64 Commits

Author SHA1 Message Date
ItzCrazyKns
a0aad69f62 feat(readme): update readme 2024-09-25 16:56:41 +05:30
ItzCrazyKns
1cfa3398a3 feat(package): bump version 2024-09-25 16:54:44 +05:30
ItzCrazyKns
ead2d98a9f feat(search): update types 2024-09-25 16:54:19 +05:30
ItzCrazyKns
c52d6ac290 feat(docs): add search API docs 2024-09-25 16:54:07 +05:30
ItzCrazyKns
2785cdd97a feat(routes): add search route 2024-09-25 15:27:48 +05:30
ItzCrazyKns
1589f16d5a feat(providers): add displayName property 2024-09-24 22:34:43 +05:30
ItzCrazyKns
40f551c426 feat(search-button): add empty check 2024-09-15 10:16:20 +05:30
ItzCrazyKns
1fcd64ad42 feat(docker-file): use SearXNG URL from env 2024-09-05 18:40:07 +05:30
ItzCrazyKns
07e5615860 feat(docker-compose): link config.toml as vol. 2024-09-04 18:54:54 +05:30
ItzCrazyKns
c4f52adb45 feat(textarea): handle "/" keys 2024-09-02 11:44:40 +05:30
ItzCrazyKns
92abbc5b98 feat(webSearchRetriever): use question instead of input 2024-08-29 16:54:37 +05:30
ItzCrazyKns
c952469f08 feat(chaWindow): lint & beautify 2024-08-29 16:51:59 +05:30
ItzCrazyKns
449684c419 feat(webSearchAgent): update retriever prompt & change temp 2024-08-29 16:51:42 +05:30
ItzCrazyKns
f620252406 feat(linkDocument): add error handling 2024-08-29 16:51:12 +05:30
ItzCrazyKns
e8ed4df31a feat(chat-window): close socket on unmount 2024-08-28 14:27:22 +05:30
ItzCrazyKns
2873093fee feat(package): bump version 2024-08-28 10:00:05 +05:30
ItzCrazyKns
806c47e705 feat(chatwindow): fix infinite loading 2024-08-28 09:53:06 +05:30
ItzCrazyKns
ff34d1043f feat(app): lint & format 2024-08-25 15:08:47 +05:30
ItzCrazyKns
c521b032a7 feat(agents): fix unresloved types 2024-08-25 15:08:30 +05:30
ItzCrazyKns
6b8f7dc32c Merge branch 'pr/309' 2024-08-25 12:03:54 +05:30
ItzCrazyKns
8bb3e4f016 feat(agents): update types 2024-08-25 12:03:32 +05:30
ItzCrazyKns
51939ff842 feat(webSearchAgent): fix typo, closes #313 2024-08-24 21:48:27 +05:30
Xie Yanbo
e4faa82362 Fix #307, update outdated searxng/settings.yml 2024-08-09 20:53:53 +08:00
ItzCrazyKns
9c1936ec2c feat(chat-window): lint & beautify 2024-08-04 18:14:46 +05:30
ItzCrazyKns
c4932c659a feat(app): lint 2024-07-31 20:17:57 +05:30
ItzCrazyKns
96f67c7028 Merge pull request #290 from ItzCrazyKns/canary 2024-07-30 10:15:52 +05:30
ItzCrazyKns
61dfeb89b4 feat(package): bump version 2024-07-30 10:10:55 +05:30
ItzCrazyKns
8e4f0c6a6d feat(web-search): add URL & PDF searching capibilities 2024-07-30 10:09:05 +05:30
ItzCrazyKns
6f50e25bf3 feat(output-parsers): add line output parser 2024-07-30 10:08:29 +05:30
ItzCrazyKns
9abb4b654d feat(app): handle unhandled exception & rejection 2024-07-30 10:07:28 +05:30
ItzCrazyKns
0a29237732 feat(listLineOutputParser): handle invalid keys 2024-07-30 10:06:52 +05:30
ItzCrazyKns
c62e7f091e feat(package): bump version 2024-07-25 20:39:43 +05:30
ItzCrazyKns
08379fcad5 feat(ws-connector): fix undefined chat model 2024-07-25 20:36:26 +05:30
ItzCrazyKns
cbce39a5dd feat(settings): fix undefined model for custom OpenAI 2024-07-25 20:34:49 +05:30
ItzCrazyKns
27f8cfd212 feat(toast): fix theme colors 2024-07-25 20:33:56 +05:30
ItzCrazyKns
8a76f92e23 feat(groq): add Llama 3.1 2024-07-23 20:49:17 +05:30
ItzCrazyKns
00a52fc3b1 Delete .github/FUNDING.yml 2024-07-23 10:46:32 +05:30
ItzCrazyKns
8143eca2c1 feat(readme): remove patreon 2024-07-23 10:45:52 +05:30
ItzCrazyKns
9bb0b64044 Merge pull request #279 from zandko/perf/filter-first
perf: Optimize document filtering and sorting for performance
2024-07-23 10:08:54 +05:30
Zan
323f3c516c perf: Optimize document filtering and sorting for performance 2024-07-23 10:06:33 +08:00
ItzCrazyKns
c0b3a409dd feat(package): bump version 2024-07-20 09:27:34 +05:30
ItzCrazyKns
9195cbcce0 feat(openai): add GPT-4 Omni mini 2024-07-20 09:26:46 +05:30
ItzCrazyKns
f02393dbe9 feat(providers): add anthropic 2024-07-15 21:20:16 +05:30
ItzCrazyKns
e1732b9bf2 feat(chat-window): fix WS connection errors 2024-07-14 12:37:36 +05:30
sjiampojamarn
fac41d3812 add gemma2-9b-it 2024-07-13 20:20:23 -07:00
ItzCrazyKns
27e6f5b9e1 feat(chat-window): unselect unavailable model 2024-07-09 16:21:45 +05:30
ItzCrazyKns
8539ce82ad feat(providers): fix loading issues 2024-07-08 15:39:27 +05:30
ItzCrazyKns
3b4b8a8b02 feat(providers): add custom_openai 2024-07-08 15:24:45 +05:30
ItzCrazyKns
3ffb20b777 feat(backend): fix type errors 2024-07-08 01:31:11 +05:30
ItzCrazyKns
f4b58c7157 feat(dockerfile): revert base image back to slim 2024-07-06 15:13:05 +05:30
ItzCrazyKns
2678c36e44 feat(agents): fix grammar in prompt, closes 239 & 203 2024-07-06 15:12:51 +05:30
ItzCrazyKns
25b5dbd63e feat(providers): separate each provider 2024-07-06 14:19:33 +05:30
ItzCrazyKns
c63c9b5c8a feat(readme): update ollama guide 2024-07-03 21:02:21 +05:30
ItzCrazyKns
80818983d8 feat(package): bump version 2024-07-03 20:49:13 +05:30
ItzCrazyKns
5217d21366 feat(dockerfile): revert to node:slim 2024-07-03 20:47:31 +05:30
ItzCrazyKns
57ede99b83 Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2024-07-02 10:52:02 +05:30
ItzCrazyKns
c74e16e01c feat(chats): add delete functionality 2024-07-02 10:51:47 +05:30
ItzCrazyKns
ce593daab9 Update README.md 2024-06-30 12:39:37 +05:30
ItzCrazyKns
fcf9b644af Create FUNDING.yml 2024-06-30 12:34:32 +05:30
ItzCrazyKns
6ae825999a feat(readme): update manual install 2024-06-30 10:45:35 +05:30
ItzCrazyKns
b291265944 feat(package): add @langchain/community 2024-06-30 10:42:01 +05:30
ItzCrazyKns
c62684407d feat(chat-window): handle notFound errors 2024-06-29 12:11:34 +05:30
ItzCrazyKns
f4b01a29bb feat(docs): update docs 2024-06-29 11:39:23 +05:30
ItzCrazyKns
022cf55db7 feat(docs): add update docs 2024-06-29 11:38:43 +05:30
47 changed files with 1801 additions and 2716 deletions

View File

@ -12,6 +12,7 @@
- [Non-Docker Installation](#non-docker-installation)
- [Ollama Connection Errors](#ollama-connection-errors)
- [Using as a Search Engine](#using-as-a-search-engine)
- [Using Perplexica's API](#using-perplexicas-api)
- [One-Click Deployment](#one-click-deployment)
- [Upcoming Features](#upcoming-features)
- [Support Us](#support-us)
@ -45,6 +46,7 @@ Want to know more about its architecture and how it works? You can read it [here
- **Wolfram Alpha Search Mode:** Answers queries that need calculations or data analysis using Wolfram Alpha.
- **Reddit Search Mode:** Searches Reddit for discussions and opinions related to the query.
- **Current Information:** Some search tools might give you outdated info because they use data from crawling bots and convert them into embeddings and store them in a index. Unlike them, Perplexica uses SearxNG, a metasearch engine to get the results and rerank and get the most relevant source out of it, ensuring you always get the latest information without the overhead of daily data updates.
- **API**: Integrate Perplexica into your existing applications and make use of its capibilities.
It has many more features like image and video search. Some of the planned features are mentioned in [upcoming features](#upcoming-features).
@ -67,7 +69,8 @@ There are mainly 2 ways of installing Perplexica - With Docker, Without Docker.
- `OPENAI`: Your OpenAI API key. **You only need to fill this if you wish to use OpenAI's models**.
- `OLLAMA`: Your Ollama API URL. You should enter it as `http://host.docker.internal:PORT_NUMBER`. If you installed Ollama on port 11434, use `http://host.docker.internal:11434`. For other ports, adjust accordingly. **You need to fill this if you wish to use Ollama's models instead of OpenAI's**.
- `GROQ`: Your Groq API key. **You only need to fill this if you wish to use Groq's hosted models**
- `GROQ`: Your Groq API key. **You only need to fill this if you wish to use Groq's hosted models**.
- `ANTHROPIC`: Your Anthropic API key. **You only need to fill this if you wish to use Anthropic models**.
**Note**: You can change these after starting Perplexica from the settings dialog.
@ -85,11 +88,12 @@ There are mainly 2 ways of installing Perplexica - With Docker, Without Docker.
### Non-Docker Installation
1. Clone the repository and rename the `sample.config.toml` file to `config.toml` in the root directory. Ensure you complete all required fields in this file.
2. Rename the `.env.example` file to `.env` in the `ui` folder and fill in all necessary fields.
3. After populating the configuration and environment files, run `npm i` in both the `ui` folder and the root directory.
4. Install the dependencies and then execute `npm run build` in both the `ui` folder and the root directory.
5. Finally, start both the frontend and the backend by running `npm run start` in both the `ui` folder and the root directory.
1. Install SearXNG and allow `JSON` format in the SearXNG settings.
2. Clone the repository and rename the `sample.config.toml` file to `config.toml` in the root directory. Ensure you complete all required fields in this file.
3. Rename the `.env.example` file to `.env` in the `ui` folder and fill in all necessary fields.
4. After populating the configuration and environment files, run `npm i` in both the `ui` folder and the root directory.
5. Install the dependencies and then execute `npm run build` in both the `ui` folder and the root directory.
6. Finally, start both the frontend and the backend by running `npm run start` in both the `ui` folder and the root directory.
**Note**: Using Docker is recommended as it simplifies the setup process, especially for managing environment variables and dependencies.
@ -110,11 +114,7 @@ If you're encountering an Ollama connection error, it is likely due to the backe
3. **Linux Users - Expose Ollama to Network:**
- Serve Ollama over your network with the command:
```bash
OLLAMA_HOST=0.0.0.0 ollama serve
```
- Inside `/etc/systemd/system/ollama.service`, you need to add `Environment="OLLAMA_HOST=0.0.0.0"`. Then restart Ollama by `systemctl restart ollama`. For more information see [Ollama docs](https://github.com/ollama/ollama/blob/main/docs/faq.md#setting-environment-variables-on-linux)
- Ensure that the port (default is 11434) is not blocked by your firewall.
@ -127,6 +127,12 @@ If you wish to use Perplexica as an alternative to traditional search engines li
3. Add a new site search with the following URL: `http://localhost:3000/?q=%s`. Replace `localhost` with your IP address or domain name, and `3000` with the port number if Perplexica is not hosted locally.
4. Click the add button. Now, you can use Perplexica directly from your browser's search bar.
## Using Perplexica's API
Perplexica also provides an API for developers looking to integrate its powerful search engine into their own applications. You can run searches, use multiple models and get answers to your queries.
For more details, check out the full documentation [here](https://github.com/ItzCrazyKns/Perplexica/tree/master/docs/API/SEARCH.md).
## One-Click Deployment
[![Deploy to RepoCloud](https://d16t0pc4846x52.cloudfront.net/deploylobe.svg)](https://repocloud.io/details/?app_id=267)
@ -137,6 +143,7 @@ If you wish to use Perplexica as an alternative to traditional search engines li
- [x] Adding support for local LLMs
- [x] History Saving features
- [x] Introducing various Focus Modes
- [x] Adding API support
- [ ] Finalizing Copilot Mode
- [ ] Adding Discover
@ -146,11 +153,11 @@ If you find Perplexica useful, consider giving us a star on GitHub. This helps m
### Donations
We also accept donations to help sustain our project. If you would like to contribute, you can use the following button to make a donation in cryptocurrency. Thank you for your support!
We also accept donations to help sustain our project. If you would like to contribute, you can use the following options to donate. Thank you for your support!
<a href="https://nowpayments.io/donation?api_key=RFFKJH1-GRR4DQG-HFV1DZP-00G6MMK&source=lk_donation&medium=referral" target="_blank">
<img src="https://nowpayments.io/images/embeds/donation-button-white.svg" alt="Crypto donation button by NOWPayments">
</a>
| Ethereum |
| ----------------------------------------------------- |
| Address: `0xB025a84b2F269570Eb8D4b05DEdaA41D8525B6DD` |
## Contribution

