Compare commits
38 Commits
v1.11.0-rc
...
feat/struc
Author | SHA1 | Date | |
---|---|---|---|
df33229934 | |||
49fafaa096 | |||
ca9b32a23b | |||
76e3ff4e02 | |||
eabf3ca7d3 | |||
94e6db10bb | |||
26e1d5fec3 | |||
66be87b688 | |||
f7b4e32218 | |||
57407112fb | |||
b280cc2e01 | |||
e6ebf892c5 | |||
b754641058 | |||
722f4f760e | |||
01e04a209f | |||
0299fd1ea0 | |||
cf8dec53ca | |||
d5c012d748 | |||
2ccbd9a44c | |||
ccd89d48d9 | |||
87d788ddef | |||
809b625a34 | |||
95c753a549 | |||
0bb8b7ec5c | |||
c6d084f5dc | |||
0024ce36c8 | |||
c44e746807 | |||
b1826066f4 | |||
b0b8acc45b | |||
e2b9ffc072 | |||
68c43ea372 | |||
3b46baca4f | |||
772e461c08 | |||
5c6018a0f9 | |||
0b7989c3d3 | |||
8cfcc3e39c | |||
9eba4b7373 | |||
91306dc0c7 |
0
.assets/manifest.json
Normal file
2
.gitignore
vendored
@ -37,3 +37,5 @@ Thumbs.db
|
||||
# Db
|
||||
db.sqlite
|
||||
/searxng
|
||||
|
||||
certificates
|
@ -16,7 +16,7 @@
|
||||
|
||||
<hr/>
|
||||
|
||||
[](https://discord.gg/26aArMy8tT)
|
||||
[](https://discord.gg/26aArMy8tT)
|
||||
|
||||

|
||||
|
||||
@ -90,6 +90,9 @@ There are mainly 2 ways of installing Perplexica - With Docker, Without Docker.
|
||||
- `OLLAMA`: Your Ollama API URL. You should enter it as `http://host.docker.internal:PORT_NUMBER`. If you installed Ollama on port 11434, use `http://host.docker.internal:11434`. For other ports, adjust accordingly. **You need to fill this if you wish to use Ollama's models instead of OpenAI's**.
|
||||
- `GROQ`: Your Groq API key. **You only need to fill this if you wish to use Groq's hosted models**.
|
||||
- `ANTHROPIC`: Your Anthropic API key. **You only need to fill this if you wish to use Anthropic models**.
|
||||
- `Gemini`: Your Gemini API key. **You only need to fill this if you wish to use Google's models**.
|
||||
- `DEEPSEEK`: Your Deepseek API key. **Only needed if you want Deepseek models.**
|
||||
- `AIMLAPI`: Your AI/ML API key. **Only needed if you want to use AI/ML API models and embeddings.**
|
||||
|
||||
**Note**: You can change these after starting Perplexica from the settings dialog.
|
||||
|
||||
@ -111,7 +114,7 @@ There are mainly 2 ways of installing Perplexica - With Docker, Without Docker.
|
||||
2. Clone the repository and rename the `sample.config.toml` file to `config.toml` in the root directory. Ensure you complete all required fields in this file.
|
||||
3. After populating the configuration run `npm i`.
|
||||
4. Install the dependencies and then execute `npm run build`.
|
||||
5. Finally, start the app by running `npm rum start`
|
||||
5. Finally, start the app by running `npm run start`
|
||||
|
||||
**Note**: Using Docker is recommended as it simplifies the setup process, especially for managing environment variables and dependencies.
|
||||
|
||||
@ -132,7 +135,7 @@ If you're encountering an Ollama connection error, it is likely due to the backe
|
||||
|
||||
3. **Linux Users - Expose Ollama to Network:**
|
||||
|
||||
- Inside `/etc/systemd/system/ollama.service`, you need to add `Environment="OLLAMA_HOST=0.0.0.0"`. Then restart Ollama by `systemctl restart ollama`. For more information see [Ollama docs](https://github.com/ollama/ollama/blob/main/docs/faq.md#setting-environment-variables-on-linux)
|
||||
- Inside `/etc/systemd/system/ollama.service`, you need to add `Environment="OLLAMA_HOST=0.0.0.0:11434"`. (Change the port number if you are using a different one.) Then reload the systemd manager configuration with `systemctl daemon-reload`, and restart Ollama by `systemctl restart ollama`. For more information see [Ollama docs](https://github.com/ollama/ollama/blob/main/docs/faq.md#setting-environment-variables-on-linux)
|
||||
|
||||
- Ensure that the port (default is 11434) is not blocked by your firewall.
|
||||
|
||||
|
@ -41,6 +41,6 @@ To update Perplexica to the latest version, follow these steps:
|
||||
3. Check for changes in the configuration files. If the `sample.config.toml` file contains new fields, delete your existing `config.toml` file, rename `sample.config.toml` to `config.toml`, and update the configuration accordingly.
