Compare commits

..

28 Commits

Author SHA1 Message Date
ItzCrazyKns
0dc17286b9 Merge branch 'pr/843' 2025-08-12 21:39:25 +05:30
ItzCrazyKns
3edd7d44dd feat(openai): conditionally set temperature 2025-08-12 21:39:14 +05:30
Samuel Dockery
1132997108 feat: Add support for latest AI models from Anthropic, Google, & OpenAI 2025-08-10 07:50:31 -07:00
ItzCrazyKns
eadbedb713 feat(groq): switch to @langchain/groq for better handling 2025-08-02 17:14:34 +05:30
ItzCrazyKns
37cd6d3ab5 feat(discover): prevent duplicate articles 2025-08-01 20:41:07 +05:30
ItzCrazyKns
88be3a045b feat(discover): randomly sort results 2025-07-29 13:18:36 +05:30
ItzCrazyKns
45b51ab156 feat(discover-api): handle topics 2025-07-29 13:17:07 +05:30
ItzCrazyKns
3bee01cfa7 feat(discover): add topic selection 2025-07-28 20:39:50 +05:30
ItzCrazyKns
567c6a8758 Merge branch 'pr/831' 2025-07-24 22:36:19 +05:30
ItzCrazyKns
81a91da743 feat(gemini): use model instead of modelName 2025-07-23 12:22:26 +05:30
ItzCrazyKns
70a61ee1eb feat(think-box): handle thinkingEnded 2025-07-23 12:21:07 +05:30
ItzCrazyKns
9d89a4413b feat(format-history): remove extra : 2025-07-23 12:20:49 +05:30
ItzCrazyKns
6ea17d54c6 feat(chat-window): fix wrong history while rewriting 2025-07-22 21:21:49 +05:30
ItzCrazyKns
11a828b073 feat(message-box): close think box after thinking process ends 2025-07-22 21:21:09 +05:30
ItzCrazyKns
37022fb11e feat(format-history): update role determination 2025-07-22 21:20:16 +05:30
ItzCrazyKns
dd50d4927b Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2025-07-22 12:27:11 +05:30
ItzCrazyKns
fdaf3af3af Merge pull request #832 from tuxthepenguin84/patch-2
Fix name of provider in embeddings models error message
2025-07-21 20:56:24 +05:30
Samuel Dockery
3f2a8f862c Fix name of provider in embeddings models error message 2025-07-20 09:20:39 -07:00
Samuel Dockery
58c7be6e95 Update Gemini 2.5 Models 2025-07-20 09:17:20 -07:00
ItzCrazyKns
829b4e7134 feat(custom-openai): use apiKey instead of openAIApiKey 2025-07-19 21:37:34 +05:30
ItzCrazyKns
77870b39cc feat(ollama): use @langchain/ollama library 2025-07-19 21:37:34 +05:30
ItzCrazyKns
8e0ae9b867 feat(providers): switch to apiKey key 2025-07-19 21:37:34 +05:30
ItzCrazyKns
543f1df5ce feat(modules): update langchain packages 2025-07-19 21:37:34 +05:30
ItzCrazyKns
341aae4587 Merge branch 'pr/830' 2025-07-19 21:36:23 +05:30
Willie Zutz
7f62907385 feat(weather): update measurement units to Imperial/Metric 2025-07-19 08:53:11 -06:00
ItzCrazyKns
7c4aa683a2 feat(chains): remove unused imports 2025-07-19 17:57:32 +05:30
ItzCrazyKns
b48b0eeb0e feat(imageSearch): use XML parsing, implement few shot prompting 2025-07-19 17:52:30 +05:30
ItzCrazyKns
cddc793915 feat(videoSearch): use XML parsing, use few shot prompting 2025-07-19 17:52:14 +05:30
20 changed files with 522 additions and 333 deletions

View File

@@ -19,6 +19,7 @@
"@langchain/community": "^0.3.49",
"@langchain/core": "^0.3.66",
"@langchain/google-genai": "^0.2.15",
"@langchain/groq": "^0.2.3",
"@langchain/ollama": "^0.2.3",
"@langchain/openai": "^0.6.2",
"@langchain/textsplitters": "^0.1.0",