View File

@ -1,6 +1,7 @@
FROM nikolaik/python-nodejs:python3.12-nodejs20-bullseye
FROM node:slim
ARG SEARXNG_API_URL
ENV SEARXNG_API_URL=${SEARXNG_API_URL}
WORKDIR /home/perplexica
@ -11,11 +12,9 @@ COPY drizzle.config.ts /home/perplexica/
COPY package.json /home/perplexica/
COPY yarn.lock /home/perplexica/
RUN sed -i "s|SEARXNG = \".*\"|SEARXNG = \"${SEARXNG_API_URL}\"|g" /home/perplexica/config.toml
RUN mkdir /home/perplexica/data
RUN yarn install
RUN yarn install
RUN yarn build
CMD ["yarn", "start"]

View File

@ -21,6 +21,7 @@ services:
- 3001:3001
volumes:
- backend-dbstore:/home/perplexica/data
- ./config.toml:/home/perplexica/config.toml
extra_hosts:
- 'host.docker.internal:host-gateway'
networks:

105
docs/API/SEARCH.md Normal file
View File

@ -0,0 +1,105 @@
# Perplexica Search API Documentation
## Overview
Perplexicas Search API makes it easy to use our AI-powered search engine. You can run different types of searches, pick the models you want to use, and get the most recent info. Follow the following headings to learn more about Perplexica's search API.
## Endpoint
### **POST** `/api/search`
### Request
The API accepts a JSON object in the request body, where you define the focus mode, chat models, embedding models, and your query.
#### Request Body Structure
```json
{
"chatModel": {
"provider": "openai",
"model": "gpt-4o-mini"
},
"embeddingModel": {
"provider": "openai",
"model": "text-embedding-3-large"
},
"focusMode": "webSearch",
"query": "What is Perplexica",
"history": []
}
```
### Request Parameters
- **`chatModel`** (object, optional): Defines the chat model to be used for the query.
- `provider`: Specifies the provider for the chat model (e.g., `openai`, `ollama`).
- `model`: The specific model from the chosen provider (e.g., `gpt-4o-mini`).
- Optional fields for custom OpenAI configuration:
- `customOpenAIBaseURL`: If youre using a custom OpenAI instance, provide the base URL.
- `customOpenAIKey`: The API key for a custom OpenAI instance.
- **`embeddingModel`** (object, optional): Defines the embedding model for similarity-based searching.
- `provider`: The provider for the embedding model (e.g., `openai`).
- `model`: The specific embedding model (e.g., `text-embedding-3-large`).
- **`focusMode`** (string, required): Specifies which focus mode to use. Available modes:
- `webSearch`, `academicSearch`, `writingAssistant`, `wolframAlphaSearch`, `youtubeSearch`, `redditSearch`.
- **`query`** (string, required): The search query or question.
- **`history`** (array, optional): An array of message pairs representing the conversation history. Each pair consists of a role (either 'human' or 'assistant') and the message content. This allows the system to use the context of the conversation to refine results. Example:
```json
[
["human", "What is Perplexica?"],
["assistant", "Perplexica is an AI-powered search engine..."]
]
```
### Response
The response from the API includes both the final message and the sources used to generate that message.
#### Example Response
```json
{
"message": "Perplexica is an innovative, open-source AI-powered search engine designed to enhance the way users search for information online. Here are some key features and characteristics of Perplexica:\n\n- **AI-Powered Technology**: It utilizes advanced machine learning algorithms to not only retrieve information but also to understand the context and intent behind user queries, providing more relevant results [1][5].\n\n- **Open-Source**: Being open-source, Perplexica offers flexibility and transparency, allowing users to explore its functionalities without the constraints of proprietary software [3][10].",
"sources": [
{
"pageContent": "Perplexica is an innovative, open-source AI-powered search engine designed to enhance the way users search for information online.",
"metadata": {
"title": "What is Perplexica, and how does it function as an AI-powered search ...",
"url": "https://askai.glarity.app/search/What-is-Perplexica--and-how-does-it-function-as-an-AI-powered-search-engine"
}
},
{
"pageContent": "Perplexica is an open-source AI-powered search tool that dives deep into the internet to find precise answers.",
"metadata": {
"title": "Sahar Mor's Post",
"url": "https://www.linkedin.com/posts/sahar-mor_a-new-open-source-project-called-perplexica-activity-7204489745668694016-ncja"
}
}
....
]
}
```
### Fields in the Response
- **`message`** (string): The search result, generated based on the query and focus mode.
- **`sources`** (array): A list of sources that were used to generate the search result. Each source includes:
- `pageContent`: A snippet of the relevant content from the source.
- `metadata`: Metadata about the source, including:
- `title`: The title of the webpage.
- `url`: The URL of the webpage.
### Error Handling
If an error occurs during the search process, the API will return an appropriate error message with an HTTP status code.
- **400**: If the request is malformed or missing required fields (e.g., no focus mode or query).
- **500**: If an internal server error occurs during the search.

View File

@ -0,0 +1,34 @@
# Update Perplexica to the latest version
To update Perplexica to the latest version, follow these steps:
## For Docker users
1. Clone the latest version of Perplexica from GitHub:
```bash
git clone https://github.com/ItzCrazyKns/Perplexica.git
```
2. Navigate to the Project Directory
3. Update and Rebuild Docker Containers:
```bash
docker compose up -d --build
```
4. Once the command completes running go to http://localhost:3000 and verify the latest changes.
## For non Docker users
1. Clone the latest version of Perplexica from GitHub:
```bash
git clone https://github.com/ItzCrazyKns/Perplexica.git
```
2. Navigate to the Project Directory
3. Execute `npm i` in both the `ui` folder and the root directory.
4. Once packages are updated, execute `npm run build` in both the `ui` folder and the root directory.
5. Finally, start both the frontend and the backend by running `npm run start` in both the `ui` folder and the root directory.

View File

@ -1,6 +1,6 @@
{
"name": "perplexica-backend",
"version": "1.7.0",
"version": "1.9.0-rc3",
"license": "MIT",
"author": "ItzCrazyKns",
"scripts": {
@ -15,6 +15,8 @@
"@types/better-sqlite3": "^7.6.10",
"@types/cors": "^2.8.17",
"@types/express": "^4.17.21",
"@types/html-to-text": "^9.0.4",
"@types/pdf-parse": "^1.1.4",
"@types/readable-stream": "^4.0.11",
"drizzle-kit": "^0.22.7",
"nodemon": "^3.1.0",
@ -24,6 +26,8 @@
},
"dependencies": {
"@iarna/toml": "^2.2.5",
"@langchain/anthropic": "^0.2.3",
"@langchain/community": "^0.2.16",
"@langchain/openai": "^0.0.25",
"@xenova/transformers": "^2.17.1",
"axios": "^1.6.8",
@ -34,7 +38,9 @@
"dotenv": "^16.4.5",
"drizzle-orm": "^0.31.2",
"express": "^4.19.2",
"html-to-text": "^9.0.5",
"langchain": "^0.1.30",
"pdf-parse": "^1.1.1",
"winston": "^3.13.0",
"ws": "^8.17.1",
"zod": "^3.22.4"

View File

@ -5,6 +5,7 @@ SIMILARITY_MEASURE = "cosine" # "cosine" or "dot"
[API_KEYS]
OPENAI = "" # OpenAI API key - sk-1234567890abcdef1234567890abcdef
GROQ = "" # Groq API key - gsk_1234567890abcdef1234567890abcdef
ANTHROPIC = "" # Anthropic API key - sk-ant-1234567890abcdef1234567890abcdef
[API_ENDPOINTS]
SEARXNG = "http://localhost:32768" # SearxNG API URL

File diff suppressed because it is too large Load Diff

View File

@ -19,6 +19,7 @@ import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import computeSimilarity from '../utils/computeSimilarity';
import logger from '../utils/logger';
import { IterableReadableStream } from '@langchain/core/utils/stream';
const basicAcademicSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
@ -44,7 +45,7 @@ Rephrased question:
const basicAcademicSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Academic', this means you will be searching for academic papers and articles on the web.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containg a brief description of the content of that page).
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
@ -52,7 +53,7 @@ const basicAcademicSearchResponsePrompt = `
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Aything inside the following \`context\` HTML block provided below is for your knowledge returned by the search engine and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by the search engine and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
@ -66,7 +67,7 @@ const basicAcademicSearchResponsePrompt = `
const strParser = new StringOutputParser();
const handleStream = async (
stream: AsyncGenerator<StreamEvent, any, unknown>,
stream: IterableReadableStream<StreamEvent>,
emitter: eventEmitter,
) => {
for await (const event of stream) {

View File

@ -19,6 +19,7 @@ import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import computeSimilarity from '../utils/computeSimilarity';
import logger from '../utils/logger';
import { IterableReadableStream } from '@langchain/core/utils/stream';
const basicRedditSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
@ -44,7 +45,7 @@ Rephrased question:
const basicRedditSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Reddit', this means you will be searching for information, opinions and discussions on the web using Reddit.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containg a brief description of the content of that page).
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
@ -52,8 +53,8 @@ const basicRedditSearchResponsePrompt = `
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Aything inside the following \`context\` HTML block provided below is for your knowledge returned by Reddit and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by Reddit and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
{context}
@ -66,7 +67,7 @@ const basicRedditSearchResponsePrompt = `
const strParser = new StringOutputParser();
const handleStream = async (
stream: AsyncGenerator<StreamEvent, any, unknown>,
stream: IterableReadableStream<StreamEvent>,
emitter: eventEmitter,
) => {
for await (const event of stream) {
@ -177,9 +178,9 @@ const createBasicRedditSearchAnsweringChain = (
});
const sortedDocs = similarity
.filter((sim) => sim.similarity > 0.3)
.sort((a, b) => b.similarity - a.similarity)
.slice(0, 15)
.filter((sim) => sim.similarity > 0.3)
.map((sim) => docsWithContent[sim.index]);
return sortedDocs;

View File

@ -47,7 +47,7 @@ const generateSuggestions = (
input: SuggestionGeneratorInput,
llm: BaseChatModel,
) => {
(llm as ChatOpenAI).temperature = 0;
(llm as unknown as ChatOpenAI).temperature = 0;
const suggestionGeneratorChain = createSuggestionGeneratorChain(llm);
return suggestionGeneratorChain.invoke(input);
};

View File

@ -19,54 +19,103 @@ import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import computeSimilarity from '../utils/computeSimilarity';
import logger from '../utils/logger';
import LineListOutputParser from '../lib/outputParsers/listLineOutputParser';
import { getDocumentsFromLinks } from '../lib/linkDocument';
import LineOutputParser from '../lib/outputParsers/lineOutputParser';
import { IterableReadableStream } from '@langchain/core/utils/stream';
import { ChatOpenAI } from '@langchain/openai';
const basicSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
You are an AI question rephraser. You will be given a conversation and a follow-up question, you will have to rephrase the follow up question so it is a standalone question and can be used by another LLM to search the web for information to answer it.
If it is a smple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block.
You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response.
Example:
1. Follow up question: What is the capital of France?
Rephrased: Capital of france
There are several examples attached for your reference inside the below \`examples\` XML block
2. Follow up question: What is the population of New York City?
Rephrased: Population of New York City
<examples>
1. Follow up question: What is the capital of France
Rephrased question:\`
<question>
Capital of france
</question>
\`
2. Hi, how are you?
Rephrased question\`
<question>
not_needed
</question>
\`
3. Follow up question: What is Docker?
Rephrased: What is Docker
Rephrased question: \`
<question>
What is Docker
</question>
\`
Conversation:
4. Follow up question: Can you tell me what is X from https://example.com
Rephrased question: \`
<question>
Can you tell me what is X?
</question>
<links>
https://example.com
</links>
\`
5. Follow up question: Summarize the content from https://example.com
Rephrased question: \`
<question>
summarize
</question>
<links>
https://example.com
</links>
\`
</examples>
Anything below is the part of the actual conversation and you need to use conversation and the follow-up question to rephrase the follow-up question as a standalone question based on the guidelines shared above.
<conversation>
{chat_history}
</conversation>
Follow up question: {query}
Rephrased question:
`;
const basicWebSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries.
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are also an expert at summarizing web pages or documents and searching for content in them.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containg a brief description of the content of that page).
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
If the query contains some links and the user asks to answer from those links you will be provided the entire content of the page inside the \`context\` XML block. You can then use this content to answer the user's query.
If the user asks to summarize content from some links, you will be provided the entire content of the page inside the \`context\` XML block. You can then use this content to summarize the text. The content provided inside the \`context\` block will be already summarized by another model so you just need to use that content to answer the user's query.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Aything inside the following \`context\` HTML block provided below is for your knowledge returned by the search engine and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by the search engine and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
{context}
</context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'.
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'. You do not need to do this for summarization tasks.
Anything between the \`context\` is retrieved from a search engine and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
`;
const strParser = new StringOutputParser();
const handleStream = async (
stream: AsyncGenerator<StreamEvent, any, unknown>,
stream: IterableReadableStream<StreamEvent>,
emitter: eventEmitter,
) => {
for await (const event of stream) {
@ -103,32 +152,120 @@ type BasicChainInput = {
};
const createBasicWebSearchRetrieverChain = (llm: BaseChatModel) => {
(llm as unknown as ChatOpenAI).temperature = 0;
return RunnableSequence.from([
PromptTemplate.fromTemplate(basicSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
const linksOutputParser = new LineListOutputParser({
key: 'links',
});
const questionOutputParser = new LineOutputParser({
key: 'question',
});
const links = await linksOutputParser.parse(input);
let question = await questionOutputParser.parse(input);
if (question === 'not_needed') {
return { query: '', docs: [] };
}
const res = await searchSearxng(input, {
language: 'en',
});
if (links.length > 0) {
if (question.length === 0) {
question = 'summarize';
}
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
let docs = [];
const linkDocs = await getDocumentsFromLinks({ links });
const docGroups: Document[] = [];
linkDocs.map((doc) => {
const URLDocExists = docGroups.find(
(d) =>
d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10,
);
if (!URLDocExists) {
docGroups.push({
...doc,
metadata: {
...doc.metadata,
totalDocs: 1,
},
});
}
const docIndex = docGroups.findIndex(
(d) =>
d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10,
);
if (docIndex !== -1) {
docGroups[docIndex].pageContent =
docGroups[docIndex].pageContent + `\n\n` + doc.pageContent;
docGroups[docIndex].metadata.totalDocs += 1;
}
});
await Promise.all(
docGroups.map(async (doc) => {
const res = await llm.invoke(`
You are a text summarizer. You need to summarize the text provided inside the \`text\` XML block.
You need to summarize the text into 1 or 2 sentences capturing the main idea of the text.
You need to make sure that you don't miss any point while summarizing the text.
You will also be given a \`query\` XML block which will contain the query of the user. Try to answer the query in the summary from the text provided.
If the query says Summarize then you just need to summarize the text without answering the query.
Only return the summarized text without any other messages, text or XML block.
<query>
${question}
</query>
<text>
${doc.pageContent}
</text>
Make sure to answer the query in the summary.
`);
const document = new Document({
pageContent: res.content as string,
metadata: {
title: doc.metadata.title,
url: doc.metadata.url,
},
});
docs.push(document);
}),
);
);
return { query: input, docs: documents };
return { query: question, docs: docs };
} else {
const res = await searchSearxng(question, {
language: 'en',
});
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: question, docs: documents };
}
}),
]);
};
@ -156,6 +293,10 @@ const createBasicWebSearchAnsweringChain = (
return docs;
}
if (query.toLocaleLowerCase() === 'summarize') {
return docs;
}
const docsWithContent = docs.filter(
(doc) => doc.pageContent && doc.pageContent.length > 0,
);
@ -175,8 +316,8 @@ const createBasicWebSearchAnsweringChain = (
});
const sortedDocs = similarity
.filter((sim) => sim.similarity > 0.3)
.sort((a, b) => b.similarity - a.similarity)
.filter((sim) => sim.similarity > 0.5)
.slice(0, 15)
.map((sim) => docsWithContent[sim.index]);

