11 Commits

Author SHA1 Message Date
ItzCrazyKns
9b088cd161 feat(package): bump version 2024-05-05 16:35:06 +05:30
ItzCrazyKns
94ea6c372a feat(chat-window): clear storage after error 2024-05-05 16:29:40 +05:30
ItzCrazyKns
6e61c88c9e feat(error-object): add key 2024-05-05 16:28:46 +05:30
ItzCrazyKns
ba7b92ffde feat(providers): add Content-Type header 2024-05-05 10:53:27 +05:30
ItzCrazyKns
f8fd2a6fb0 feat(package): bump version 2024-05-04 15:04:43 +05:30
ItzCrazyKns
0440a810f5 feat(http-headers): add Content-Type 2024-05-04 15:01:53 +05:30
ItzCrazyKns
e3fef3a1be feat(chat-window): add error handling 2024-05-04 14:56:54 +05:30
ItzCrazyKns
4bf69dfdda feat(package): bump version 2024-05-04 10:59:32 +05:30
ItzCrazyKns
9f45ecb98d feat(providers): separate embedding providers, add custom-openai provider 2024-05-04 10:51:06 +05:30
ItzCrazyKns
c710f4f88c feat(message-box): fix bugs 2024-05-04 10:48:42 +05:30
ItzCrazyKns
79f6a52b5b feat(ui-packages): add react-text-to-speech, bump version 2024-05-03 21:16:48 +05:30
15 changed files with 453 additions and 98 deletions

View File

@ -1,6 +1,6 @@
{
"name": "perplexica-backend",
"version": "1.2.0",
"version": "1.3.2",
"license": "MIT",
"author": "ItzCrazyKns",
"scripts": {
@ -29,7 +29,6 @@
"dotenv": "^16.4.5",
"express": "^4.19.2",
"langchain": "^0.1.30",
"react-text-to-speech": "^0.14.5",
"winston": "^3.13.0",
"ws": "^8.16.0",
"zod": "^3.22.4"

View File

@ -8,7 +8,7 @@ import {
} from '../config';
import logger from '../utils/logger';
export const getAvailableProviders = async () => {
export const getAvailableChatModelProviders = async () => {
const openAIApiKey = getOpenaiApiKey();
const groqApiKey = getGroqApiKey();
const ollamaEndpoint = getOllamaApiEndpoint();
@ -33,10 +33,6 @@ export const getAvailableProviders = async () => {
modelName: 'gpt-4-turbo',
temperature: 0.7,
}),
embeddings: new OpenAIEmbeddings({
openAIApiKey,
modelName: 'text-embedding-3-large',
}),
};
} catch (err) {
logger.error(`Error loading OpenAI models: ${err}`);
@ -86,10 +82,6 @@ export const getAvailableProviders = async () => {
baseURL: 'https://api.groq.com/openai/v1',
},
),
embeddings: new OpenAIEmbeddings({
openAIApiKey: openAIApiKey,
modelName: 'text-embedding-3-large',
}),
};
} catch (err) {
logger.error(`Error loading Groq models: ${err}`);
@ -98,7 +90,11 @@ export const getAvailableProviders = async () => {
if (ollamaEndpoint) {
try {
const response = await fetch(`${ollamaEndpoint}/api/tags`);
const response = await fetch(`${ollamaEndpoint}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
const { models: ollamaModels } = (await response.json()) as any;
@ -110,17 +106,60 @@ export const getAvailableProviders = async () => {
});
return acc;
}, {});
if (Object.keys(models['ollama']).length > 0) {
models['ollama']['embeddings'] = new OllamaEmbeddings({
baseUrl: ollamaEndpoint,
model: models['ollama'][Object.keys(models['ollama'])[0]].model,
});
}
} catch (err) {
logger.error(`Error loading Ollama models: ${err}`);
}
}
models['custom_openai'] = {};
return models;
};
export const getAvailableEmbeddingModelProviders = async () => {
const openAIApiKey = getOpenaiApiKey();
const ollamaEndpoint = getOllamaApiEndpoint();
const models = {};
if (openAIApiKey) {
try {
models['openai'] = {
'Text embedding 3 small': new OpenAIEmbeddings({
openAIApiKey,
modelName: 'text-embedding-3-small',
}),
'Text embedding 3 large': new OpenAIEmbeddings({
openAIApiKey,
modelName: 'text-embedding-3-large',
}),
};
} catch (err) {
logger.error(`Error loading OpenAI embeddings: ${err}`);
}
}
if (ollamaEndpoint) {
try {
const response = await fetch(`${ollamaEndpoint}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
const { models: ollamaModels } = (await response.json()) as any;
models['ollama'] = ollamaModels.reduce((acc, model) => {
acc[model.model] = new OllamaEmbeddings({
baseUrl: ollamaEndpoint,
model: model.model,
});
return acc;
}, {});
} catch (err) {
logger.error(`Error loading Ollama embeddings: ${err}`);
}
}
return models;
};