View File

@@ -1,55 +1,72 @@
import { searchSearxng } from '@/lib/searxng';
const articleWebsites = [
'yahoo.com',
'www.exchangewire.com',
'businessinsider.com',
/* 'wired.com',
'mashable.com',
'theverge.com',
'gizmodo.com',
'cnet.com',
'venturebeat.com', */
];
const websitesForTopic = {
tech: {
query: ['technology news', 'latest tech', 'AI', 'science and innovation'],
links: ['techcrunch.com', 'wired.com', 'theverge.com'],
},
finance: {
query: ['finance news', 'economy', 'stock market', 'investing'],
links: ['bloomberg.com', 'cnbc.com', 'marketwatch.com'],
},
art: {
query: ['art news', 'culture', 'modern art', 'cultural events'],
links: ['artnews.com', 'hyperallergic.com', 'theartnewspaper.com'],
},
sports: {
query: ['sports news', 'latest sports', 'cricket football tennis'],
links: ['espn.com', 'bbc.com/sport', 'skysports.com'],
},
entertainment: {
query: ['entertainment news', 'movies', 'TV shows', 'celebrities'],
links: ['hollywoodreporter.com', 'variety.com', 'deadline.com'],
},
};
const topics = ['AI', 'tech']; /* TODO: Add UI to customize this */
type Topic = keyof typeof websitesForTopic;
export const GET = async (req: Request) => {
try {
const params = new URL(req.url).searchParams;
const mode: 'normal' | 'preview' =
(params.get('mode') as 'normal' | 'preview') || 'normal';
const topic: Topic = (params.get('topic') as Topic) || 'tech';
const selectedTopic = websitesForTopic[topic];
let data = [];
if (mode === 'normal') {
const seenUrls = new Set();
data = (
await Promise.all([
...new Array(articleWebsites.length * topics.length)
.fill(0)
.map(async (_, i) => {
await Promise.all(
selectedTopic.links.flatMap((link) =>
selectedTopic.query.map(async (query) => {
return (
await searchSearxng(
`site:${articleWebsites[i % articleWebsites.length]} ${
topics[i % topics.length]
}`,
{
engines: ['bing news'],
pageno: 1,
language: 'en',
},
)
await searchSearxng(`site:${link} ${query}`, {
engines: ['bing news'],
pageno: 1,
language: 'en',
})
).results;
}),
])
),
)
)
.map((result) => result)
.flat()
.filter((item) => {
const url = item.url?.toLowerCase().trim();
if (seenUrls.has(url)) return false;
seenUrls.add(url);
return true;
})
.sort(() => Math.random() - 0.5);
} else {
data = (
await searchSearxng(
`site:${articleWebsites[Math.floor(Math.random() * articleWebsites.length)]} ${topics[Math.floor(Math.random() * topics.length)]}`,
`site:${selectedTopic.links[Math.floor(Math.random() * selectedTopic.links.length)]} ${selectedTopic.query[Math.floor(Math.random() * selectedTopic.query.length)]}`,
{
engines: ['bing news'],
pageno: 1,

View File

@@ -81,8 +81,7 @@ export const POST = async (req: Request) => {
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
modelName: body.chatModel?.name || getCustomOpenaiModelName(),
apiKey:
body.chatModel?.customOpenAIKey || getCustomOpenaiApiKey(),
apiKey: body.chatModel?.customOpenAIKey || getCustomOpenaiApiKey(),
temperature: 0.7,
configuration: {
baseURL:

View File

@@ -1,7 +1,10 @@
export const POST = async (req: Request) => {
try {
const body: { lat: number; lng: number; temperatureUnit: 'C' | 'F' } =
await req.json();
const body: {
lat: number;
lng: number;
measureUnit: 'Imperial' | 'Metric';
} = await req.json();
if (!body.lat || !body.lng) {
return Response.json(
@@ -13,7 +16,9 @@ export const POST = async (req: Request) => {
}
const res = await fetch(
`https://api.open-meteo.com/v1/forecast?latitude=${body.lat}&longitude=${body.lng}&current=weather_code,temperature_2m,is_day,relative_humidity_2m,wind_speed_10m&timezone=auto${body.temperatureUnit === 'C' ? '' : '&temperature_unit=fahrenheit'}`,
`https://api.open-meteo.com/v1/forecast?latitude=${body.lat}&longitude=${body.lng}&current=weather_code,temperature_2m,is_day,relative_humidity_2m,wind_speed_10m&timezone=auto${
body.measureUnit === 'Metric' ? '' : '&temperature_unit=fahrenheit'
}${body.measureUnit === 'Metric' ? '' : '&wind_speed_unit=mph'}`,
);
const data = await res.json();
@@ -35,13 +40,15 @@ export const POST = async (req: Request) => {
windSpeed: number;
icon: string;
temperatureUnit: 'C' | 'F';
windSpeedUnit: 'm/s' | 'mph';
} = {
temperature: data.current.temperature_2m,
condition: '',
humidity: data.current.relative_humidity_2m,
windSpeed: data.current.wind_speed_10m,
icon: '',
temperatureUnit: body.temperatureUnit,
temperatureUnit: body.measureUnit === 'Metric' ? 'C' : 'F',
windSpeedUnit: body.measureUnit === 'Metric' ? 'm/s' : 'mph',
};
const code = data.current.weather_code;

