||
</div>
|
||||
)}
|
611
src/components/ChatWindow.tsx
Normal file
611
src/components/ChatWindow.tsx
Normal file
@ -0,0 +1,611 @@
|
||||
'use client';
|
||||
|
||||
import { useEffect, useRef, useState } from 'react';
|
||||
import { Document } from '@langchain/core/documents';
|
||||
import Navbar from './Navbar';
|
||||
import Chat from './Chat';
|
||||
import EmptyChat from './EmptyChat';
|
||||
import crypto from 'crypto';
|
||||
import { toast } from 'sonner';
|
||||
import { useSearchParams } from 'next/navigation';
|
||||
import { getSuggestions } from '@/lib/actions';
|
||||
import { Settings } from 'lucide-react';
|
||||
import Link from 'next/link';
|
||||
import NextError from 'next/error';
|
||||
|
||||
export type Message = {
|
||||
messageId: string;
|
||||
chatId: string;
|
||||
createdAt: Date;
|
||||
content: string;
|
||||
role: 'user' | 'assistant';
|
||||
suggestions?: string[];
|
||||
sources?: Document[];
|
||||
};
|
||||
|
||||
export interface File {
|
||||
fileName: string;
|
||||
fileExtension: string;
|
||||
fileId: string;
|
||||
}
|
||||
|
||||
interface ChatModelProvider {
|
||||
name: string;
|
||||
provider: string;
|
||||
}
|
||||
|
||||
interface EmbeddingModelProvider {
|
||||
name: string;
|
||||
provider: string;
|
||||
}
|
||||
|
||||
const checkConfig = async (
|
||||
setChatModelProvider: (provider: ChatModelProvider) => void,
|
||||
setEmbeddingModelProvider: (provider: EmbeddingModelProvider) => void,
|
||||
setIsConfigReady: (ready: boolean) => void,
|
||||
setHasError: (hasError: boolean) => void,
|
||||
) => {
|
||||
try {
|
||||
let chatModel = localStorage.getItem('chatModel');
|
||||
let chatModelProvider = localStorage.getItem('chatModelProvider');
|
||||
let embeddingModel = localStorage.getItem('embeddingModel');
|
||||
let embeddingModelProvider = localStorage.getItem('embeddingModelProvider');
|
||||
|
||||
const autoImageSearch = localStorage.getItem('autoImageSearch');
|
||||
const autoVideoSearch = localStorage.getItem('autoVideoSearch');
|
||||
|
||||
if (!autoImageSearch) {
|
||||
localStorage.setItem('autoImageSearch', 'true');
|
||||
}
|
||||
|
||||
if (!autoVideoSearch) {
|
||||
localStorage.setItem('autoVideoSearch', 'false');
|
||||
}
|
||||
|
||||
const providers = await fetch(`/api/models`, {
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
}).then(async (res) => {
|
||||
if (!res.ok)
|
||||
throw new Error(
|
||||
`Failed to fetch models: ${res.status} ${res.statusText}`,
|
||||
);
|
||||
return res.json();
|
||||
});
|
||||
|
||||
if (
|
||||
!chatModel ||
|
||||
!chatModelProvider ||
|
||||
!embeddingModel ||
|
||||
!embeddingModelProvider
|
||||
) {
|
||||
if (!chatModel || !chatModelProvider) {
|
||||
const chatModelProviders = providers.chatModelProviders;
|
||||
|
||||
chatModelProvider =
|
||||
chatModelProvider || Object.keys(chatModelProviders)[0];
|
||||
|
||||
chatModel = Object.keys(chatModelProviders[chatModelProvider])[0];
|
||||
|
||||
if (!chatModelProviders || Object.keys(chatModelProviders).length === 0)
|
||||
return toast.error('No chat models available');
|
||||
}
|
||||
|
||||
if (!embeddingModel || !embeddingModelProvider) {
|
||||
const embeddingModelProviders = providers.embeddingModelProviders;
|
||||
|
||||
if (
|
||||
!embeddingModelProviders ||
|
||||
Object.keys(embeddingModelProviders).length === 0
|
||||
)
|
||||
return toast.error('No embedding models available');
|
||||
|
||||
embeddingModelProvider = Object.keys(embeddingModelProviders)[0];
|
||||
embeddingModel = Object.keys(
|
||||
embeddingModelProviders[embeddingModelProvider],
|
||||
)[0];
|
||||
}
|
||||
|
||||
localStorage.setItem('chatModel', chatModel!);
|
||||
localStorage.setItem('chatModelProvider', chatModelProvider);
|
||||
localStorage.setItem('embeddingModel', embeddingModel!);
|
||||
localStorage.setItem('embeddingModelProvider', embeddingModelProvider);
|
||||
} else {
|
||||
const chatModelProviders = providers.chatModelProviders;
|
||||
const embeddingModelProviders = providers.embeddingModelProviders;
|
||||
|
||||
if (
|
||||
Object.keys(chatModelProviders).length > 0 &&
|
||||
!chatModelProviders[chatModelProvider]
|
||||
) {
|
||||
const chatModelProvidersKeys = Object.keys(chatModelProviders);
|
||||
chatModelProvider =
|
||||
chatModelProvidersKeys.find(
|
||||
(key) => Object.keys(chatModelProviders[key]).length > 0,
|
||||
) || chatModelProvidersKeys[0];
|
||||
|
||||
localStorage.setItem('chatModelProvider', chatModelProvider);
|
||||
}
|
||||
|
||||
if (
|
||||
chatModelProvider &&
|
||||
!chatModelProviders[chatModelProvider][chatModel]
|
||||
) {
|
||||
chatModel = Object.keys(
|
||||
chatModelProviders[
|
||||
Object.keys(chatModelProviders[chatModelProvider]).length > 0
|
||||
? chatModelProvider
|
||||
: Object.keys(chatModelProviders)[0]
|
||||
],
|
||||
)[0];
|
||||
localStorage.setItem('chatModel', chatModel);
|
||||
}
|
||||
|
||||
if (
|
||||
Object.keys(embeddingModelProviders).length > 0 &&
|
||||
!embeddingModelProviders[embeddingModelProvider]
|
||||
) {
|
||||
embeddingModelProvider = Object.keys(embeddingModelProviders)[0];
|
||||
localStorage.setItem('embeddingModelProvider', embeddingModelProvider);
|
||||
}
|
||||
|
||||
if (
|
||||
embeddingModelProvider &&
|
||||
!embeddingModelProviders[embeddingModelProvider][embeddingModel]
|
||||
) {
|
||||
embeddingModel = Object.keys(
|
||||
embeddingModelProviders[embeddingModelProvider],
|
||||
)[0];
|
||||
localStorage.setItem('embeddingModel', embeddingModel);
|
||||
}
|
||||
}
|
||||
|
||||
setChatModelProvider({
|
||||
name: chatModel!,
|
||||
provider: chatModelProvider,
|
||||
});
|
||||
|
||||
setEmbeddingModelProvider({
|
||||
name: embeddingModel!,
|
||||
provider: embeddingModelProvider,
|
||||
});
|
||||
|
||||
setIsConfigReady(true);
|
||||
} catch (err) {
|
||||
console.error('An error occurred while checking the configuration:', err);
|
||||
setIsConfigReady(false);
|
||||
setHasError(true);
|
||||
}
|
||||
};
|
||||
|
||||
const loadMessages = async (
|
||||
chatId: string,
|
||||
setMessages: (messages: Message[]) => void,
|
||||
setIsMessagesLoaded: (loaded: boolean) => void,
|
||||
setChatHistory: (history: [string, string][]) => void,
|
||||
setFocusMode: (mode: string) => void,
|
||||
setNotFound: (notFound: boolean) => void,
|
||||
setFiles: (files: File[]) => void,
|
||||
setFileIds: (fileIds: string[]) => void,
|
||||
) => {
|
||||
const res = await fetch(`/api/chats/${chatId}`, {
|
||||
method: 'GET',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
});
|
||||
|
||||
if (res.status === 404) {
|
||||
setNotFound(true);
|
||||
setIsMessagesLoaded(true);
|
||||
return;
|
||||
}
|
||||
|
||||
const data = await res.json();
|
||||
|
||||
const messages = data.messages.map((msg: any) => {
|
||||
return {
|
||||
...msg,
|
||||
...JSON.parse(msg.metadata),
|
||||
};
|
||||
}) as Message[];
|
||||
|
||||
setMessages(messages);
|
||||
|
||||
const history = messages.map((msg) => {
|
||||
return [msg.role, msg.content];
|
||||
}) as [string, string][];
|
||||
|
||||
console.debug(new Date(), 'app:messages_loaded');
|
||||
|
||||
document.title = messages[0].content;
|
||||
|
||||
const files = data.chat.files.map((file: any) => {
|
||||
return {
|
||||
fileName: file.name,
|
||||
fileExtension: file.name.split('.').pop(),
|
||||
fileId: file.fileId,
|
||||
};
|
||||
});
|
||||
|
||||
setFiles(files);
|
||||
setFileIds(files.map((file: File) => file.fileId));
|
||||
|
||||
setChatHistory(history);
|
||||
setFocusMode(data.chat.focusMode);
|
||||
setIsMessagesLoaded(true);
|
||||
};
|
||||
|
||||
const ChatWindow = ({ id }: { id?: string }) => {
|
||||
const searchParams = useSearchParams();
|
||||
const initialMessage = searchParams.get('q');
|
||||
|
||||
const [chatId, setChatId] = useState<string | undefined>(id);
|
||||
const [newChatCreated, setNewChatCreated] = useState(false);
|
||||
|
||||
const [chatModelProvider, setChatModelProvider] = useState<ChatModelProvider>(
|
||||
{
|
||||
name: '',
|
||||
provider: '',
|
||||
},
|
||||
);
|
||||
|
||||
const [embeddingModelProvider, setEmbeddingModelProvider] =
|
||||
useState<EmbeddingModelProvider>({
|
||||
name: '',
|
||||
provider: '',
|
||||
});
|
||||
|
||||
const [isConfigReady, setIsConfigReady] = useState(false);
|
||||
const [hasError, setHasError] = useState(false);
|
||||
const [isReady, setIsReady] = useState(false);
|
||||
|
||||
useEffect(() => {
|
||||
checkConfig(
|
||||
setChatModelProvider,
|
||||
setEmbeddingModelProvider,
|
||||
setIsConfigReady,
|
||||
setHasError,
|
||||
);
|
||||
// eslint-disable-next-line react-hooks/exhaustive-deps
|
||||
}, []);
|
||||
|
||||
const [loading, setLoading] = useState(false);
|
||||
const [messageAppeared, setMessageAppeared] = useState(false);
|
||||
|
||||
const [chatHistory, setChatHistory] = useState<[string, string][]>([]);
|
||||
const [messages, setMessages] = useState<Message[]>([]);
|
||||
|
||||
const [files, setFiles] = useState<File[]>([]);
|
||||
const [fileIds, setFileIds] = useState<string[]>([]);
|
||||
|
||||
const [focusMode, setFocusMode] = useState('webSearch');
|
||||
const [optimizationMode, setOptimizationMode] = useState('speed');
|
||||
|
||||
const [isMessagesLoaded, setIsMessagesLoaded] = useState(false);
|
||||
|
||||
const [notFound, setNotFound] = useState(false);
|
||||
|
||||
useEffect(() => {
|
||||
if (
|
||||
chatId &&
|
||||
!newChatCreated &&
|
||||
!isMessagesLoaded &&
|
||||
messages.length === 0
|
||||
) {
|
||||
loadMessages(
|
||||
chatId,
|
||||
setMessages,
|
||||
setIsMessagesLoaded,
|
||||
setChatHistory,
|
||||
setFocusMode,
|
||||
setNotFound,
|
||||
setFiles,
|
||||
setFileIds,
|
||||
);
|
||||
} else if (!chatId) {
|
||||
setNewChatCreated(true);
|
||||
setIsMessagesLoaded(true);
|
||||
setChatId(crypto.randomBytes(20).toString('hex'));
|
||||
}
|
||||
// eslint-disable-next-line react-hooks/exhaustive-deps
|
||||
}, []);
|
||||
|
||||
const messagesRef = useRef<Message[]>([]);
|
||||
|
||||
useEffect(() => {
|
||||
messagesRef.current = messages;
|
||||
}, [messages]);
|
||||
|
||||
useEffect(() => {
|
||||
if (isMessagesLoaded && isConfigReady) {
|
||||
setIsReady(true);
|
||||
console.debug(new Date(), 'app:ready');
|
||||
} else {
|
||||
setIsReady(false);
|
||||
}
|
||||
}, [isMessagesLoaded, isConfigReady]);
|
||||
|
||||
const sendMessage = async (message: string, messageId?: string) => {
|
||||
if (loading) return;
|
||||
if (!isConfigReady) {
|
||||
toast.error('Cannot send message before the configuration is ready');
|
||||
return;
|
||||
}
|
||||
|
||||
setLoading(true);
|
||||
setMessageAppeared(false);
|
||||
|
||||
let sources: Document[] | undefined = undefined;
|
||||
let recievedMessage = '';
|
||||