View File

@ -18,6 +18,7 @@ import type { Embeddings } from '@langchain/core/embeddings';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import logger from '../utils/logger';
import { IterableReadableStream } from '@langchain/core/utils/stream';
const basicWolframAlphaSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
@ -43,7 +44,7 @@ Rephrased question:
const basicWolframAlphaSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Wolfram Alpha', this means you will be searching for information on the web using Wolfram Alpha. It is a computational knowledge engine that can answer factual queries and perform computations.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containg a brief description of the content of that page).
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
@ -51,7 +52,7 @@ const basicWolframAlphaSearchResponsePrompt = `
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Aything inside the following \`context\` HTML block provided below is for your knowledge returned by Wolfram Alpha and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by Wolfram Alpha and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
@ -65,7 +66,7 @@ const basicWolframAlphaSearchResponsePrompt = `
const strParser = new StringOutputParser();
const handleStream = async (
stream: AsyncGenerator<StreamEvent, any, unknown>,
stream: IterableReadableStream<StreamEvent>,
emitter: eventEmitter,
) => {
for await (const event of stream) {

View File

@ -10,6 +10,7 @@ import eventEmitter from 'events';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import logger from '../utils/logger';
import { IterableReadableStream } from '@langchain/core/utils/stream';
const writingAssistantPrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are currently set on focus mode 'Writing Assistant', this means you will be helping the user write a response to a given query.
@ -19,7 +20,7 @@ Since you are a writing assistant, you would not perform web searches. If you th
const strParser = new StringOutputParser();
const handleStream = async (
stream: AsyncGenerator<StreamEvent, any, unknown>,
stream: IterableReadableStream<StreamEvent>,
emitter: eventEmitter,
) => {
for await (const event of stream) {

View File

@ -19,6 +19,7 @@ import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import computeSimilarity from '../utils/computeSimilarity';
import logger from '../utils/logger';
import { IterableReadableStream } from '@langchain/core/utils/stream';
const basicYoutubeSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
@ -44,7 +45,7 @@ Rephrased question:
const basicYoutubeSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Youtube', this means you will be searching for videos on the web using Youtube and providing information based on the video's transcript.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containg a brief description of the content of that page).
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
@ -52,8 +53,8 @@ const basicYoutubeSearchResponsePrompt = `
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Aything inside the following \`context\` HTML block provided below is for your knowledge returned by Youtube and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by Youtube and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
{context}
@ -66,7 +67,7 @@ const basicYoutubeSearchResponsePrompt = `
const strParser = new StringOutputParser();
const handleStream = async (
stream: AsyncGenerator<StreamEvent, any, unknown>,
stream: IterableReadableStream<StreamEvent>,
emitter: eventEmitter,
) => {
for await (const event of stream) {
@ -177,9 +178,9 @@ const createBasicYoutubeSearchAnsweringChain = (
});
const sortedDocs = similarity
.filter((sim) => sim.similarity > 0.3)
.sort((a, b) => b.similarity - a.similarity)
.slice(0, 15)
.filter((sim) => sim.similarity > 0.3)
.map((sim) => docsWithContent[sim.index]);
return sortedDocs;

View File

@ -28,3 +28,11 @@ server.listen(port, () => {
});
startWebSocketServer(server);
process.on('uncaughtException', (err, origin) => {
logger.error(`Uncaught Exception at ${origin}: ${err}`);
});
process.on('unhandledRejection', (reason, promise) => {
logger.error(`Unhandled Rejection at: ${promise}, reason: ${reason}`);
});

View File

@ -12,6 +12,7 @@ interface Config {
API_KEYS: {
OPENAI: string;
GROQ: string;
ANTHROPIC: string;
};
API_ENDPOINTS: {
SEARXNG: string;
@ -37,7 +38,10 @@ export const getOpenaiApiKey = () => loadConfig().API_KEYS.OPENAI;
export const getGroqApiKey = () => loadConfig().API_KEYS.GROQ;
export const getSearxngApiEndpoint = () => loadConfig().API_ENDPOINTS.SEARXNG;
export const getAnthropicApiKey = () => loadConfig().API_KEYS.ANTHROPIC;
export const getSearxngApiEndpoint = () =>
process.env.SEARXNG_API_URL || loadConfig().API_ENDPOINTS.SEARXNG;
export const getOllamaApiEndpoint = () => loadConfig().API_ENDPOINTS.OLLAMA;

99
src/lib/linkDocument.ts Normal file
View File

@ -0,0 +1,99 @@
import axios from 'axios';
import { htmlToText } from 'html-to-text';
import { RecursiveCharacterTextSplitter } from 'langchain/text_splitter';
import { Document } from '@langchain/core/documents';
import pdfParse from 'pdf-parse';
import logger from '../utils/logger';
export const getDocumentsFromLinks = async ({ links }: { links: string[] }) => {
const splitter = new RecursiveCharacterTextSplitter();
let docs: Document[] = [];
await Promise.all(
links.map(async (link) => {
link =
link.startsWith('http://') || link.startsWith('https://')
? link
: `https://${link}`;
try {
const res = await axios.get(link, {
responseType: 'arraybuffer',
});
const isPdf = res.headers['content-type'] === 'application/pdf';
if (isPdf) {
const pdfText = await pdfParse(res.data);
const parsedText = pdfText.text
.replace(/(\r\n|\n|\r)/gm, ' ')
.replace(/\s+/g, ' ')
.trim();
const splittedText = await splitter.splitText(parsedText);
const title = 'PDF Document';
const linkDocs = splittedText.map((text) => {
return new Document({
pageContent: text,
metadata: {
title: title,
url: link,
},
});
});
docs.push(...linkDocs);
return;
}
const parsedText = htmlToText(res.data.toString('utf8'), {
selectors: [
{
selector: 'a',
options: {
ignoreHref: true,
},
},
],
})
.replace(/(\r\n|\n|\r)/gm, ' ')
.replace(/\s+/g, ' ')
.trim();
const splittedText = await splitter.splitText(parsedText);
const title = res.data
.toString('utf8')
.match(/<title>(.*?)<\/title>/)?.[1];
const linkDocs = splittedText.map((text) => {
return new Document({
pageContent: text,
metadata: {
title: title || link,
url: link,
},
});
});
docs.push(...linkDocs);
} catch (err) {
logger.error(
`Error at generating documents from links: ${err.message}`,
);
docs.push(
new Document({
pageContent: `Failed to retrieve content from the link: ${err.message}`,
metadata: {
title: 'Failed to retrieve content',
url: link,
},
}),
);
}
}),
);
return docs;
};

View File

@ -0,0 +1,46 @@
import { BaseOutputParser } from '@langchain/core/output_parsers';
interface LineOutputParserArgs {
key?: string;
}
class LineOutputParser extends BaseOutputParser<string> {
private key = 'questions';
constructor(args?: LineOutputParserArgs) {
super();
this.key = args.key ?? this.key;
}
static lc_name() {
return 'LineOutputParser';
}
lc_namespace = ['langchain', 'output_parsers', 'line_output_parser'];
async parse(text: string): Promise<string> {
const regex = /^(\s*(-|\*|\d+\.\s|\d+\)\s|\u2022)\s*)+/;
const startKeyIndex = text.indexOf(`<${this.key}>`);
const endKeyIndex = text.indexOf(`</${this.key}>`);
if (startKeyIndex === -1 || endKeyIndex === -1) {
return '';
}
const questionsStartIndex =
startKeyIndex === -1 ? 0 : startKeyIndex + `<${this.key}>`.length;
const questionsEndIndex = endKeyIndex === -1 ? text.length : endKeyIndex;
const line = text
.slice(questionsStartIndex, questionsEndIndex)
.trim()
.replace(regex, '');
return line;
}
getFormatInstructions(): string {
throw new Error('Not implemented.');
}
}
export default LineOutputParser;

View File

@ -22,6 +22,11 @@ class LineListOutputParser extends BaseOutputParser<string[]> {
const regex = /^(\s*(-|\*|\d+\.\s|\d+\)\s|\u2022)\s*)+/;
const startKeyIndex = text.indexOf(`<${this.key}>`);
const endKeyIndex = text.indexOf(`</${this.key}>`);
if (startKeyIndex === -1 || endKeyIndex === -1) {
return [];
}
const questionsStartIndex =
startKeyIndex === -1 ? 0 : startKeyIndex + `<${this.key}>`.length;
const questionsEndIndex = endKeyIndex === -1 ? text.length : endKeyIndex;

View File

@ -1,187 +0,0 @@
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
import { ChatOllama } from '@langchain/community/chat_models/ollama';
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
import { HuggingFaceTransformersEmbeddings } from './huggingfaceTransformer';
import {
getGroqApiKey,
getOllamaApiEndpoint,
getOpenaiApiKey,
} from '../config';
import logger from '../utils/logger';
export const getAvailableChatModelProviders = async () => {
const openAIApiKey = getOpenaiApiKey();
const groqApiKey = getGroqApiKey();
const ollamaEndpoint = getOllamaApiEndpoint();
const models = {};
if (openAIApiKey) {
try {
models['openai'] = {
'GPT-3.5 turbo': new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-3.5-turbo',
temperature: 0.7,
}),
'GPT-4': new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4',
temperature: 0.7,
}),
'GPT-4 turbo': new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4-turbo',
temperature: 0.7,
}),
'GPT-4 omni': new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4o',
temperature: 0.7,
}),
};
} catch (err) {
logger.error(`Error loading OpenAI models: ${err}`);
}
}
if (groqApiKey) {
try {
models['groq'] = {
'LLaMA3 8b': new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama3-8b-8192',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
'LLaMA3 70b': new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama3-70b-8192',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
'Mixtral 8x7b': new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'mixtral-8x7b-32768',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
'Gemma 7b': new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'gemma-7b-it',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
};
} catch (err) {
logger.error(`Error loading Groq models: ${err}`);
}
}
if (ollamaEndpoint) {
try {
const response = await fetch(`${ollamaEndpoint}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
const { models: ollamaModels } = (await response.json()) as any;
models['ollama'] = ollamaModels.reduce((acc, model) => {
acc[model.model] = new ChatOllama({
baseUrl: ollamaEndpoint,
model: model.model,
temperature: 0.7,
});
return acc;
}, {});
} catch (err) {
logger.error(`Error loading Ollama models: ${err}`);
}
}
models['custom_openai'] = {};
return models;
};
export const getAvailableEmbeddingModelProviders = async () => {
const openAIApiKey = getOpenaiApiKey();
const ollamaEndpoint = getOllamaApiEndpoint();
const models = {};
if (openAIApiKey) {
try {
models['openai'] = {
'Text embedding 3 small': new OpenAIEmbeddings({
openAIApiKey,
modelName: 'text-embedding-3-small',
}),
'Text embedding 3 large': new OpenAIEmbeddings({
openAIApiKey,
modelName: 'text-embedding-3-large',
}),
};
} catch (err) {
logger.error(`Error loading OpenAI embeddings: ${err}`);
}
}
if (ollamaEndpoint) {
try {
const response = await fetch(`${ollamaEndpoint}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
const { models: ollamaModels } = (await response.json()) as any;
models['ollama'] = ollamaModels.reduce((acc, model) => {
acc[model.model] = new OllamaEmbeddings({
baseUrl: ollamaEndpoint,
model: model.model,
});
return acc;
}, {});
} catch (err) {
logger.error(`Error loading Ollama embeddings: ${err}`);
}
}
try {
models['local'] = {
'BGE Small': new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/bge-small-en-v1.5',
}),
'GTE Small': new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/gte-small',
}),
'Bert Multilingual': new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/bert-base-multilingual-uncased',
}),
};
} catch (err) {
logger.error(`Error loading local embeddings: ${err}`);
}
return models;
};