View File

@@ -4,6 +4,7 @@ import { Search } from 'lucide-react';
import { useEffect, useState } from 'react';
import Link from 'next/link';
import { toast } from 'sonner';
import { cn } from '@/lib/utils';
interface Discover {
title: string;
@@ -12,60 +13,66 @@ interface Discover {
thumbnail: string;
}
const topics: { key: string; display: string }[] = [
{
display: 'Tech & Science',
key: 'tech',
},
{
display: 'Finance',
key: 'finance',
},
{
display: 'Art & Culture',
key: 'art',
},
{
display: 'Sports',
key: 'sports',
},
{
display: 'Entertainment',
key: 'entertainment',
},
];
const Page = () => {
const [discover, setDiscover] = useState<Discover[] | null>(null);
const [loading, setLoading] = useState(true);
const [activeTopic, setActiveTopic] = useState<string>(topics[0].key);
const fetchArticles = async (topic: string) => {
setLoading(true);
try {
const res = await fetch(`/api/discover?topic=${topic}`, {
method: 'GET',
headers: {
'Content-Type': 'application/json',
},
});
const data = await res.json();
if (!res.ok) {
throw new Error(data.message);
}
data.blogs = data.blogs.filter((blog: Discover) => blog.thumbnail);
setDiscover(data.blogs);
} catch (err: any) {
console.error('Error fetching data:', err.message);
toast.error('Error fetching data');
} finally {
setLoading(false);
}
};
useEffect(() => {
const fetchData = async () => {
try {
const res = await fetch(`/api/discover`, {
method: 'GET',
headers: {
'Content-Type': 'application/json',
},
});
fetchArticles(activeTopic);
}, [activeTopic]);
const data = await res.json();
if (!res.ok) {
throw new Error(data.message);
}
data.blogs = data.blogs.filter((blog: Discover) => blog.thumbnail);
setDiscover(data.blogs);
} catch (err: any) {
console.error('Error fetching data:', err.message);
toast.error('Error fetching data');
} finally {
setLoading(false);
}
};
fetchData();
}, []);
return loading ? (
<div className="flex flex-row items-center justify-center min-h-screen">
<svg
aria-hidden="true"
className="w-8 h-8 text-light-200 fill-light-secondary dark:text-[#202020] animate-spin dark:fill-[#ffffff3b]"
viewBox="0 0 100 101"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<path
d="M100 50.5908C100.003 78.2051 78.1951 100.003 50.5908 100C22.9765 99.9972 0.997224 78.018 1 50.4037C1.00281 22.7993 22.8108 0.997224 50.4251 1C78.0395 1.00281 100.018 22.8108 100 50.4251ZM9.08164 50.594C9.06312 73.3997 27.7909 92.1272 50.5966 92.1457C73.4023 92.1642 92.1298 73.4365 92.1483 50.6308C92.1669 27.8251 73.4392 9.0973 50.6335 9.07878C27.8278 9.06026 9.10003 27.787 9.08164 50.594Z"
fill="currentColor"
/>
<path
d="M93.9676 39.0409C96.393 38.4037 97.8624 35.9116 96.9801 33.5533C95.1945 28.8227 92.871 24.3692 90.0681 20.348C85.6237 14.1775 79.4473 9.36872 72.0454 6.45794C64.6435 3.54717 56.3134 2.65431 48.3133 3.89319C45.869 4.27179 44.3768 6.77534 45.014 9.20079C45.6512 11.6262 48.1343 13.0956 50.5786 12.717C56.5073 11.8281 62.5542 12.5399 68.0406 14.7911C73.527 17.0422 78.2187 20.7487 81.5841 25.4923C83.7976 28.5886 85.4467 32.059 86.4416 35.7474C87.1273 38.1189 89.5423 39.6781 91.9676 39.0409Z"
fill="currentFill"
/>
</svg>
</div>
) : (
return (
<>
<div>
<div className="flex flex-col pt-4">
@@ -76,35 +83,73 @@ const Page = () => {
<hr className="border-t border-[#2B2C2C] my-4 w-full" />
</div>
<div className="grid lg:grid-cols-3 sm:grid-cols-2 grid-cols-1 gap-4 pb-28 lg:pb-8 w-full justify-items-center lg:justify-items-start">
{discover &&
discover?.map((item, i) => (
<Link
href={`/?q=Summary: ${item.url}`}
key={i}
className="max-w-sm rounded-lg overflow-hidden bg-light-secondary dark:bg-dark-secondary hover:-translate-y-[1px] transition duration-200"
target="_blank"
>
<img
className="object-cover w-full aspect-video"
src={
new URL(item.thumbnail).origin +
new URL(item.thumbnail).pathname +
`?id=${new URL(item.thumbnail).searchParams.get('id')}`
}
alt={item.title}
/>
<div className="px-6 py-4">
<div className="font-bold text-lg mb-2">
{item.title.slice(0, 100)}...
</div>
<p className="text-black-70 dark:text-white/70 text-sm">
{item.content.slice(0, 100)}...
</p>
</div>
</Link>
))}
<div className="flex flex-row items-center space-x-2 overflow-x-auto">
{topics.map((t, i) => (
<div
key={i}
className={cn(
'border-[0.1px] rounded-full text-sm px-3 py-1 text-nowrap transition duration-200 cursor-pointer',
activeTopic === t.key
? 'text-cyan-300 bg-cyan-300/30 border-cyan-300/60'
: 'border-white/30 text-white/70 hover:text-white hover:border-white/40 hover:bg-white/5',
)}
onClick={() => setActiveTopic(t.key)}
>
<span>{t.display}</span>
</div>
))}
</div>
{loading ? (
<div className="flex flex-row items-center justify-center min-h-screen">
<svg
aria-hidden="true"
className="w-8 h-8 text-light-200 fill-light-secondary dark:text-[#202020] animate-spin dark:fill-[#ffffff3b]"
viewBox="0 0 100 101"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<path
d="M100 50.5908C100.003 78.2051 78.1951 100.003 50.5908 100C22.9765 99.9972 0.997224 78.018 1 50.4037C1.00281 22.7993 22.8108 0.997224 50.4251 1C78.0395 1.00281 100.018 22.8108 100 50.4251ZM9.08164 50.594C9.06312 73.3997 27.7909 92.1272 50.5966 92.1457C73.4023 92.1642 92.1298 73.4365 92.1483 50.6308C92.1669 27.8251 73.4392 9.0973 50.6335 9.07878C27.8278 9.06026 9.10003 27.787 9.08164 50.594Z"
fill="currentColor"
/>
<path
d="M93.9676 39.0409C96.393 38.4037 97.8624 35.9116 96.9801 33.5533C95.1945 28.8227 92.871 24.3692 90.0681 20.348C85.6237 14.1775 79.4473 9.36872 72.0454 6.45794C64.6435 3.54717 56.3134 2.65431 48.3133 3.89319C45.869 4.27179 44.3768 6.77534 45.014 9.20079C45.6512 11.6262 48.1343 13.0956 50.5786 12.717C56.5073 11.8281 62.5542 12.5399 68.0406 14.7911C73.527 17.0422 78.2187 20.7487 81.5841 25.4923C83.7976 28.5886 85.4467 32.059 86.4416 35.7474C87.1273 38.1189 89.5423 39.6781 91.9676 39.0409Z"
fill="currentFill"
/>
</svg>
</div>
) : (
<div className="grid lg:grid-cols-3 sm:grid-cols-2 grid-cols-1 gap-4 pb-28 pt-5 lg:pb-8 w-full justify-items-center lg:justify-items-start">
{discover &&
discover?.map((item, i) => (
<Link
href={`/?q=Summary: ${item.url}`}
key={i}
className="max-w-sm rounded-lg overflow-hidden bg-light-secondary dark:bg-dark-secondary hover:-translate-y-[1px] transition duration-200"
target="_blank"
>
<img
className="object-cover w-full aspect-video"
src={
new URL(item.thumbnail).origin +
new URL(item.thumbnail).pathname +
`?id=${new URL(item.thumbnail).searchParams.get('id')}`
}
alt={item.title}
/>
<div className="px-6 py-4">
<div className="font-bold text-lg mb-2">
{item.title.slice(0, 100)}...
</div>
<p className="text-black-70 dark:text-white/70 text-sm">
{item.content.slice(0, 100)}...
</p>
</div>
</Link>
))}
</div>
)}
</div>
</>
);