let added = false;
|
||||
|
||||
messageId = messageId ?? crypto.randomBytes(7).toString('hex');
|
||||
|
||||
setMessages((prevMessages) => [
|
||||
...prevMessages,
|
||||
{
|
||||
content: message,
|
||||
messageId: messageId,
|
||||
chatId: chatId!,
|
||||
role: 'user',
|
||||
createdAt: new Date(),
|
||||
},
|
||||
]);
|
||||
|
||||
const messageHandler = async (data: any) => {
|
||||
if (data.type === 'error') {
|
||||
toast.error(data.data);
|
||||
setLoading(false);
|
||||
return;
|
||||
}
|
||||
|
||||
if (data.type === 'sources') {
|
||||
sources = data.data;
|
||||
if (!added) {
|
||||
setMessages((prevMessages) => [
|
||||
...prevMessages,
|
||||
{
|
||||
content: '',
|
||||
messageId: data.messageId,
|
||||
chatId: chatId!,
|
||||
role: 'assistant',
|
||||
sources: sources,
|
||||
createdAt: new Date(),
|
||||
},
|
||||
]);
|
||||
added = true;
|
||||
}
|
||||
setMessageAppeared(true);
|
||||
}
|
||||
|
||||
if (data.type === 'message') {
|
||||
if (!added) {
|
||||
setMessages((prevMessages) => [
|
||||
...prevMessages,
|
||||
{
|
||||
content: data.data,
|
||||
messageId: data.messageId,
|
||||
chatId: chatId!,
|
||||
role: 'assistant',
|
||||
sources: sources,
|
||||
createdAt: new Date(),
|
||||
},
|
||||
]);
|
||||
added = true;
|
||||
}
|
||||
|
||||
setMessages((prev) =>
|
||||
prev.map((message) => {
|
||||
if (message.messageId === data.messageId) {
|
||||
return { ...message, content: message.content + data.data };
|
||||
}
|
||||
|
||||
return message;
|
||||
}),
|
||||
);
|
||||
|
||||
recievedMessage += data.data;
|
||||
setMessageAppeared(true);
|
||||
}
|
||||
|
||||
if (data.type === 'messageEnd') {
|
||||
setChatHistory((prevHistory) => [
|
||||
...prevHistory,
|
||||
['human', message],
|
||||
['assistant', recievedMessage],
|
||||
]);
|
||||
|
||||
setLoading(false);
|
||||
|
||||
const lastMsg = messagesRef.current[messagesRef.current.length - 1];
|
||||
|
||||
const autoImageSearch = localStorage.getItem('autoImageSearch');
|
||||
const autoVideoSearch = localStorage.getItem('autoVideoSearch');
|
||||
|
||||
if (autoImageSearch === 'true') {
|
||||
document
|
||||
.getElementById(`search-images-${lastMsg.messageId}`)
|
||||
?.click();
|
||||
}
|
||||
|
||||
if (autoVideoSearch === 'true') {
|
||||
document
|
||||
.getElementById(`search-videos-${lastMsg.messageId}`)
|
||||
?.click();
|
||||
}
|
||||
|
||||
if (
|
||||
lastMsg.role === 'assistant' &&
|
||||
lastMsg.sources &&
|
||||
lastMsg.sources.length > 0 &&
|
||||
!lastMsg.suggestions
|
||||
) {
|
||||
const suggestions = await getSuggestions(messagesRef.current);
|
||||
setMessages((prev) =>
|
||||
prev.map((msg) => {
|
||||
if (msg.messageId === lastMsg.messageId) {
|
||||
return { ...msg, suggestions: suggestions };
|
||||
}
|
||||
return msg;
|
||||
}),
|
||||
);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
const res = await fetch('/api/chat', {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
body: JSON.stringify({
|
||||
content: message,
|
||||
message: {
|
||||
messageId: messageId,
|
||||
chatId: chatId!,
|
||||
content: message,
|
||||
},
|
||||
chatId: chatId!,
|
||||
files: fileIds,
|
||||
focusMode: focusMode,
|
||||
optimizationMode: optimizationMode,
|
||||
history: chatHistory,
|
||||
chatModel: {
|
||||
name: chatModelProvider.name,
|
||||
provider: chatModelProvider.provider,
|
||||
},
|
||||
embeddingModel: {
|
||||
name: embeddingModelProvider.name,
|
||||
provider: embeddingModelProvider.provider,
|
||||
},
|
||||
}),
|
||||
});
|
||||
|
||||
if (!res.body) throw new Error('No response body');
|
||||
|
||||
const reader = res.body?.getReader();
|
||||
const decoder = new TextDecoder('utf-8');
|
||||
|
||||
let partialChunk = '';
|
||||
|
||||
while (true) {
|
||||
const { value, done } = await reader.read();
|
||||
if (done) break;
|
||||
|
||||
partialChunk += decoder.decode(value, { stream: true });
|
||||
|
||||
try {
|
||||
const messages = partialChunk.split('\n');
|
||||
for (const msg of messages) {
|
||||
if (!msg.trim()) continue;
|
||||
const json = JSON.parse(msg);
|
||||
messageHandler(json);
|
||||
}
|
||||
partialChunk = '';
|
||||
} catch (error) {
|
||||
console.warn('Incomplete JSON, waiting for next chunk...');
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
const rewrite = (messageId: string) => {
|
||||
const index = messages.findIndex((msg) => msg.messageId === messageId);
|
||||
|
||||
if (index === -1) return;
|
||||
|
||||
const message = messages[index - 1];
|
||||
|
||||
setMessages((prev) => {
|
||||
return [...prev.slice(0, messages.length > 2 ? index - 1 : 0)];
|
||||
});
|
||||
setChatHistory((prev) => {
|
||||
return [...prev.slice(0, messages.length > 2 ? index - 1 : 0)];
|
||||
});
|
||||
|
||||
sendMessage(message.content, message.messageId);
|
||||
};
|
||||
|
||||
useEffect(() => {
|
||||
if (isReady && initialMessage && isConfigReady) {
|
||||
sendMessage(initialMessage);
|
||||
}
|
||||
// eslint-disable-next-line react-hooks/exhaustive-deps
|
||||
}, [isConfigReady, isReady, initialMessage]);
|
||||
|
||||
if (hasError) {
|
||||
return (
|
||||
<div className="relative">
|
||||
<div className="absolute w-full flex flex-row items-center justify-end mr-5 mt-5">
|
||||
<Link href="/settings">
|
||||
<Settings className="cursor-pointer lg:hidden" />
|
||||
</Link>
|
||||
</div>
|
||||
<div className="flex flex-col items-center justify-center min-h-screen">
|
||||
<p className="dark:text-white/70 text-black/70 text-sm">
|
||||
Failed to connect to the server. Please try again later.
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
return isReady ? (
|
||||
notFound ? (
|
||||
<NextError statusCode={404} />
|
||||
) : (
|
||||
<div>
|
||||
{messages.length > 0 ? (
|
||||
<>
|
||||
<Navbar chatId={chatId!} messages={messages} />
|
||||
<Chat
|
||||
loading={loading}
|
||||
messages={messages}
|
||||
sendMessage={sendMessage}
|
||||
messageAppeared={messageAppeared}
|
||||
rewrite={rewrite}
|
||||
fileIds={fileIds}
|
||||
setFileIds={setFileIds}
|
||||
files={files}
|
||||
setFiles={setFiles}
|
||||
/>
|
||||
</>
|
||||
) : (
|
||||
<EmptyChat
|
||||
sendMessage={sendMessage}
|
||||
focusMode={focusMode}
|
||||
setFocusMode={setFocusMode}
|
||||
optimizationMode={optimizationMode}
|
||||
setOptimizationMode={setOptimizationMode}
|
||||
fileIds={fileIds}
|
||||
setFileIds={setFileIds}
|
||||
files={files}
|
||||
setFiles={setFiles}
|
||||
/>
|
||||
)}
|
||||
</div>
|
||||
)
|
||||
) : (
|
||||
<div className="flex flex-row items-center justify-center min-h-screen">
|
||||
<svg
|
||||
aria-hidden="true"
|
||||
className="w-8 h-8 text-light-200 fill-light-secondary dark:text-[#202020] animate-spin dark:fill-[#ffffff3b]"
|
||||
viewBox="0 0 100 101"
|
||||
fill="none"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
>
|
||||
<path
|
||||
d="M100 50.5908C100.003 78.2051 78.1951 100.003 50.5908 100C22.9765 99.9972 0.997224 78.018 1 50.4037C1.00281 22.7993 22.8108 0.997224 50.4251 1C78.0395 1.00281 100.018 22.8108 100 50.4251ZM9.08164 50.594C9.06312 73.3997 27.7909 92.1272 50.5966 92.1457C73.4023 92.1642 92.1298 73.4365 92.1483 50.6308C92.1669 27.8251 73.4392 9.0973 50.6335 9.07878C27.8278 9.06026 9.10003 27.787 9.08164 50.594Z"
|
||||
fill="currentColor"
|
||||
/>
|
||||
<path
|
||||
d="M93.9676 39.0409C96.393 38.4037 97.8624 35.9116 96.9801 33.5533C95.1945 28.8227 92.871 24.3692 90.0681 20.348C85.6237 14.1775 79.4473 9.36872 72.0454 6.45794C64.6435 3.54717 56.3134 2.65431 48.3133 3.89319C45.869 4.27179 44.3768 6.77534 45.014 9.20079C45.6512 11.6262 48.1343 13.0956 50.5786 12.717C56.5073 11.8281 62.5542 12.5399 68.0406 14.7911C73.527 17.0422 78.2187 20.7487 81.5841 25.4923C83.7976 28.5886 85.4467 32.059 86.4416 35.7474C87.1273 38.1189 89.5423 39.6781 91.9676 39.0409Z"
|
||||
fill="currentFill"
|
||||
/>
|
||||
</svg>
|
||||
</div>
|
||||
);
|
||||
};
|
||||
|
||||
export default ChatWindow;
|
@ -29,15 +29,12 @@ const DeleteChat = ({
|
||||
const handleDelete = async () => {
|
||||
setLoading(true);
|
||||
try {
|
||||
const res = await fetch(
|
||||
`${process.env.NEXT_PUBLIC_API_URL}/chats/${chatId}`,
|
||||
{
|
||||
method: 'DELETE',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
const res = await fetch(`/api/chats/${chatId}`, {
|
||||
method: 'DELETE',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
);
|
||||
});
|
||||
|
||||
if (res.status != 200) {
|
||||
throw new Error('Failed to delete chat');
|
@ -14,8 +14,6 @@ const EmptyChat = ({
|
||||
setFileIds,
|
||||
files,
|
||||
setFiles,
|
||||
isCompact,
|
||||
setIsCompact,
|
||||
}: {
|
||||
sendMessage: (message: string) => void;
|
||||
focusMode: string;
|
||||
@ -26,8 +24,6 @@ const EmptyChat = ({
|
||||
setFileIds: (fileIds: string[]) => void;
|
||||
files: File[];
|
||||
setFiles: (files: File[]) => void;
|
||||
isCompact: boolean;
|
||||
setIsCompact: (isCompact: boolean) => void;
|
||||
}) => {
|
||||
const [isSettingsOpen, setIsSettingsOpen] = useState(false);
|
||||
|
||||
@ -52,8 +48,6 @@ const EmptyChat = ({
|
||||
setFileIds={setFileIds}
|
||||
files={files}
|
||||
setFiles={setFiles}
|
||||
isCompact={isCompact}
|
||||
setIsCompact={setIsCompact}
|
||||
/>
|
||||
</div>
|
||||
</div>
|
@ -17,14 +17,8 @@ const EmptyChatMessageInput = ({
|
||||
setFileIds,
|
||||
files,
|
||||
setFiles,
|
||||
isCompact,
|
||||
setIsCompact,
|
||||
}: {
|
||||
sendMessage: (
|
||||
message: string,
|
||||
messageId?: string,
|
||||
options?: { isCompact?: boolean },
|
||||
) => void;
|
||||
sendMessage: (message: string) => void;
|
||||
focusMode: string;
|
||||
setFocusMode: (mode: string) => void;
|
||||
optimizationMode: string;
|
||||
@ -33,8 +27,6 @@ const EmptyChatMessageInput = ({
|
||||
setFileIds: (fileIds: string[]) => void;
|
||||
files: File[];
|
||||
setFiles: (files: File[]) => void;
|
||||
isCompact: boolean;
|
||||
setIsCompact: (isCompact: boolean) => void;
|
||||
}) => {
|
||||
const [copilotEnabled, setCopilotEnabled] = useState(false);
|
||||
const [message, setMessage] = useState('');
|
||||
@ -69,13 +61,13 @@ const EmptyChatMessageInput = ({
|
||||
<form
|
||||
onSubmit={(e) => {
|
||||
e.preventDefault();
|
||||
sendMessage(message, undefined, { isCompact });
|
||||
sendMessage(message);
|
||||
setMessage('');
|
||||
}}
|
||||
onKeyDown={(e) => {
|
||||
if (e.key === 'Enter' && !e.shiftKey) {
|
||||
e.preventDefault();
|
||||
sendMessage(message, undefined, { isCompact });
|
||||
sendMessage(message);
|
||||
setMessage('');
|
||||
}
|
||||
}}
|
||||
@ -105,8 +97,6 @@ const EmptyChatMessageInput = ({
|
||||
<Optimization
|
||||
optimizationMode={optimizationMode}
|
||||
setOptimizationMode={setOptimizationMode}
|
||||
isCompact={isCompact}
|
||||
setIsCompact={setIsCompact}
|
||||
/>
|
||||
<button