View File

@ -0,0 +1,51 @@
import { ChatAnthropic } from '@langchain/anthropic';
import { getAnthropicApiKey } from '../../config';
import logger from '../../utils/logger';
export const loadAnthropicChatModels = async () => {
const anthropicApiKey = getAnthropicApiKey();
if (!anthropicApiKey) return {};
try {
const chatModels = {
'claude-3-5-sonnet-20240620': {
displayName: 'Claude 3.5 Sonnet',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-5-sonnet-20240620',
}),
},
'claude-3-opus-20240229': {
displayName: 'Claude 3 Opus',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-opus-20240229',
}),
},
'claude-3-sonnet-20240229': {
displayName: 'Claude 3 Sonnet',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-sonnet-20240229',
}),
},
'claude-3-haiku-20240307': {
displayName: 'Claude 3 Haiku',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-haiku-20240307',
}),
},
};
return chatModels;
} catch (err) {
logger.error(`Error loading Anthropic models: ${err}`);
return {};
}
};

110
src/lib/providers/groq.ts Normal file
View File

@ -0,0 +1,110 @@
import { ChatOpenAI } from '@langchain/openai';
import { getGroqApiKey } from '../../config';
import logger from '../../utils/logger';
export const loadGroqChatModels = async () => {
const groqApiKey = getGroqApiKey();
if (!groqApiKey) return {};
try {
const chatModels = {
'llama-3.1-70b-versatile': {
displayName: 'Llama 3.1 70B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.1-70b-versatile',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama-3.1-8b-instant': {
displayName: 'Llama 3.1 8B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.1-8b-instant',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama3-8b-8192': {
displayName: 'LLaMA3 8B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama3-8b-8192',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama3-70b-8192': {
displayName: 'LLaMA3 70B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama3-70b-8192',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'mixtral-8x7b-32768': {
displayName: 'Mixtral 8x7B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'mixtral-8x7b-32768',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'gemma-7b-it': {
displayName: 'Gemma 7B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'gemma-7b-it',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'gemma2-9b-it': {
displayName: 'Gemma2 9B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'gemma2-9b-it',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
};
return chatModels;
} catch (err) {
logger.error(`Error loading Groq models: ${err}`);
return {};
}
};

View File

@ -0,0 +1,46 @@
import { loadGroqChatModels } from './groq';
import { loadOllamaChatModels, loadOllamaEmbeddingsModels } from './ollama';
import { loadOpenAIChatModels, loadOpenAIEmbeddingsModels } from './openai';
import { loadAnthropicChatModels } from './anthropic';
import { loadTransformersEmbeddingsModels } from './transformers';
const chatModelProviders = {
openai: loadOpenAIChatModels,
groq: loadGroqChatModels,
ollama: loadOllamaChatModels,
anthropic: loadAnthropicChatModels,
};
const embeddingModelProviders = {
openai: loadOpenAIEmbeddingsModels,
local: loadTransformersEmbeddingsModels,
ollama: loadOllamaEmbeddingsModels,
};
export const getAvailableChatModelProviders = async () => {
const models = {};
for (const provider in chatModelProviders) {
const providerModels = await chatModelProviders[provider]();
if (Object.keys(providerModels).length > 0) {
models[provider] = providerModels;
}
}
models['custom_openai'] = {};
return models;
};
export const getAvailableEmbeddingModelProviders = async () => {
const models = {};
for (const provider in embeddingModelProviders) {
const providerModels = await embeddingModelProviders[provider]();
if (Object.keys(providerModels).length > 0) {
models[provider] = providerModels;
}
}
return models;
};

View File

@ -0,0 +1,71 @@
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
import { getOllamaApiEndpoint } from '../../config';
import logger from '../../utils/logger';
import { ChatOllama } from '@langchain/community/chat_models/ollama';
export const loadOllamaChatModels = async () => {
const ollamaEndpoint = getOllamaApiEndpoint();
if (!ollamaEndpoint) return {};
try {
const response = await fetch(`${ollamaEndpoint}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
const { models: ollamaModels } = (await response.json()) as any;
const chatModels = ollamaModels.reduce((acc, model) => {
acc[model.model] = {
displayName: model.name,
model: new ChatOllama({
baseUrl: ollamaEndpoint,
model: model.model,
temperature: 0.7,
}),
};
return acc;
}, {});
return chatModels;
} catch (err) {
logger.error(`Error loading Ollama models: ${err}`);
return {};
}
};
export const loadOllamaEmbeddingsModels = async () => {
const ollamaEndpoint = getOllamaApiEndpoint();
if (!ollamaEndpoint) return {};
try {
const response = await fetch(`${ollamaEndpoint}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
const { models: ollamaModels } = (await response.json()) as any;
const embeddingsModels = ollamaModels.reduce((acc, model) => {
acc[model.model] = {
displayName: model.name,
model: new OllamaEmbeddings({
baseUrl: ollamaEndpoint,
model: model.model,
}),
};
return acc;
}, {});
return embeddingsModels;
} catch (err) {
logger.error(`Error loading Ollama embeddings model: ${err}`);
return {};
}
};

View File

@ -0,0 +1,89 @@
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
import { getOpenaiApiKey } from '../../config';
import logger from '../../utils/logger';
export const loadOpenAIChatModels = async () => {
const openAIApiKey = getOpenaiApiKey();
if (!openAIApiKey) return {};
try {
const chatModels = {
'gpt-3.5-turbo': {
displayName: 'GPT-3.5 Turbo',
model: new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-3.5-turbo',
temperature: 0.7,
}),
},
'gpt-4': {
displayName: 'GPT-4',
model: new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4',
temperature: 0.7,
}),
},
'gpt-4-turbo': {
displayName: 'GPT-4 turbo',
model: new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4-turbo',
temperature: 0.7,
}),
},
'gpt-4o': {
displayName: 'GPT-4 omni',
model: new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4o',
temperature: 0.7,
}),
},
'gpt-4o-mini': {
displayName: 'GPT-4 omni mini',
model: new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4o-mini',
temperature: 0.7,
}),
},
};
return chatModels;
} catch (err) {
logger.error(`Error loading OpenAI models: ${err}`);
return {};
}
};
export const loadOpenAIEmbeddingsModels = async () => {
const openAIApiKey = getOpenaiApiKey();
if (!openAIApiKey) return {};
try {
const embeddingModels = {
'text-embedding-3-small': {
displayName: 'Text Embedding 3 Small',
model: new OpenAIEmbeddings({
openAIApiKey,
modelName: 'text-embedding-3-small',
}),
},
'text-embedding-3-large': {
displayName: 'Text Embedding 3 Large',
model: new OpenAIEmbeddings({
openAIApiKey,
modelName: 'text-embedding-3-large',
}),
},
};
return embeddingModels;
} catch (err) {
logger.error(`Error loading OpenAI embeddings model: ${err}`);
return {};
}
};

View File

@ -0,0 +1,32 @@
import logger from '../../utils/logger';
import { HuggingFaceTransformersEmbeddings } from '../huggingfaceTransformer';
export const loadTransformersEmbeddingsModels = async () => {
try {
const embeddingModels = {
'xenova-bge-small-en-v1.5': {
displayName: 'BGE Small',
model: new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/bge-small-en-v1.5',
}),
},
'xenova-gte-small': {
displayName: 'GTE Small',
model: new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/gte-small',
}),
},
'xenova-bert-base-multilingual-uncased': {
displayName: 'Bert Multilingual',
model: new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/bert-base-multilingual-uncased',
}),
},
};
return embeddingModels;
} catch (err) {
logger.error(`Error loading Transformers embeddings model: ${err}`);
return {};
}
};

View File

@ -40,4 +40,27 @@ router.get('/:id', async (req, res) => {
}
});
router.delete(`/:id`, async (req, res) => {
try {
const chatExists = await db.query.chats.findFirst({
where: eq(chats.id, req.params.id),
});
if (!chatExists) {
return res.status(404).json({ message: 'Chat not found' });
}
await db.delete(chats).where(eq(chats.id, req.params.id)).execute();
await db
.delete(messages)
.where(eq(messages.chatId, req.params.id))
.execute();
return res.status(200).json({ message: 'Chat deleted successfully' });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error in deleting chat: ${err.message}`);
}
});
export default router;

View File

@ -6,40 +6,58 @@ import {
import {
getGroqApiKey,
getOllamaApiEndpoint,
getAnthropicApiKey,
getOpenaiApiKey,
updateConfig,
} from '../config';
import logger from '../utils/logger';
const router = express.Router();
router.get('/', async (_, res) => {
const config = {};
try {
const config = {};
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
config['chatModelProviders'] = {};
config['embeddingModelProviders'] = {};
config['chatModelProviders'] = {};
config['embeddingModelProviders'] = {};
for (const provider in chatModelProviders) {
config['chatModelProviders'][provider] = Object.keys(
chatModelProviders[provider],
);
for (const provider in chatModelProviders) {
config['chatModelProviders'][provider] = Object.keys(
chatModelProviders[provider],
).map((model) => {
return {
name: model,
displayName: chatModelProviders[provider][model].displayName,
};
});
}
for (const provider in embeddingModelProviders) {
config['embeddingModelProviders'][provider] = Object.keys(
embeddingModelProviders[provider],
).map((model) => {
return {
name: model,
displayName: embeddingModelProviders[provider][model].displayName,
};
});
}
config['openaiApiKey'] = getOpenaiApiKey();
config['ollamaApiUrl'] = getOllamaApiEndpoint();
config['anthropicApiKey'] = getAnthropicApiKey();
config['groqApiKey'] = getGroqApiKey();
res.status(200).json(config);
} catch (err: any) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error getting config: ${err.message}`);
}
for (const provider in embeddingModelProviders) {
config['embeddingModelProviders'][provider] = Object.keys(
embeddingModelProviders[provider],
);
}
config['openaiApiKey'] = getOpenaiApiKey();
config['ollamaApiUrl'] = getOllamaApiEndpoint();
config['groqApiKey'] = getGroqApiKey();
res.status(200).json(config);
});
router.post('/', async (req, res) => {
@ -49,6 +67,7 @@ router.post('/', async (req, res) => {
API_KEYS: {
OPENAI: config.openaiApiKey,
GROQ: config.groqApiKey,
ANTHROPIC: config.anthropicApiKey,
},
API_ENDPOINTS: {
OLLAMA: config.ollamaApiUrl,

View File

@ -26,7 +26,7 @@ router.post('/', async (req, res) => {
let llm: BaseChatModel | undefined;
if (chatModels[provider] && chatModels[provider][chatModel]) {
llm = chatModels[provider][chatModel] as BaseChatModel | undefined;
llm = chatModels[provider][chatModel].model as BaseChatModel | undefined;
}
if (!llm) {

View File

@ -5,6 +5,7 @@ import configRouter from './config';
import modelsRouter from './models';
import suggestionsRouter from './suggestions';
import chatsRouter from './chats';
import searchRouter from './search';
const router = express.Router();
@ -14,5 +15,6 @@ router.use('/config', configRouter);
router.use('/models', modelsRouter);
router.use('/suggestions', suggestionsRouter);
router.use('/chats', chatsRouter);
router.use('/search', searchRouter);
export default router;

150
src/routes/search.ts Normal file
View File

@ -0,0 +1,150 @@
import express from 'express';
import logger from '../utils/logger';
import { BaseChatModel } from 'langchain/chat_models/base';
import { Embeddings } from 'langchain/embeddings/base';
import { ChatOpenAI } from '@langchain/openai';
import {
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '../lib/providers';
import { searchHandlers } from '../websocket/messageHandler';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
const router = express.Router();
interface chatModel {
provider: string;
model: string;
customOpenAIBaseURL?: string;
customOpenAIKey?: string;
}
interface embeddingModel {
provider: string;
model: string;
}
interface ChatRequestBody {
focusMode: string;
chatModel?: chatModel;
embeddingModel?: embeddingModel;
query: string;
history: Array<[string, string]>;
}
router.post('/', async (req, res) => {
try {
const body: ChatRequestBody = req.body;
if (!body.focusMode || !body.query) {
return res.status(400).json({ message: 'Missing focus mode or query' });
}
body.history = body.history || [];
const history: BaseMessage[] = body.history.map((msg) => {
if (msg[0] === 'human') {
return new HumanMessage({
content: msg[1],
});
} else {
return new AIMessage({
content: msg[1],
});
}
});
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
const chatModelProvider =
body.chatModel?.provider || Object.keys(chatModelProviders)[0];
const chatModel =
body.chatModel?.model ||
Object.keys(chatModelProviders[chatModelProvider])[0];
const embeddingModelProvider =
body.embeddingModel?.provider || Object.keys(embeddingModelProviders)[0];
const embeddingModel =
body.embeddingModel?.model ||
Object.keys(embeddingModelProviders[embeddingModelProvider])[0];
let llm: BaseChatModel | undefined;
let embeddings: Embeddings | undefined;
if (body.chatModel?.provider === 'custom_openai') {
if (
!body.chatModel?.customOpenAIBaseURL ||
!body.chatModel?.customOpenAIKey
) {
return res
.status(400)
.json({ message: 'Missing custom OpenAI base URL or key' });
}
llm = new ChatOpenAI({
modelName: body.chatModel.model,
openAIApiKey: body.chatModel.customOpenAIKey,
temperature: 0.7,
configuration: {
baseURL: body.chatModel.customOpenAIBaseURL,
},
}) as unknown as BaseChatModel;
} else if (
chatModelProviders[chatModelProvider] &&
chatModelProviders[chatModelProvider][chatModel]
) {
llm = chatModelProviders[chatModelProvider][chatModel]
.model as unknown as BaseChatModel | undefined;
}
if (
embeddingModelProviders[embeddingModelProvider] &&
embeddingModelProviders[embeddingModelProvider][embeddingModel]
) {
embeddings = embeddingModelProviders[embeddingModelProvider][
embeddingModel
].model as Embeddings | undefined;
}
if (!llm || !embeddings) {
return res.status(400).json({ message: 'Invalid model selected' });
}
const searchHandler = searchHandlers[body.focusMode];
if (!searchHandler) {
return res.status(400).json({ message: 'Invalid focus mode' });
}
const emitter = searchHandler(body.query, history, llm, embeddings);
let message = '';
let sources = [];
emitter.on('data', (data) => {
const parsedData = JSON.parse(data);
if (parsedData.type === 'response') {
message += parsedData.data;
} else if (parsedData.type === 'sources') {
sources = parsedData.data;
}
});
emitter.on('end', () => {
res.status(200).json({ message, sources });
});
emitter.on('error', (data) => {
const parsedData = JSON.parse(data);
res.status(500).json({ message: parsedData.data });
});
} catch (err: any) {
logger.error(`Error in getting search results: ${err.message}`);
res.status(500).json({ message: 'An error has occurred.' });
}
});
export default router;