View File

@@ -148,7 +148,9 @@ const Page = () => {
const [automaticImageSearch, setAutomaticImageSearch] = useState(false);
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
const [systemInstructions, setSystemInstructions] = useState<string>('');
const [temperatureUnit, setTemperatureUnit] = useState<'C' | 'F'>('C');
const [measureUnit, setMeasureUnit] = useState<'Imperial' | 'Metric'>(
'Metric',
);
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
useEffect(() => {
@@ -211,7 +213,9 @@ const Page = () => {
setSystemInstructions(localStorage.getItem('systemInstructions')!);
setTemperatureUnit(localStorage.getItem('temperatureUnit')! as 'C' | 'F');
setMeasureUnit(
localStorage.getItem('measureUnit')! as 'Imperial' | 'Metric',
);
setIsLoading(false);
};
@@ -371,8 +375,8 @@ const Page = () => {
localStorage.setItem('embeddingModel', value);
} else if (key === 'systemInstructions') {
localStorage.setItem('systemInstructions', value);
} else if (key === 'temperatureUnit') {
localStorage.setItem('temperatureUnit', value.toString());
} else if (key === 'measureUnit') {
localStorage.setItem('measureUnit', value.toString());
}
} catch (err) {
console.error('Failed to save:', err);
@@ -430,22 +434,22 @@ const Page = () => {
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Temperature Unit
Measurement Units
</p>
<Select
value={temperatureUnit ?? undefined}
value={measureUnit ?? undefined}
onChange={(e) => {
setTemperatureUnit(e.target.value as 'C' | 'F');
saveConfig('temperatureUnit', e.target.value);
setMeasureUnit(e.target.value as 'Imperial' | 'Metric');
saveConfig('measureUnit', e.target.value);
}}
options={[
{
label: 'Celsius',
value: 'C',
label: 'Metric',
value: 'Metric',
},
{
label: 'Fahrenheit',
value: 'F',
label: 'Imperial',
value: 'Imperial',
},
]}
/>

View File

@@ -354,7 +354,11 @@ const ChatWindow = ({ id }: { id?: string }) => {
}
}, [isMessagesLoaded, isConfigReady]);
const sendMessage = async (message: string, messageId?: string) => {
const sendMessage = async (
message: string,
messageId?: string,
rewrite = false,
) => {
if (loading) return;
if (!isConfigReady) {
toast.error('Cannot send message before the configuration is ready');
@@ -482,6 +486,8 @@ const ChatWindow = ({ id }: { id?: string }) => {
}
};
const messageIndex = messages.findIndex((m) => m.messageId === messageId);
const res = await fetch('/api/chat', {
method: 'POST',
headers: {
@@ -498,7 +504,9 @@ const ChatWindow = ({ id }: { id?: string }) => {
files: fileIds,
focusMode: focusMode,
optimizationMode: optimizationMode,
history: chatHistory,
history: rewrite
? chatHistory.slice(0, messageIndex === -1 ? undefined : messageIndex)
: chatHistory,
chatModel: {
name: chatModelProvider.name,
provider: chatModelProvider.provider,
@@ -552,7 +560,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
return [...prev.slice(0, messages.length > 2 ? index - 1 : 0)];
});
sendMessage(message.content, message.messageId);
sendMessage(message.content, message.messageId, true);
};
useEffect(() => {

View File

@@ -21,8 +21,16 @@ import SearchVideos from './SearchVideos';
import { useSpeech } from 'react-text-to-speech';
import ThinkBox from './ThinkBox';
const ThinkTagProcessor = ({ children }: { children: React.ReactNode }) => {
return <ThinkBox content={children as string} />;
const ThinkTagProcessor = ({
children,
thinkingEnded,
}: {
children: React.ReactNode;
thinkingEnded: boolean;
}) => {
return (
<ThinkBox content={children as string} thinkingEnded={thinkingEnded} />
);
};
const MessageBox = ({
@@ -46,6 +54,7 @@ const MessageBox = ({
}) => {
const [parsedMessage, setParsedMessage] = useState(message.content);
const [speechMessage, setSpeechMessage] = useState(message.content);
const [thinkingEnded, setThinkingEnded] = useState(false);
useEffect(() => {
const citationRegex = /\[([^\]]+)\]/g;
@@ -61,6 +70,10 @@ const MessageBox = ({
}
}
if (message.role === 'assistant' && message.content.includes('</think>')) {
setThinkingEnded(true);
}
if (
message.role === 'assistant' &&
message?.sources &&
@@ -88,7 +101,7 @@ const MessageBox = ({
if (url) {
return `<a href="${url}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${numStr}</a>`;
} else {
return `[${numStr}]`;
return ``;
}
})
.join('');
@@ -99,6 +112,14 @@ const MessageBox = ({
);
setSpeechMessage(message.content.replace(regex, ''));
return;
} else if (
message.role === 'assistant' &&
message?.sources &&
message.sources.length === 0
) {
setParsedMessage(processedMessage.replace(regex, ''));
setSpeechMessage(message.content.replace(regex, ''));
return;
}
setSpeechMessage(message.content.replace(regex, ''));
@@ -111,6 +132,9 @@ const MessageBox = ({
overrides: {
think: {
component: ThinkTagProcessor,
props: {
thinkingEnded: thinkingEnded,
},
},
},
};

