Compare commits

..

5 Commits

Author SHA1 Message Date
ItzCrazyKns
df33229934 feat(custom-openai): use apiKey instead of openAIApiKey 2025-07-19 16:14:46 +05:30
ItzCrazyKns
49fafaa096 feat(metaSearchAgent): implement structured outputs 2025-07-19 16:10:04 +05:30
ItzCrazyKns
ca9b32a23b feat(ollama): use @langchain/ollama library 2025-07-19 16:09:46 +05:30
ItzCrazyKns
76e3ff4e02 feat(providers): switch to apiKey key 2025-07-19 16:09:21 +05:30
ItzCrazyKns
eabf3ca7d3 feat(modules): update langchain packages 2025-07-19 16:08:45 +05:30
20 changed files with 333 additions and 522 deletions

View File

@@ -19,7 +19,6 @@
"@langchain/community": "^0.3.49",
"@langchain/core": "^0.3.66",
"@langchain/google-genai": "^0.2.15",
"@langchain/groq": "^0.2.3",
"@langchain/ollama": "^0.2.3",
"@langchain/openai": "^0.6.2",
"@langchain/textsplitters": "^0.1.0",

View File

@@ -1,72 +1,55 @@
import { searchSearxng } from '@/lib/searxng';
const websitesForTopic = {
tech: {
query: ['technology news', 'latest tech', 'AI', 'science and innovation'],
links: ['techcrunch.com', 'wired.com', 'theverge.com'],
},
finance: {
query: ['finance news', 'economy', 'stock market', 'investing'],
links: ['bloomberg.com', 'cnbc.com', 'marketwatch.com'],
},
art: {
query: ['art news', 'culture', 'modern art', 'cultural events'],
links: ['artnews.com', 'hyperallergic.com', 'theartnewspaper.com'],
},
sports: {
query: ['sports news', 'latest sports', 'cricket football tennis'],
links: ['espn.com', 'bbc.com/sport', 'skysports.com'],
},
entertainment: {
query: ['entertainment news', 'movies', 'TV shows', 'celebrities'],
links: ['hollywoodreporter.com', 'variety.com', 'deadline.com'],
},
};
const articleWebsites = [
'yahoo.com',
'www.exchangewire.com',
'businessinsider.com',
/* 'wired.com',
'mashable.com',
'theverge.com',
'gizmodo.com',
'cnet.com',
'venturebeat.com', */
];
type Topic = keyof typeof websitesForTopic;
const topics = ['AI', 'tech']; /* TODO: Add UI to customize this */
export const GET = async (req: Request) => {
try {
const params = new URL(req.url).searchParams;
const mode: 'normal' | 'preview' =
(params.get('mode') as 'normal' | 'preview') || 'normal';
const topic: Topic = (params.get('topic') as Topic) || 'tech';
const selectedTopic = websitesForTopic[topic];
let data = [];
if (mode === 'normal') {
const seenUrls = new Set();
data = (
await Promise.all(
selectedTopic.links.flatMap((link) =>
selectedTopic.query.map(async (query) => {
await Promise.all([
...new Array(articleWebsites.length * topics.length)
.fill(0)
.map(async (_, i) => {
return (
await searchSearxng(`site:${link} ${query}`, {
await searchSearxng(
`site:${articleWebsites[i % articleWebsites.length]} ${
topics[i % topics.length]
}`,
{
engines: ['bing news'],
pageno: 1,
language: 'en',
})
},
)
).results;
}),
),
)
])
)
.map((result) => result)
.flat()
.filter((item) => {
const url = item.url?.toLowerCase().trim();
if (seenUrls.has(url)) return false;
seenUrls.add(url);
return true;
})
.sort(() => Math.random() - 0.5);
} else {
data = (
await searchSearxng(
`site:${selectedTopic.links[Math.floor(Math.random() * selectedTopic.links.length)]} ${selectedTopic.query[Math.floor(Math.random() * selectedTopic.query.length)]}`,
`site:${articleWebsites[Math.floor(Math.random() * articleWebsites.length)]} ${topics[Math.floor(Math.random() * topics.length)]}`,
{
engines: ['bing news'],
pageno: 1,