View File

@ -26,7 +26,7 @@ router.post('/', async (req, res) => {
let llm: BaseChatModel | undefined;
if (chatModels[provider] && chatModels[provider][chatModel]) {
llm = chatModels[provider][chatModel] as BaseChatModel | undefined;
llm = chatModels[provider][chatModel].model as BaseChatModel | undefined;
}
if (!llm) {

View File

@ -26,7 +26,7 @@ router.post('/', async (req, res) => {
let llm: BaseChatModel | undefined;
if (chatModels[provider] && chatModels[provider][chatModel]) {
llm = chatModels[provider][chatModel] as BaseChatModel | undefined;
llm = chatModels[provider][chatModel].model as BaseChatModel | undefined;
}
if (!llm) {

View File

@ -45,9 +45,8 @@ export const handleConnection = async (
chatModelProviders[chatModelProvider][chatModel] &&
chatModelProvider != 'custom_openai'
) {
llm = chatModelProviders[chatModelProvider][chatModel] as
| BaseChatModel
| undefined;
llm = chatModelProviders[chatModelProvider][chatModel]
.model as unknown as BaseChatModel | undefined;
} else if (chatModelProvider == 'custom_openai') {
llm = new ChatOpenAI({
modelName: chatModel,
@ -56,7 +55,7 @@ export const handleConnection = async (
configuration: {
baseURL: searchParams.get('openAIBaseURL'),
},
});
}) as unknown as BaseChatModel;
}
if (
@ -65,7 +64,7 @@ export const handleConnection = async (
) {
embeddings = embeddingModelProviders[embeddingModelProvider][
embeddingModel
] as Embeddings | undefined;
].model as Embeddings | undefined;
}
if (!llm || !embeddings) {

View File

@ -28,7 +28,7 @@ type WSMessage = {
history: Array<[string, string]>;
};
const searchHandlers = {
export const searchHandlers = {
webSearch: handleWebSearch,
academicSearch: handleAcademicSearch,
writingAssistant: handleWritingAssistant,

View File

@ -34,7 +34,7 @@ export default function RootLayout({
unstyled: true,
classNames: {
toast:
'bg-light-primary dark:bg-dark-primary text-white rounded-lg p-4 flex flex-row items-center space-x-2',
'bg-light-primary dark:bg-dark-secondary dark:text-white/70 text-black-70 rounded-lg p-4 flex flex-row items-center space-x-2',
},
}}
/>

View File

@ -1,11 +1,12 @@
'use client';
import DeleteChat from '@/components/DeleteChat';
import { formatTimeDifference } from '@/lib/utils';
import { BookOpenText, ClockIcon, ScanEye } from 'lucide-react';
import { BookOpenText, ClockIcon, Delete, ScanEye } from 'lucide-react';
import Link from 'next/link';
import { useEffect, useState } from 'react';
interface Chat {
export interface Chat {
id: string;
title: string;
createdAt: string;
@ -92,6 +93,11 @@ const Page = () => {
{formatTimeDifference(new Date(), chat.createdAt)} Ago
</p>
</div>
<DeleteChat
chatId={chat.id}
chats={chats}
setChats={setChats}
/>
</div>
</div>
))}

View File

@ -9,6 +9,7 @@ import crypto from 'crypto';
import { toast } from 'sonner';
import { useSearchParams } from 'next/navigation';
import { getSuggestions } from '@/lib/actions';
import Error from 'next/error';
export type Message = {
messageId: string;
@ -37,43 +38,56 @@ const useSocket = (
'embeddingModelProvider',
);
const providers = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/models`,
{
headers: {
'Content-Type': 'application/json',
},
},
).then(async (res) => await res.json());
if (
!chatModel ||
!chatModelProvider ||
!embeddingModel ||
!embeddingModelProvider
) {
const providers = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/models`,
{
headers: {
'Content-Type': 'application/json',
},
},
).then(async (res) => await res.json());
if (!chatModel || !chatModelProvider) {
const chatModelProviders = providers.chatModelProviders;
const chatModelProviders = providers.chatModelProviders;
const embeddingModelProviders = providers.embeddingModelProviders;
chatModelProvider = Object.keys(chatModelProviders)[0];
if (
!chatModelProviders ||
Object.keys(chatModelProviders).length === 0
)
return toast.error('No chat models available');
if (chatModelProvider === 'custom_openai') {
toast.error(
'Seems like you are using the custom OpenAI provider, please open the settings and configure the API key and base URL',
);
setError(true);
return;
} else {
chatModel = Object.keys(chatModelProviders[chatModelProvider])[0];
if (
!chatModelProviders ||
Object.keys(chatModelProviders).length === 0
)
return toast.error('No chat models available');
}
}
if (
!embeddingModelProviders ||
Object.keys(embeddingModelProviders).length === 0
)
return toast.error('No embedding models available');
if (!embeddingModel || !embeddingModelProvider) {
const embeddingModelProviders = providers.embeddingModelProviders;
chatModelProvider = Object.keys(chatModelProviders)[0];
chatModel = Object.keys(chatModelProviders[chatModelProvider])[0];
if (
!embeddingModelProviders ||
Object.keys(embeddingModelProviders).length === 0
)
return toast.error('No embedding models available');
embeddingModelProvider = Object.keys(embeddingModelProviders)[0];
embeddingModel = Object.keys(
embeddingModelProviders[embeddingModelProvider],
)[0];
embeddingModelProvider = Object.keys(embeddingModelProviders)[0];
embeddingModel = Object.keys(
embeddingModelProviders[embeddingModelProvider],
)[0];
}
localStorage.setItem('chatModel', chatModel!);
localStorage.setItem('chatModelProvider', chatModelProvider);
@ -82,6 +96,47 @@ const useSocket = (
'embeddingModelProvider',
embeddingModelProvider,
);
} else {
const chatModelProviders = providers.chatModelProviders;
const embeddingModelProviders = providers.embeddingModelProviders;
if (
Object.keys(chatModelProviders).length > 0 &&
!chatModelProviders[chatModelProvider]
) {
chatModelProvider = Object.keys(chatModelProviders)[0];
localStorage.setItem('chatModelProvider', chatModelProvider);
}
if (
chatModelProvider &&
chatModelProvider != 'custom_openai' &&
!chatModelProviders[chatModelProvider][chatModel]
) {
chatModel = Object.keys(chatModelProviders[chatModelProvider])[0];
localStorage.setItem('chatModel', chatModel);
}
if (
Object.keys(embeddingModelProviders).length > 0 &&
!embeddingModelProviders[embeddingModelProvider]
) {
embeddingModelProvider = Object.keys(embeddingModelProviders)[0];
localStorage.setItem(
'embeddingModelProvider',
embeddingModelProvider,
);
}
if (
embeddingModelProvider &&
!embeddingModelProviders[embeddingModelProvider][embeddingModel]
) {
embeddingModel = Object.keys(
embeddingModelProviders[embeddingModelProvider],
)[0];
localStorage.setItem('embeddingModel', embeddingModel);
}
}
const wsURL = new URL(url);
@ -110,8 +165,6 @@ const useSocket = (
const timeoutId = setTimeout(() => {
if (ws.readyState !== 1) {
ws.close();
setError(true);
toast.error(
'Failed to connect to the server. Please try again later.',
);
@ -121,7 +174,6 @@ const useSocket = (
ws.onopen = () => {
console.log('[DEBUG] open');
clearTimeout(timeoutId);
setError(false);
setIsWSReady(true);
};
@ -137,16 +189,18 @@ const useSocket = (
console.log('[DEBUG] closed');
};
ws.addEventListener('message', (e) => {
const data = JSON.parse(e.data);
if (data.type === 'error') {
toast.error(data.data);
}
});
setWs(ws);
};
connectWs();
}
return () => {
ws?.close();
console.log('[DEBUG] closed');
};
}, [ws, url, setIsWSReady, setError]);
return ws;
@ -158,6 +212,7 @@ const loadMessages = async (
setIsMessagesLoaded: (loaded: boolean) => void,
setChatHistory: (history: [string, string][]) => void,
setFocusMode: (mode: string) => void,
setNotFound: (notFound: boolean) => void,
) => {
const res = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/chats/${chatId}`,
@ -169,6 +224,12 @@ const loadMessages = async (
},
);
if (res.status === 404) {
setNotFound(true);
setIsMessagesLoaded(true);
return;
}
const data = await res.json();
const messages = data.messages.map((msg: any) => {
@ -190,7 +251,6 @@ const loadMessages = async (
setChatHistory(history);
setFocusMode(data.chat.focusMode);
console.log(data);
setIsMessagesLoaded(true);
};
@ -221,6 +281,8 @@ const ChatWindow = ({ id }: { id?: string }) => {
const [isMessagesLoaded, setIsMessagesLoaded] = useState(false);
const [notFound, setNotFound] = useState(false);
useEffect(() => {
if (
chatId &&
@ -234,6 +296,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
setIsMessagesLoaded,
setChatHistory,
setFocusMode,
setNotFound,
);
} else if (!chatId) {
setNewChatCreated(true);
@ -243,6 +306,15 @@ const ChatWindow = ({ id }: { id?: string }) => {
// eslint-disable-next-line react-hooks/exhaustive-deps
}, []);
useEffect(() => {
return () => {
if (ws?.readyState === 1) {
ws.close();
console.log('[DEBUG] closed');
}
};
}, []);
const messagesRef = useRef<Message[]>([]);
useEffect(() => {
@ -416,26 +488,30 @@ const ChatWindow = ({ id }: { id?: string }) => {
}
return isReady ? (
<div>
{messages.length > 0 ? (
<>
<Navbar messages={messages} />
<Chat
loading={loading}
messages={messages}
notFound ? (
<Error statusCode={404} />
) : (
<div>
{messages.length > 0 ? (
<>
<Navbar messages={messages} />
<Chat
loading={loading}
messages={messages}
sendMessage={sendMessage}
messageAppeared={messageAppeared}
rewrite={rewrite}
/>
</>
) : (
<EmptyChat
sendMessage={sendMessage}
messageAppeared={messageAppeared}
rewrite={rewrite}
focusMode={focusMode}
setFocusMode={setFocusMode}
/>
</>
) : (
<EmptyChat
sendMessage={sendMessage}
focusMode={focusMode}
setFocusMode={setFocusMode}
/>
)}
</div>
)}
</div>
)
) : (
<div className="flex flex-row items-center justify-center min-h-screen">
<svg

View File

@ -0,0 +1,114 @@
import { Delete, Trash } from 'lucide-react';
import { Dialog, Transition } from '@headlessui/react';
import { Fragment, useState } from 'react';
import { toast } from 'sonner';
import { Chat } from '@/app/library/page';
const DeleteChat = ({
chatId,
chats,
setChats,
}: {
chatId: string;
chats: Chat[];
setChats: (chats: Chat[]) => void;
}) => {
const [confirmationDialogOpen, setConfirmationDialogOpen] = useState(false);
const [loading, setLoading] = useState(false);
const handleDelete = async () => {
setLoading(true);
try {
const res = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/chats/${chatId}`,
{
method: 'DELETE',
headers: {
'Content-Type': 'application/json',
},
},
);
if (res.status != 200) {
throw new Error('Failed to delete chat');
}
const newChats = chats.filter((chat) => chat.id !== chatId);
setChats(newChats);
} catch (err: any) {
toast.error(err.message);
} finally {
setConfirmationDialogOpen(false);
setLoading(false);
}
};
return (
<>
<button
onClick={() => {
setConfirmationDialogOpen(true);
}}
className="bg-transparent text-red-400 hover:scale-105 transition duration-200"
>
<Trash size={17} />
</button>
<Transition appear show={confirmationDialogOpen} as={Fragment}>
<Dialog
as="div"
className="relative z-50"
onClose={() => {
if (!loading) {
setConfirmationDialogOpen(false);
}
}}
>
<Dialog.Backdrop className="fixed inset-0 bg-black/30" />
<div className="fixed inset-0 overflow-y-auto">
<div className="flex min-h-full items-center justify-center p-4 text-center">
<Transition.Child
as={Fragment}
enter="ease-out duration-200"
enterFrom="opacity-0 scale-95"
enterTo="opacity-100 scale-100"
leave="ease-in duration-100"
leaveFrom="opacity-100 scale-200"
leaveTo="opacity-0 scale-95"
>
<Dialog.Panel className="w-full max-w-md transform rounded-2xl bg-light-secondary dark:bg-dark-secondary border border-light-200 dark:border-dark-200 p-6 text-left align-middle shadow-xl transition-all">
<Dialog.Title className="text-lg font-medium leading-6 dark:text-white">
Delete Confirmation
</Dialog.Title>
<Dialog.Description className="text-sm dark:text-white/70 text-black/70">
Are you sure you want to delete this chat?
</Dialog.Description>
<div className="flex flex-row items-end justify-end space-x-4 mt-6">
<button
onClick={() => {
if (!loading) {
setConfirmationDialogOpen(false);
}
}}
className="text-black/50 dark:text-white/50 text-sm hover:text-black/70 hover:dark:text-white/70 transition duration-200"
>
Cancel
</button>
<button
onClick={handleDelete}
className="text-red-400 text-sm hover:text-red-500 transition duration200"
>
Delete
</button>
</div>
</Dialog.Panel>
</Transition.Child>
</div>
</div>
</Dialog>
</Transition>
</>
);
};
export default DeleteChat;