|
||||
4. After populating the configuration run `npm i`.
|
||||
5. Install the dependencies and then execute `npm run build`.
|
||||
6. Finally, start the app by running `npm rum start`
|
||||
6. Finally, start the app by running `npm run start`
|
||||
|
||||
---
|
||||
|
15
package.json
@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "perplexica-frontend",
|
||||
"version": "1.11.0-rc1",
|
||||
"version": "1.11.0-rc2",
|
||||
"license": "MIT",
|
||||
"author": "ItzCrazyKns",
|
||||
"scripts": {
|
||||
@ -15,11 +15,12 @@
|
||||
"@headlessui/react": "^2.2.0",
|
||||
"@iarna/toml": "^2.2.5",
|
||||
"@icons-pack/react-simple-icons": "^12.3.0",
|
||||
"@langchain/anthropic": "^0.3.15",
|
||||
"@langchain/community": "^0.3.36",
|
||||
"@langchain/core": "^0.3.42",
|
||||
"@langchain/google-genai": "^0.1.12",
|
||||
"@langchain/openai": "^0.0.25",
|
||||
"@langchain/anthropic": "^0.3.24",
|
||||
"@langchain/community": "^0.3.49",
|
||||
"@langchain/core": "^0.3.66",
|
||||
"@langchain/google-genai": "^0.2.15",
|
||||
"@langchain/ollama": "^0.2.3",
|
||||
"@langchain/openai": "^0.6.2",
|
||||
"@langchain/textsplitters": "^0.1.0",
|
||||
"@tailwindcss/typography": "^0.5.12",
|
||||
"@xenova/transformers": "^2.17.2",
|
||||
@ -31,7 +32,7 @@
|
||||
"drizzle-orm": "^0.40.1",
|
||||
"html-to-text": "^9.0.5",
|
||||
"jspdf": "^3.0.1",
|
||||
"langchain": "^0.1.30",
|
||||
"langchain": "^0.3.30",
|
||||
"lucide-react": "^0.363.0",
|
||||
"mammoth": "^1.9.1",
|
||||
"markdown-to-jsx": "^7.7.2",
|
||||
|
BIN
public/icon-100.png
Normal file
After Width: | Height: | Size: 916 B |
BIN
public/icon-50.png
Normal file
After Width: | Height: | Size: 515 B |
BIN
public/icon.png
Normal file
After Width: | Height: | Size: 30 KiB |
BIN
public/screenshots/p1.png
Normal file
After Width: | Height: | Size: 183 KiB |
BIN
public/screenshots/p1_small.png
Normal file
After Width: | Height: | Size: 130 KiB |
BIN
public/screenshots/p2.png
Normal file
After Width: | Height: | Size: 627 KiB |
BIN
public/screenshots/p2_small.png
Normal file
After Width: | Height: | Size: 202 KiB |
@ -25,6 +25,9 @@ API_URL = "" # Ollama API URL - http://host.docker.internal:11434
|
||||
[MODELS.DEEPSEEK]
|
||||
API_KEY = ""
|
||||
|
||||
[MODELS.AIMLAPI]
|
||||
API_KEY = "" # Required to use AI/ML API chat and embedding models
|
||||
|
||||
[MODELS.LM_STUDIO]
|
||||
API_URL = "" # LM Studio API URL - http://host.docker.internal:1234
|
||||
|
||||
|
@ -223,7 +223,7 @@ export const POST = async (req: Request) => {
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
openAIApiKey: getCustomOpenaiApiKey(),
|
||||
apiKey: getCustomOpenaiApiKey(),
|
||||
modelName: getCustomOpenaiModelName(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
|
@ -8,6 +8,7 @@ import {
|
||||
getOllamaApiEndpoint,
|
||||
getOpenaiApiKey,
|
||||
getDeepseekApiKey,
|
||||
getAimlApiKey,
|
||||
getLMStudioApiEndpoint,
|
||||
updateConfig,
|
||||
} from '@/lib/config';
|
||||
@ -57,6 +58,7 @@ export const GET = async (req: Request) => {
|
||||
config['groqApiKey'] = getGroqApiKey();
|
||||
config['geminiApiKey'] = getGeminiApiKey();
|
||||
config['deepseekApiKey'] = getDeepseekApiKey();
|
||||
config['aimlApiKey'] = getAimlApiKey();
|
||||
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
|
||||
config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
|
||||
config['customOpenaiModelName'] = getCustomOpenaiModelName();
|
||||
@ -95,6 +97,9 @@ export const POST = async (req: Request) => {
|
||||
DEEPSEEK: {
|
||||
API_KEY: config.deepseekApiKey,
|
||||
},
|
||||
AIMLAPI: {
|
||||
API_KEY: config.aimlApiKey,
|
||||
},
|
||||
LM_STUDIO: {
|
||||
API_URL: config.lmStudioApiUrl,
|
||||
},
|
||||
|
@ -36,6 +36,7 @@ export const GET = async (req: Request) => {
|
||||
{
|
||||
engines: ['bing news'],
|
||||
pageno: 1,
|
||||
language: 'en',
|
||||
},
|
||||
)
|
||||
).results;
|
||||
@ -49,7 +50,11 @@ export const GET = async (req: Request) => {
|
||||
data = (
|
||||
await searchSearxng(
|
||||
`site:${articleWebsites[Math.floor(Math.random() * articleWebsites.length)]} ${topics[Math.floor(Math.random() * topics.length)]}`,
|
||||
{ engines: ['bing news'], pageno: 1 },
|
||||
{
|
||||
engines: ['bing news'],
|
||||
pageno: 1,
|
||||
language: 'en',
|
||||
},
|
||||
)
|
||||
).results;
|
||||
}
|
||||
|
@ -49,7 +49,7 @@ export const POST = async (req: Request) => {
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
openAIApiKey: getCustomOpenaiApiKey(),
|
||||
apiKey: getCustomOpenaiApiKey(),
|
||||
modelName: getCustomOpenaiModelName(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
|
@ -81,7 +81,7 @@ export const POST = async (req: Request) => {
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
modelName: body.chatModel?.name || getCustomOpenaiModelName(),
|
||||
openAIApiKey:
|
||||
apiKey:
|
||||
body.chatModel?.customOpenAIKey || getCustomOpenaiApiKey(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
|
@ -48,7 +48,7 @@ export const POST = async (req: Request) => {
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
openAIApiKey: getCustomOpenaiApiKey(),
|
||||
apiKey: getCustomOpenaiApiKey(),
|
||||
modelName: getCustomOpenaiModelName(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
|
@ -49,7 +49,7 @@ export const POST = async (req: Request) => {