|
||||
disabled={message.trim().length === 0}
|
@ -12,13 +12,18 @@ import {
|
||||
Layers3,
|
||||
Plus,
|
||||
} from 'lucide-react';
|
||||
import Markdown from 'markdown-to-jsx';
|
||||
import Markdown, { MarkdownToJSX } from 'markdown-to-jsx';
|
||||
import Copy from './MessageActions/Copy';
|
||||
import Rewrite from './MessageActions/Rewrite';
|
||||
import MessageSources from './MessageSources';
|
||||
import SearchImages from './SearchImages';
|
||||
import SearchVideos from './SearchVideos';
|
||||
import { useSpeech } from 'react-text-to-speech';
|
||||
import ThinkBox from './ThinkBox';
|
||||
|
||||
const ThinkTagProcessor = ({ children }: { children: React.ReactNode }) => {
|
||||
return <ThinkBox content={children as string} />;
|
||||
};
|
||||
|
||||
const MessageBox = ({
|
||||
message,
|
||||
@ -28,7 +33,6 @@ const MessageBox = ({
|
||||
dividerRef,
|
||||
isLast,
|
||||
rewrite,
|
||||
isCompact,
|
||||
sendMessage,
|
||||
}: {
|
||||
message: Message;
|
||||
@ -38,47 +42,65 @@ const MessageBox = ({
|
||||
dividerRef?: MutableRefObject<HTMLDivElement | null>;
|
||||
isLast: boolean;
|
||||
rewrite: (messageId: string) => void;
|
||||
isCompact: boolean;
|
||||
sendMessage: (
|
||||
message: string,
|
||||
messageId?: string,
|
||||
options?: { isCompact?: boolean },
|
||||
) => void;
|
||||
sendMessage: (message: string) => void;
|
||||
}) => {
|
||||
const [parsedMessage, setParsedMessage] = useState(message.content);
|
||||
const [speechMessage, setSpeechMessage] = useState(message.content);
|
||||
|
||||
useEffect(() => {
|
||||
const regex = /\[(\d+)\]/g;
|
||||
let processedMessage = message.content;
|
||||
|
||||
if (message.role === 'assistant' && message.content.includes('<think>')) {
|
||||
const openThinkTag = processedMessage.match(/<think>/g)?.length || 0;
|
||||
const closeThinkTag = processedMessage.match(/<\/think>/g)?.length || 0;
|
||||
|
||||
if (openThinkTag > closeThinkTag) {
|
||||
processedMessage += '</think> <a> </a>'; // The extra <a> </a> is to prevent the the think component from looking bad
|
||||
}
|
||||
}
|
||||
|
||||
if (
|
||||
message.role === 'assistant' &&
|
||||
message?.sources &&
|
||||
message.sources.length > 0
|
||||
) {
|
||||
return setParsedMessage(
|
||||
message.content.replace(
|
||||
setParsedMessage(
|
||||
processedMessage.replace(
|
||||
regex,
|
||||
(_, number) =>
|
||||
`<a href="${message.sources?.[number - 1]?.metadata?.url}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${number}</a>`,
|
||||
`<a href="${
|
||||
message.sources?.[number - 1]?.metadata?.url
|
||||
}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${number}</a>`,
|
||||
),
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
setSpeechMessage(message.content.replace(regex, ''));
|
||||
setParsedMessage(message.content);
|
||||
setParsedMessage(processedMessage);
|
||||
}, [message.content, message.sources, message.role]);
|
||||
|
||||
const { speechStatus, start, stop } = useSpeech({ text: speechMessage });
|
||||
|
||||
const handleSuggestionClick = (suggestion: string) => {
|
||||
sendMessage(suggestion, undefined, { isCompact });
|
||||
const markdownOverrides: MarkdownToJSX.Options = {
|
||||
overrides: {
|
||||
think: {
|
||||
component: ThinkTagProcessor,
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
return (
|
||||
<div>
|
||||
{message.role === 'user' && (
|
||||
<div className={cn('w-full', messageIndex === 0 ? 'pt-16' : 'pt-8', 'break-words')}>
|
||||
<div
|
||||
className={cn(
|
||||
'w-full',
|
||||
messageIndex === 0 ? 'pt-16' : 'pt-8',
|
||||
'break-words',
|
||||
)}
|
||||
>
|
||||
<h2 className="text-black dark:text-white font-medium text-3xl lg:w-9/12">
|
||||
{message.content}
|
||||
</h2>
|
||||
@ -115,11 +137,13 @@ const MessageBox = ({
|
||||
Answer
|
||||
</h3>
|
||||
</div>
|
||||
|
||||
<Markdown
|
||||
className={cn(
|
||||
'prose prose-h1:mb-3 prose-h2:mb-2 prose-h2:mt-6 prose-h2:font-[800] prose-h3:mt-4 prose-h3:mb-1.5 prose-h3:font-[600] dark:prose-invert prose-p:leading-relaxed prose-pre:p-0 font-[400]',
|
||||
'max-w-none break-words text-black dark:text-white',
|
||||
)}
|
||||
options={markdownOverrides}
|
||||
>
|
||||
{parsedMessage}
|
||||
</Markdown>
|
||||
@ -173,7 +197,7 @@ const MessageBox = ({
|
||||
<div className="h-px w-full bg-light-secondary dark:bg-dark-secondary" />
|
||||
<div
|
||||
onClick={() => {
|
||||
handleSuggestionClick(suggestion);
|
||||
sendMessage(suggestion);
|
||||
}}
|
||||
className="cursor-pointer flex flex-row justify-between font-medium space-x-2 items-center"
|
||||
>
|
||||
@ -197,10 +221,12 @@ const MessageBox = ({
|
||||
<SearchImages
|
||||
query={history[messageIndex - 1].content}
|
||||
chatHistory={history.slice(0, messageIndex - 1)}
|
||||
messageId={message.messageId}
|
||||
/>
|
||||
<SearchVideos
|
||||
chatHistory={history.slice(0, messageIndex - 1)}
|
||||
query={history[messageIndex - 1].content}
|
||||
messageId={message.messageId}
|
||||
/>
|
||||
</div>
|
||||
</div>
|
@ -4,7 +4,6 @@ import { useEffect, useRef, useState } from 'react';
|
||||
import TextareaAutosize from 'react-textarea-autosize';
|
||||
import Attach from './MessageInputActions/Attach';
|
||||
import CopilotToggle from './MessageInputActions/Copilot';
|
||||
import Optimization from './MessageInputActions/Optimization';
|
||||
import { File } from './ChatWindow';
|
||||
import AttachSmall from './MessageInputActions/AttachSmall';
|
||||
|
||||
@ -15,25 +14,13 @@ const MessageInput = ({
|
||||
setFileIds,
|
||||
files,
|
||||
setFiles,
|
||||
isCompact,
|
||||
setIsCompact,
|
||||
optimizationMode,
|
||||
setOptimizationMode,
|
||||
}: {
|
||||
sendMessage: (
|
||||
message: string,
|
||||
messageId?: string,
|
||||
options?: { isCompact?: boolean },
|
||||
) => void;
|
||||
sendMessage: (message: string) => void;
|
||||
loading: boolean;
|
||||
fileIds: string[];
|
||||
setFileIds: (fileIds: string[]) => void;
|
||||
files: File[];
|
||||
setFiles: (files: File[]) => void;
|
||||
isCompact: boolean;
|
||||
setIsCompact: (isCompact: boolean) => void;
|
||||
optimizationMode: string;
|
||||
setOptimizationMode: (mode: string) => void;
|
||||
}) => {
|
||||
const [copilotEnabled, setCopilotEnabled] = useState(false);
|
||||
const [message, setMessage] = useState('');
|
||||
@ -53,16 +40,20 @@ const MessageInput = ({
|
||||
useEffect(() => {
|
||||
const handleKeyDown = (e: KeyboardEvent) => {
|
||||
const activeElement = document.activeElement;
|
||||
|
||||
const isInputFocused =
|
||||
activeElement?.tagName === 'INPUT' ||
|
||||
activeElement?.tagName === 'TEXTAREA' ||
|
||||
activeElement?.hasAttribute('contenteditable');
|
||||
|
||||
if (e.key === '/' && !isInputFocused) {
|
||||
e.preventDefault();
|
||||
inputRef.current?.focus();
|
||||
}
|
||||
};
|
||||
|
||||
document.addEventListener('keydown', handleKeyDown);
|
||||
|
||||
return () => {
|
||||
document.removeEventListener('keydown', handleKeyDown);
|
||||
};
|
||||
@ -73,36 +64,28 @@ const MessageInput = ({
|
||||
onSubmit={(e) => {
|
||||
if (loading) return;
|
||||
e.preventDefault();
|
||||
sendMessage(message, undefined, { isCompact });
|
||||
sendMessage(message);
|
||||
setMessage('');
|
||||
}}
|
||||
onKeyDown={(e) => {
|
||||
if (e.key === 'Enter' && !e.shiftKey && !loading) {
|
||||
e.preventDefault();
|
||||
sendMessage(message, undefined, { isCompact });
|
||||
sendMessage(message);
|
||||
setMessage('');
|
||||
}
|
||||
}}
|
||||
className={cn(
|
||||
'bg-light-secondary dark:bg-dark-secondary p-4 flex items-center border border-light-200 dark:border-dark-200',
|
||||
'bg-light-secondary dark:bg-dark-secondary p-4 flex items-center overflow-hidden border border-light-200 dark:border-dark-200',
|
||||
mode === 'multi' ? 'flex-col rounded-lg' : 'flex-row rounded-full',
|
||||
)}
|
||||
>
|
||||
{mode === 'single' && (
|
||||
<div className="flex flex-row items-center space-x-2">
|
||||
<AttachSmall
|
||||
fileIds={fileIds}
|
||||
setFileIds={setFileIds}
|
||||
files={files}
|
||||
setFiles={setFiles}
|
||||
/>
|
||||
<Optimization
|
||||
optimizationMode={optimizationMode}
|
||||
setOptimizationMode={setOptimizationMode}
|
||||
isCompact={isCompact}
|
||||
setIsCompact={setIsCompact}
|
||||
/>
|
||||
</div>
|
||||
<AttachSmall
|
||||
fileIds={fileIds}
|
||||
setFileIds={setFileIds}
|
||||
files={files}
|
||||
setFiles={setFiles}
|
||||
/>
|
||||
)}
|
||||
<TextareaAutosize
|
||||
ref={inputRef}
|
||||
@ -130,20 +113,12 @@ const MessageInput = ({
|
||||
)}
|
||||
{mode === 'multi' && (
|
||||
<div className="flex flex-row items-center justify-between w-full pt-2">
|
||||
<div className="flex flex-row items-center space-x-2">
|
||||
<AttachSmall
|
||||
fileIds={fileIds}
|
||||
setFileIds={setFileIds}
|
||||
files={files}
|
||||
setFiles={setFiles}
|
||||
/>
|
||||
<Optimization
|
||||
optimizationMode={optimizationMode}
|
||||
setOptimizationMode={setOptimizationMode}
|
||||
isCompact={isCompact}
|
||||
setIsCompact={setIsCompact}
|
||||
/>
|
||||
</div>
|
||||
<AttachSmall
|
||||
fileIds={fileIds}
|
||||
setFileIds={setFileIds}
|
||||
files={files}
|
||||
setFiles={setFiles}
|
||||
/>
|
||||
<div className="flex flex-row items-center space-x-4">
|
||||
<CopilotToggle
|
||||
copilotEnabled={copilotEnabled}
|
@ -41,7 +41,7 @@ const Attach = ({
|
||||
data.append('embedding_model_provider', embeddingModelProvider!);
|
||||
data.append('embedding_model', embeddingModel!);
|
||||
|
||||
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/uploads`, {
|
||||
const res = await fetch(`/api/uploads`, {
|
||||
method: 'POST',
|
||||
body: data,
|
||||
});
|
@ -39,7 +39,7 @@ const AttachSmall = ({
|
||||
data.append('embedding_model_provider', embeddingModelProvider!);
|
||||
data.append('embedding_model', embeddingModel!);
|
||||
|
||||
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/uploads`, {
|
||||
const res = await fetch(`/api/uploads`, {
|
||||
method: 'POST',
|
||||
body: data,
|
||||
});
|
@ -45,25 +45,13 @@ const focusModes = [
|
||||
key: 'youtubeSearch',
|
||||
title: 'Youtube',
|
||||
description: 'Search and watch videos',
|
||||
icon: (
|
||||
<SiYoutube
|
||||
className="h-5 w-auto mr-0.5"
|
||||
onPointerEnterCapture={undefined}
|
||||
onPointerLeaveCapture={undefined}
|
||||
/>
|
||||
),
|
||||
icon: <SiYoutube className="h-5 w-auto mr-0.5" />,
|
||||
},
|
||||
{
|
||||
key: 'redditSearch',
|
||||
title: 'Reddit',
|
||||
description: 'Search for discussions and opinions',
|
||||
icon: (
|
||||
<SiReddit
|
||||
className="h-5 w-auto mr-0.5"
|
||||
onPointerEnterCapture={undefined}
|
||||
onPointerLeaveCapture={undefined}
|
||||
/>
|
||||
),
|
||||
icon: <SiReddit className="h-5 w-auto mr-0.5" />,
|
||||
},
|
||||
];
|
||||
|
@ -1,4 +1,4 @@