View File

@ -18,14 +18,21 @@ const EmptyChatMessageInput = ({
const inputRef = useRef<HTMLTextAreaElement | null>(null);
const handleKeyDown = (e: KeyboardEvent) => {
if (e.key === '/') {
e.preventDefault();
inputRef.current?.focus();
}
};
useEffect(() => {
const handleKeyDown = (e: KeyboardEvent) => {
const activeElement = document.activeElement;
const isInputFocused =
activeElement?.tagName === 'INPUT' ||
activeElement?.tagName === 'TEXTAREA' ||
activeElement?.hasAttribute('contenteditable');
if (e.key === '/' && !isInputFocused) {
e.preventDefault();
inputRef.current?.focus();
}
};
document.addEventListener('keydown', handleKeyDown);
return () => {

View File

@ -27,14 +27,21 @@ const MessageInput = ({
const inputRef = useRef<HTMLTextAreaElement | null>(null);
const handleKeyDown = (e: KeyboardEvent) => {
if (e.key === '/') {
e.preventDefault();
inputRef.current?.focus();
}
};
useEffect(() => {
const handleKeyDown = (e: KeyboardEvent) => {
const activeElement = document.activeElement;
const isInputFocused =
activeElement?.tagName === 'INPUT' ||
activeElement?.tagName === 'TEXTAREA' ||
activeElement?.hasAttribute('contenteditable');
if (e.key === '/' && !isInputFocused) {
e.preventDefault();
inputRef.current?.focus();
}
};
document.addEventListener('keydown', handleKeyDown);
return () => {

View File

@ -51,7 +51,7 @@ const SearchImages = ({
const data = await res.json();
const images = data.images;
const images = data.images ?? [];
setImages(images);
setSlides(
images.map((image: Image) => {

View File

@ -64,7 +64,7 @@ const Searchvideos = ({
const data = await res.json();
const videos = data.videos;
const videos = data.videos ?? [];
setVideos(videos);
setSlides(
videos.map((video: Video) => {

View File

@ -49,13 +49,14 @@ export const Select = ({ className, options, ...restProps }: SelectProps) => {
interface SettingsType {
chatModelProviders: {
[key: string]: string[];
[key: string]: [Record<string, any>];
};
embeddingModelProviders: {
[key: string]: string[];
[key: string]: [Record<string, any>];
};
openaiApiKey: string;
groqApiKey: string;
anthropicApiKey: string;
ollamaApiUrl: string;
}
@ -67,6 +68,10 @@ const SettingsDialog = ({
setIsOpen: (isOpen: boolean) => void;
}) => {
const [config, setConfig] = useState<SettingsType | null>(null);
const [chatModels, setChatModels] = useState<Record<string, any>>({});
const [embeddingModels, setEmbeddingModels] = useState<Record<string, any>>(
{},
);
const [selectedChatModelProvider, setSelectedChatModelProvider] = useState<
string | null
>(null);
@ -117,7 +122,7 @@ const SettingsDialog = ({
const chatModel =
localStorage.getItem('chatModel') ||
(data.chatModelProviders &&
data.chatModelProviders[chatModelProvider]?.[0]) ||
data.chatModelProviders[chatModelProvider]?.[0].name) ||
'';
const embeddingModelProvider =
localStorage.getItem('embeddingModelProvider') ||
@ -126,7 +131,7 @@ const SettingsDialog = ({
const embeddingModel =
localStorage.getItem('embeddingModel') ||
(data.embeddingModelProviders &&
data.embeddingModelProviders[embeddingModelProvider]?.[0]) ||
data.embeddingModelProviders[embeddingModelProvider]?.[0].name) ||
'';
setSelectedChatModelProvider(chatModelProvider);
@ -135,6 +140,8 @@ const SettingsDialog = ({
setSelectedEmbeddingModel(embeddingModel);
setCustomOpenAIApiKey(localStorage.getItem('openAIApiKey') || '');
setCustomOpenAIBaseURL(localStorage.getItem('openAIBaseURL') || '');
setChatModels(data.chatModelProviders || {});
setEmbeddingModels(data.embeddingModelProviders || {});
setIsLoading(false);
};
@ -224,9 +231,14 @@ const SettingsDialog = ({
value={selectedChatModelProvider ?? undefined}
onChange={(e) => {
setSelectedChatModelProvider(e.target.value);
setSelectedChatModel(
config.chatModelProviders[e.target.value][0],
);
if (e.target.value === 'custom_openai') {
setSelectedChatModel('');
} else {
setSelectedChatModel(
config.chatModelProviders[e.target.value][0]
.name,
);
}
}}
options={Object.keys(config.chatModelProviders).map(
(provider) => ({
@ -259,8 +271,8 @@ const SettingsDialog = ({
return chatModelProvider
? chatModelProvider.length > 0
? chatModelProvider.map((model) => ({
value: model,
label: model,
value: model.name,
label: model.displayName,
}))
: [
{
@ -336,7 +348,8 @@ const SettingsDialog = ({
onChange={(e) => {
setSelectedEmbeddingModelProvider(e.target.value);
setSelectedEmbeddingModel(
config.embeddingModelProviders[e.target.value][0],
config.embeddingModelProviders[e.target.value][0]
.name,
);
}}
options={Object.keys(
@ -369,8 +382,8 @@ const SettingsDialog = ({
return embeddingModelProvider
? embeddingModelProvider.length > 0
? embeddingModelProvider.map((model) => ({
label: model,
value: model,
label: model.displayName,
value: model.name,
}))
: [
{
@ -439,6 +452,22 @@ const SettingsDialog = ({
}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Anthropic API Key
</p>
<Input
type="text"
placeholder="Anthropic API key"
defaultValue={config.anthropicApiKey}
onChange={(e) =>
setConfig({
...config,
anthropicApiKey: e.target.value,
})
}
/>
</div>
</div>
)}
{isLoading && (

View File

@ -1,6 +1,6 @@
{
"name": "perplexica-frontend",
"version": "1.7.0",
"version": "1.9.0-rc3",
"license": "MIT",
"author": "ItzCrazyKns",
"scripts": {