View File

@@ -1,15 +1,23 @@
'use client';
import { useState } from 'react';
import { cn } from '@/lib/utils';
import { useEffect, useState } from 'react';
import { ChevronDown, ChevronUp, BrainCircuit } from 'lucide-react';
interface ThinkBoxProps {
content: string;
thinkingEnded: boolean;
}
const ThinkBox = ({ content }: ThinkBoxProps) => {
const [isExpanded, setIsExpanded] = useState(false);
const ThinkBox = ({ content, thinkingEnded }: ThinkBoxProps) => {
const [isExpanded, setIsExpanded] = useState(true);
useEffect(() => {
if (thinkingEnded) {
setIsExpanded(false);
} else {
setIsExpanded(true);
}
}, [thinkingEnded]);
return (
<div className="my-4 bg-light-secondary/50 dark:bg-dark-secondary/50 rounded-xl border border-light-200 dark:border-dark-200 overflow-hidden">

View File

@@ -10,6 +10,7 @@ const WeatherWidget = () => {
windSpeed: 0,
icon: '',
temperatureUnit: 'C',
windSpeedUnit: 'm/s',
});
const [loading, setLoading] = useState(true);
@@ -75,7 +76,7 @@ const WeatherWidget = () => {
body: JSON.stringify({
lat: location.latitude,
lng: location.longitude,
temperatureUnit: localStorage.getItem('temperatureUnit') ?? 'C',
measureUnit: localStorage.getItem('measureUnit') ?? 'Metric',
}),
});
@@ -95,6 +96,7 @@ const WeatherWidget = () => {
windSpeed: data.windSpeed,
icon: data.icon,
temperatureUnit: data.temperatureUnit,
windSpeedUnit: data.windSpeedUnit,
});
setLoading(false);
});
@@ -139,7 +141,7 @@ const WeatherWidget = () => {
</span>
<span className="flex items-center text-xs text-black/60 dark:text-white/60">
<Wind className="w-3 h-3 mr-1" />
{data.windSpeed} km/h
{data.windSpeed} {data.windSpeedUnit}
</span>
</div>
<span className="text-xs text-black/60 dark:text-white/60 mt-1">

View File

@@ -3,32 +3,18 @@ import {
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { PromptTemplate } from '@langchain/core/prompts';
import { ChatPromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { searchSearxng } from '../searxng';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import LineOutputParser from '../outputParsers/lineOutputParser';
const imageSearchChainPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search the web for images.
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
Example:
1. Follow up question: What is a cat?
Rephrased: A cat
2. Follow up question: What is a car? How does it works?
Rephrased: Car working
3. Follow up question: How does an AC work?
Rephrased: AC working
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
Output only the rephrased query wrapped in an XML <query> element. Do not include any explanation or additional text.
`;
type ImageSearchChainInput = {
@@ -54,12 +40,39 @@ const createImageSearchChain = (llm: BaseChatModel) => {
return input.query;
},
}),
PromptTemplate.fromTemplate(imageSearchChainPrompt),
ChatPromptTemplate.fromMessages([
['system', imageSearchChainPrompt],
[
'user',
'<conversation>\n</conversation>\n<follow_up>\nWhat is a cat?\n</follow_up>',
],
['assistant', '<query>A cat</query>'],
[
'user',
'<conversation>\n</conversation>\n<follow_up>\nWhat is a car? How does it work?\n</follow_up>',
],
['assistant', '<query>Car working</query>'],
[
'user',
'<conversation>\n</conversation>\n<follow_up>\nHow does an AC work?\n</follow_up>',
],
['assistant', '<query>AC working</query>'],
[
'user',
'<conversation>{chat_history}</conversation>\n<follow_up>\n{query}\n</follow_up>',
],
]),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
input = input.replace(/<think>.*?<\/think>/g, '');
const queryParser = new LineOutputParser({
key: 'query',
});
return await queryParser.parse(input);
}),
RunnableLambda.from(async (input: string) => {
const res = await searchSearxng(input, {
engines: ['bing images', 'google images'],
});