|
||||
import { ChevronDown, Minimize2, Sliders, Star, Zap } from 'lucide-react';
|
||||
import { ChevronDown, Sliders, Star, Zap } from 'lucide-react';
|
||||
import { cn } from '@/lib/utils';
|
||||
import {
|
||||
Popover,
|
||||
@ -6,7 +6,8 @@ import {
|
||||
PopoverPanel,
|
||||
Transition,
|
||||
} from '@headlessui/react';
|
||||
import { Fragment, useEffect } from 'react';
|
||||
import { Fragment } from 'react';
|
||||
|
||||
const OptimizationModes = [
|
||||
{
|
||||
key: 'speed',
|
||||
@ -36,33 +37,10 @@ const OptimizationModes = [
|
||||
const Optimization = ({
|
||||
optimizationMode,
|
||||
setOptimizationMode,
|
||||
isCompact,
|
||||
setIsCompact,
|
||||
}: {
|
||||
optimizationMode: string;
|
||||
setOptimizationMode: (mode: string) => void;
|
||||
isCompact: boolean;
|
||||
setIsCompact: (isCompact: boolean) => void;
|
||||
}) => {
|
||||
useEffect(() => {
|
||||
const savedCompactMode = localStorage.getItem('compactMode');
|
||||
if (savedCompactMode === null) {
|
||||
localStorage.setItem('compactMode', String(isCompact));
|
||||
} else {
|
||||
setIsCompact(savedCompactMode === 'true');
|
||||
}
|
||||
}, [setIsCompact]);
|
||||
|
||||
const handleCompactChange = (checked: boolean) => {
|
||||
setIsCompact(checked);
|
||||
localStorage.setItem('compactMode', String(checked));
|
||||
};
|
||||
|
||||
const handleOptimizationChange = (mode: string) => {
|
||||
setOptimizationMode(mode);
|
||||
localStorage.setItem('optimizationMode', mode);
|
||||
};
|
||||
|
||||
return (
|
||||
<Popover className="relative w-full max-w-[15rem] md:max-w-md lg:max-w-lg">
|
||||
<PopoverButton
|
||||
@ -70,12 +48,6 @@ const Optimization = ({
|
||||
className="p-2 text-black/50 dark:text-white/50 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary active:scale-95 transition duration-200 hover:text-black dark:hover:text-white"
|
||||
>
|
||||
<div className="flex flex-row items-center space-x-1">
|
||||
{isCompact && (
|
||||
<Minimize2
|
||||
size={16}
|
||||
className="text-gray-600 dark:text-gray-400"
|
||||
/>
|
||||
)}
|
||||
{
|
||||
OptimizationModes.find((mode) => mode.key === optimizationMode)
|
||||
?.icon
|
||||
@ -98,11 +70,11 @@ const Optimization = ({
|
||||
leaveFrom="opacity-100 translate-y-0"
|
||||
leaveTo="opacity-0 translate-y-1"
|
||||
>
|
||||
<PopoverPanel className="absolute z-10 w-64 md:w-[250px] right-0 bottom-[100%] mb-2">
|
||||
<PopoverPanel className="absolute z-10 w-64 md:w-[250px] right-0">
|
||||
<div className="flex flex-col gap-2 bg-light-primary dark:bg-dark-primary border rounded-lg border-light-200 dark:border-dark-200 w-full p-4 max-h-[200px] md:max-h-none overflow-y-auto">
|
||||
{OptimizationModes.map((mode, i) => (
|
||||
<PopoverButton
|
||||
onClick={() => handleOptimizationChange(mode.key)}
|
||||
onClick={() => setOptimizationMode(mode.key)}
|
||||
key={i}
|
||||
disabled={mode.key === 'quality'}
|
||||
className={cn(
|
||||
@ -122,30 +94,6 @@ const Optimization = ({
|
||||
</p>
|
||||
</PopoverButton>
|
||||
))}
|
||||
<div className="border-t border-light-200 dark:border-dark-200 pt-2 mt-1">
|
||||
<label className="flex items-center space-x-2 p-2 rounded-lg cursor-pointer hover:bg-light-secondary dark:hover:bg-dark-secondary">
|
||||
<input
|
||||
type="checkbox"
|
||||
checked={isCompact}
|
||||
onChange={(e) => handleCompactChange(e.target.checked)}
|
||||
className="form-checkbox h-4 w-4 text-blue-600 transition duration-150 ease-in-out"
|
||||
/>
|
||||
<div className="flex items-center space-x-2">
|
||||
<Minimize2
|
||||
size={16}
|
||||
className="text-gray-600 dark:text-gray-400"
|
||||
/>
|
||||
<div>
|
||||
<p className="text-sm font-medium text-black dark:text-white">
|
||||
Compact Mode
|
||||
</p>
|
||||
<p className="text-xs text-black/70 dark:text-white/70">
|
||||
Generate more concise responses
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
</label>
|
||||
</div>
|
||||
</div>
|
||||
</PopoverPanel>
|
||||
</Transition>
|
@ -69,11 +69,15 @@ const MessageSources = ({ sources }: { sources: Document[] }) => {
|
||||
<div className="flex flex-row items-center space-x-1">
|
||||
{sources.slice(3, 6).map((source, i) => {
|
||||
return source.metadata.url === 'File' ? (
|
||||
<div className="bg-dark-200 hover:bg-dark-100 transition duration-200 flex items-center justify-center w-6 h-6 rounded-full">
|
||||
<div
|
||||
key={i}
|
||||
className="bg-dark-200 hover:bg-dark-100 transition duration-200 flex items-center justify-center w-6 h-6 rounded-full"
|
||||
>
|
||||
<File size={12} className="text-white/70" />
|
||||
</div>
|
||||
) : (
|
||||
<img
|
||||
key={i}
|
||||
src={`https://s2.googleusercontent.com/s2/favicons?domain_url=${source.metadata.url}`}
|
||||
width={16}
|
||||
height={16}
|
@ -14,9 +14,11 @@ type Image = {
|
||||
const SearchImages = ({
|
||||
query,
|
||||
chatHistory,
|
||||
messageId,
|
||||
}: {
|
||||
query: string;
|
||||
chatHistory: Message[];
|
||||
messageId: string;
|
||||
}) => {
|
||||
const [images, setImages] = useState<Image[] | null>(null);
|
||||
const [loading, setLoading] = useState(false);
|
||||
@ -27,41 +29,34 @@ const SearchImages = ({
|
||||
<>
|
||||
{!loading && images === null && (
|
||||
<button
|
||||
id="search-images"
|
||||
id={`search-images-${messageId}`}
|
||||
onClick={async () => {
|
||||
setLoading(true);
|
||||
|
||||
const chatModelProvider = localStorage.getItem('chatModelProvider');
|
||||
const chatModel = localStorage.getItem('chatModel');
|
||||
|
||||
const customOpenAIBaseURL = localStorage.getItem('openAIBaseURL');
|
||||
const customOpenAIKey = localStorage.getItem('openAIApiKey');
|
||||
const ollamaContextWindow =
|
||||
localStorage.getItem('ollamaContextWindow') || '2048';
|
||||
|
||||
const res = await fetch(
|
||||
`${process.env.NEXT_PUBLIC_API_URL}/images`,
|
||||
{
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
body: JSON.stringify({
|
||||
query: query,
|
||||
chatHistory: chatHistory,
|
||||
chatModel: {
|
||||
provider: chatModelProvider,
|
||||
model: chatModel,
|
||||
...(chatModelProvider === 'custom_openai' && {
|
||||
customOpenAIBaseURL: customOpenAIBaseURL,
|
||||
customOpenAIKey: customOpenAIKey,
|
||||
}),
|
||||
...(chatModelProvider === 'ollama' && {
|
||||
ollamaContextWindow: parseInt(ollamaContextWindow),
|
||||
}),
|
||||
},
|
||||
}),
|
||||
const res = await fetch(`/api/images`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
);
|
||||
body: JSON.stringify({
|
||||
query: query,
|
||||
chatHistory: chatHistory,
|
||||
chatModel: {
|
||||
provider: chatModelProvider,
|
||||
model: chatModel,
|
||||
...(chatModelProvider === 'custom_openai' && {
|
||||
customOpenAIBaseURL: customOpenAIBaseURL,
|
||||
customOpenAIKey: customOpenAIKey,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
});
|
||||
|
||||
const data = await res.json();
|
||||
|
@ -27,9 +27,11 @@ declare module 'yet-another-react-lightbox' {
|
||||
const Searchvideos = ({
|
||||
query,
|
||||
chatHistory,
|
||||
messageId,
|
||||
}: {
|
||||
query: string;
|
||||
chatHistory: Message[];
|
||||
messageId: string;
|
||||
}) => {
|
||||
const [videos, setVideos] = useState<Video[] | null>(null);
|
||||
const [loading, setLoading] = useState(false);
|
||||
@ -42,41 +44,34 @@ const Searchvideos = ({
|
||||
<>
|
||||
{!loading && videos === null && (
|
||||
<button
|
||||
id="search-videos"
|
||||
id={`search-videos-${messageId}`}
|
||||
onClick={async () => {
|
||||
setLoading(true);
|
||||
|
||||
const chatModelProvider = localStorage.getItem('chatModelProvider');
|
||||
const chatModel = localStorage.getItem('chatModel');
|
||||
|
||||
const customOpenAIBaseURL = localStorage.getItem('openAIBaseURL');
|
||||
const customOpenAIKey = localStorage.getItem('openAIApiKey');
|
||||
const ollamaContextWindow =
|
||||
localStorage.getItem('ollamaContextWindow') || '2048';
|
||||
|
||||
const res = await fetch(
|
||||
`${process.env.NEXT_PUBLIC_API_URL}/videos`,
|
||||
{
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
body: JSON.stringify({
|
||||
query: query,
|
||||
chatHistory: chatHistory,
|
||||
chatModel: {
|
||||
provider: chatModelProvider,
|
||||
model: chatModel,
|
||||
...(chatModelProvider === 'custom_openai' && {
|
||||
customOpenAIBaseURL: customOpenAIBaseURL,
|
||||
customOpenAIKey: customOpenAIKey,
|
||||
}),
|
||||
...(chatModelProvider === 'ollama' && {
|
||||
ollamaContextWindow: parseInt(ollamaContextWindow),
|
||||
}),
|
||||
},
|
||||
}),
|
||||
const res = await fetch(`/api/videos`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
);
|
||||
body: JSON.stringify({
|
||||
query: query,
|
||||
chatHistory: chatHistory,
|
||||
chatModel: {
|
||||
provider: chatModelProvider,
|
||||
model: chatModel,
|
||||
...(chatModelProvider === 'custom_openai' && {
|
||||
customOpenAIBaseURL: customOpenAIBaseURL,
|
||||
customOpenAIKey: customOpenAIKey,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
});
|
||||
|
||||
const data = await res.json();
|
||||
|
@ -16,8 +16,6 @@ const VerticalIconContainer = ({ children }: { children: ReactNode }) => {
|
||||
const Sidebar = ({ children }: { children: React.ReactNode }) => {
|
||||
const segments = useSelectedLayoutSegments();
|
||||
|
||||
const [isSettingsOpen, setIsSettingsOpen] = useState(false);
|
||||
|
||||
const navLinks = [
|
||||
{
|
||||
icon: Home,
|
43
src/components/ThinkBox.tsx
Normal file
43
src/components/ThinkBox.tsx
Normal file
@ -0,0 +1,43 @@
|
||||
'use client';
|
||||
|
||||
import { useState } from 'react';
|
||||
import { cn } from '@/lib/utils';
|
||||
import { ChevronDown, ChevronUp, BrainCircuit } from 'lucide-react';
|
||||
|
||||
interface ThinkBoxProps {
|
||||
content: string;
|
||||
}
|
||||
|
||||
const ThinkBox = ({ content }: ThinkBoxProps) => {
|
||||
const [isExpanded, setIsExpanded] = useState(false);
|
||||
|
||||
return (
|
||||
<div className="my-4 bg-light-secondary/50 dark:bg-dark-secondary/50 rounded-xl border border-light-200 dark:border-dark-200 overflow-hidden">
|
||||
<button
|
||||
onClick={() => setIsExpanded(!isExpanded)}
|
||||
className="w-full flex items-center justify-between px-4 py-1 text-black/90 dark:text-white/90 hover:bg-light-200 dark:hover:bg-dark-200 transition duration-200"
|
||||
>
|
||||
<div className="flex items-center space-x-2">
|
||||
<BrainCircuit
|
||||
size={20}
|
||||
className="text-[#9C27B0] dark:text-[#CE93D8]"
|
||||
/>
|
||||
<p className="font-medium text-sm">Thinking Process</p>
|
||||
</div>
|
||||
{isExpanded ? (
|
||||
<ChevronUp size={18} className="text-black/70 dark:text-white/70" />
|
||||
) : (
|
||||
<ChevronDown size={18} className="text-black/70 dark:text-white/70" />
|
||||
)}
|
||||
</button>
|
||||
|
||||
{isExpanded && (
|
||||