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
openAIApiKey: getCustomOpenaiApiKey(),
|
||||
apiKey: getCustomOpenaiApiKey(),
|
||||
modelName: getCustomOpenaiModelName(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
|
@ -1,6 +1,7 @@
|
||||
export const POST = async (req: Request) => {
|
||||
try {
|
||||
const body: { lat: number; lng: number } = await req.json();
|
||||
const body: { lat: number; lng: number; temperatureUnit: 'C' | 'F' } =
|
||||
await req.json();
|
||||
|
||||
if (!body.lat || !body.lng) {
|
||||
return Response.json(
|
||||
@ -12,7 +13,7 @@ export const POST = async (req: Request) => {
|
||||
}
|
||||
|
||||
const res = await fetch(
|
||||
`https://api.open-meteo.com/v1/forecast?latitude=${body.lat}&longitude=${body.lng}¤t=weather_code,temperature_2m,is_day,relative_humidity_2m,wind_speed_10m&timezone=auto`,
|
||||
`https://api.open-meteo.com/v1/forecast?latitude=${body.lat}&longitude=${body.lng}¤t=weather_code,temperature_2m,is_day,relative_humidity_2m,wind_speed_10m&timezone=auto${body.temperatureUnit === 'C' ? '' : '&temperature_unit=fahrenheit'}`,
|
||||
);
|
||||
|
||||
const data = await res.json();
|
||||
@ -33,12 +34,14 @@ export const POST = async (req: Request) => {
|
||||
humidity: number;
|
||||
windSpeed: number;
|
||||
icon: string;
|
||||
temperatureUnit: 'C' | 'F';
|
||||
} = {
|
||||
temperature: data.current.temperature_2m,
|
||||
condition: '',
|
||||
humidity: data.current.relative_humidity_2m,
|
||||
windSpeed: data.current.wind_speed_10m,
|
||||
icon: '',
|
||||
temperatureUnit: body.temperatureUnit,
|
||||
};
|
||||
|
||||
const code = data.current.weather_code;
|
||||
|
@ -11,3 +11,11 @@
|
||||
display: none;
|
||||
}
|
||||
}
|
||||
|
||||
@media screen and (-webkit-min-device-pixel-ratio: 0) {
|
||||
select,
|
||||
textarea,
|
||||
input {
|
||||
font-size: 16px !important;
|
||||
}
|
||||
}
|
||||
|
54
src/app/manifest.ts
Normal file
@ -0,0 +1,54 @@
|
||||
import type { MetadataRoute } from 'next';
|
||||
|
||||
export default function manifest(): MetadataRoute.Manifest {
|
||||
return {
|
||||
name: 'Perplexica - Chat with the internet',
|
||||
short_name: 'Perplexica',
|
||||
description:
|
||||
'Perplexica is an AI powered chatbot that is connected to the internet.',
|
||||
start_url: '/',
|
||||
display: 'standalone',
|
||||
background_color: '#0a0a0a',
|
||||
theme_color: '#0a0a0a',
|
||||
screenshots: [
|
||||
{
|
||||
src: '/screenshots/p1.png',
|
||||
form_factor: 'wide',
|
||||
sizes: '2560x1600',
|
||||
},
|
||||
{
|
||||
src: '/screenshots/p2.png',
|
||||
form_factor: 'wide',
|
||||
sizes: '2560x1600',
|
||||
},
|
||||
{
|
||||
src: '/screenshots/p1_small.png',
|
||||
form_factor: 'narrow',
|
||||
sizes: '828x1792',
|
||||
},
|
||||
{
|
||||
src: '/screenshots/p2_small.png',
|
||||
form_factor: 'narrow',
|
||||
sizes: '828x1792',
|
||||
},
|
||||
],
|
||||
icons: [
|
||||
{
|
||||
src: '/icon-50.png',
|
||||
sizes: '50x50',
|
||||
type: 'image/png' as const,
|
||||
},
|
||||
{
|
||||
src: '/icon-100.png',
|
||||
sizes: '100x100',
|
||||
type: 'image/png',
|
||||
},
|
||||
{
|
||||
src: '/icon.png',
|
||||
sizes: '440x440',
|
||||
type: 'image/png',
|
||||
purpose: 'any',
|
||||
},
|
||||
],
|
||||
};
|
||||
}
|
@ -23,6 +23,7 @@ interface SettingsType {
|
||||
ollamaApiUrl: string;
|
||||
lmStudioApiUrl: string;
|
||||
deepseekApiKey: string;
|
||||
aimlApiKey: string;
|
||||
customOpenaiApiKey: string;
|
||||
customOpenaiApiUrl: string;
|
||||
customOpenaiModelName: string;
|
||||
@ -147,6 +148,7 @@ const Page = () => {
|
||||
const [automaticImageSearch, setAutomaticImageSearch] = useState(false);
|
||||
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
|
||||
const [systemInstructions, setSystemInstructions] = useState<string>('');
|
||||
const [temperatureUnit, setTemperatureUnit] = useState<'C' | 'F'>('C');
|
||||
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
|
||||
|
||||
useEffect(() => {
|
||||
@ -209,6 +211,8 @@ const Page = () => {
|
||||
|
||||
setSystemInstructions(localStorage.getItem('systemInstructions')!);
|
||||
|
||||
setTemperatureUnit(localStorage.getItem('temperatureUnit')! as 'C' | 'F');
|
||||
|
||||
setIsLoading(false);
|
||||
};
|
||||
|
||||
@ -367,6 +371,8 @@ const Page = () => {
|
||||
localStorage.setItem('embeddingModel', value);
|
||||
} else if (key === 'systemInstructions') {
|
||||
localStorage.setItem('systemInstructions', value);
|
||||
} else if (key === 'temperatureUnit') {
|
||||
localStorage.setItem('temperatureUnit', value.toString());
|
||||
}
|
||||
} catch (err) {
|
||||
console.error('Failed to save:', err);
|
||||
@ -415,13 +421,35 @@ const Page = () => {
|
||||
) : (
|
||||
config && (
|
||||
<div className="flex flex-col space-y-6 pb-28 lg:pb-8">
|
||||
<SettingsSection title="Appearance">
|
||||
<SettingsSection title="Preferences">
|
||||
<div className="flex flex-col space-y-1">
|
||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||
Theme
|
||||
</p>
|
||||
<ThemeSwitcher />
|
||||
</div>
|
||||
<div className="flex flex-col space-y-1">
|
||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||
Temperature Unit
|
||||
</p>
|
||||
<Select
|
||||
value={temperatureUnit ?? undefined}
|
||||
onChange={(e) => {
|
||||
setTemperatureUnit(e.target.value as 'C' | 'F');
|
||||