View File

@@ -3,33 +3,19 @@ import {
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { PromptTemplate } from '@langchain/core/prompts';
import { ChatPromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { searchSearxng } from '../searxng';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import LineOutputParser from '../outputParsers/lineOutputParser';
const VideoSearchChainPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search Youtube for videos.
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
Example:
1. Follow up question: How does a car work?
Rephrased: How does a car work?
2. Follow up question: What is the theory of relativity?
Rephrased: What is theory of relativity
3. Follow up question: How does an AC work?
Rephrased: How does an AC work
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
const videoSearchChainPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search Youtube for videos.
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
Output only the rephrased query wrapped in an XML <query> element. Do not include any explanation or additional text.
`;
type VideoSearchChainInput = {
chat_history: BaseMessage[];
@@ -55,12 +41,37 @@ const createVideoSearchChain = (llm: BaseChatModel) => {
return input.query;
},
}),
PromptTemplate.fromTemplate(VideoSearchChainPrompt),
ChatPromptTemplate.fromMessages([
['system', videoSearchChainPrompt],
[
'user',
'<conversation>\n</conversation>\n<follow_up>\nHow does a car work?\n</follow_up>',
],
['assistant', '<query>How does a car work?</query>'],
[
'user',
'<conversation>\n</conversation>\n<follow_up>\nWhat is the theory of relativity?\n</follow_up>',
],
['assistant', '<query>Theory of relativity</query>'],
[
'user',
'<conversation>\n</conversation>\n<follow_up>\nHow does an AC work?\n</follow_up>',
],
['assistant', '<query>AC working</query>'],
[
'user',
'<conversation>{chat_history}</conversation>\n<follow_up>\n{query}\n</follow_up>',
],
]),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
input = input.replace(/<think>.*?<\/think>/g, '');
const queryParser = new LineOutputParser({
key: 'query',
});
return await queryParser.parse(input);
}),
RunnableLambda.from(async (input: string) => {
const res = await searchSearxng(input, {
engines: ['youtube'],
});
@@ -92,8 +103,8 @@ const handleVideoSearch = (
input: VideoSearchChainInput,
llm: BaseChatModel,
) => {
const VideoSearchChain = createVideoSearchChain(llm);
return VideoSearchChain.invoke(input);
const videoSearchChain = createVideoSearchChain(llm);
return videoSearchChain.invoke(input);
};
export default handleVideoSearch;

View File

@@ -1,41 +1,63 @@
export const webSearchRetrieverPrompt = `
You are an AI question rephraser. You will be given a conversation and a follow-up question; rephrase it into a standalone question that another LLM can use to search the web.
You are an AI question rephraser. You will be given a conversation and a follow-up question, you will have to rephrase the follow up question so it is a standalone question and can be used by another LLM to search the web for information to answer it.
If it is a simple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block.
You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response.
Return ONLY a JSON object that matches this schema:
query: string // the standalone question (or "summarize")
links: string[] // URLs extracted from the user query (empty if none)
searchRequired: boolean // true if web search is needed, false for greetings/simple writing tasks
searchMode: "" | "normal" | "news" // "" when searchRequired is false; "news" if the user asks for news/articles, otherwise "normal"
There are several examples attached for your reference inside the below \`examples\` XML block
Rules
- Greetings / simple writing tasks → query:"", links:[], searchRequired:false, searchMode:""
- Summarizing a URL → query:"summarize", links:[url...], searchRequired:true, searchMode:"normal"
- Asking for news/articles → searchMode:"news"
Examples
1. Follow-up: What is the capital of France?
"query":"capital of France","links":[],"searchRequired":true,"searchMode":"normal"
<examples>
1. Follow up question: What is the capital of France
Rephrased question:\`
<question>
Capital of france
</question>
\`
2. Hi, how are you?
"query":"","links":[],"searchRequired":false,"searchMode":""
Rephrased question\`
<question>
not_needed
</question>
\`
3. Follow-up: What is Docker?
"query":"what is Docker","links":[],"searchRequired":true,"searchMode":"normal"
3. Follow up question: What is Docker?
Rephrased question: \`
<question>
What is Docker
</question>
\`
4. Follow-up: Can you tell me what is X from https://example.com?
"query":"what is X","links":["https://example.com"],"searchRequired":true,"searchMode":"normal"
4. Follow up question: Can you tell me what is X from https://example.com
Rephrased question: \`
<question>
Can you tell me what is X?
</question>
5. Follow-up: Summarize the content from https://example.com
"query":"summarize","links":["https://example.com"],"searchRequired":true,"searchMode":"normal"
<links>
https://example.com
</links>
\`
6. Follow-up: Latest news about AI
"query":"latest news about AI","links":[],"searchRequired":true,"searchMode":"news"
5. Follow up question: Summarize the content from https://example.com
Rephrased question: \`
<question>
summarize
</question>
<links>
https://example.com
</links>
\`
</examples>
Anything below is the part of the actual conversation and you need to use conversation and the follow-up question to rephrase the follow-up question as a standalone question based on the guidelines shared above.
<conversation>
{chat_history}
</conversation>
Follow-up question: {query}
Follow up question: {query}
Rephrased question:
`;

View File

@@ -9,6 +9,18 @@ export const PROVIDER_INFO = {
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const anthropicChatModels: Record<string, string>[] = [
{
displayName: 'Claude 4.1 Opus',
key: 'claude-opus-4-1-20250805',
},
{
displayName: 'Claude 4 Opus',
key: 'claude-opus-4-20250514',
},
{
displayName: 'Claude 4 Sonnet',
key: 'claude-sonnet-4-20250514',
},
{
displayName: 'Claude 3.7 Sonnet',
key: 'claude-3-7-sonnet-20250219',