<div className="px-4 py-3 text-black/80 dark:text-white/80 text-sm border-t border-light-200 dark:border-dark-200 bg-light-100/50 dark:bg-dark-100/50 whitespace-pre-wrap">
|
||||
{content}
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
);
|
||||
};
|
||||
|
||||
export default ThinkBox;
|
@ -6,10 +6,8 @@ export const getSuggestions = async (chatHisory: Message[]) => {
|
||||
|
||||
const customOpenAIKey = localStorage.getItem('openAIApiKey');
|
||||
const customOpenAIBaseURL = localStorage.getItem('openAIBaseURL');
|
||||
const ollamaContextWindow =
|
||||
localStorage.getItem('ollamaContextWindow') || '2048';
|
||||
|
||||
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/suggestions`, {
|
||||
const res = await fetch(`/api/suggestions`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
@ -23,9 +21,6 @@ export const getSuggestions = async (chatHisory: Message[]) => {
|
||||
customOpenAIKey,
|
||||
customOpenAIBaseURL,
|
||||
}),
|
||||
...(chatModelProvider === 'ollama' && {
|
||||
ollamaContextWindow: parseInt(ollamaContextWindow),
|
||||
}),
|
||||
},
|
||||
}),
|
||||
});
|
@ -7,7 +7,7 @@ import { PromptTemplate } from '@langchain/core/prompts';
|
||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||
import { BaseMessage } from '@langchain/core/messages';
|
||||
import { StringOutputParser } from '@langchain/core/output_parsers';
|
||||
import { searchSearxng } from '../lib/searxng';
|
||||
import { searchSearxng } from '../searxng';
|
||||
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
|
||||
const imageSearchChainPrompt = `
|
||||
@ -36,6 +36,12 @@ type ImageSearchChainInput = {
|
||||
query: string;
|
||||
};
|
||||
|
||||
interface ImageSearchResult {
|
||||
img_src: string;
|
||||
url: string;
|
||||
title: string;
|
||||
}
|
||||
|
||||
const strParser = new StringOutputParser();
|
||||
|
||||
const createImageSearchChain = (llm: BaseChatModel) => {
|
||||
@ -52,11 +58,13 @@ const createImageSearchChain = (llm: BaseChatModel) => {
|
||||
llm,
|
||||
strParser,
|
||||
RunnableLambda.from(async (input: string) => {
|
||||
input = input.replace(/<think>.*?<\/think>/g, '');
|
||||
|
||||
const res = await searchSearxng(input, {
|
||||
engines: ['bing images', 'google images'],
|
||||
});
|
||||
|
||||
const images = [];
|
||||
const images: ImageSearchResult[] = [];
|
||||
|
||||
res.results.forEach((result) => {
|
||||
if (result.img_src && result.url && result.title) {
|
@ -1,5 +1,5 @@
|
||||
import { RunnableSequence, RunnableMap } from '@langchain/core/runnables';
|
||||
import ListLineOutputParser from '../lib/outputParsers/listLineOutputParser';
|
||||
import ListLineOutputParser from '../outputParsers/listLineOutputParser';
|
||||
import { PromptTemplate } from '@langchain/core/prompts';
|
||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||
import { BaseMessage } from '@langchain/core/messages';
|
@ -7,7 +7,7 @@ import { PromptTemplate } from '@langchain/core/prompts';
|
||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||
import { BaseMessage } from '@langchain/core/messages';
|
||||
import { StringOutputParser } from '@langchain/core/output_parsers';
|
||||
import { searchSearxng } from '../lib/searxng';
|
||||
import { searchSearxng } from '../searxng';
|
||||
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
|
||||
const VideoSearchChainPrompt = `
|
||||
@ -36,6 +36,13 @@ type VideoSearchChainInput = {
|
||||
query: string;
|
||||
};
|
||||
|
||||
interface VideoSearchResult {
|
||||
img_src: string;
|
||||
url: string;
|
||||
title: string;
|
||||
iframe_src: string;
|
||||
}
|
||||
|
||||
const strParser = new StringOutputParser();
|
||||
|
||||
const createVideoSearchChain = (llm: BaseChatModel) => {
|
||||
@ -52,11 +59,13 @@ const createVideoSearchChain = (llm: BaseChatModel) => {
|
||||
llm,
|
||||
strParser,
|
||||
RunnableLambda.from(async (input: string) => {
|
||||
input = input.replace(/<think>.*?<\/think>/g, '');
|
||||
|
||||
const res = await searchSearxng(input, {
|
||||
engines: ['youtube'],
|
||||
});
|
||||
|
||||
const videos = [];
|
||||
const videos: VideoSearchResult[] = [];
|
||||
|
||||
res.results.forEach((result) => {
|
||||
if (
|
@ -6,7 +6,6 @@ const configFileName = 'config.toml';
|
||||
|
||||
interface Config {
|
||||
GENERAL: {
|
||||
PORT: number;
|
||||
SIMILARITY_MEASURE: string;
|
||||
KEEP_ALIVE: string;
|
||||
};
|
||||
@ -43,11 +42,9 @@ type RecursivePartial<T> = {
|
||||
|
||||
const loadConfig = () =>
|
||||
toml.parse(
|
||||
fs.readFileSync(path.join(__dirname, `../${configFileName}`), 'utf-8'),
|
||||
fs.readFileSync(path.join(process.cwd(), `${configFileName}`), 'utf-8'),
|
||||
) as any as Config;
|
||||
|
||||
export const getPort = () => loadConfig().GENERAL.PORT;
|
||||
|
||||
export const getSimilarityMeasure = () =>
|
||||
loadConfig().GENERAL.SIMILARITY_MEASURE;
|
||||
|
||||
@ -109,9 +106,8 @@ const mergeConfigs = (current: any, update: any): any => {
|
||||
export const updateConfig = (config: RecursivePartial<Config>) => {
|
||||
const currentConfig = loadConfig();
|
||||
const mergedConfig = mergeConfigs(currentConfig, config);
|
||||
|
||||
fs.writeFileSync(
|
||||
path.join(__dirname, `../${configFileName}`),
|
||||
path.join(path.join(process.cwd(), `${configFileName}`)),
|
||||
toml.stringify(mergedConfig),
|
||||
);
|
||||
};
|
@ -1,8 +1,9 @@
|
||||
import { drizzle } from 'drizzle-orm/better-sqlite3';
|
||||
import Database from 'better-sqlite3';
|
||||
import * as schema from './schema';
|
||||
import path from 'path';
|
||||
|
||||
const sqlite = new Database('data/db.sqlite');
|
||||
const sqlite = new Database(path.join(process.cwd(), 'data/db.sqlite'));
|
||||
const db = drizzle(sqlite, {
|
||||
schema: schema,
|
||||
});
|
@ -28,7 +28,7 @@ export class HuggingFaceTransformersEmbeddings
|
||||
|
||||
timeout?: number;
|
||||
|
||||
private pipelinePromise: Promise<any>;
|
||||
private pipelinePromise: Promise<any> | undefined;
|
||||
|
||||
constructor(fields?: Partial<HuggingFaceTransformersEmbeddingsParams>) {
|
||||
super(fields ?? {});
|
||||
|
@ -9,7 +9,7 @@ class LineOutputParser extends BaseOutputParser<string> {
|
||||
|
||||
constructor(args?: LineOutputParserArgs) {
|
||||
super();
|
||||
this.key = args.key ?? this.key;
|
||||
this.key = args?.key ?? this.key;
|
||||
}
|
||||
|
||||
static lc_name() {
|
||||
|
@ -9,7 +9,7 @@ class LineListOutputParser extends BaseOutputParser<string[]> {
|
||||
|
||||
constructor(args?: LineListOutputParserArgs) {
|
||||
super();
|
||||
this.key = args.key ?? this.key;
|
||||
this.key = args?.key ?? this.key;
|
||||
}
|
||||
|
||||
static lc_name() {
|
||||
|
@ -6,11 +6,7 @@ import {
|
||||
redditSearchResponsePrompt,
|
||||
redditSearchRetrieverPrompt,
|
||||
} from './redditSearch';
|
||||
import {
|
||||
webSearchResponsePrompt,
|
||||
webSearchRetrieverPrompt,
|
||||
preciseWebSearchResponsePrompt,
|
||||
} from './webSearch';
|
||||
import { webSearchResponsePrompt, webSearchRetrieverPrompt } from './webSearch';
|
||||
import {
|
||||
wolframAlphaSearchResponsePrompt,
|
||||
wolframAlphaSearchRetrieverPrompt,
|
||||
@ -24,7 +20,6 @@ import {
|
||||
export default {
|
||||
webSearchResponsePrompt,
|
||||
webSearchRetrieverPrompt,
|
||||
preciseWebSearchResponsePrompt,
|
||||
academicSearchResponsePrompt,
|
||||
academicSearchRetrieverPrompt,
|
||||
redditSearchResponsePrompt,
|
@ -104,41 +104,3 @@ export const webSearchResponsePrompt = `
|
||||
|
||||
Current date & time in ISO format (UTC timezone) is: {date}.
|
||||
`;
|
||||
|
||||
export const preciseWebSearchResponsePrompt = `
|
||||
You are Perplexica, an AI model skilled in web search and crafting accurate, concise, and well-structured answers. You excel at breaking down long form content into brief summaries or specific answers.
|
||||
|
||||
Your task is to provide answers that are:
|
||||
- **Informative and relevant**: Precisely address the user's query using the given context.
|
||||
- **Well-structured**: Include clear headings and subheadings, and use a professional tone to present information concisely and logically.
|
||||
- **Cited and credible**: Use inline citations with [number] notation to refer to the context source(s) for each fact or detail included.
|
||||
- **Brief and Accurate**: If a direct answer is available, provide it succinctly without unnecessary elaboration.
|
||||
|
||||
### Formatting Instructions
|
||||
- **Structure**: Use a well-organized format with proper headings. Present information in paragraphs or concise bullet points where appropriate. You should never need more than one heading.
|
||||
- **Tone and Style**: Maintain a matter-of-fact tone and focus on delivering accurate information. Avoid overly complex language or unnecessary jargon.
|
||||
- **Markdown Usage**: Format your response with Markdown for clarity. Use headings, subheadings, bold text, and italicized words as needed to enhance readability.
|
||||
- **Length and Depth**: Be brief. Provide concise answers. Avoid superficial responses and strive for accuracy without unnecessary repetition.
|
||||
- **No main heading/title**: Start your response directly with the introduction unless asked to provide a specific title.
|
||||
- **Conclusion or Summary**: Do not include a conclusion unless the context specifically requires it.
|
||||
|
||||
### Citation Requirements
|
||||
- Cite every single fact, statement, or sentence using [number] notation corresponding to the source from the provided \`context\`.
|
||||
- Integrate citations naturally at the end of sentences or clauses as appropriate. For example, "The Eiffel Tower is one of the most visited landmarks in the world[1]."
|
||||
- Ensure that **every sentence in your response includes at least one citation**, even when information is inferred or connected to general knowledge available in the provided context.
|
||||
- Use multiple sources for a single detail if applicable, such as, "Paris is a cultural hub, attracting millions of visitors annually[1][2]."
|
||||
- Always prioritize credibility and accuracy by linking all statements back to their respective context sources.
|
||||
- Avoid citing unsupported assumptions or personal interpretations; if no source supports a statement, clearly indicate the limitation.
|
||||
|
||||
### Special Instructions
|
||||
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
|
||||
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
|
||||
- Do not provide additional commentary or personal opinions unless specifically asked for in the context.
|
||||
- Do not include plesantries or greetings in your response.
|
||||
|
||||
<context>
|
||||
{context}
|
||||
</context>
|
||||
|
||||
Current date & time in ISO format (UTC timezone) is: {date}.