View File

@@ -81,7 +81,8 @@ export const POST = async (req: Request) => {
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
modelName: body.chatModel?.name || getCustomOpenaiModelName(),
apiKey: body.chatModel?.customOpenAIKey || getCustomOpenaiApiKey(),
apiKey:
body.chatModel?.customOpenAIKey || getCustomOpenaiApiKey(),
temperature: 0.7,
configuration: {
baseURL:

View File

@@ -1,10 +1,7 @@
export const POST = async (req: Request) => {
try {
const body: {
lat: number;
lng: number;
measureUnit: 'Imperial' | 'Metric';
} = await req.json();
const body: { lat: number; lng: number; temperatureUnit: 'C' | 'F' } =
await req.json();
if (!body.lat || !body.lng) {
return Response.json(
@@ -16,9 +13,7 @@ export const POST = async (req: Request) => {
}
const res = await fetch(
`https://api.open-meteo.com/v1/forecast?latitude=${body.lat}&longitude=${body.lng}&current=weather_code,temperature_2m,is_day,relative_humidity_2m,wind_speed_10m&timezone=auto${
body.measureUnit === 'Metric' ? '' : '&temperature_unit=fahrenheit'
}${body.measureUnit === 'Metric' ? '' : '&wind_speed_unit=mph'}`,
`https://api.open-meteo.com/v1/forecast?latitude=${body.lat}&longitude=${body.lng}&current=weather_code,temperature_2m,is_day,relative_humidity_2m,wind_speed_10m&timezone=auto${body.temperatureUnit === 'C' ? '' : '&temperature_unit=fahrenheit'}`,
);
const data = await res.json();
@@ -40,15 +35,13 @@ export const POST = async (req: Request) => {
windSpeed: number;
icon: string;
temperatureUnit: 'C' | 'F';
windSpeedUnit: 'm/s' | 'mph';
} = {
temperature: data.current.temperature_2m,
condition: '',
humidity: data.current.relative_humidity_2m,
windSpeed: data.current.wind_speed_10m,
icon: '',
temperatureUnit: body.measureUnit === 'Metric' ? 'C' : 'F',
windSpeedUnit: body.measureUnit === 'Metric' ? 'm/s' : 'mph',
temperatureUnit: body.temperatureUnit,
};
const code = data.current.weather_code;

View File

@@ -4,7 +4,6 @@ import { Search } from 'lucide-react';
import { useEffect, useState } from 'react';
import Link from 'next/link';
import { toast } from 'sonner';
import { cn } from '@/lib/utils';
interface Discover {
title: string;
@@ -13,38 +12,14 @@ interface Discover {
thumbnail: string;
}
const topics: { key: string; display: string }[] = [
{
display: 'Tech & Science',
key: 'tech',
},
{
display: 'Finance',
key: 'finance',
},
{
display: 'Art & Culture',
key: 'art',
},
{
display: 'Sports',
key: 'sports',
},
{
display: 'Entertainment',
key: 'entertainment',
},
];
const Page = () => {
const [discover, setDiscover] = useState<Discover[] | null>(null);
const [loading, setLoading] = useState(true);
const [activeTopic, setActiveTopic] = useState<string>(topics[0].key);
const fetchArticles = async (topic: string) => {
setLoading(true);
useEffect(() => {
const fetchData = async () => {
try {
const res = await fetch(`/api/discover?topic=${topic}`, {
const res = await fetch(`/api/discover`, {
method: 'GET',
headers: {
'Content-Type': 'application/json',
@@ -68,39 +43,10 @@ const Page = () => {
}
};
useEffect(() => {
fetchArticles(activeTopic);
}, [activeTopic]);
fetchData();
}, []);
return (
<>
<div>
<div className="flex flex-col pt-4">
<div className="flex items-center">
<Search />
<h1 className="text-3xl font-medium p-2">Discover</h1>
</div>
<hr className="border-t border-[#2B2C2C] my-4 w-full" />
</div>
<div className="flex flex-row items-center space-x-2 overflow-x-auto">
{topics.map((t, i) => (
<div
key={i}
className={cn(
'border-[0.1px] rounded-full text-sm px-3 py-1 text-nowrap transition duration-200 cursor-pointer',
activeTopic === t.key
? 'text-cyan-300 bg-cyan-300/30 border-cyan-300/60'
: 'border-white/30 text-white/70 hover:text-white hover:border-white/40 hover:bg-white/5',
)}
onClick={() => setActiveTopic(t.key)}
>
<span>{t.display}</span>
</div>
))}
</div>
{loading ? (
return loading ? (
<div className="flex flex-row items-center justify-center min-h-screen">
<svg
aria-hidden="true"
@@ -120,7 +66,17 @@ const Page = () => {
</svg>
</div>
) : (
<div className="grid lg:grid-cols-3 sm:grid-cols-2 grid-cols-1 gap-4 pb-28 pt-5 lg:pb-8 w-full justify-items-center lg:justify-items-start">
<>
<div>
<div className="flex flex-col pt-4">
<div className="flex items-center">
<Search />
<h1 className="text-3xl font-medium p-2">Discover</h1>
</div>
<hr className="border-t border-[#2B2C2C] my-4 w-full" />
</div>
<div className="grid lg:grid-cols-3 sm:grid-cols-2 grid-cols-1 gap-4 pb-28 lg:pb-8 w-full justify-items-center lg:justify-items-start">
{discover &&
discover?.map((item, i) => (
<Link
@@ -149,7 +105,6 @@ const Page = () => {
</Link>
))}
</div>
)}
</div>
</>
);