saveConfig('temperatureUnit', e.target.value);
|
||||
}}
|
||||
options={[
|
||||
{
|
||||
label: 'Celsius',
|
||||
value: 'C',
|
||||
},
|
||||
{
|
||||
label: 'Fahrenheit',
|
||||
value: 'F',
|
||||
},
|
||||
]}
|
||||
/>
|
||||
</div>
|
||||
</SettingsSection>
|
||||
|
||||
<SettingsSection title="Automatic Search">
|
||||
@ -515,7 +543,7 @@ const Page = () => {
|
||||
<SettingsSection title="System Instructions">
|
||||
<div className="flex flex-col space-y-4">
|
||||
<Textarea
|
||||
value={systemInstructions}
|
||||
value={systemInstructions ?? undefined}
|
||||
isSaving={savingStates['systemInstructions']}
|
||||
onChange={(e) => {
|
||||
setSystemInstructions(e.target.value);
|
||||
@ -862,6 +890,25 @@ const Page = () => {
|
||||
/>
|
||||
</div>
|
||||
|
||||
<div className="flex flex-col space-y-1">
|
||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||
AI/ML API Key
|
||||
</p>
|
||||
<Input
|
||||
type="text"
|
||||
placeholder="AI/ML API Key"
|
||||
value={config.aimlApiKey}
|
||||
isSaving={savingStates['aimlApiKey']}
|
||||
onChange={(e) => {
|
||||
setConfig((prev) => ({
|
||||
...prev!,
|
||||
aimlApiKey: e.target.value,
|
||||
}));
|
||||
}}
|
||||
onSave={(value) => saveConfig('aimlApiKey', value)}
|
||||
/>
|
||||
</div>
|
||||
|
||||
<div className="flex flex-col space-y-1">
|
||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||
LM Studio API URL
|
||||
|
@ -82,14 +82,29 @@ const checkConfig = async (
|
||||
) {
|
||||
if (!chatModel || !chatModelProvider) {
|
||||
const chatModelProviders = providers.chatModelProviders;
|
||||
const chatModelProvidersKeys = Object.keys(chatModelProviders);
|
||||
|
||||
chatModelProvider =
|
||||
chatModelProvider || Object.keys(chatModelProviders)[0];
|
||||
if (!chatModelProviders || chatModelProvidersKeys.length === 0) {
|
||||
return toast.error('No chat models available');
|
||||
} else {
|
||||
chatModelProvider =
|
||||
chatModelProvidersKeys.find(
|
||||
(provider) =>
|
||||
Object.keys(chatModelProviders[provider]).length > 0,
|
||||
) || chatModelProvidersKeys[0];
|
||||
}
|
||||
|
||||
if (
|
||||
chatModelProvider === 'custom_openai' &&
|
||||
Object.keys(chatModelProviders[chatModelProvider]).length === 0
|
||||
) {
|
||||
toast.error(
|
||||
"Looks like you haven't configured any chat model providers. Please configure them from the settings page or the config file.",
|
||||
);
|
||||
return setHasError(true);
|
||||
}
|
||||
|
||||
chatModel = Object.keys(chatModelProviders[chatModelProvider])[0];
|
||||
|
||||
if (!chatModelProviders || Object.keys(chatModelProviders).length === 0)
|
||||
return toast.error('No chat models available');
|
||||
}
|
||||
|
||||
if (!embeddingModel || !embeddingModelProvider) {
|
||||
@ -117,7 +132,8 @@ const checkConfig = async (
|
||||
|
||||
if (
|
||||
Object.keys(chatModelProviders).length > 0 &&
|
||||
!chatModelProviders[chatModelProvider]
|
||||
(!chatModelProviders[chatModelProvider] ||
|
||||
Object.keys(chatModelProviders[chatModelProvider]).length === 0)
|
||||
) {
|
||||
const chatModelProvidersKeys = Object.keys(chatModelProviders);
|
||||
chatModelProvider =
|
||||
@ -132,6 +148,16 @@ const checkConfig = async (
|
||||
chatModelProvider &&
|
||||
!chatModelProviders[chatModelProvider][chatModel]
|
||||
) {
|
||||
if (
|
||||
chatModelProvider === 'custom_openai' &&
|
||||
Object.keys(chatModelProviders[chatModelProvider]).length === 0
|
||||
) {
|
||||
toast.error(
|
||||
"Looks like you haven't configured any chat model providers. Please configure them from the settings page or the config file.",
|
||||
);
|
||||
return setHasError(true);
|
||||
}
|
||||
|
||||
chatModel = Object.keys(
|
||||
chatModelProviders[
|
||||
Object.keys(chatModelProviders[chatModelProvider]).length > 0
|
||||
@ -139,6 +165,7 @@ const checkConfig = async (
|
||||
: Object.keys(chatModelProviders)[0]
|
||||
],
|
||||
)[0];
|
||||
|
||||
localStorage.setItem('chatModel', chatModel);
|
||||
}
|
||||
|
||||
|
@ -1,6 +1,5 @@
|
||||
import { Settings } from 'lucide-react';
|
||||
import EmptyChatMessageInput from './EmptyChatMessageInput';
|
||||
import { useEffect, useState } from 'react';
|
||||
import { File } from './ChatWindow';
|
||||
import Link from 'next/link';
|
||||
import WeatherWidget from './WeatherWidget';
|
||||
@ -34,26 +33,28 @@ const EmptyChat = ({
|
||||
<Settings className="cursor-pointer lg:hidden" />
|
||||
</Link>
|
||||
</div>
|
||||
<div className="flex flex-col items-center justify-center min-h-screen max-w-screen-sm mx-auto p-2 space-y-8">
|
||||
<h2 className="text-black/70 dark:text-white/70 text-3xl font-medium -mt-8">
|
||||
Research begins here.
|
||||
</h2>
|
||||
<EmptyChatMessageInput
|
||||
sendMessage={sendMessage}
|
||||
focusMode={focusMode}
|
||||
setFocusMode={setFocusMode}
|
||||
optimizationMode={optimizationMode}
|
||||
setOptimizationMode={setOptimizationMode}
|
||||
fileIds={fileIds}
|
||||
setFileIds={setFileIds}
|
||||
files={files}
|
||||
setFiles={setFiles}
|
||||
/>
|
||||
<div className="flex flex-col items-center justify-center min-h-screen max-w-screen-sm mx-auto p-2 space-y-4">
|
||||
<div className="flex flex-col items-center justify-center w-full space-y-8">
|
||||
<h2 className="text-black/70 dark:text-white/70 text-3xl font-medium -mt-8">
|
||||
Research begins here.