|
||||
`;
|
@ -1,6 +1,38 @@
|
||||
import { ChatAnthropic } from '@langchain/anthropic';
|
||||
import { getAnthropicApiKey } from '../../config';
|
||||
import logger from '../../utils/logger';
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
import { ChatModel } from '.';
|
||||
import { getAnthropicApiKey } from '../config';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
|
||||
const anthropicChatModels: Record<string, string>[] = [
|
||||
{
|
||||
displayName: 'Claude 3.7 Sonnet',
|
||||
key: 'claude-3-7-sonnet-20250219',
|
||||
},
|
||||
{
|
||||
displayName: 'Claude 3.5 Haiku',
|
||||
key: 'claude-3-5-haiku-20241022',
|
||||
},
|
||||
{
|
||||
displayName: 'Claude 3.5 Sonnet v2',
|
||||
key: 'claude-3-5-sonnet-20241022',
|
||||
},
|
||||
{
|
||||
displayName: 'Claude 3.5 Sonnet',
|
||||
key: 'claude-3-5-sonnet-20240620',
|
||||
},
|
||||
{
|
||||
displayName: 'Claude 3 Opus',
|
||||
key: 'claude-3-opus-20240229',
|
||||
},
|
||||
{
|
||||
displayName: 'Claude 3 Sonnet',
|
||||
key: 'claude-3-sonnet-20240229',
|
||||
},
|
||||
{
|
||||
displayName: 'Claude 3 Haiku',
|
||||
key: 'claude-3-haiku-20240307',
|
||||
},
|
||||
];
|
||||
|
||||
export const loadAnthropicChatModels = async () => {
|
||||
const anthropicApiKey = getAnthropicApiKey();
|
||||
@ -8,52 +40,25 @@ export const loadAnthropicChatModels = async () => {
|
||||
if (!anthropicApiKey) return {};
|
||||
|
||||
try {
|
||||
const chatModels = {
|
||||
'claude-3-5-sonnet-20241022': {
|
||||
displayName: 'Claude 3.5 Sonnet',
|
||||
model: new ChatAnthropic({
|
||||
const chatModels: Record<string, ChatModel> = {};
|
||||
|
||||
anthropicChatModels.forEach((model) => {
|
||||
chatModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey: anthropicApiKey,
|
||||
modelName: model.key,
|
||||
temperature: 0.7,
|
||||
anthropicApiKey: anthropicApiKey,
|
||||
model: 'claude-3-5-sonnet-20241022',
|
||||
}),
|
||||
},
|
||||
'claude-3-5-haiku-20241022': {
|
||||
displayName: 'Claude 3.5 Haiku',
|
||||
model: new ChatAnthropic({
|
||||
temperature: 0.7,
|
||||
anthropicApiKey: anthropicApiKey,
|
||||
model: 'claude-3-5-haiku-20241022',
|
||||
}),
|
||||
},
|
||||
'claude-3-opus-20240229': {
|
||||
displayName: 'Claude 3 Opus',
|
||||
model: new ChatAnthropic({
|
||||
temperature: 0.7,
|
||||
anthropicApiKey: anthropicApiKey,
|
||||
model: 'claude-3-opus-20240229',
|
||||
}),
|
||||
},
|
||||
'claude-3-sonnet-20240229': {
|
||||
displayName: 'Claude 3 Sonnet',
|
||||
model: new ChatAnthropic({
|
||||
temperature: 0.7,
|
||||
anthropicApiKey: anthropicApiKey,
|
||||
model: 'claude-3-sonnet-20240229',
|
||||
}),
|
||||
},
|
||||
'claude-3-haiku-20240307': {
|
||||
displayName: 'Claude 3 Haiku',
|
||||
model: new ChatAnthropic({
|
||||
temperature: 0.7,
|
||||
anthropicApiKey: anthropicApiKey,
|
||||
model: 'claude-3-haiku-20240307',
|
||||
}),
|
||||
},
|
||||
};
|
||||
configuration: {
|
||||
baseURL: 'https://api.anthropic.com/v1/',
|
||||
},
|
||||
}) as unknown as BaseChatModel,
|
||||
};
|
||||
});
|
||||
|
||||
return chatModels;
|
||||
} catch (err) {
|
||||
logger.error(`Error loading Anthropic models: ${err}`);
|
||||
console.error(`Error loading Anthropic models: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
||||
|
@ -1,9 +1,42 @@
|
||||
import {
|
||||
ChatGoogleGenerativeAI,
|
||||
GoogleGenerativeAIEmbeddings,
|
||||
} from '@langchain/google-genai';
|
||||
import { getGeminiApiKey } from '../../config';
|
||||
import logger from '../../utils/logger';
|
||||
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
|
||||
import { getGeminiApiKey } from '../config';
|
||||
import { ChatModel, EmbeddingModel } from '.';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { Embeddings } from '@langchain/core/embeddings';
|
||||
|
||||
const geminiChatModels: Record<string, string>[] = [
|
||||
{
|
||||
displayName: 'Gemini 2.0 Flash',
|
||||
key: 'gemini-2.0-flash',
|
||||
},
|
||||
{
|
||||
displayName: 'Gemini 2.0 Flash-Lite',
|
||||
key: 'gemini-2.0-flash-lite',
|
||||
},
|
||||
{
|
||||
displayName: 'Gemini 2.0 Pro Experimental',
|
||||
key: 'gemini-2.0-pro-exp-02-05',
|
||||
},
|
||||
{
|
||||
displayName: 'Gemini 1.5 Flash',
|
||||
key: 'gemini-1.5-flash',
|
||||
},
|
||||
{
|
||||
displayName: 'Gemini 1.5 Flash-8B',
|
||||
key: 'gemini-1.5-flash-8b',
|
||||
},
|
||||
{
|
||||
displayName: 'Gemini 1.5 Pro',
|
||||
key: 'gemini-1.5-pro',
|
||||
},
|
||||
];
|
||||
|
||||
const geminiEmbeddingModels: Record<string, string>[] = [
|
||||
{
|
||||
displayName: 'Gemini Embedding',
|
||||
key: 'gemini-embedding-exp',
|
||||
},
|
||||
];
|
||||
|
||||
export const loadGeminiChatModels = async () => {
|
||||
const geminiApiKey = getGeminiApiKey();
|
||||
@ -11,75 +44,53 @@ export const loadGeminiChatModels = async () => {
|
||||
if (!geminiApiKey) return {};
|
||||
|
||||
try {
|
||||
const chatModels = {
|
||||
'gemini-1.5-flash': {
|
||||
displayName: 'Gemini 1.5 Flash',
|
||||
model: new ChatGoogleGenerativeAI({
|
||||
modelName: 'gemini-1.5-flash',
|
||||
const chatModels: Record<string, ChatModel> = {};
|
||||
|
||||
geminiChatModels.forEach((model) => {
|
||||
chatModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey: geminiApiKey,
|
||||
modelName: model.key,
|
||||
temperature: 0.7,
|
||||
apiKey: geminiApiKey,
|
||||
}),
|
||||
},
|
||||
'gemini-1.5-flash-8b': {
|
||||
displayName: 'Gemini 1.5 Flash 8B',
|
||||
model: new ChatGoogleGenerativeAI({
|
||||
modelName: 'gemini-1.5-flash-8b',
|
||||
temperature: 0.7,
|
||||
apiKey: geminiApiKey,
|
||||
}),
|
||||
},
|
||||
'gemini-1.5-pro': {
|
||||
displayName: 'Gemini 1.5 Pro',
|
||||
model: new ChatGoogleGenerativeAI({
|
||||
modelName: 'gemini-1.5-pro',
|
||||
temperature: 0.7,
|
||||
apiKey: geminiApiKey,
|
||||
}),
|
||||
},
|
||||
'gemini-2.0-flash-exp': {
|
||||
displayName: 'Gemini 2.0 Flash Exp',
|
||||
model: new ChatGoogleGenerativeAI({
|
||||
modelName: 'gemini-2.0-flash-exp',
|
||||
temperature: 0.7,
|
||||
apiKey: geminiApiKey,
|
||||
}),
|
||||
},
|
||||
'gemini-2.0-flash-thinking-exp-01-21': {
|
||||
displayName: 'Gemini 2.0 Flash Thinking Exp 01-21',
|
||||
model: new ChatGoogleGenerativeAI({
|
||||
modelName: 'gemini-2.0-flash-thinking-exp-01-21',
|
||||
temperature: 0.7,
|
||||
apiKey: geminiApiKey,
|
||||
}),
|
||||
},
|
||||
};
|
||||
configuration: {
|
||||
baseURL: 'https://generativelanguage.googleapis.com/v1beta/openai/',
|
||||
},
|
||||
}) as unknown as BaseChatModel,
|
||||
};
|
||||
});
|
||||
|
||||
return chatModels;
|
||||
} catch (err) {
|
||||
logger.error(`Error loading Gemini models: ${err}`);
|
||||
console.error(`Error loading Gemini models: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
||||
|
||||
export const loadGeminiEmbeddingsModels = async () => {
|
||||
export const loadGeminiEmbeddingModels = async () => {
|
||||
const geminiApiKey = getGeminiApiKey();
|
||||
|
||||
if (!geminiApiKey) return {};
|
||||
|
||||
try {
|
||||
const embeddingModels = {
|
||||
'text-embedding-004': {
|
||||
displayName: 'Text Embedding',
|
||||
model: new GoogleGenerativeAIEmbeddings({
|
||||
apiKey: geminiApiKey,
|
||||
modelName: 'text-embedding-004',
|
||||
}),
|
||||
},
|
||||
};
|
||||
const embeddingModels: Record<string, EmbeddingModel> = {};
|
||||
|
||||
geminiEmbeddingModels.forEach((model) => {
|
||||
embeddingModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new OpenAIEmbeddings({
|
||||
openAIApiKey: geminiApiKey,
|
||||
modelName: model.key,
|
||||
configuration: {
|
||||
baseURL: 'https://generativelanguage.googleapis.com/v1beta/openai/',
|
||||
},
|
||||
}) as unknown as Embeddings,
|
||||
};
|
||||
});
|
||||
|
||||
return embeddingModels;
|
||||
} catch (err) {
|
||||
logger.error(`Error loading Gemini embeddings model: ${err}`);
|
||||
console.error(`Error loading OpenAI embeddings models: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
||||
|
@ -1,6 +1,78 @@
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
import { getGroqApiKey } from '../../config';
|
||||
import logger from '../../utils/logger';
|
||||
import { getGroqApiKey } from '../config';
|
||||
import { ChatModel } from '.';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
|
||||
const groqChatModels: Record<string, string>[] = [
|
||||
{
|
||||
displayName: 'Gemma2 9B IT',
|
||||
key: 'gemma2-9b-it',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama 3.3 70B Versatile',
|
||||
key: 'llama-3.3-70b-versatile',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama 3.1 8B Instant',
|
||||
key: 'llama-3.1-8b-instant',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama3 70B 8192',
|
||||
key: 'llama3-70b-8192',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama3 8B 8192',
|
||||
key: 'llama3-8b-8192',
|
||||
},
|
||||
{
|
||||
displayName: 'Mixtral 8x7B 32768',
|
||||
key: 'mixtral-8x7b-32768',
|
||||
},
|
||||
{
|
||||
displayName: 'Qwen QWQ 32B (Preview)',
|
||||
key: 'qwen-qwq-32b',
|
||||
},
|
||||
{
|
||||
displayName: 'Mistral Saba 24B (Preview)',
|
||||
key: 'mistral-saba-24b',
|
||||
},
|
||||
{
|
||||
displayName: 'Qwen 2.5 Coder 32B (Preview)',
|
||||
key: 'qwen-2.5-coder-32b',
|
||||
},
|
||||
{
|
||||
displayName: 'Qwen 2.5 32B (Preview)',
|
||||
key: 'qwen-2.5-32b',
|
||||
},
|
||||
{
|
||||
displayName: 'DeepSeek R1 Distill Qwen 32B (Preview)',
|
||||
key: 'deepseek-r1-distill-qwen-32b',
|
||||
},
|
||||
{
|
||||
displayName: 'DeepSeek R1 Distill Llama 70B (Preview)',
|
||||
key: 'deepseek-r1-distill-llama-70b',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama 3.3 70B SpecDec (Preview)',
|
||||
key: 'llama-3.3-70b-specdec',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama 3.2 1B Preview (Preview)',
|
||||
key: 'llama-3.2-1b-preview',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama 3.2 3B Preview (Preview)',
|
||||
key: 'llama-3.2-3b-preview',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama 3.2 11B Vision Preview (Preview)',
|
||||
key: 'llama-3.2-11b-vision-preview',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama 3.2 90B Vision Preview (Preview)',
|
||||
key: 'llama-3.2-90b-vision-preview',
|
||||
},
|
||||
];
|
||||
|
||||
export const loadGroqChatModels = async () => {
|
||||
const groqApiKey = getGroqApiKey();
|
||||
@ -8,129 +80,25 @@ export const loadGroqChatModels = async () => {
|
||||
if (!groqApiKey) return {};
|
||||
|
||||
try {
|
||||
const chatModels = {
|
||||
'llama-3.3-70b-versatile': {
|
||||
displayName: 'Llama 3.3 70B',
|
||||
model: new ChatOpenAI(
|
||||
{
|
||||
openAIApiKey: groqApiKey,
|
||||
modelName: 'llama-3.3-70b-versatile',
|
||||
temperature: 0.7,
|
||||
},
|
||||
{
|
||||
const chatModels: Record<string, ChatModel> = {};
|
||||
|
||||
groqChatModels.forEach((model) => {
|
||||
chatModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey: groqApiKey,
|
||||
modelName: model.key,
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
baseURL: 'https://api.groq.com/openai/v1',
|
||||
},
|
||||
),
|
||||
},
|
||||
'llama-3.2-3b-preview': {
|
||||
displayName: 'Llama 3.2 3B',
|
||||
model: new ChatOpenAI(
|
||||
{
|
||||
openAIApiKey: groqApiKey,
|
||||
modelName: 'llama-3.2-3b-preview',
|
||||
temperature: 0.7,
|
||||
},
|
||||
{
|
||||
baseURL: 'https://api.groq.com/openai/v1',
|
||||
},
|
||||
),
|
||||
},
|
||||
'llama-3.2-11b-vision-preview': {
|
||||
displayName: 'Llama 3.2 11B Vision',
|
||||
model: new ChatOpenAI(
|
||||
{
|
||||
openAIApiKey: groqApiKey,
|
||||