View File

@@ -148,9 +148,7 @@ const Page = () => {
const [automaticImageSearch, setAutomaticImageSearch] = useState(false);
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
const [systemInstructions, setSystemInstructions] = useState<string>('');
const [measureUnit, setMeasureUnit] = useState<'Imperial' | 'Metric'>(
'Metric',
);
const [temperatureUnit, setTemperatureUnit] = useState<'C' | 'F'>('C');
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
useEffect(() => {
@@ -213,9 +211,7 @@ const Page = () => {
setSystemInstructions(localStorage.getItem('systemInstructions')!);
setMeasureUnit(
localStorage.getItem('measureUnit')! as 'Imperial' | 'Metric',
);
setTemperatureUnit(localStorage.getItem('temperatureUnit')! as 'C' | 'F');
setIsLoading(false);
};
@@ -375,8 +371,8 @@ const Page = () => {
localStorage.setItem('embeddingModel', value);
} else if (key === 'systemInstructions') {
localStorage.setItem('systemInstructions', value);
} else if (key === 'measureUnit') {
localStorage.setItem('measureUnit', value.toString());
} else if (key === 'temperatureUnit') {
localStorage.setItem('temperatureUnit', value.toString());
}
} catch (err) {
console.error('Failed to save:', err);
@@ -434,22 +430,22 @@ const Page = () => {
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Measurement Units
Temperature Unit
</p>
<Select
value={measureUnit ?? undefined}
value={temperatureUnit ?? undefined}
onChange={(e) => {
setMeasureUnit(e.target.value as 'Imperial' | 'Metric');
saveConfig('measureUnit', e.target.value);
setTemperatureUnit(e.target.value as 'C' | 'F');
saveConfig('temperatureUnit', e.target.value);
}}
options={[
{
label: 'Metric',
value: 'Metric',
label: 'Celsius',
value: 'C',
},
{
label: 'Imperial',
value: 'Imperial',
label: 'Fahrenheit',
value: 'F',
},
]}
/>

View File

@@ -354,11 +354,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
}
}, [isMessagesLoaded, isConfigReady]);
const sendMessage = async (
message: string,
messageId?: string,
rewrite = false,
) => {
const sendMessage = async (message: string, messageId?: string) => {
if (loading) return;
if (!isConfigReady) {
toast.error('Cannot send message before the configuration is ready');
@@ -486,8 +482,6 @@ const ChatWindow = ({ id }: { id?: string }) => {
}
};
const messageIndex = messages.findIndex((m) => m.messageId === messageId);
const res = await fetch('/api/chat', {
method: 'POST',
headers: {
@@ -504,9 +498,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
files: fileIds,
focusMode: focusMode,
optimizationMode: optimizationMode,
history: rewrite
? chatHistory.slice(0, messageIndex === -1 ? undefined : messageIndex)
: chatHistory,
history: chatHistory,
chatModel: {
name: chatModelProvider.name,
provider: chatModelProvider.provider,
@@ -560,7 +552,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
return [...prev.slice(0, messages.length > 2 ? index - 1 : 0)];
});
sendMessage(message.content, message.messageId, true);
sendMessage(message.content, message.messageId);
};
useEffect(() => {