|
||||
</h2>
|
||||
<EmptyChatMessageInput
|
||||
sendMessage={sendMessage}
|
||||
focusMode={focusMode}
|
||||
setFocusMode={setFocusMode}
|
||||
optimizationMode={optimizationMode}
|
||||
setOptimizationMode={setOptimizationMode}
|
||||
fileIds={fileIds}
|
||||
setFileIds={setFileIds}
|
||||
files={files}
|
||||
setFiles={setFiles}
|
||||
/>
|
||||
</div>
|
||||
<div className="flex flex-col w-full gap-4 mt-2 sm:flex-row sm:justify-center">
|
||||
<div className="flex-1 max-w-xs">
|
||||
<div className="flex-1 w-full">
|
||||
<WeatherWidget />
|
||||
</div>
|
||||
<div className="flex-1 max-w-xs">
|
||||
<div className="flex-1 w-full">
|
||||
<NewsArticleWidget />
|
||||
</div>
|
||||
</div>
|
||||
|
@ -9,7 +9,9 @@ const WeatherWidget = () => {
|
||||
humidity: 0,
|
||||
windSpeed: 0,
|
||||
icon: '',
|
||||
temperatureUnit: 'C',
|
||||
});
|
||||
|
||||
const [loading, setLoading] = useState(true);
|
||||
|
||||
useEffect(() => {
|
||||
@ -31,30 +33,40 @@ const WeatherWidget = () => {
|
||||
city: string;
|
||||
}) => void,
|
||||
) => {
|
||||
/*
|
||||
// Geolocation doesn't give city so we'll country using ipapi for now
|
||||
if (navigator.geolocation) {
|
||||
const result = await navigator.permissions.query({
|
||||
name: 'geolocation',
|
||||
})
|
||||
|
||||
if (result.state === 'granted') {
|
||||
navigator.geolocation.getCurrentPosition(position => {
|
||||
callback({
|
||||
latitude: position.coords.latitude,
|
||||
longitude: position.coords.longitude,
|
||||
})
|
||||
})
|
||||
} else if (result.state === 'prompt') {
|
||||
callback(await getApproxLocation())
|
||||
navigator.geolocation.getCurrentPosition(position => {})
|
||||
} else if (result.state === 'denied') {
|
||||
callback(await getApproxLocation())
|
||||
}
|
||||
} else {
|
||||
callback(await getApproxLocation())
|
||||
} */
|
||||
callback(await getApproxLocation());
|
||||
if (navigator.geolocation) {
|
||||
const result = await navigator.permissions.query({
|
||||
name: 'geolocation',
|
||||
});
|
||||
|
||||
if (result.state === 'granted') {
|
||||
navigator.geolocation.getCurrentPosition(async (position) => {
|
||||
const res = await fetch(
|
||||
`https://api-bdc.io/data/reverse-geocode-client?latitude=${position.coords.latitude}&longitude=${position.coords.longitude}&localityLanguage=en`,
|
||||
{
|
||||
method: 'GET',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
},
|
||||
);
|
||||
|
||||
const data = await res.json();
|
||||
|
||||
callback({
|
||||
latitude: position.coords.latitude,
|
||||
longitude: position.coords.longitude,
|
||||
city: data.locality,
|
||||
});
|
||||
});
|
||||
} else if (result.state === 'prompt') {
|
||||
callback(await getApproxLocation());
|
||||
navigator.geolocation.getCurrentPosition((position) => {});
|
||||
} else if (result.state === 'denied') {
|
||||
callback(await getApproxLocation());
|
||||
}
|
||||
} else {
|
||||
callback(await getApproxLocation());
|
||||
}
|
||||
};
|
||||
|
||||
getLocation(async (location) => {
|
||||
@ -63,6 +75,7 @@ const WeatherWidget = () => {
|
||||
body: JSON.stringify({
|
||||
lat: location.latitude,
|
||||
lng: location.longitude,
|
||||
temperatureUnit: localStorage.getItem('temperatureUnit') ?? 'C',
|
||||
}),
|
||||
});
|
||||
|
||||
@ -81,6 +94,7 @@ const WeatherWidget = () => {
|
||||
humidity: data.humidity,
|
||||
windSpeed: data.windSpeed,
|
||||
icon: data.icon,
|
||||
temperatureUnit: data.temperatureUnit,
|
||||
});
|
||||
setLoading(false);
|
||||
});
|
||||
@ -115,7 +129,7 @@ const WeatherWidget = () => {
|
||||
className="h-10 w-auto"
|
||||
/>
|
||||
<span className="text-base font-semibold text-black dark:text-white">
|
||||
{data.temperature}°C
|
||||
{data.temperature}°{data.temperatureUnit}
|
||||
</span>
|
||||
</div>
|
||||
<div className="flex flex-col justify-between flex-1 h-full py-1">
|
||||
|
@ -35,6 +35,9 @@ interface Config {
|
||||
DEEPSEEK: {
|
||||
API_KEY: string;
|
||||
};
|
||||
AIMLAPI: {
|
||||
API_KEY: string;
|
||||
};
|
||||
LM_STUDIO: {
|
||||
API_URL: string;
|
||||
};
|
||||
@ -85,6 +88,8 @@ export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL;
|
||||
|
||||
export const getDeepseekApiKey = () => loadConfig().MODELS.DEEPSEEK.API_KEY;
|
||||
|
||||
export const getAimlApiKey = () => loadConfig().MODELS.AIMLAPI.API_KEY;
|
||||
|
||||
export const getCustomOpenaiApiKey = () =>
|
||||
loadConfig().MODELS.CUSTOM_OPENAI.API_KEY;
|
||||
|
||||
|
@ -1,63 +1,41 @@
|
||||
export const webSearchRetrieverPrompt = `
|
||||
You are an AI question rephraser. You will be given a conversation and a follow-up question, you will have to rephrase the follow up question so it is a standalone question and can be used by another LLM to search the web for information to answer it.
|
||||
If it is a simple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
|
||||
If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block.
|
||||
You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response.
|
||||
You are an AI question rephraser. You will be given a conversation and a follow-up question; rephrase it into a standalone question that another LLM can use to search the web.
|
||||
|
||||
There are several examples attached for your reference inside the below \`examples\` XML block
|
||||
Return ONLY a JSON object that matches this schema:
|
||||
query: string // the standalone question (or "summarize")
|
||||
links: string[] // URLs extracted from the user query (empty if none)
|
||||
searchRequired: boolean // true if web search is needed, false for greetings/simple writing tasks
|
||||
searchMode: "" | "normal" | "news" // "" when searchRequired is false; "news" if the user asks for news/articles, otherwise "normal"
|
||||
|
||||
<examples>
|
||||
1. Follow up question: What is the capital of France
|
||||
Rephrased question:\`
|
||||
<question>
|
||||
Capital of france
|
||||
</question>
|
||||
\`
|
||||
Rules
|
||||
- Greetings / simple writing tasks → query:"", links:[], searchRequired:false, searchMode:""
|
||||
- Summarizing a URL → query:"summarize", links:[url...], searchRequired:true, searchMode:"normal"
|
||||
- Asking for news/articles → searchMode:"news"
|
||||
|
||||
Examples
|
||||
1. Follow-up: What is the capital of France?
|
||||
"query":"capital of France","links":[],"searchRequired":true,"searchMode":"normal"
|
||||
|
||||
2. Hi, how are you?
|
||||
Rephrased question\`
|
||||
<question>
|
||||
not_needed
|
||||
</question>
|
||||
\`
|
||||
"query":"","links":[],"searchRequired":false,"searchMode":""
|
||||
|
||||
3. Follow up question: What is Docker?
|
||||
Rephrased question: \`
|
||||
<question>
|
||||
What is Docker
|
||||
</question>
|
||||
\`
|
||||
3. Follow-up: What is Docker?
|
||||
"query":"what is Docker","links":[],"searchRequired":true,"searchMode":"normal"
|
||||
|
||||
4. Follow up question: Can you tell me what is X from https://example.com
|
||||
Rephrased question: \`
|
||||
<question>
|
||||
Can you tell me what is X?