modelName: 'llama-3.2-11b-vision-preview',
|
||||
temperature: 0.7,
|
||||
},
|
||||
{
|
||||
baseURL: 'https://api.groq.com/openai/v1',
|
||||
},
|
||||
),
|
||||
},
|
||||
'llama-3.2-90b-vision-preview': {
|
||||
displayName: 'Llama 3.2 90B Vision',
|
||||
model: new ChatOpenAI(
|
||||
{
|
||||
openAIApiKey: groqApiKey,
|
||||
modelName: 'llama-3.2-90b-vision-preview',
|
||||
temperature: 0.7,
|
||||
},
|
||||
{
|
||||
baseURL: 'https://api.groq.com/openai/v1',
|
||||
},
|
||||
),
|
||||
},
|
||||
'llama-3.1-8b-instant': {
|
||||
displayName: 'Llama 3.1 8B',
|
||||
model: new ChatOpenAI(
|
||||
{
|
||||
openAIApiKey: groqApiKey,
|
||||
modelName: 'llama-3.1-8b-instant',
|
||||
temperature: 0.7,
|
||||
},
|
||||
{
|
||||
baseURL: 'https://api.groq.com/openai/v1',
|
||||
},
|
||||
),
|
||||
},
|
||||
'llama3-8b-8192': {
|
||||
displayName: 'LLaMA3 8B',
|
||||
model: new ChatOpenAI(
|
||||
{
|
||||
openAIApiKey: groqApiKey,
|
||||
modelName: 'llama3-8b-8192',
|
||||
temperature: 0.7,
|
||||
},
|
||||
{
|
||||
baseURL: 'https://api.groq.com/openai/v1',
|
||||
},
|
||||
),
|
||||
},
|
||||
'llama3-70b-8192': {
|
||||
displayName: 'LLaMA3 70B',
|
||||
model: new ChatOpenAI(
|
||||
{
|
||||
openAIApiKey: groqApiKey,
|
||||
modelName: 'llama3-70b-8192',
|
||||
temperature: 0.7,
|
||||
},
|
||||
{
|
||||
baseURL: 'https://api.groq.com/openai/v1',
|
||||
},
|
||||
),
|
||||
},
|
||||
'mixtral-8x7b-32768': {
|
||||
displayName: 'Mixtral 8x7B',
|
||||
model: new ChatOpenAI(
|
||||
{
|
||||
openAIApiKey: groqApiKey,
|
||||
modelName: 'mixtral-8x7b-32768',
|
||||
temperature: 0.7,
|
||||
},
|
||||
{
|
||||
baseURL: 'https://api.groq.com/openai/v1',
|
||||
},
|
||||
),
|
||||
},
|
||||
'gemma2-9b-it': {
|
||||
displayName: 'Gemma2 9B',
|
||||
model: new ChatOpenAI(
|
||||
{
|
||||
openAIApiKey: groqApiKey,
|
||||
modelName: 'gemma2-9b-it',
|
||||
temperature: 0.7,
|
||||
},
|
||||
{
|
||||
baseURL: 'https://api.groq.com/openai/v1',
|
||||
},
|
||||
),
|
||||
},
|
||||
};
|
||||
}) as unknown as BaseChatModel,
|
||||
};
|
||||
});
|
||||
|
||||
return chatModels;
|
||||
} catch (err) {
|
||||
logger.error(`Error loading Groq models: ${err}`);
|
||||
console.error(`Error loading Groq models: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
||||
|
@ -1,33 +1,51 @@
|
||||
import { loadGroqChatModels } from './groq';
|
||||
import { loadOllamaChatModels, loadOllamaEmbeddingsModels } from './ollama';
|
||||
import { loadOpenAIChatModels, loadOpenAIEmbeddingsModels } from './openai';
|
||||
import { loadAnthropicChatModels } from './anthropic';
|
||||
import { loadTransformersEmbeddingsModels } from './transformers';
|
||||
import { loadGeminiChatModels, loadGeminiEmbeddingsModels } from './gemini';
|
||||
import { Embeddings } from '@langchain/core/embeddings';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { loadOpenAIChatModels, loadOpenAIEmbeddingModels } from './openai';
|
||||
import {
|
||||
getCustomOpenaiApiKey,
|
||||
getCustomOpenaiApiUrl,
|
||||
getCustomOpenaiModelName,
|
||||
} from '../../config';
|
||||
} from '../config';
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
import { loadOllamaChatModels, loadOllamaEmbeddingModels } from './ollama';
|
||||
import { loadGroqChatModels } from './groq';
|
||||
import { loadAnthropicChatModels } from './anthropic';
|
||||
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini';
|
||||
import { loadTransformersEmbeddingsModels } from './transformers';
|
||||
|
||||
const chatModelProviders = {
|
||||
export interface ChatModel {
|
||||
displayName: string;
|
||||
model: BaseChatModel;
|
||||
}
|
||||
|
||||
export interface EmbeddingModel {
|
||||
displayName: string;
|
||||
model: Embeddings;
|
||||
}
|
||||
|
||||
export const chatModelProviders: Record<
|
||||
string,
|
||||
() => Promise<Record<string, ChatModel>>
|
||||
> = {
|
||||
openai: loadOpenAIChatModels,
|
||||
groq: loadGroqChatModels,
|
||||
ollama: loadOllamaChatModels,
|
||||
groq: loadGroqChatModels,
|
||||
anthropic: loadAnthropicChatModels,
|
||||
gemini: loadGeminiChatModels,
|
||||
};
|
||||
|
||||
const embeddingModelProviders = {
|
||||
openai: loadOpenAIEmbeddingsModels,
|
||||
local: loadTransformersEmbeddingsModels,
|
||||
ollama: loadOllamaEmbeddingsModels,
|
||||
gemini: loadGeminiEmbeddingsModels,
|
||||
export const embeddingModelProviders: Record<
|
||||
string,
|
||||
() => Promise<Record<string, EmbeddingModel>>
|
||||
> = {
|
||||
openai: loadOpenAIEmbeddingModels,
|
||||
ollama: loadOllamaEmbeddingModels,
|
||||
gemini: loadGeminiEmbeddingModels,
|
||||
transformers: loadTransformersEmbeddingsModels,
|
||||
};
|
||||
|
||||
export const getAvailableChatModelProviders = async () => {
|
||||
const models = {};
|
||||
const models: Record<string, Record<string, ChatModel>> = {};
|
||||
|
||||
for (const provider in chatModelProviders) {
|
||||
const providerModels = await chatModelProviders[provider]();
|
||||
@ -52,7 +70,7 @@ export const getAvailableChatModelProviders = async () => {
|
||||
configuration: {
|
||||
baseURL: customOpenAiApiUrl,
|
||||
},
|
||||
}),
|
||||
}) as unknown as BaseChatModel,
|
||||
},
|
||||
}
|
||||
: {}),
|
||||
@ -62,7 +80,7 @@ export const getAvailableChatModelProviders = async () => {
|
||||
};
|
||||
|
||||
export const getAvailableEmbeddingModelProviders = async () => {
|
||||
const models = {};
|
||||
const models: Record<string, Record<string, EmbeddingModel>> = {};
|
||||
|
||||
for (const provider in embeddingModelProviders) {
|
||||
const providerModels = await embeddingModelProviders[provider]();
|
||||
|
@ -1,74 +1,73 @@
|
||||
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
|
||||
import { getKeepAlive, getOllamaApiEndpoint } from '../../config';
|
||||
import logger from '../../utils/logger';
|
||||
import { ChatOllama } from '@langchain/community/chat_models/ollama';
|
||||
import axios from 'axios';
|
||||
import { getKeepAlive, getOllamaApiEndpoint } from '../config';
|
||||
import { ChatModel, EmbeddingModel } from '.';
|
||||
import { ChatOllama } from '@langchain/community/chat_models/ollama';
|
||||
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
|
||||
|
||||
export const loadOllamaChatModels = async () => {
|
||||
const ollamaEndpoint = getOllamaApiEndpoint();
|
||||
const keepAlive = getKeepAlive();
|
||||
const ollamaApiEndpoint = getOllamaApiEndpoint();
|
||||
|
||||
if (!ollamaEndpoint) return {};
|
||||
if (!ollamaApiEndpoint) return {};
|
||||
|
||||
try {
|
||||
const response = await axios.get(`${ollamaEndpoint}/api/tags`, {
|
||||
const res = await axios.get(`${ollamaApiEndpoint}/api/tags`, {
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
});
|
||||
|
||||
const { models: ollamaModels } = response.data;
|
||||
const { models } = res.data;
|
||||
|
||||
const chatModels = ollamaModels.reduce((acc, model) => {
|
||||
acc[model.model] = {
|
||||
const chatModels: Record<string, ChatModel> = {};
|
||||
|
||||
models.forEach((model: any) => {
|
||||
chatModels[model.model] = {
|
||||
displayName: model.name,
|
||||
model: new ChatOllama({
|
||||
baseUrl: ollamaEndpoint,
|
||||
baseUrl: ollamaApiEndpoint,
|
||||
model: model.model,
|
||||
temperature: 0.7,
|
||||
keepAlive: keepAlive,
|
||||
keepAlive: getKeepAlive(),
|
||||
}),
|
||||
};
|
||||
|
||||
return acc;
|
||||
}, {});
|
||||
});
|
||||
|
||||
return chatModels;
|
||||
} catch (err) {
|
||||
logger.error(`Error loading Ollama models: ${err}`);
|
||||
console.error(`Error loading Ollama models: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
||||
|
||||
export const loadOllamaEmbeddingsModels = async () => {
|
||||
const ollamaEndpoint = getOllamaApiEndpoint();
|
||||
export const loadOllamaEmbeddingModels = async () => {
|
||||
const ollamaApiEndpoint = getOllamaApiEndpoint();
|
||||
|
||||
if (!ollamaEndpoint) return {};
|
||||
if (!ollamaApiEndpoint) return {};
|
||||
|
||||
try {
|
||||
const response = await axios.get(`${ollamaEndpoint}/api/tags`, {
|
||||
const res = await axios.get(`${ollamaApiEndpoint}/api/tags`, {
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
});
|
||||
|
||||
const { models: ollamaModels } = response.data;
|
||||
const { models } = res.data;
|
||||
|
||||
const embeddingsModels = ollamaModels.reduce((acc, model) => {
|
||||
acc[model.model] = {
|
||||
const embeddingModels: Record<string, EmbeddingModel> = {};
|
||||
|
||||
models.forEach((model: any) => {
|
||||
embeddingModels[model.model] = {
|
||||
displayName: model.name,
|
||||
model: new OllamaEmbeddings({
|
||||
baseUrl: ollamaEndpoint,
|
||||
baseUrl: ollamaApiEndpoint,
|
||||
model: model.model,
|
||||
}),
|
||||
};
|
||||
});
|
||||
|
||||
return acc;
|
||||
}, {});
|
||||
|
||||
return embeddingsModels;
|
||||
return embeddingModels;
|
||||
} catch (err) {
|
||||
logger.error(`Error loading Ollama embeddings model: ${err}`);
|
||||
console.error(`Error loading Ollama embeddings models: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
||||
|
@ -1,89 +1,90 @@
|
||||
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
|
||||
import { getOpenaiApiKey } from '../../config';
|
||||
import logger from '../../utils/logger';
|
||||
import { getOpenaiApiKey } from '../config';
|
||||
import { ChatModel, EmbeddingModel } from '.';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { Embeddings } from '@langchain/core/embeddings';
|
||||
|
||||
const openaiChatModels: Record<string, string>[] = [
|
||||
{
|
||||
displayName: 'GPT-3.5 Turbo',
|
||||
key: 'gpt-3.5-turbo',
|
||||
},
|
||||
{
|
||||
displayName: 'GPT-4',
|
||||
key: 'gpt-4',
|
||||
},
|
||||
{
|
||||
displayName: 'GPT-4 turbo',
|
||||
key: 'gpt-4-turbo',
|
||||
},
|
||||
{
|
||||
displayName: 'GPT-4 omni',
|
||||
key: 'gpt-4o',
|
||||
},
|
||||
{
|
||||
displayName: 'GPT-4 omni mini',
|
||||
key: 'gpt-4o-mini',
|
||||
},
|
||||
];
|
||||
|
||||
const openaiEmbeddingModels: Record<string, string>[] = [
|
||||
{
|
||||
displayName: 'Text Embedding 3 Small',
|
||||
key: 'text-embedding-3-small',
|
||||
},
|
||||
{
|
||||
displayName: 'Text Embedding 3 Large',
|
||||
key: 'text-embedding-3-large',
|
||||
},
|
||||
];
|
||||
|
||||
export const loadOpenAIChatModels = async () => {
|
||||
const openAIApiKey = getOpenaiApiKey();
|
||||
const openaiApiKey = getOpenaiApiKey();
|
||||
|
||||
if (!openAIApiKey) return {};
|
||||
if (!openaiApiKey) return {};
|
||||
|
||||
try {
|
||||
const chatModels = {
|
||||
'gpt-3.5-turbo': {
|
||||
displayName: 'GPT-3.5 Turbo',
|
||||
const chatModels: Record<string, ChatModel> = {};
|
||||
|
||||
openaiChatModels.forEach((model) => {
|
||||
chatModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey,
|
||||
modelName: 'gpt-3.5-turbo',
|
||||
openAIApiKey: openaiApiKey,
|
||||
modelName: model.key,
|
||||
temperature: 0.7,
|
||||
}),
|
||||
},
|
||||
'gpt-4': {
|
||||
displayName: 'GPT-4',
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey,
|
||||
modelName: 'gpt-4',
|
||||
temperature: 0.7,
|
||||
}),
|
||||
},
|
||||
'gpt-4-turbo': {
|
||||
displayName: 'GPT-4 turbo',
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey,
|
||||
modelName: 'gpt-4-turbo',
|
||||
temperature: 0.7,
|
||||
}),
|
||||
},
|
||||
'gpt-4o': {
|
||||
displayName: 'GPT-4 omni',
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey,
|
||||
modelName: 'gpt-4o',
|
||||
temperature: 0.7,
|
||||
}),
|
||||
},
|
||||
'gpt-4o-mini': {
|
||||
displayName: 'GPT-4 omni mini',
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey,