View File

@@ -21,16 +21,8 @@ import SearchVideos from './SearchVideos';
import { useSpeech } from 'react-text-to-speech';
import ThinkBox from './ThinkBox';
const ThinkTagProcessor = ({
children,
thinkingEnded,
}: {
children: React.ReactNode;
thinkingEnded: boolean;
}) => {
return (
<ThinkBox content={children as string} thinkingEnded={thinkingEnded} />
);
const ThinkTagProcessor = ({ children }: { children: React.ReactNode }) => {
return <ThinkBox content={children as string} />;
};
const MessageBox = ({
@@ -54,7 +46,6 @@ const MessageBox = ({
}) => {
const [parsedMessage, setParsedMessage] = useState(message.content);
const [speechMessage, setSpeechMessage] = useState(message.content);
const [thinkingEnded, setThinkingEnded] = useState(false);
useEffect(() => {
const citationRegex = /\[([^\]]+)\]/g;
@@ -70,10 +61,6 @@ const MessageBox = ({
}
}
if (message.role === 'assistant' && message.content.includes('</think>')) {
setThinkingEnded(true);
}
if (
message.role === 'assistant' &&
message?.sources &&
@@ -101,7 +88,7 @@ const MessageBox = ({
if (url) {
return `<a href="${url}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${numStr}</a>`;
} else {
return ``;
return `[${numStr}]`;
}
})
.join('');
@@ -112,14 +99,6 @@ const MessageBox = ({
);
setSpeechMessage(message.content.replace(regex, ''));
return;
} else if (
message.role === 'assistant' &&
message?.sources &&
message.sources.length === 0
) {
setParsedMessage(processedMessage.replace(regex, ''));
setSpeechMessage(message.content.replace(regex, ''));
return;
}
setSpeechMessage(message.content.replace(regex, ''));
@@ -132,9 +111,6 @@ const MessageBox = ({
overrides: {
think: {
component: ThinkTagProcessor,
props: {
thinkingEnded: thinkingEnded,
},
},
},
};

View File

@@ -1,23 +1,15 @@
'use client';
import { useEffect, useState } from 'react';
import { useState } from 'react';
import { cn } from '@/lib/utils';
import { ChevronDown, ChevronUp, BrainCircuit } from 'lucide-react';
interface ThinkBoxProps {
content: string;
thinkingEnded: boolean;
}
const ThinkBox = ({ content, thinkingEnded }: ThinkBoxProps) => {
const [isExpanded, setIsExpanded] = useState(true);
useEffect(() => {
if (thinkingEnded) {
setIsExpanded(false);
} else {
setIsExpanded(true);
}
}, [thinkingEnded]);
const ThinkBox = ({ content }: ThinkBoxProps) => {
const [isExpanded, setIsExpanded] = useState(false);
return (
<div className="my-4 bg-light-secondary/50 dark:bg-dark-secondary/50 rounded-xl border border-light-200 dark:border-dark-200 overflow-hidden">