|
||||
</question>
|
||||
4. Follow-up: Can you tell me what is X from https://example.com?
|
||||
"query":"what is X","links":["https://example.com"],"searchRequired":true,"searchMode":"normal"
|
||||
|
||||
<links>
|
||||
https://example.com
|
||||
</links>
|
||||
\`
|
||||
5. Follow-up: Summarize the content from https://example.com
|
||||
"query":"summarize","links":["https://example.com"],"searchRequired":true,"searchMode":"normal"
|
||||
|
||||
5. Follow up question: Summarize the content from https://example.com
|
||||
Rephrased question: \`
|
||||
<question>
|
||||
summarize
|
||||
</question>
|
||||
|
||||
<links>
|
||||
https://example.com
|
||||
</links>
|
||||
\`
|
||||
</examples>
|
||||
|
||||
Anything below is the part of the actual conversation and you need to use conversation and the follow-up question to rephrase the follow-up question as a standalone question based on the guidelines shared above.
|
||||
6. Follow-up: Latest news about AI
|
||||
"query":"latest news about AI","links":[],"searchRequired":true,"searchMode":"news"
|
||||
|
||||
<conversation>
|
||||
{chat_history}
|
||||
</conversation>
|
||||
|
||||
Follow up question: {query}
|
||||
Follow-up question: {query}
|
||||
Rephrased question:
|
||||
`;
|
||||
|
||||
|
94
src/lib/providers/aimlapi.ts
Normal file
@ -0,0 +1,94 @@
|
||||
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
|
||||
import { getAimlApiKey } from '../config';
|
||||
import { ChatModel, EmbeddingModel } from '.';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { Embeddings } from '@langchain/core/embeddings';
|
||||
import axios from 'axios';
|
||||
|
||||
export const PROVIDER_INFO = {
|
||||
key: 'aimlapi',
|
||||
displayName: 'AI/ML API',
|
||||
};
|
||||
|
||||
interface AimlApiModel {
|
||||
id: string;
|
||||
name?: string;
|
||||
type?: string;
|
||||
}
|
||||
|
||||
const API_URL = 'https://api.aimlapi.com';
|
||||
|
||||
export const loadAimlApiChatModels = async () => {
|
||||
const apiKey = getAimlApiKey();
|
||||
|
||||
if (!apiKey) return {};
|
||||
|
||||
try {
|
||||
const response = await axios.get(`${API_URL}/models`, {
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
Authorization: `Bearer ${apiKey}`,
|
||||
},
|
||||
});
|
||||
|
||||
const chatModels: Record<string, ChatModel> = {};
|
||||
|
||||
response.data.data.forEach((model: AimlApiModel) => {
|
||||
if (model.type === 'chat-completion') {
|
||||
chatModels[model.id] = {
|
||||
displayName: model.name || model.id,
|
||||
model: new ChatOpenAI({
|
||||
apiKey: apiKey,
|
||||
modelName: model.id,
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
baseURL: API_URL,
|
||||
},
|
||||
}) as unknown as BaseChatModel,
|
||||
};
|
||||
}
|
||||
});
|
||||
|
||||
return chatModels;
|
||||
} catch (err) {
|
||||
console.error(`Error loading AI/ML API models: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
||||
|
||||
export const loadAimlApiEmbeddingModels = async () => {
|
||||
const apiKey = getAimlApiKey();
|
||||
|
||||
if (!apiKey) return {};
|
||||
|
||||
try {
|
||||
const response = await axios.get(`${API_URL}/models`, {
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
Authorization: `Bearer ${apiKey}`,
|
||||
},
|
||||
});
|
||||
|
||||
const embeddingModels: Record<string, EmbeddingModel> = {};
|
||||
|
||||
response.data.data.forEach((model: AimlApiModel) => {
|
||||
if (model.type === 'embedding') {
|
||||
embeddingModels[model.id] = {
|
||||
displayName: model.name || model.id,
|
||||
model: new OpenAIEmbeddings({
|
||||
apiKey: apiKey,
|
||||
modelName: model.id,
|
||||
configuration: {
|
||||
baseURL: API_URL,
|
||||
},
|
||||
}) as unknown as Embeddings,
|
||||
};
|
||||
}
|
||||
});
|
||||
|
||||
return embeddingModels;
|
||||
} catch (err) {
|
||||
console.error(`Error loading AI/ML API embeddings models: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
@ -31,7 +31,7 @@ export const loadDeepseekChatModels = async () => {
|
||||
chatModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey: deepseekApiKey,
|
||||
apiKey: deepseekApiKey,
|
||||
modelName: model.key,
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
|
@ -13,9 +13,17 @@ import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { Embeddings } from '@langchain/core/embeddings';
|
||||
|
||||
const geminiChatModels: Record<string, string>[] = [
|
||||
{
|
||||
displayName: 'Gemini 2.5 Flash Preview 05-20',
|
||||
key: 'gemini-2.5-flash-preview-05-20',
|
||||
},
|
||||
{
|
||||
displayName: 'Gemini 2.5 Pro Preview',
|
||||
key: 'gemini-2.5-pro-preview-05-06',
|
||||
},
|
||||
{
|
||||
displayName: 'Gemini 2.5 Pro Experimental',
|
||||
key: 'gemini-2.5-pro-exp-03-25',
|
||||
key: 'gemini-2.5-pro-preview-05-06',
|
||||
},
|
||||
{
|
||||
displayName: 'Gemini 2.0 Flash',
|
||||
|
@ -29,12 +29,15 @@ export const loadGroqChatModels = async () => {
|
||||
chatModels[model.id] = {
|
||||
displayName: model.id,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey: groqApiKey,
|
||||
apiKey: groqApiKey,
|
||||
modelName: model.id,
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
baseURL: 'https://api.groq.com/openai/v1',
|
||||
},
|
||||
metadata: {
|
||||
'model-type': 'groq',
|
||||
},
|
||||
}) as unknown as BaseChatModel,
|
||||
};
|
||||
});
|
||||
|
@ -35,6 +35,11 @@ import {
|
||||
loadDeepseekChatModels,
|
||||