View File

@@ -14,16 +14,16 @@ import { Embeddings } from '@langchain/core/embeddings';
const geminiChatModels: Record<string, string>[] = [
{
displayName: 'Gemini 2.5 Flash Preview 05-20',
key: 'gemini-2.5-flash-preview-05-20',
displayName: 'Gemini 2.5 Flash',
key: 'gemini-2.5-flash',
},
{
displayName: 'Gemini 2.5 Pro Preview',
key: 'gemini-2.5-pro-preview-05-06',
displayName: 'Gemini 2.5 Flash-Lite',
key: 'gemini-2.5-flash-lite',
},
{
displayName: 'Gemini 2.5 Pro Experimental',
key: 'gemini-2.5-pro-preview-05-06',
displayName: 'Gemini 2.5 Pro',
key: 'gemini-2.5-pro',
},
{
displayName: 'Gemini 2.0 Flash',
@@ -75,7 +75,7 @@ export const loadGeminiChatModels = async () => {
displayName: model.displayName,
model: new ChatGoogleGenerativeAI({
apiKey: geminiApiKey,
modelName: model.key,
model: model.key,
temperature: 0.7,
}) as unknown as BaseChatModel,
};
@@ -108,7 +108,7 @@ export const loadGeminiEmbeddingModels = async () => {
return embeddingModels;
} catch (err) {
console.error(`Error loading OpenAI embeddings models: ${err}`);
console.error(`Error loading Gemini embeddings models: ${err}`);
return {};
}
};

View File

@@ -1,4 +1,4 @@
import { ChatOpenAI } from '@langchain/openai';
import { ChatGroq } from '@langchain/groq';
import { getGroqApiKey } from '../config';
import { ChatModel } from '.';
@@ -28,16 +28,10 @@ export const loadGroqChatModels = async () => {
groqChatModels.forEach((model: any) => {
chatModels[model.id] = {
displayName: model.id,
model: new ChatOpenAI({
model: new ChatGroq({
apiKey: groqApiKey,
modelName: model.id,
model: model.id,
temperature: 0.7,
configuration: {
baseURL: 'https://api.groq.com/openai/v1',
},
metadata: {
'model-type': 'groq',
},
}) as unknown as BaseChatModel,
};
});

View File

@@ -42,6 +42,18 @@ const openaiChatModels: Record<string, string>[] = [
displayName: 'GPT 4.1',
key: 'gpt-4.1',
},
{
displayName: 'GPT 5 nano',
key: 'gpt-5-nano',
},
{
displayName: 'GPT 5 mini',
key: 'gpt-5-mini',
},
{
displayName: 'GPT 5',
key: 'gpt-5',
},
];
const openaiEmbeddingModels: Record<string, string>[] = [
@@ -69,7 +81,7 @@ export const loadOpenAIChatModels = async () => {
model: new ChatOpenAI({
apiKey: openaiApiKey,
modelName: model.key,
temperature: 0.7,
temperature: model.key.includes('gpt-5') ? 1 : 0.7,
}) as unknown as BaseChatModel,
};
});

View File

@@ -24,7 +24,6 @@ import computeSimilarity from '../utils/computeSimilarity';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import { StreamEvent } from '@langchain/core/tracers/log_stream';
import { z } from 'zod';
export interface MetaSearchAgentType {
searchAndAnswer: (
@@ -53,17 +52,6 @@ type BasicChainInput = {
query: string;
};
const retrieverLLMOutputSchema = z.object({
query: z.string().describe('The query to search the web for.'),
links: z
.array(z.string())
.describe('The links to search/summarize if present'),
searchRequired: z
.boolean()
.describe('Wether there is a need to search the web'),
searchMode: z.enum(['', 'normal', 'news']).describe('The search mode.'),
});
class MetaSearchAgent implements MetaSearchAgentType {
private config: Config;
private strParser = new StringOutputParser();
@@ -74,71 +62,73 @@ class MetaSearchAgent implements MetaSearchAgentType {
private async createSearchRetrieverChain(llm: BaseChatModel) {
(llm as unknown as ChatOpenAI).temperature = 0;
return RunnableSequence.from([
PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt),
Object.assign(
Object.create(Object.getPrototypeOf(llm)),
llm,
).withStructuredOutput(retrieverLLMOutputSchema, {
...(llm.metadata?.['model-type'] === 'groq'
? {
method: 'json-object',
}
: {}),
}),
RunnableLambda.from(
async (input: z.infer<typeof retrieverLLMOutputSchema>) => {
let question = input.query;
const links = input.links;
llm,
this.strParser,
RunnableLambda.from(async (input: string) => {
const linksOutputParser = new LineListOutputParser({
key: 'links',
});
if (!input.searchRequired) {
return { query: '', docs: [] };
const questionOutputParser = new LineOutputParser({
key: 'question',
});
const links = await linksOutputParser.parse(input);
let question = this.config.summarizer
? await questionOutputParser.parse(input)
: input;
if (question === 'not_needed') {
return { query: '', docs: [] };
}
if (links.length > 0) {
if (question.length === 0) {
question = 'summarize';
}
if (links.length > 0) {
if (question.length === 0) {
question = 'summarize';
let docs: Document[] = [];
const linkDocs = await getDocumentsFromLinks({ links });
const docGroups: Document[] = [];
linkDocs.map((doc) => {
const URLDocExists = docGroups.find(
(d) =>
d.metadata.url === doc.metadata.url &&
d.metadata.totalDocs < 10,
);
if (!URLDocExists) {
docGroups.push({
...doc,
metadata: {
...doc.metadata,
totalDocs: 1,
},
});
}
let docs: Document[] = [];
const docIndex = docGroups.findIndex(
(d) =>
d.metadata.url === doc.metadata.url &&
d.metadata.totalDocs < 10,
);
const linkDocs = await getDocumentsFromLinks({ links });
if (docIndex !== -1) {
docGroups[docIndex].pageContent =
docGroups[docIndex].pageContent + `\n\n` + doc.pageContent;
docGroups[docIndex].metadata.totalDocs += 1;
}
});
const docGroups: Document[] = [];
linkDocs.map((doc) => {
const URLDocExists = docGroups.find(
(d) =>
d.metadata.url === doc.metadata.url &&
d.metadata.totalDocs < 10,
);
if (!URLDocExists) {
docGroups.push({
...doc,
metadata: {
...doc.metadata,
totalDocs: 1,
},
});
}
const docIndex = docGroups.findIndex(
(d) =>
d.metadata.url === doc.metadata.url &&
d.metadata.totalDocs < 10,
);
if (docIndex !== -1) {
docGroups[docIndex].pageContent =
docGroups[docIndex].pageContent + `\n\n` + doc.pageContent;
docGroups[docIndex].metadata.totalDocs += 1;
}
});
await Promise.all(
docGroups.map(async (doc) => {
const res = await llm.invoke(`
await Promise.all(
docGroups.map(async (doc) => {
const res = await llm.invoke(`
You are a web search summarizer, tasked with summarizing a piece of text retrieved from a web search. Your job is to summarize the
text into a detailed, 2-4 paragraph explanation that captures the main ideas and provides a comprehensive answer to the query.
If the query is \"summarize\", you should provide a detailed summary of the text. If the query is a specific question, you should answer it in the summary.
@@ -199,50 +189,46 @@ class MetaSearchAgent implements MetaSearchAgentType {
Make sure to answer the query in the summary.
`);
const document = new Document({
pageContent: res.content as string,
metadata: {
title: doc.metadata.title,
url: doc.metadata.url,
},
});
const document = new Document({
pageContent: res.content as string,
metadata: {
title: doc.metadata.title,
url: doc.metadata.url,
},
});
docs.push(document);
docs.push(document);
}),
);
return { query: question, docs: docs };
} else {
question = question.replace(/<think>.*?<\/think>/g, '');
const res = await searchSearxng(question, {
language: 'en',
engines: this.config.activeEngines,
});
const documents = res.results.map(
(result) =>
new Document({
pageContent:
result.content ||
(this.config.activeEngines.includes('youtube')
? result.title
: '') /* Todo: Implement transcript grabbing using Youtubei (source: https://www.npmjs.com/package/youtubei) */,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
);
return { query: question, docs: docs };
} else {
question = question.replace(/<think>.*?<\/think>/g, '');
const res = await searchSearxng(question, {
language: 'en',
engines:
input.searchMode === 'normal'
? this.config.activeEngines
: ['bing news'],
});
const documents = res.results.map(
(result) =>
new Document({
pageContent:
result.content ||
(this.config.activeEngines.includes('youtube')
? result.title
: '') /* Todo: Implement transcript grabbing using Youtubei (source: https://www.npmjs.com/package/youtubei) */,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: question, docs: documents };
}
},
),
return { query: question, docs: documents };
}
}),
]);
}