View File

@@ -10,7 +10,6 @@ const WeatherWidget = () => {
windSpeed: 0,
icon: '',
temperatureUnit: 'C',
windSpeedUnit: 'm/s',
});
const [loading, setLoading] = useState(true);
@@ -76,7 +75,7 @@ const WeatherWidget = () => {
body: JSON.stringify({
lat: location.latitude,
lng: location.longitude,
measureUnit: localStorage.getItem('measureUnit') ?? 'Metric',
temperatureUnit: localStorage.getItem('temperatureUnit') ?? 'C',
}),
});
@@ -96,7 +95,6 @@ const WeatherWidget = () => {
windSpeed: data.windSpeed,
icon: data.icon,
temperatureUnit: data.temperatureUnit,
windSpeedUnit: data.windSpeedUnit,
});
setLoading(false);
});
@@ -141,7 +139,7 @@ const WeatherWidget = () => {
</span>
<span className="flex items-center text-xs text-black/60 dark:text-white/60">
<Wind className="w-3 h-3 mr-1" />
{data.windSpeed} {data.windSpeedUnit}
{data.windSpeed} km/h
</span>
</div>
<span className="text-xs text-black/60 dark:text-white/60 mt-1">

View File

@@ -3,18 +3,32 @@ import {
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { ChatPromptTemplate } from '@langchain/core/prompts';
import { PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { searchSearxng } from '../searxng';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import LineOutputParser from '../outputParsers/lineOutputParser';
const imageSearchChainPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search the web for images.
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
Output only the rephrased query wrapped in an XML <query> element. Do not include any explanation or additional text.
Example:
1. Follow up question: What is a cat?
Rephrased: A cat
2. Follow up question: What is a car? How does it works?
Rephrased: Car working
3. Follow up question: How does an AC work?
Rephrased: AC working
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
type ImageSearchChainInput = {
@@ -40,39 +54,12 @@ const createImageSearchChain = (llm: BaseChatModel) => {
return input.query;
},
}),
ChatPromptTemplate.fromMessages([
['system', imageSearchChainPrompt],
[
'user',
'<conversation>\n</conversation>\n<follow_up>\nWhat is a cat?\n</follow_up>',
],
['assistant', '<query>A cat</query>'],
[
'user',
'<conversation>\n</conversation>\n<follow_up>\nWhat is a car? How does it work?\n</follow_up>',
],
['assistant', '<query>Car working</query>'],
[
'user',
'<conversation>\n</conversation>\n<follow_up>\nHow does an AC work?\n</follow_up>',
],
['assistant', '<query>AC working</query>'],
[
'user',
'<conversation>{chat_history}</conversation>\n<follow_up>\n{query}\n</follow_up>',
],
]),
PromptTemplate.fromTemplate(imageSearchChainPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
const queryParser = new LineOutputParser({
key: 'query',
});
input = input.replace(/<think>.*?<\/think>/g, '');
return await queryParser.parse(input);
}),
RunnableLambda.from(async (input: string) => {
const res = await searchSearxng(input, {
engines: ['bing images', 'google images'],
});

View File

@@ -3,18 +3,32 @@ import {
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { ChatPromptTemplate } from '@langchain/core/prompts';
import { PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { searchSearxng } from '../searxng';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import LineOutputParser from '../outputParsers/lineOutputParser';
const videoSearchChainPrompt = `
const VideoSearchChainPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search Youtube for videos.
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
Output only the rephrased query wrapped in an XML <query> element. Do not include any explanation or additional text.
Example:
1. Follow up question: How does a car work?
Rephrased: How does a car work?
2. Follow up question: What is the theory of relativity?
Rephrased: What is theory of relativity
3. Follow up question: How does an AC work?
Rephrased: How does an AC work
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
type VideoSearchChainInput = {
@@ -41,37 +55,12 @@ const createVideoSearchChain = (llm: BaseChatModel) => {
return input.query;
},
}),
ChatPromptTemplate.fromMessages([
['system', videoSearchChainPrompt],
[
'user',
'<conversation>\n</conversation>\n<follow_up>\nHow does a car work?\n</follow_up>',
],
['assistant', '<query>How does a car work?</query>'],
[
'user',
'<conversation>\n</conversation>\n<follow_up>\nWhat is the theory of relativity?\n</follow_up>',
],
['assistant', '<query>Theory of relativity</query>'],
[
'user',
'<conversation>\n</conversation>\n<follow_up>\nHow does an AC work?\n</follow_up>',
],
['assistant', '<query>AC working</query>'],
[
'user',
'<conversation>{chat_history}</conversation>\n<follow_up>\n{query}\n</follow_up>',
],
]),
PromptTemplate.fromTemplate(VideoSearchChainPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
const queryParser = new LineOutputParser({
key: 'query',
});
return await queryParser.parse(input);
}),
RunnableLambda.from(async (input: string) => {
input = input.replace(/<think>.*?<\/think>/g, '');
const res = await searchSearxng(input, {
engines: ['youtube'],
});
@@ -103,8 +92,8 @@ const handleVideoSearch = (
input: VideoSearchChainInput,
llm: BaseChatModel,
) => {
const videoSearchChain = createVideoSearchChain(llm);
return videoSearchChain.invoke(input);
const VideoSearchChain = createVideoSearchChain(llm);
return VideoSearchChain.invoke(input);
};
export default handleVideoSearch;