319
yarn.lock
View File

@ -2,6 +2,20 @@
# yarn lockfile v1
"@anthropic-ai/sdk@^0.22.0":
version "0.22.0"
resolved "https://registry.yarnpkg.com/@anthropic-ai/sdk/-/sdk-0.22.0.tgz#548e4218d9810fd494e595d4e57cb2d46d301a1a"
integrity sha512-dv4BCC6FZJw3w66WNLsHlUFjhu19fS1L/5jMPApwhZLa/Oy1j0A2i3RypmDtHEPp4Wwg3aZkSHksp7VzYWjzmw==
dependencies:
"@types/node" "^18.11.18"
"@types/node-fetch" "^2.6.4"
abort-controller "^3.0.0"
agentkeepalive "^4.2.1"
form-data-encoder "1.7.2"
formdata-node "^4.3.2"
node-fetch "^2.6.7"
web-streams-polyfill "^3.2.1"
"@anthropic-ai/sdk@^0.9.1":
version "0.9.1"
resolved "https://registry.yarnpkg.com/@anthropic-ai/sdk/-/sdk-0.9.1.tgz#b2d2b7bf05c90dce502c9a2e869066870f69ba88"
@ -307,6 +321,34 @@
"@jridgewell/resolve-uri" "^3.0.3"
"@jridgewell/sourcemap-codec" "^1.4.10"
"@langchain/anthropic@^0.2.3":
version "0.2.3"
resolved "https://registry.yarnpkg.com/@langchain/anthropic/-/anthropic-0.2.3.tgz#1505da939f47c90e53dfede0407c497b8177bdf0"
integrity sha512-f2fqzLGcvsXXUyZ1vl8cgwkKDGLshOGrPuR9hkhGuBG5m91eq755OqPBxWJuS1TFtNU813cXft3xh0MQbxavwg==
dependencies:
"@anthropic-ai/sdk" "^0.22.0"
"@langchain/core" ">=0.2.9 <0.3.0"
fast-xml-parser "^4.3.5"
zod "^3.22.4"
zod-to-json-schema "^3.22.4"
"@langchain/community@^0.2.16":
version "0.2.16"
resolved "https://registry.yarnpkg.com/@langchain/community/-/community-0.2.16.tgz#5888baf7fc7ea272c5f91aaa0e71bc444167262d"
integrity sha512-dFDcMabKACvuRd0w6EIRLWf1ubPGZEeEwFt9v1jiEr4HCFxH0OF+iM1QUCcVRbB2fK5lqmKeTD1XAeZV8+AyXA==
dependencies:
"@langchain/core" "~0.2.11"
"@langchain/openai" "~0.1.0"
binary-extensions "^2.2.0"
expr-eval "^2.0.2"
flat "^5.0.2"
js-yaml "^4.1.0"
langchain "0.2.3"
langsmith "~0.1.30"
uuid "^9.0.0"
zod "^3.22.3"
zod-to-json-schema "^3.22.5"
"@langchain/community@~0.0.41":
version "0.0.43"
resolved "https://registry.yarnpkg.com/@langchain/community/-/community-0.0.43.tgz#017e2f9b3209b3999482f10df5aec2520731a63c"
@ -320,6 +362,42 @@
uuid "^9.0.0"
zod "^3.22.3"
"@langchain/core@>0.1.56 <0.3.0", "@langchain/core@>0.2.0 <0.3.0", "@langchain/core@>=0.2.5 <0.3.0", "@langchain/core@~0.2.0", "@langchain/core@~0.2.11":
version "0.2.11"
resolved "https://registry.yarnpkg.com/@langchain/core/-/core-0.2.11.tgz#5f47467e20e56b250831baef20083657c6facb4c"
integrity sha512-d4SNL7WI0c3oHrV4WxCRH1/TNqdePXEzYjYwIb4aEH6lW1aM0utGhLbNthX+aYkOL4Ynx2FoG4h91ECIipiKWQ==
dependencies:
ansi-styles "^5.0.0"
camelcase "6"
decamelize "1.2.0"
js-tiktoken "^1.0.12"
langsmith "~0.1.30"
ml-distance "^4.0.0"
mustache "^4.2.0"
p-queue "^6.6.2"
p-retry "4"
uuid "^9.0.0"
zod "^3.22.4"
zod-to-json-schema "^3.22.3"
"@langchain/core@>=0.2.9 <0.3.0":
version "0.2.15"
resolved "https://registry.yarnpkg.com/@langchain/core/-/core-0.2.15.tgz#1bb99ac4fffe935c7ba37edcaa91abfba3c82219"
integrity sha512-L096itIBQ5XNsy5BCCPqIQEk/x4rzI+U4BhYT+fDBYtljESshIi/WzXdmiGfY/6MpVjB76jNuaRgMDmo1m9NeQ==
dependencies:
ansi-styles "^5.0.0"
camelcase "6"
decamelize "1.2.0"
js-tiktoken "^1.0.12"
langsmith "~0.1.30"
ml-distance "^4.0.0"
mustache "^4.2.0"
p-queue "^6.6.2"
p-retry "4"
uuid "^10.0.0"
zod "^3.22.4"
zod-to-json-schema "^3.22.3"
"@langchain/core@~0.1.44", "@langchain/core@~0.1.45":
version "0.1.52"
resolved "https://registry.yarnpkg.com/@langchain/core/-/core-0.1.52.tgz#7619310b83ffa841628efe2e1eda873ca714d068"
@ -348,6 +426,36 @@
zod "^3.22.4"
zod-to-json-schema "^3.22.3"
"@langchain/openai@~0.0.28":
version "0.0.34"
resolved "https://registry.yarnpkg.com/@langchain/openai/-/openai-0.0.34.tgz#36c9bca0721ab9f7e5d40927e7c0429cacbd5b56"
integrity sha512-M+CW4oXle5fdoz2T2SwdOef8pl3/1XmUx1vjn2mXUVM/128aO0l23FMF0SNBsAbRV6P+p/TuzjodchJbi0Ht/A==
dependencies:
"@langchain/core" ">0.1.56 <0.3.0"
js-tiktoken "^1.0.12"
openai "^4.41.1"
zod "^3.22.4"
zod-to-json-schema "^3.22.3"
"@langchain/openai@~0.1.0":
version "0.1.3"
resolved "https://registry.yarnpkg.com/@langchain/openai/-/openai-0.1.3.tgz#6eb0994e970d85ffa9aaeafb94449024ccf6ca63"
integrity sha512-riv/JC9x2A8b7GcHu8sx+mlZJ8KAwSSi231IPTlcciYnKozmrQ5H0vrtiD31fxiDbaRsk7tyCpkSBIOQEo7CyQ==
dependencies:
"@langchain/core" ">=0.2.5 <0.3.0"
js-tiktoken "^1.0.12"
openai "^4.49.1"
zod "^3.22.4"
zod-to-json-schema "^3.22.3"
"@langchain/textsplitters@~0.0.0":
version "0.0.3"
resolved "https://registry.yarnpkg.com/@langchain/textsplitters/-/textsplitters-0.0.3.tgz#1a3cc93dd2ab330edb225400ded190a22fea14e3"
integrity sha512-cXWgKE3sdWLSqAa8ykbCcUsUF1Kyr5J3HOWYGuobhPEycXW4WI++d5DhzdpL238mzoEXTi90VqfSCra37l5YqA==
dependencies:
"@langchain/core" ">0.2.0 <0.3.0"
js-tiktoken "^1.0.12"
"@protobufjs/aspromise@^1.1.1", "@protobufjs/aspromise@^1.1.2":
version "1.1.2"
resolved "https://registry.yarnpkg.com/@protobufjs/aspromise/-/aspromise-1.1.2.tgz#9b8b0cc663d669a7d8f6f5d0893a14d348f30fbf"
@ -401,6 +509,14 @@
resolved "https://registry.yarnpkg.com/@protobufjs/utf8/-/utf8-1.1.0.tgz#a777360b5b39a1a2e5106f8e858f2fd2d060c570"
integrity sha512-Vvn3zZrhQZkkBE8LSuW3em98c0FwgO4nxzv6OdSxPKJIEKY2bGbHn+mhGIPerzI4twdxaP8/0+06HBpwf345Lw==
"@selderee/plugin-htmlparser2@^0.11.0":
version "0.11.0"
resolved "https://registry.yarnpkg.com/@selderee/plugin-htmlparser2/-/plugin-htmlparser2-0.11.0.tgz#d5b5e29a7ba6d3958a1972c7be16f4b2c188c517"
integrity sha512-P33hHGdldxGabLFjPPpaTxVolMrzrcegejx+0GxjrIb9Zv48D8yAIA/QTDR2dFl7Uz7urX8aX6+5bCZslr+gWQ==
dependencies:
domhandler "^5.0.3"
selderee "^0.11.0"
"@tsconfig/node10@^1.0.7":
version "1.0.11"
resolved "https://registry.yarnpkg.com/@tsconfig/node10/-/node10-1.0.11.tgz#6ee46400685f130e278128c7b38b7e031ff5b2f2"
@ -470,6 +586,11 @@
"@types/qs" "*"
"@types/serve-static" "*"
"@types/html-to-text@^9.0.4":
version "9.0.4"
resolved "https://registry.yarnpkg.com/@types/html-to-text/-/html-to-text-9.0.4.tgz#4a83dd8ae8bfa91457d0b1ffc26f4d0537eff58c"
integrity sha512-pUY3cKH/Nm2yYrEmDlPR1mR7yszjGx4DrwPjQ702C4/D5CwHuZTgZdIdwPkRbcuhs7BAh2L5rg3CL5cbRiGTCQ==
"@types/http-errors@*":
version "2.0.4"
resolved "https://registry.yarnpkg.com/@types/http-errors/-/http-errors-2.0.4.tgz#7eb47726c391b7345a6ec35ad7f4de469cf5ba4f"
@ -514,6 +635,11 @@
dependencies:
undici-types "~5.26.4"
"@types/pdf-parse@^1.1.4":
version "1.1.4"
resolved "https://registry.yarnpkg.com/@types/pdf-parse/-/pdf-parse-1.1.4.tgz#21a539efd2f16009d08aeed3350133948b5d7ed1"
integrity sha512-+gbBHbNCVGGYw1S9lAIIvrHW47UYOhMIFUsJcMkMrzy1Jf0vulBN3XQIjPgnoOXveMuHnF3b57fXROnY/Or7eg==
"@types/qs@*":
version "6.9.14"
resolved "https://registry.yarnpkg.com/@types/qs/-/qs-6.9.14.tgz#169e142bfe493895287bee382af6039795e9b75b"
@ -984,6 +1110,13 @@ debug@2.6.9:
dependencies:
ms "2.0.0"
debug@^3.1.0:
version "3.2.7"
resolved "https://registry.yarnpkg.com/debug/-/debug-3.2.7.tgz#72580b7e9145fb39b6676f9c5e5fb100b934179a"
integrity sha512-CFjzYYAi4ThfiQvizrFQevTTXHtnCqWfe7x1AhgEscTz6ZbLbfoLRLPugTQyBth6f8ZERVUSyWHFD/7Wu4t1XQ==
dependencies:
ms "^2.1.1"
debug@^4:
version "4.3.4"
resolved "https://registry.yarnpkg.com/debug/-/debug-4.3.4.tgz#1319f6579357f2338d3337d2cdd4914bb5dcc865"
@ -1015,6 +1148,11 @@ deep-extend@^0.6.0:
resolved "https://registry.yarnpkg.com/deep-extend/-/deep-extend-0.6.0.tgz#c4fa7c95404a17a9c3e8ca7e1537312b736330ac"
integrity sha512-LOHxIOaPYdHlJRtCQfDIVZtfw/ufM8+rVj649RIHzcm/vGwQRXFt6OPqIFWsm2XEMrNIEtWR64sY1LEKD2vAOA==
deepmerge@^4.3.1:
version "4.3.1"
resolved "https://registry.yarnpkg.com/deepmerge/-/deepmerge-4.3.1.tgz#44b5f2147cd3b00d4b56137685966f26fd25dd4a"
integrity sha512-3sUqbMEc77XqpdNO7FRyRog+eW3ph+GYCbj+rK+uYyRMuwsVy0rMiVtPn+QJlKFvWP/1PYpapqYn0Me2knFn+A==
define-data-property@^1.1.4:
version "1.1.4"
resolved "https://registry.yarnpkg.com/define-data-property/-/define-data-property-1.1.4.tgz#894dc141bb7d3060ae4366f6a0107e68fbe48c5e"
@ -1057,6 +1195,36 @@ digest-fetch@^1.3.0:
base-64 "^0.1.0"
md5 "^2.3.0"
dom-serializer@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/dom-serializer/-/dom-serializer-2.0.0.tgz#e41b802e1eedf9f6cae183ce5e622d789d7d8e53"
integrity sha512-wIkAryiqt/nV5EQKqQpo3SToSOV9J0DnbJqwK7Wv/Trc92zIAYZ4FlMu+JPFW1DfGFt81ZTCGgDEabffXeLyJg==
dependencies:
domelementtype "^2.3.0"
domhandler "^5.0.2"
entities "^4.2.0"
domelementtype@^2.3.0:
version "2.3.0"
resolved "https://registry.yarnpkg.com/domelementtype/-/domelementtype-2.3.0.tgz#5c45e8e869952626331d7aab326d01daf65d589d"
integrity sha512-OLETBj6w0OsagBwdXnPdN0cnMfF9opN69co+7ZrbfPGrdpPVNBUj02spi6B1N7wChLQiPn4CSH/zJvXw56gmHw==
domhandler@^5.0.2, domhandler@^5.0.3:
version "5.0.3"
resolved "https://registry.yarnpkg.com/domhandler/-/domhandler-5.0.3.tgz#cc385f7f751f1d1fc650c21374804254538c7d31"
integrity sha512-cgwlv/1iFQiFnU96XXgROh8xTeetsnJiDsTc7TYCLFd9+/WNkIqPTxiM/8pSd8VIrhXGTf1Ny1q1hquVqDJB5w==
dependencies:
domelementtype "^2.3.0"
domutils@^3.0.1:
version "3.1.0"
resolved "https://registry.yarnpkg.com/domutils/-/domutils-3.1.0.tgz#c47f551278d3dc4b0b1ab8cbb42d751a6f0d824e"
integrity sha512-H78uMmQtI2AhgDJjWeQmHwJJ2bLPD3GMmO7Zja/ZZh84wkm+4ut+IUnUdRa8uCGX88DiVx1j6FRe1XfxEgjEZA==
dependencies:
dom-serializer "^2.0.0"
domelementtype "^2.3.0"
domhandler "^5.0.3"
dotenv@^16.4.5:
version "16.4.5"
resolved "https://registry.yarnpkg.com/dotenv/-/dotenv-16.4.5.tgz#cdd3b3b604cb327e286b4762e13502f717cb099f"
@ -1098,6 +1266,11 @@ end-of-stream@^1.1.0, end-of-stream@^1.4.1:
dependencies:
once "^1.4.0"
entities@^4.2.0, entities@^4.4.0:
version "4.5.0"
resolved "https://registry.yarnpkg.com/entities/-/entities-4.5.0.tgz#5d268ea5e7113ec74c4d033b79ea5a35a488fb48"
integrity sha512-V0hjH4dGPh9Ao5p0MoRY6BVqtwCjhz6vI5LT8AJ55H+4g9/4vbHx1I54fS0XuclLhDHArPQCiMjDxjaL8fPxhw==
es-define-property@^1.0.0:
version "1.0.0"
resolved "https://registry.yarnpkg.com/es-define-property/-/es-define-property-1.0.0.tgz#c7faefbdff8b2696cf5f46921edfb77cc4ba3845"
@ -1246,6 +1419,13 @@ fast-fifo@^1.1.0, fast-fifo@^1.2.0:
resolved "https://registry.yarnpkg.com/fast-fifo/-/fast-fifo-1.3.2.tgz#286e31de96eb96d38a97899815740ba2a4f3640c"
integrity sha512-/d9sfos4yxzpwkDkuN7k2SqFKtYNmCTzgfEpz82x34IM9/zc8KGxQoXg1liNC/izpRM/MBdt44Nmx41ZWqk+FQ==
fast-xml-parser@^4.3.5:
version "4.4.0"
resolved "https://registry.yarnpkg.com/fast-xml-parser/-/fast-xml-parser-4.4.0.tgz#341cc98de71e9ba9e651a67f41f1752d1441a501"
integrity sha512-kLY3jFlwIYwBNDojclKsNAC12sfD6NwW74QB2CoNGPvtVxjliYehVunB3HYyNi+n4Tt1dAcgwYvmKF/Z18flqg==
dependencies:
strnum "^1.0.5"
fecha@^4.2.0:
version "4.2.3"
resolved "https://registry.yarnpkg.com/fecha/-/fecha-4.2.3.tgz#4d9ccdbc61e8629b259fdca67e65891448d569fd"