View File

@@ -1,8 +1,11 @@
import { BaseMessage } from '@langchain/core/messages';
import { BaseMessage, isAIMessage } from '@langchain/core/messages';
const formatChatHistoryAsString = (history: BaseMessage[]) => {
return history
.map((message) => `${message._getType()}: ${message.content}`)
.map(
(message) =>
`${isAIMessage(message) ? 'AI' : 'User'}: ${message.content}`,
)
.join('\n');
};

View File

@@ -653,6 +653,14 @@
"@google/generative-ai" "^0.24.0"
uuid "^11.1.0"
"@langchain/groq@^0.2.3":
version "0.2.3"
resolved "https://registry.yarnpkg.com/@langchain/groq/-/groq-0.2.3.tgz#3bfcbfc827cf469df3a1b5bb9799f4b0212b4625"
integrity sha512-r+yjysG36a0IZxTlCMr655Feumfb4IrOyA0jLLq4l7gEhVyMpYXMwyE6evseyU2LRP+7qOPbGRVpGqAIK0MsUA==
dependencies:
groq-sdk "^0.19.0"
zod "^3.22.4"
"@langchain/ollama@^0.2.3":
version "0.2.3"
resolved "https://registry.yarnpkg.com/@langchain/ollama/-/ollama-0.2.3.tgz#4868e66db4fc480f08c42fc652274abbab0416f0"
@@ -2732,6 +2740,19 @@ graphql@^16.11.0:
resolved "https://registry.yarnpkg.com/graphql/-/graphql-16.11.0.tgz#96d17f66370678027fdf59b2d4c20b4efaa8a633"
integrity sha512-mS1lbMsxgQj6hge1XZ6p7GPhbrtFwUFYi3wRzXAC/FmYnyXMTvvI3td3rjmQ2u8ewXueaSvRPWaEcgVVOT9Jnw==
groq-sdk@^0.19.0:
version "0.19.0"
resolved "https://registry.yarnpkg.com/groq-sdk/-/groq-sdk-0.19.0.tgz#564ce018172dc3e2e2793398e0227a035a357d09"
integrity sha512-vdh5h7ORvwvOvutA80dKF81b0gPWHxu6K/GOJBOM0n6p6CSqAVLhFfeS79Ef0j/yCycDR09jqY7jkYz9dLiS6w==
dependencies:
"@types/node" "^18.11.18"
"@types/node-fetch" "^2.6.4"
abort-controller "^3.0.0"
agentkeepalive "^4.2.1"
form-data-encoder "1.7.2"
formdata-node "^4.3.2"
node-fetch "^2.6.7"
guid-typescript@^1.0.9:
version "1.0.9"
resolved "https://registry.yarnpkg.com/guid-typescript/-/guid-typescript-1.0.9.tgz#e35f77003535b0297ea08548f5ace6adb1480ddc"