View File

@@ -1,63 +1,41 @@
export const webSearchRetrieverPrompt = `
You are an AI question rephraser. You will be given a conversation and a follow-up question, you will have to rephrase the follow up question so it is a standalone question and can be used by another LLM to search the web for information to answer it.
If it is a simple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block.
You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response.
You are an AI question rephraser. You will be given a conversation and a follow-up question; rephrase it into a standalone question that another LLM can use to search the web.
There are several examples attached for your reference inside the below \`examples\` XML block
Return ONLY a JSON object that matches this schema:
query: string // the standalone question (or "summarize")
links: string[] // URLs extracted from the user query (empty if none)
searchRequired: boolean // true if web search is needed, false for greetings/simple writing tasks
searchMode: "" | "normal" | "news" // "" when searchRequired is false; "news" if the user asks for news/articles, otherwise "normal"
<examples>
1. Follow up question: What is the capital of France
Rephrased question:\`
<question>
Capital of france
</question>
\`
Rules
- Greetings / simple writing tasks → query:"", links:[], searchRequired:false, searchMode:""
- Summarizing a URL → query:"summarize", links:[url...], searchRequired:true, searchMode:"normal"
- Asking for news/articles → searchMode:"news"
Examples
1. Follow-up: What is the capital of France?
"query":"capital of France","links":[],"searchRequired":true,"searchMode":"normal"
2. Hi, how are you?
Rephrased question\`
<question>
not_needed
</question>
\`
"query":"","links":[],"searchRequired":false,"searchMode":""
3. Follow up question: What is Docker?
Rephrased question: \`
<question>
What is Docker
</question>
\`
3. Follow-up: What is Docker?
"query":"what is Docker","links":[],"searchRequired":true,"searchMode":"normal"
4. Follow up question: Can you tell me what is X from https://example.com
Rephrased question: \`
<question>
Can you tell me what is X?
</question>
4. Follow-up: Can you tell me what is X from https://example.com?
"query":"what is X","links":["https://example.com"],"searchRequired":true,"searchMode":"normal"
<links>
https://example.com
</links>
\`
5. Follow-up: Summarize the content from https://example.com
"query":"summarize","links":["https://example.com"],"searchRequired":true,"searchMode":"normal"
5. Follow up question: Summarize the content from https://example.com
Rephrased question: \`
<question>
summarize
</question>
<links>
https://example.com
</links>
\`
</examples>
Anything below is the part of the actual conversation and you need to use conversation and the follow-up question to rephrase the follow-up question as a standalone question based on the guidelines shared above.
6. Follow-up: Latest news about AI
"query":"latest news about AI","links":[],"searchRequired":true,"searchMode":"news"
<conversation>
{chat_history}
</conversation>
Follow up question: {query}
Follow-up question: {query}
Rephrased question:
`;

View File

@@ -9,18 +9,6 @@ export const PROVIDER_INFO = {
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const anthropicChatModels: Record<string, string>[] = [
{
displayName: 'Claude 4.1 Opus',
key: 'claude-opus-4-1-20250805',
},
{
displayName: 'Claude 4 Opus',
key: 'claude-opus-4-20250514',
},
{
displayName: 'Claude 4 Sonnet',
key: 'claude-sonnet-4-20250514',
},
{
displayName: 'Claude 3.7 Sonnet',
key: 'claude-3-7-sonnet-20250219',