@ -1414,6 +1594,27 @@ hasown@^2.0.0:
dependencies:
function-bind "^1.1.2"
html-to-text@^9.0.5:
version "9.0.5"
resolved "https://registry.yarnpkg.com/html-to-text/-/html-to-text-9.0.5.tgz#6149a0f618ae7a0db8085dca9bbf96d32bb8368d"
integrity sha512-qY60FjREgVZL03vJU6IfMV4GDjGBIoOyvuFdpBDIX9yTlDw0TjxVBQp+P8NvpdIXNJvfWBTNul7fsAQJq2FNpg==
dependencies:
"@selderee/plugin-htmlparser2" "^0.11.0"
deepmerge "^4.3.1"
dom-serializer "^2.0.0"
htmlparser2 "^8.0.2"
selderee "^0.11.0"
htmlparser2@^8.0.2:
version "8.0.2"
resolved "https://registry.yarnpkg.com/htmlparser2/-/htmlparser2-8.0.2.tgz#f002151705b383e62433b5cf466f5b716edaec21"
integrity sha512-GYdjWKDkbRLkZ5geuHs5NY1puJ+PXwP7+fHPRz06Eirsb9ugf6d8kkXav6ADhcODhFFPMIXyxkxSuMf3D6NCFA==
dependencies:
domelementtype "^2.3.0"
domhandler "^5.0.3"
domutils "^3.0.1"
entities "^4.4.0"
http-errors@2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/http-errors/-/http-errors-2.0.0.tgz#b7774a1486ef73cf7667ac9ae0858c012c57b9d3"
@ -1508,6 +1709,13 @@ is-stream@^2.0.0:
resolved "https://registry.yarnpkg.com/is-stream/-/is-stream-2.0.1.tgz#fac1e3d53b97ad5a9d0ae9cef2389f5810a5c077"
integrity sha512-hFoiJiTl63nn+kstHGBtewWSKnQLpyb155KHheA1l39uvtO9nWIop1p3udqPcUd/xbF1VLMO4n7OI6p7RbngDg==
js-tiktoken@^1.0.12:
version "1.0.12"
resolved "https://registry.yarnpkg.com/js-tiktoken/-/js-tiktoken-1.0.12.tgz#af0f5cf58e5e7318240d050c8413234019424211"
integrity sha512-L7wURW1fH9Qaext0VzaUDpFGVQgjkdE3Dgsy9/+yXyGEpBKnylTd0mU0bfbNkKDlXRb6TEsZkwuflu1B8uQbJQ==
dependencies:
base64-js "^1.5.1"
js-tiktoken@^1.0.7, js-tiktoken@^1.0.8:
version "1.0.10"
resolved "https://registry.yarnpkg.com/js-tiktoken/-/js-tiktoken-1.0.10.tgz#2b343ec169399dcee8f9ef9807dbd4fafd3b30dc"
@ -1532,6 +1740,28 @@ kuler@^2.0.0:
resolved "https://registry.yarnpkg.com/kuler/-/kuler-2.0.0.tgz#e2c570a3800388fb44407e851531c1d670b061b3"
integrity sha512-Xq9nH7KlWZmXAtodXDDRE7vs6DU1gTU8zYDHDiWLSip45Egwq3plLHzPn27NgvzL2r1LMPC1vdqh98sQxtqj4A==
langchain@0.2.3:
version "0.2.3"
resolved "https://registry.yarnpkg.com/langchain/-/langchain-0.2.3.tgz#c14bb05cf871b21bd63b84b3ab89580b1d62539f"
integrity sha512-T9xR7zd+Nj0oXy6WoYKmZLy0DlQiDLFPGYWdOXDxy+AvqlujoPdVQgDSpdqiOHvAjezrByAoKxoHCz5XMwTP/Q==
dependencies:
"@langchain/core" "~0.2.0"
"@langchain/openai" "~0.0.28"
"@langchain/textsplitters" "~0.0.0"
binary-extensions "^2.2.0"
js-tiktoken "^1.0.12"
js-yaml "^4.1.0"
jsonpointer "^5.0.1"
langchainhub "~0.0.8"
langsmith "~0.1.7"
ml-distance "^4.0.0"
openapi-types "^12.1.3"
p-retry "4"
uuid "^9.0.0"
yaml "^2.2.1"
zod "^3.22.4"
zod-to-json-schema "^3.22.3"
langchain@^0.1.30:
version "0.1.30"
resolved "https://registry.yarnpkg.com/langchain/-/langchain-0.1.30.tgz#e1adb3f1849fcd5c596c668300afd5dc8cb37a97"
@ -1571,6 +1801,28 @@ langsmith@~0.1.1, langsmith@~0.1.7:
p-retry "4"
uuid "^9.0.0"
langsmith@~0.1.30:
version "0.1.34"
resolved "https://registry.yarnpkg.com/langsmith/-/langsmith-0.1.34.tgz#801310495fef258ed9c22bb5575120e2c06d51cf"
integrity sha512-aMv2k8kEaovhTuZnK6/6DMCoM7Jurvm1AzdESn+yN+HramRxp3sK32jFRz3ogkXP6GjAjOIofcnNkzhHXSUXGA==
dependencies:
"@types/uuid" "^9.0.1"
commander "^10.0.1"
lodash.set "^4.3.2"
p-queue "^6.6.2"
p-retry "4"
uuid "^9.0.0"
leac@^0.6.0:
version "0.6.0"
resolved "https://registry.yarnpkg.com/leac/-/leac-0.6.0.tgz#dcf136e382e666bd2475f44a1096061b70dc0912"
integrity sha512-y+SqErxb8h7nE/fiEX07jsbuhrpO9lL8eca7/Y1nuWV2moNlXhyd59iDGcRf6moVyDMbmTNzL40SUyrFU/yDpg==
lodash.set@^4.3.2:
version "4.3.2"
resolved "https://registry.yarnpkg.com/lodash.set/-/lodash.set-4.3.2.tgz#d8757b1da807dde24816b0d6a84bea1a76230b23"
integrity sha512-4hNPN5jlm/N/HLMCO43v8BXKq9Z7QdAGc/VGrRD61w8gN9g/6jF9A4L1pbUgBLCffi0w9VsXfTOij5x8iTyFvg==
logform@^2.3.2, logform@^2.4.0:
version "2.6.0"
resolved "https://registry.yarnpkg.com/logform/-/logform-2.6.0.tgz#8c82a983f05d6eaeb2d75e3decae7a768b2bf9b5"
@ -1714,6 +1966,11 @@ ms@2.1.3, ms@^2.0.0, ms@^2.1.1:
resolved "https://registry.yarnpkg.com/ms/-/ms-2.1.3.tgz#574c8138ce1d2b5861f0b44579dbadd60c6615b2"
integrity sha512-6FlzubTLZG3J2a/NVCAleEhjzq5oxgHyaCU9yYXvcLsvoVaHJq/s5xXI6/XXP6tz7R9xAOtHnSO/tXtF3WRTlA==
mustache@^4.2.0:
version "4.2.0"
resolved "https://registry.yarnpkg.com/mustache/-/mustache-4.2.0.tgz#e5892324d60a12ec9c2a73359edca52972bf6f64"
integrity sha512-71ippSywq5Yb7/tVYyGbkBggbU8H3u5Rz56fH60jGFgr8uHwxs+aSKeqmluIVzM0m0kB7xQjKS6qPfd0b2ZoqQ==
napi-build-utils@^1.0.1:
version "1.0.2"
resolved "https://registry.yarnpkg.com/napi-build-utils/-/napi-build-utils-1.0.2.tgz#b1fddc0b2c46e380a0b7a76f984dd47c41a13806"
@ -1741,6 +1998,11 @@ node-domexception@1.0.0:
resolved "https://registry.yarnpkg.com/node-domexception/-/node-domexception-1.0.0.tgz#6888db46a1f71c0b76b3f7555016b63fe64766e5"
integrity sha512-/jKZoMpw0F8GRwl4/eLROPA3cfcXtLApP0QzLmUT/HuPCZWyB7IY9ZrMeKw2O/nFIqPQB3PVM9aYm0F312AXDQ==
node-ensure@^0.0.0:
version "0.0.0"
resolved "https://registry.yarnpkg.com/node-ensure/-/node-ensure-0.0.0.tgz#ecae764150de99861ec5c810fd5d096b183932a7"
integrity sha512-DRI60hzo2oKN1ma0ckc6nQWlHU69RH6xN0sjQTjMpChPfTYvKZdcQFfdYK2RWbJcKyUizSIy/l8OTGxMAM1QDw==
node-fetch@^2.6.7:
version "2.7.0"
resolved "https://registry.yarnpkg.com/node-fetch/-/node-fetch-2.7.0.tgz#d0f0fa6e3e2dc1d27efcd8ad99d550bda94d187d"
@ -1858,6 +2120,20 @@ openai@^4.26.0:
node-fetch "^2.6.7"
web-streams-polyfill "^3.2.1"
openai@^4.41.1, openai@^4.49.1:
version "4.52.2"
resolved "https://registry.yarnpkg.com/openai/-/openai-4.52.2.tgz#5d67271f3df84c0b54676b08990eaa9402151759"
integrity sha512-mMc0XgFuVSkcm0lRIi8zaw++otC82ZlfkCur1qguXYWPETr/+ZwL9A/vvp3YahX+shpaT6j03dwsmUyLAfmEfg==
dependencies:
"@types/node" "^18.11.18"
"@types/node-fetch" "^2.6.4"
abort-controller "^3.0.0"
agentkeepalive "^4.2.1"
form-data-encoder "1.7.2"
formdata-node "^4.3.2"
node-fetch "^2.6.7"
web-streams-polyfill "^3.2.1"
openapi-types@^12.1.3:
version "12.1.3"
resolved "https://registry.yarnpkg.com/openapi-types/-/openapi-types-12.1.3.tgz#471995eb26c4b97b7bd356aacf7b91b73e777dd3"
@ -1891,6 +2167,14 @@ p-timeout@^3.2.0:
dependencies:
p-finally "^1.0.0"
parseley@^0.12.0:
version "0.12.1"
resolved "https://registry.yarnpkg.com/parseley/-/parseley-0.12.1.tgz#4afd561d50215ebe259e3e7a853e62f600683aef"
integrity sha512-e6qHKe3a9HWr0oMRVDTRhKce+bRO8VGQR3NyVwcjwrbhMmFCX9KszEV35+rn4AdilFAq9VPxP/Fe1wC9Qjd2lw==
dependencies:
leac "^0.6.0"
peberminta "^0.9.0"
parseurl@~1.3.3:
version "1.3.3"
resolved "https://registry.yarnpkg.com/parseurl/-/parseurl-1.3.3.tgz#9da19e7bee8d12dff0513ed5b76957793bc2e8d4"
@ -1901,6 +2185,19 @@ path-to-regexp@0.1.7:
resolved "https://registry.yarnpkg.com/path-to-regexp/-/path-to-regexp-0.1.7.tgz#df604178005f522f15eb4490e7247a1bfaa67f8c"
integrity sha512-5DFkuoqlv1uYQKxy8omFBeJPQcdoE07Kv2sferDCrAq1ohOU+MSDswDIbnx3YAM60qIOnYa53wBhXW0EbMonrQ==
pdf-parse@^1.1.1:
version "1.1.1"
resolved "https://registry.yarnpkg.com/pdf-parse/-/pdf-parse-1.1.1.tgz#745e07408679548b3995ff896fd38e96e19d14a7"
integrity sha512-v6ZJ/efsBpGrGGknjtq9J/oC8tZWq0KWL5vQrk2GlzLEQPUDB1ex+13Rmidl1neNN358Jn9EHZw5y07FFtaC7A==
dependencies:
debug "^3.1.0"
node-ensure "^0.0.0"
peberminta@^0.9.0:
version "0.9.0"
resolved "https://registry.yarnpkg.com/peberminta/-/peberminta-0.9.0.tgz#8ec9bc0eb84b7d368126e71ce9033501dca2a352"
integrity sha512-XIxfHpEuSJbITd1H3EeQwpcZbTLHc+VVr8ANI9t5sit565tsI4/xK3KWTUFE2e6QiangUkh3B0jihzmGnNrRsQ==
picomatch@^2.0.4, picomatch@^2.2.1:
version "2.3.1"
resolved "https://registry.yarnpkg.com/picomatch/-/picomatch-2.3.1.tgz#3ba3833733646d9d3e4995946c1365a67fb07a42"
@ -2062,6 +2359,13 @@ safe-stable-stringify@^2.3.1:
resolved "https://registry.yarnpkg.com/safer-buffer/-/safer-buffer-2.1.2.tgz#44fa161b0187b9549dd84bb91802f9bd8385cd6a"
integrity sha512-YZo3K82SD7Riyi0E1EQPojLz7kpepnSQI9IyPbHHg1XXXevb5dJI7tpyN2ADxGcQbHG7vcyRHk0cbwqcQriUtg==
selderee@^0.11.0:
version "0.11.0"
resolved "https://registry.yarnpkg.com/selderee/-/selderee-0.11.0.tgz#6af0c7983e073ad3e35787ffe20cefd9daf0ec8a"
integrity sha512-5TF+l7p4+OsnP8BCCvSyZiSPc4x4//p5uPwK8TCnVPJYRmU2aYKMpOXvw8zM5a5JvuuCGN1jmsMwuU2W02ukfA==
dependencies:
parseley "^0.12.0"
semver@^7.3.5, semver@^7.5.3, semver@^7.5.4:
version "7.6.0"
resolved "https://registry.yarnpkg.com/semver/-/semver-7.6.0.tgz#1a46a4db4bffcccd97b743b5005c8325f23d4e2d"
@ -2212,6 +2516,11 @@ strip-json-comments@~2.0.1:
resolved "https://registry.yarnpkg.com/strip-json-comments/-/strip-json-comments-2.0.1.tgz#3c531942e908c2697c0ec344858c286c7ca0a60a"
integrity sha512-4gB8na07fecVVkOI6Rs4e7T6NOTki5EmL7TUduTs6bu3EdnSycntVJ4re8kgZA+wx9IueI2Y11bfbgwtzuE0KQ==
strnum@^1.0.5:
version "1.0.5"
resolved "https://registry.yarnpkg.com/strnum/-/strnum-1.0.5.tgz#5c4e829fe15ad4ff0d20c3db5ac97b73c9b072db"
integrity sha512-J8bbNyKKXl5qYcR36TIO8W3mVGVHrmmxsd5PAItGkmyzwJvybiw2IVq5nqd0i4LSNSkB/sx9VHllbfFdr9k1JA==
supports-color@^5.5.0:
version "5.5.0"
resolved "https://registry.yarnpkg.com/supports-color/-/supports-color-5.5.0.tgz#e2e69a44ac8772f78a1ec0b35b689df6530efc8f"
@ -2358,6 +2667,11 @@ utils-merge@1.0.1:
resolved "https://registry.yarnpkg.com/utils-merge/-/utils-merge-1.0.1.tgz#9f95710f50a267947b2ccc124741c1028427e713"
integrity sha512-pMZTvIkT1d+TFGvDOqodOclx0QWkkgi6Tdoa8gC8ffGAAqz9pzPTZWAybbsHHoED/ztMtkv/VoYTYyShUn81hA==
uuid@^10.0.0:
version "10.0.0"
resolved "https://registry.yarnpkg.com/uuid/-/uuid-10.0.0.tgz#5a95aa454e6e002725c79055fd42aaba30ca6294"
integrity sha512-8XkAphELsDnEGrDxUOHB3RGvXz6TeuYSGEZBOjtTtPm2lwhGBjLgOzLHB63IUWfBpNucQjND6d3AOudO+H3RWQ==
uuid@^9.0.0:
version "9.0.1"
resolved "https://registry.yarnpkg.com/uuid/-/uuid-9.0.1.tgz#e188d4c8853cc722220392c424cd637f32293f30"
@ -2462,6 +2776,11 @@ zod-to-json-schema@^3.22.3:
resolved "https://registry.yarnpkg.com/zod-to-json-schema/-/zod-to-json-schema-3.22.5.tgz#3646e81cfc318dbad2a22519e5ce661615418673"
integrity sha512-+akaPo6a0zpVCCseDed504KBJUQpEW5QZw7RMneNmKw+fGaML1Z9tUNLnHHAC8x6dzVRO1eB2oEMyZRnuBZg7Q==
zod-to-json-schema@^3.22.4, zod-to-json-schema@^3.22.5:
version "3.23.1"
resolved "https://registry.yarnpkg.com/zod-to-json-schema/-/zod-to-json-schema-3.23.1.tgz#5225925b8ed5fa20096bd99be076c4b29b53d309"
integrity sha512-oT9INvydob1XV0v1d2IadrR74rLtDInLvDFfAa1CG0Pmg/vxATk7I2gSelfj271mbzeM4Da0uuDQE/Nkj3DWNw==
zod@^3.22.3, zod@^3.22.4:
version "3.22.4"
resolved "https://registry.yarnpkg.com/zod/-/zod-3.22.4.tgz#f31c3a9386f61b1f228af56faa9255e845cf3fff"