PROVIDER_INFO as DeepseekInfo,
|
||||
} from './deepseek';
|
||||
import {
|
||||
loadAimlApiChatModels,
|
||||
loadAimlApiEmbeddingModels,
|
||||
PROVIDER_INFO as AimlApiInfo,
|
||||
} from './aimlapi';
|
||||
import {
|
||||
loadLMStudioChatModels,
|
||||
loadLMStudioEmbeddingsModels,
|
||||
@ -49,6 +54,7 @@ export const PROVIDER_METADATA = {
|
||||
gemini: GeminiInfo,
|
||||
transformers: TransformersInfo,
|
||||
deepseek: DeepseekInfo,
|
||||
aimlapi: AimlApiInfo,
|
||||
lmstudio: LMStudioInfo,
|
||||
custom_openai: {
|
||||
key: 'custom_openai',
|
||||
@ -76,6 +82,7 @@ export const chatModelProviders: Record<
|
||||
anthropic: loadAnthropicChatModels,
|
||||
gemini: loadGeminiChatModels,
|
||||
deepseek: loadDeepseekChatModels,
|
||||
aimlapi: loadAimlApiChatModels,
|
||||
lmstudio: loadLMStudioChatModels,
|
||||
};
|
||||
|
||||
@ -87,6 +94,7 @@ export const embeddingModelProviders: Record<
|
||||
ollama: loadOllamaEmbeddingModels,
|
||||
gemini: loadGeminiEmbeddingModels,
|
||||
transformers: loadTransformersEmbeddingsModels,
|
||||
aimlapi: loadAimlApiEmbeddingModels,
|
||||
lmstudio: loadLMStudioEmbeddingsModels,
|
||||
};
|
||||
|
||||
@ -110,7 +118,7 @@ export const getAvailableChatModelProviders = async () => {
|
||||
[customOpenAiModelName]: {
|
||||
displayName: customOpenAiModelName,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey: customOpenAiApiKey,
|
||||
apiKey: customOpenAiApiKey,
|
||||
modelName: customOpenAiModelName,
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
|
@ -47,7 +47,7 @@ export const loadLMStudioChatModels = async () => {
|
||||
chatModels[model.id] = {
|
||||
displayName: model.name || model.id,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey: 'lm-studio',
|
||||
apiKey: 'lm-studio',
|
||||
configuration: {
|
||||
baseURL: ensureV1Endpoint(endpoint),
|
||||
},
|
||||
@ -83,7 +83,7 @@ export const loadLMStudioEmbeddingsModels = async () => {
|
||||
embeddingsModels[model.id] = {
|
||||
displayName: model.name || model.id,
|
||||
model: new OpenAIEmbeddings({
|
||||
openAIApiKey: 'lm-studio',
|
||||
apiKey: 'lm-studio',
|
||||
configuration: {
|
||||
baseURL: ensureV1Endpoint(endpoint),
|
||||
},
|
||||
|
@ -6,8 +6,8 @@ export const PROVIDER_INFO = {
|
||||
key: 'ollama',
|
||||
displayName: 'Ollama',
|
||||
};
|
||||
import { ChatOllama } from '@langchain/community/chat_models/ollama';
|
||||
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
|
||||
import { ChatOllama } from '@langchain/ollama';
|
||||
import { OllamaEmbeddings } from '@langchain/ollama';
|
||||
|
||||
export const loadOllamaChatModels = async () => {
|
||||
const ollamaApiEndpoint = getOllamaApiEndpoint();
|
||||
|
@ -67,7 +67,7 @@ export const loadOpenAIChatModels = async () => {
|
||||
chatModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey: openaiApiKey,
|
||||
apiKey: openaiApiKey,
|
||||
modelName: model.key,
|
||||
temperature: 0.7,
|
||||
}) as unknown as BaseChatModel,
|
||||
@ -93,7 +93,7 @@ export const loadOpenAIEmbeddingModels = async () => {
|
||||
embeddingModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new OpenAIEmbeddings({
|
||||
openAIApiKey: openaiApiKey,
|
||||
apiKey: openaiApiKey,
|
||||
modelName: model.key,
|
||||
}) as unknown as Embeddings,
|
||||
};
|
||||
|
@ -24,6 +24,7 @@ import computeSimilarity from '../utils/computeSimilarity';
|
||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||
import eventEmitter from 'events';
|
||||
import { StreamEvent } from '@langchain/core/tracers/log_stream';
|
||||
import { z } from 'zod';
|
||||
|
||||
export interface MetaSearchAgentType {
|
||||
searchAndAnswer: (
|
||||
@ -52,6 +53,17 @@ type BasicChainInput = {
|
||||
query: string;
|
||||
};
|
||||
|
||||
const retrieverLLMOutputSchema = z.object({
|
||||
query: z.string().describe('The query to search the web for.'),
|
||||
links: z
|
||||
.array(z.string())
|
||||
.describe('The links to search/summarize if present'),
|
||||
searchRequired: z
|
||||
.boolean()
|
||||
.describe('Wether there is a need to search the web'),
|
||||
searchMode: z.enum(['', 'normal', 'news']).describe('The search mode.'),
|
||||
});
|
||||
|
||||
class MetaSearchAgent implements MetaSearchAgentType {
|
||||
private config: Config;
|
||||
private strParser = new StringOutputParser();
|
||||
@ -62,73 +74,71 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
|
||||
private async createSearchRetrieverChain(llm: BaseChatModel) {
|
||||
(llm as unknown as ChatOpenAI).temperature = 0;
|
||||
|
||||
return RunnableSequence.from([
|
||||
PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt),
|
||||
llm,
|
||||
this.strParser,
|
||||
RunnableLambda.from(async (input: string) => {
|
||||
const linksOutputParser = new LineListOutputParser({
|
||||
key: 'links',
|
||||
});
|
||||
Object.assign(
|
||||
Object.create(Object.getPrototypeOf(llm)),
|
||||
llm,
|
||||
).withStructuredOutput(retrieverLLMOutputSchema, {
|
||||
...(llm.metadata?.['model-type'] === 'groq'
|
||||
? {
|
||||
method: 'json-object',
|
||||
}
|
||||
: {}),
|
||||
}),
|
||||
RunnableLambda.from(
|
||||
async (input: z.infer<typeof retrieverLLMOutputSchema>) => {
|
||||
let question = input.query;
|
||||
const links = input.links;
|
||||
|
||||
const questionOutputParser = new LineOutputParser({
|
||||
key: 'question',
|
||||
});
|
||||
|
||||