View File

@@ -14,16 +14,16 @@ import { Embeddings } from '@langchain/core/embeddings';
const geminiChatModels: Record<string, string>[] = [
{
displayName: 'Gemini 2.5 Flash',
key: 'gemini-2.5-flash',
displayName: 'Gemini 2.5 Flash Preview 05-20',
key: 'gemini-2.5-flash-preview-05-20',
},
{
displayName: 'Gemini 2.5 Flash-Lite',
key: 'gemini-2.5-flash-lite',
displayName: 'Gemini 2.5 Pro Preview',
key: 'gemini-2.5-pro-preview-05-06',
},
{
displayName: 'Gemini 2.5 Pro',
key: 'gemini-2.5-pro',
displayName: 'Gemini 2.5 Pro Experimental',
key: 'gemini-2.5-pro-preview-05-06',
},
{
displayName: 'Gemini 2.0 Flash',
@@ -75,7 +75,7 @@ export const loadGeminiChatModels = async () => {
displayName: model.displayName,
model: new ChatGoogleGenerativeAI({
apiKey: geminiApiKey,
model: model.key,
modelName: model.key,
temperature: 0.7,
}) as unknown as BaseChatModel,
};
@@ -108,7 +108,7 @@ export const loadGeminiEmbeddingModels = async () => {
return embeddingModels;
} catch (err) {
console.error(`Error loading Gemini embeddings models: ${err}`);
console.error(`Error loading OpenAI embeddings models: ${err}`);
return {};
}
};

View File

@@ -1,4 +1,4 @@
import { ChatGroq } from '@langchain/groq';
import { ChatOpenAI } from '@langchain/openai';
import { getGroqApiKey } from '../config';
import { ChatModel } from '.';
@@ -28,10 +28,16 @@ export const loadGroqChatModels = async () => {
groqChatModels.forEach((model: any) => {
chatModels[model.id] = {
displayName: model.id,
model: new ChatGroq({
model: new ChatOpenAI({
apiKey: groqApiKey,
model: model.id,
modelName: model.id,
temperature: 0.7,
configuration: {
baseURL: 'https://api.groq.com/openai/v1',
},
metadata: {
'model-type': 'groq',
},
}) as unknown as BaseChatModel,
};
});

View File

@@ -42,18 +42,6 @@ const openaiChatModels: Record<string, string>[] = [
displayName: 'GPT 4.1',
key: 'gpt-4.1',
},
{
displayName: 'GPT 5 nano',
key: 'gpt-5-nano',
},
{
displayName: 'GPT 5 mini',
key: 'gpt-5-mini',
},
{
displayName: 'GPT 5',
key: 'gpt-5',
},
];
const openaiEmbeddingModels: Record<string, string>[] = [
@@ -81,7 +69,7 @@ export const loadOpenAIChatModels = async () => {
model: new ChatOpenAI({
apiKey: openaiApiKey,
modelName: model.key,
temperature: model.key.includes('gpt-5') ? 1 : 0.7,
temperature: 0.7,
}) as unknown as BaseChatModel,
};
});