|
||||
modelName: 'gpt-4o-mini',
|
||||
temperature: 0.7,
|
||||
}),
|
||||
},
|
||||
};
|
||||
}) as unknown as BaseChatModel,
|
||||
};
|
||||
});
|
||||
|
||||
return chatModels;
|
||||
} catch (err) {
|
||||
logger.error(`Error loading OpenAI models: ${err}`);
|
||||
console.error(`Error loading OpenAI models: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
||||
|
||||
export const loadOpenAIEmbeddingsModels = async () => {
|
||||
const openAIApiKey = getOpenaiApiKey();
|
||||
export const loadOpenAIEmbeddingModels = async () => {
|
||||
const openaiApiKey = getOpenaiApiKey();
|
||||
|
||||
if (!openAIApiKey) return {};
|
||||
if (!openaiApiKey) return {};
|
||||
|
||||
try {
|
||||
const embeddingModels = {
|
||||
'text-embedding-3-small': {
|
||||
displayName: 'Text Embedding 3 Small',
|
||||
const embeddingModels: Record<string, EmbeddingModel> = {};
|
||||
|
||||
openaiEmbeddingModels.forEach((model) => {
|
||||
embeddingModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new OpenAIEmbeddings({
|
||||
openAIApiKey,
|
||||
modelName: 'text-embedding-3-small',
|
||||
}),
|
||||
},
|
||||
'text-embedding-3-large': {
|
||||
displayName: 'Text Embedding 3 Large',
|
||||
model: new OpenAIEmbeddings({
|
||||
openAIApiKey,
|
||||
modelName: 'text-embedding-3-large',
|
||||
}),
|
||||
},
|
||||
};
|
||||
openAIApiKey: openaiApiKey,
|
||||
modelName: model.key,
|
||||
}) as unknown as Embeddings,
|
||||
};
|
||||
});
|
||||
|
||||
return embeddingModels;
|
||||
} catch (err) {
|
||||
logger.error(`Error loading OpenAI embeddings model: ${err}`);
|
||||
console.error(`Error loading OpenAI embeddings models: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
||||
|
@ -1,4 +1,3 @@
|
||||
import logger from '../../utils/logger';
|
||||
import { HuggingFaceTransformersEmbeddings } from '../huggingfaceTransformer';
|
||||
|
||||
export const loadTransformersEmbeddingsModels = async () => {
|
||||
@ -26,7 +25,7 @@ export const loadTransformersEmbeddingsModels = async () => {
|
||||
|
||||
return embeddingModels;
|
||||
} catch (err) {
|
||||
logger.error(`Error loading Transformers embeddings model: ${err}`);
|
||||
console.error(`Error loading Transformers embeddings model: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
||||
|
59
src/lib/search/index.ts
Normal file
59
src/lib/search/index.ts
Normal file
@ -0,0 +1,59 @@
|
||||
import MetaSearchAgent from '@/lib/search/metaSearchAgent';
|
||||
import prompts from '../prompts';
|
||||
|
||||
export const searchHandlers: Record<string, MetaSearchAgent> = {
|
||||
webSearch: new MetaSearchAgent({
|
||||
activeEngines: [],
|
||||
queryGeneratorPrompt: prompts.webSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.webSearchResponsePrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0.3,
|
||||
searchWeb: true,
|
||||
summarizer: true,
|
||||
}),
|
||||
academicSearch: new MetaSearchAgent({
|
||||
activeEngines: ['arxiv', 'google scholar', 'pubmed'],
|
||||
queryGeneratorPrompt: prompts.academicSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.academicSearchResponsePrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0,
|
||||
searchWeb: true,
|
||||
summarizer: false,
|
||||
}),
|
||||
writingAssistant: new MetaSearchAgent({
|
||||
activeEngines: [],
|
||||
queryGeneratorPrompt: '',
|
||||
responsePrompt: prompts.writingAssistantPrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0,
|
||||
searchWeb: false,
|
||||
summarizer: false,
|
||||
}),
|
||||
wolframAlphaSearch: new MetaSearchAgent({
|
||||
activeEngines: ['wolframalpha'],
|
||||
queryGeneratorPrompt: prompts.wolframAlphaSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.wolframAlphaSearchResponsePrompt,
|
||||
rerank: false,
|
||||
rerankThreshold: 0,
|
||||
searchWeb: true,
|
||||
summarizer: false,
|
||||
}),
|
||||
youtubeSearch: new MetaSearchAgent({
|
||||
activeEngines: ['youtube'],
|
||||
queryGeneratorPrompt: prompts.youtubeSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.youtubeSearchResponsePrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0.3,
|
||||
searchWeb: true,
|
||||
summarizer: false,
|
||||
}),
|
||||
redditSearch: new MetaSearchAgent({
|
||||
activeEngines: ['reddit'],
|
||||
queryGeneratorPrompt: prompts.redditSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.redditSearchResponsePrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0.3,
|
||||
searchWeb: true,
|
||||
summarizer: false,
|
||||
}),
|
||||
};
|
@ -13,18 +13,17 @@ import {
|
||||
} from '@langchain/core/runnables';
|
||||
import { BaseMessage } from '@langchain/core/messages';
|
||||
import { StringOutputParser } from '@langchain/core/output_parsers';
|
||||
import LineListOutputParser from '../lib/outputParsers/listLineOutputParser';
|
||||
import LineOutputParser from '../lib/outputParsers/lineOutputParser';
|
||||
import LineListOutputParser from '../outputParsers/listLineOutputParser';
|
||||
import LineOutputParser from '../outputParsers/lineOutputParser';
|
||||
import { getDocumentsFromLinks } from '../utils/documents';
|
||||
import { Document } from 'langchain/document';
|
||||
import { searchSearxng } from '../lib/searxng';
|
||||
import path from 'path';
|
||||
import fs from 'fs';
|
||||
import { searchSearxng } from '../searxng';
|
||||
import path from 'node:path';
|
||||
import fs from 'node:fs';
|
||||
import computeSimilarity from '../utils/computeSimilarity';
|
||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||
import eventEmitter from 'events';
|
||||
import { StreamEvent } from '@langchain/core/tracers/log_stream';
|
||||
import { IterableReadableStream } from '@langchain/core/utils/stream';
|
||||
|
||||
export interface MetaSearchAgentType {
|
||||
searchAndAnswer: (
|
||||
@ -34,7 +33,6 @@ export interface MetaSearchAgentType {
|
||||
embeddings: Embeddings,
|
||||
optimizationMode: 'speed' | 'balanced' | 'quality',
|
||||
fileIds: string[],
|
||||
isCompact?: boolean,
|
||||
) => Promise<eventEmitter>;
|
||||
}
|
||||
|
||||
@ -45,7 +43,6 @@ interface Config {
|
||||
rerankThreshold: number;
|
||||
queryGeneratorPrompt: string;
|
||||
responsePrompt: string;
|
||||
preciseResponsePrompt: string;
|
||||
activeEngines: string[];
|
||||
}
|
||||
|
||||
@ -92,7 +89,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
question = 'summarize';
|
||||
}
|
||||
|
||||
let docs = [];
|
||||
let docs: Document[] = [];
|
||||
|
||||
const linkDocs = await getDocumentsFromLinks({ links });
|
||||
|
||||
@ -205,6 +202,8 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
|
||||
return { query: question, docs: docs };
|
||||
} else {
|
||||
question = question.replace(/<think>.*?<\/think>/g, '');
|
||||
|
||||
const res = await searchSearxng(question, {
|
||||
language: 'en',
|
||||
engines: this.config.activeEngines,
|
||||
@ -237,7 +236,6 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
fileIds: string[],
|
||||
embeddings: Embeddings,
|
||||
optimizationMode: 'speed' | 'balanced' | 'quality',
|
||||
isCompact?: boolean,
|
||||
) {
|
||||
return RunnableSequence.from([
|
||||
RunnableMap.from({
|
||||
@ -281,12 +279,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
.pipe(this.processDocs),
|
||||
}),
|
||||
ChatPromptTemplate.fromMessages([
|
||||
[
|
||||
'system',
|
||||
isCompact
|
||||
? this.config.preciseResponsePrompt
|
||||
: this.config.responsePrompt,
|
||||
],
|
||||
['system', this.config.responsePrompt],
|
||||
new MessagesPlaceholder('chat_history'),
|
||||
['user', '{query}'],
|
||||
]),
|
||||
@ -319,7 +312,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
const embeddings = JSON.parse(fs.readFileSync(embeddingsPath, 'utf8'));
|
||||
|
||||
const fileSimilaritySearchObject = content.contents.map(
|
||||
(c: string, i) => {
|
||||
(c: string, i: number) => {
|
||||
return {
|
||||
fileName: content.title,
|
||||
content: c,
|
||||
@ -422,6 +415,8 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
|
||||
return sortedDocs;
|
||||
}
|
||||
|
||||
return [];
|
||||
}
|
||||
|
||||
private processDocs(docs: Document[]) {
|
||||
@ -434,7 +429,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
}
|
||||
|
||||
private async handleStream(
|
||||
stream: IterableReadableStream<StreamEvent>,
|
||||
stream: AsyncGenerator<StreamEvent, any, any>,
|
||||
emitter: eventEmitter,
|
||||
) {
|
||||
for await (const event of stream) {
|
||||
@ -473,7 +468,6 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
embeddings: Embeddings,
|
||||
optimizationMode: 'speed' | 'balanced' | 'quality',
|
||||
fileIds: string[],
|
||||
isCompact?: boolean,
|
||||
) {
|
||||
const emitter = new eventEmitter();
|
||||
|
||||
@ -482,7 +476,6 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
fileIds,
|
||||
embeddings,
|
||||
optimizationMode,
|
||||
isCompact,
|
||||
);
|
||||
|
||||
const stream = answeringChain.streamEvents(
|
@ -1,5 +1,5 @@
|
||||
import axios from 'axios';
|
||||
import { getSearxngApiEndpoint } from '../config';
|
||||
import { getSearxngApiEndpoint } from './config';
|
||||
|
||||
interface SearxngSearchOptions {
|
||||
categories?: string[];
|
||||
@ -30,11 +30,12 @@ export const searchSearxng = async (
|
||||
|
||||
if (opts) {
|
||||
Object.keys(opts).forEach((key) => {
|
||||
if (Array.isArray(opts[key])) {
|
||||
url.searchParams.append(key, opts[key].join(','));
|
||||
const value = opts[key as keyof SearxngSearchOptions];
|
||||
if (Array.isArray(value)) {
|
||||
url.searchParams.append(key, value.join(','));
|
||||
return;
|
||||
}
|
||||
url.searchParams.append(key, opts[key]);
|
||||
url.searchParams.append(key, value as string);
|
||||
});
|
||||
}
|
||||
|
||||
|
5
src/lib/types/compute-dot.d.ts
vendored
Normal file
5
src/lib/types/compute-dot.d.ts
vendored
Normal file
@ -0,0 +1,5 @@
|
||||
declare function computeDot(vectorA: number[], vectorB: number[]): number;
|
||||
|
||||
declare module 'compute-dot' {
|
||||
export default computeDot;
|
||||
}
|
@ -6,7 +6,7 @@ const computeSimilarity = (x: number[], y: number[]): number => {
|
||||
const similarityMeasure = getSimilarityMeasure();
|
||||
|
||||
if (similarityMeasure === 'cosine') {
|
||||
return cosineSimilarity(x, y);
|
||||
return cosineSimilarity(x, y) as number;
|
||||
} else if (similarityMeasure === 'dot') {
|
||||
return dot(x, y);
|
||||
}
|
@ -3,7 +3,6 @@ import { htmlToText } from 'html-to-text';
|
||||
import { RecursiveCharacterTextSplitter } from 'langchain/text_splitter';
|
||||
import { Document } from '@langchain/core/documents';
|
||||
import pdfParse from 'pdf-parse';
|
||||
import logger from './logger';
|
||||
|
||||
export const getDocumentsFromLinks = async ({ links }: { links: string[] }) => {
|
||||
const splitter = new RecursiveCharacterTextSplitter();
|
||||
@ -79,12 +78,13 @@ export const getDocumentsFromLinks = async ({ links }: { links: string[] }) => {
|
||||
|
||||
docs.push(...linkDocs);
|
||||
} catch (err) {
|
||||
logger.error(
|
||||
`Error at generating documents from links: ${err.message}`,
|
||||
console.error(
|
||||
'An error occurred while getting documents from links: ',
|
||||
err,
|
||||
);
|
||||
docs.push(
|
||||
new Document({
|
||||
pageContent: `Failed to retrieve content from the link: ${err.message}`,
|
||||
pageContent: `Failed to retrieve content from the link: ${err}`,
|
||||
metadata: {
|
||||
title: 'Failed to retrieve content',
|
||||
url: link,
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user