const links = await linksOutputParser.parse(input);
|
||||
let question = this.config.summarizer
|
||||
? await questionOutputParser.parse(input)
|
||||
: input;
|
||||
|
||||
if (question === 'not_needed') {
|
||||
return { query: '', docs: [] };
|
||||
}
|
||||
|
||||
if (links.length > 0) {
|
||||
if (question.length === 0) {
|
||||
question = 'summarize';
|
||||
if (!input.searchRequired) {
|
||||
return { query: '', docs: [] };
|
||||
}
|
||||
|
||||
let docs: Document[] = [];
|
||||
|
||||
const linkDocs = await getDocumentsFromLinks({ links });
|
||||
|
||||
const docGroups: Document[] = [];
|
||||
|
||||
linkDocs.map((doc) => {
|
||||
const URLDocExists = docGroups.find(
|
||||
(d) =>
|
||||
d.metadata.url === doc.metadata.url &&
|
||||
d.metadata.totalDocs < 10,
|
||||
);
|
||||
|
||||
if (!URLDocExists) {
|
||||
docGroups.push({
|
||||
...doc,
|
||||
metadata: {
|
||||
...doc.metadata,
|
||||
totalDocs: 1,
|
||||
},
|
||||
});
|
||||
if (links.length > 0) {
|
||||
if (question.length === 0) {
|
||||
question = 'summarize';
|
||||
}
|
||||
|
||||
const docIndex = docGroups.findIndex(
|
||||
(d) =>
|
||||
d.metadata.url === doc.metadata.url &&
|
||||
d.metadata.totalDocs < 10,
|
||||
);
|
||||
let docs: Document[] = [];
|
||||
|
||||
if (docIndex !== -1) {
|
||||
docGroups[docIndex].pageContent =
|
||||
docGroups[docIndex].pageContent + `\n\n` + doc.pageContent;
|
||||
docGroups[docIndex].metadata.totalDocs += 1;
|
||||
}
|
||||
});
|
||||
const linkDocs = await getDocumentsFromLinks({ links });
|
||||
|
||||
await Promise.all(
|
||||
docGroups.map(async (doc) => {
|
||||
const res = await llm.invoke(`
|
||||
const docGroups: Document[] = [];
|
||||
|
||||
linkDocs.map((doc) => {
|
||||
const URLDocExists = docGroups.find(
|
||||
(d) =>
|
||||
d.metadata.url === doc.metadata.url &&
|
||||
d.metadata.totalDocs < 10,
|
||||
);
|
||||
|
||||
if (!URLDocExists) {
|
||||
docGroups.push({
|
||||
...doc,
|
||||
metadata: {
|
||||
...doc.metadata,
|
||||
totalDocs: 1,
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
const docIndex = docGroups.findIndex(
|
||||
(d) =>
|
||||
d.metadata.url === doc.metadata.url &&
|
||||
d.metadata.totalDocs < 10,
|
||||
);
|
||||
|
||||
if (docIndex !== -1) {
|
||||
docGroups[docIndex].pageContent =
|
||||
docGroups[docIndex].pageContent + `\n\n` + doc.pageContent;
|
||||
docGroups[docIndex].metadata.totalDocs += 1;
|
||||
}
|
||||
});
|
||||
|
||||
await Promise.all(
|
||||
docGroups.map(async (doc) => {
|
||||
const res = await llm.invoke(`
|
||||
You are a web search summarizer, tasked with summarizing a piece of text retrieved from a web search. Your job is to summarize the
|
||||
text into a detailed, 2-4 paragraph explanation that captures the main ideas and provides a comprehensive answer to the query.
|
||||
If the query is \"summarize\", you should provide a detailed summary of the text. If the query is a specific question, you should answer it in the summary.
|
||||
@ -189,46 +199,50 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
Make sure to answer the query in the summary.
|
||||
`);
|
||||
|
||||
const document = new Document({
|
||||
pageContent: res.content as string,
|
||||
metadata: {
|
||||
title: doc.metadata.title,
|
||||
url: doc.metadata.url,
|
||||
},
|
||||
});
|
||||
const document = new Document({
|
||||
pageContent: res.content as string,
|
||||
metadata: {
|
||||
title: doc.metadata.title,
|
||||
url: doc.metadata.url,
|
||||
},
|
||||
});
|
||||
|
||||
docs.push(document);
|
||||
}),
|
||||
);
|
||||
|
||||
return { query: question, docs: docs };
|
||||
} else {
|
||||
question = question.replace(/<think>.*?<\/think>/g, '');
|
||||
|
||||
const res = await searchSearxng(question, {
|
||||
language: 'en',
|
||||
engines: this.config.activeEngines,
|
||||
});
|
||||
|
||||
const documents = res.results.map(
|
||||
(result) =>
|
||||
new Document({
|
||||
pageContent:
|
||||
result.content ||
|
||||
(this.config.activeEngines.includes('youtube')
|
||||
? result.title
|
||||
: '') /* Todo: Implement transcript grabbing using Youtubei (source: https://www.npmjs.com/package/youtubei) */,
|
||||
metadata: {
|
||||
title: result.title,
|
||||
url: result.url,
|
||||
...(result.img_src && { img_src: result.img_src }),
|
||||
},
|
||||
docs.push(document);
|
||||
}),
|
||||
);
|
||||
);
|
||||
|
||||
return { query: question, docs: documents };
|
||||
}
|
||||
}),
|
||||
return { query: question, docs: docs };
|
||||
} else {
|
||||
question = question.replace(/<think>.*?<\/think>/g, '');
|
||||
|
||||
const res = await searchSearxng(question, {
|
||||
language: 'en',
|
||||
engines:
|
||||
input.searchMode === 'normal'
|
||||
? this.config.activeEngines
|
||||
: ['bing news'],
|
||||
});
|
||||
|
||||
const documents = res.results.map(
|
||||
(result) =>
|
||||
new Document({
|
||||
pageContent:
|
||||
result.content ||
|
||||
(this.config.activeEngines.includes('youtube')
|
||||
? result.title
|
||||
: '') /* Todo: Implement transcript grabbing using Youtubei (source: https://www.npmjs.com/package/youtubei) */,
|
||||
metadata: {
|
||||
title: result.title,
|
||||
url: result.url,
|
||||
...(result.img_src && { img_src: result.img_src }),
|
||||
},
|
||||
}),
|
||||
);
|
||||
|
||||
return { query: question, docs: documents };
|
||||
}
|
||||
},
|
||||
),
|
||||
]);
|
||||
}
|
||||
|
||||
|