View File

@@ -24,6 +24,7 @@ import computeSimilarity from '../utils/computeSimilarity';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import { StreamEvent } from '@langchain/core/tracers/log_stream';
import { z } from 'zod';
export interface MetaSearchAgentType {
searchAndAnswer: (
@@ -52,6 +53,17 @@ type BasicChainInput = {
query: string;
};
const retrieverLLMOutputSchema = z.object({
query: z.string().describe('The query to search the web for.'),
links: z
.array(z.string())
.describe('The links to search/summarize if present'),
searchRequired: z
.boolean()
.describe('Wether there is a need to search the web'),
searchMode: z.enum(['', 'normal', 'news']).describe('The search mode.'),
});
class MetaSearchAgent implements MetaSearchAgentType {
private config: Config;
private strParser = new StringOutputParser();
@@ -62,26 +74,24 @@ class MetaSearchAgent implements MetaSearchAgentType {
private async createSearchRetrieverChain(llm: BaseChatModel) {
(llm as unknown as ChatOpenAI).temperature = 0;
return RunnableSequence.from([
PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt),
Object.assign(
Object.create(Object.getPrototypeOf(llm)),
llm,
this.strParser,
RunnableLambda.from(async (input: string) => {
const linksOutputParser = new LineListOutputParser({
key: 'links',
});
).withStructuredOutput(retrieverLLMOutputSchema, {
...(llm.metadata?.['model-type'] === 'groq'
? {
method: 'json-object',
}
: {}),
}),
RunnableLambda.from(
async (input: z.infer<typeof retrieverLLMOutputSchema>) => {
let question = input.query;
const links = input.links;
const questionOutputParser = new LineOutputParser({
key: 'question',
});
const links = await linksOutputParser.parse(input);
let question = this.config.summarizer
? await questionOutputParser.parse(input)
: input;
if (question === 'not_needed') {
if (!input.searchRequired) {
return { query: '', docs: [] };
}
@@ -207,7 +217,10 @@ class MetaSearchAgent implements MetaSearchAgentType {
const res = await searchSearxng(question, {
language: 'en',
engines: this.config.activeEngines,
engines:
input.searchMode === 'normal'
? this.config.activeEngines
: ['bing news'],
});
const documents = res.results.map(
@@ -228,7 +241,8 @@ class MetaSearchAgent implements MetaSearchAgentType {
return { query: question, docs: documents };
}
}),
},
),
]);
}

View File

@@ -1,11 +1,8 @@
import { BaseMessage, isAIMessage } from '@langchain/core/messages';
import { BaseMessage } from '@langchain/core/messages';
const formatChatHistoryAsString = (history: BaseMessage[]) => {
return history
.map(
(message) =>
`${isAIMessage(message) ? 'AI' : 'User'}: ${message.content}`,
)
.map((message) => `${message._getType()}: ${message.content}`)
.join('\n');
};

View File

@@ -653,14 +653,6 @@
"@google/generative-ai" "^0.24.0"
uuid "^11.1.0"
"@langchain/groq@^0.2.3":
version "0.2.3"
resolved "https://registry.yarnpkg.com/@langchain/groq/-/groq-0.2.3.tgz#3bfcbfc827cf469df3a1b5bb9799f4b0212b4625"
integrity sha512-r+yjysG36a0IZxTlCMr655Feumfb4IrOyA0jLLq4l7gEhVyMpYXMwyE6evseyU2LRP+7qOPbGRVpGqAIK0MsUA==
dependencies:
groq-sdk "^0.19.0"
zod "^3.22.4"
"@langchain/ollama@^0.2.3":
version "0.2.3"
resolved "https://registry.yarnpkg.com/@langchain/ollama/-/ollama-0.2.3.tgz#4868e66db4fc480f08c42fc652274abbab0416f0"
@@ -2740,19 +2732,6 @@ graphql@^16.11.0:
resolved "https://registry.yarnpkg.com/graphql/-/graphql-16.11.0.tgz#96d17f66370678027fdf59b2d4c20b4efaa8a633"
integrity sha512-mS1lbMsxgQj6hge1XZ6p7GPhbrtFwUFYi3wRzXAC/FmYnyXMTvvI3td3rjmQ2u8ewXueaSvRPWaEcgVVOT9Jnw==
groq-sdk@^0.19.0:
version "0.19.0"
resolved "https://registry.yarnpkg.com/groq-sdk/-/groq-sdk-0.19.0.tgz#564ce018172dc3e2e2793398e0227a035a357d09"
integrity sha512-vdh5h7ORvwvOvutA80dKF81b0gPWHxu6K/GOJBOM0n6p6CSqAVLhFfeS79Ef0j/yCycDR09jqY7jkYz9dLiS6w==
dependencies:
"@types/node" "^18.11.18"
"@types/node-fetch" "^2.6.4"
abort-controller "^3.0.0"
agentkeepalive "^4.2.1"
form-data-encoder "1.7.2"
formdata-node "^4.3.2"
node-fetch "^2.6.7"
guid-typescript@^1.0.9:
version "1.0.9"
resolved "https://registry.yarnpkg.com/guid-typescript/-/guid-typescript-1.0.9.tgz#e35f77003535b0297ea08548f5ace6adb1480ddc"