View File

@ -1,5 +1,8 @@
import express from 'express';
import { getAvailableProviders } from '../lib/providers';
import {
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '../lib/providers';
import {
getGroqApiKey,
getOllamaApiEndpoint,
@ -12,16 +15,24 @@ const router = express.Router();
router.get('/', async (_, res) => {
const config = {};
const providers = await getAvailableProviders();
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
for (const provider in providers) {
delete providers[provider]['embeddings'];
config['chatModelProviders'] = {};
config['embeddingModelProviders'] = {};
for (const provider in chatModelProviders) {
config['chatModelProviders'][provider] = Object.keys(
chatModelProviders[provider],
);
}
config['providers'] = {};
for (const provider in providers) {
config['providers'][provider] = Object.keys(providers[provider]);
for (const provider in embeddingModelProviders) {
config['embeddingModelProviders'][provider] = Object.keys(
embeddingModelProviders[provider],
);
}
config['openaiApiKey'] = getOpenaiApiKey();

View File

@ -1,7 +1,7 @@
import express from 'express';
import handleImageSearch from '../agents/imageSearchAgent';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { getAvailableProviders } from '../lib/providers';
import { getAvailableChatModelProviders } from '../lib/providers';
import { HumanMessage, AIMessage } from '@langchain/core/messages';
import logger from '../utils/logger';
@ -19,7 +19,7 @@ router.post('/', async (req, res) => {
}
});
const chatModels = await getAvailableProviders();
const chatModels = await getAvailableChatModelProviders();
const provider = chat_model_provider || Object.keys(chatModels)[0];
const chatModel = chat_model || Object.keys(chatModels[provider])[0];

View File

@ -1,14 +1,20 @@
import express from 'express';
import logger from '../utils/logger';
import { getAvailableProviders } from '../lib/providers';
import {
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '../lib/providers';
const router = express.Router();
router.get('/', async (req, res) => {
try {
const providers = await getAvailableProviders();
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
res.status(200).json({ providers });
res.status(200).json({ chatModelProviders, embeddingModelProviders });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(err.message);

View File

@ -1,6 +1,6 @@
import express from 'express';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { getAvailableProviders } from '../lib/providers';
import { getAvailableChatModelProviders } from '../lib/providers';
import { HumanMessage, AIMessage } from '@langchain/core/messages';
import logger from '../utils/logger';
import handleVideoSearch from '../agents/videoSearchAgent';
@ -19,7 +19,7 @@ router.post('/', async (req, res) => {
}
});
const chatModels = await getAvailableProviders();
const chatModels = await getAvailableChatModelProviders();
const provider = chat_model_provider || Object.keys(chatModels)[0];
const chatModel = chat_model || Object.keys(chatModels[provider])[0];

View File

@ -1,10 +1,14 @@
import { WebSocket } from 'ws';
import { handleMessage } from './messageHandler';
import { getAvailableProviders } from '../lib/providers';
import {
getAvailableEmbeddingModelProviders,
getAvailableChatModelProviders,
} from '../lib/providers';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import type { IncomingMessage } from 'http';
import logger from '../utils/logger';
import { ChatOpenAI } from '@langchain/openai';
export const handleConnection = async (
ws: WebSocket,
@ -13,25 +17,61 @@ export const handleConnection = async (
const searchParams = new URL(request.url, `http://${request.headers.host}`)
.searchParams;
const models = await getAvailableProviders();
const provider =
searchParams.get('chatModelProvider') || Object.keys(models)[0];
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
const chatModelProvider =
searchParams.get('chatModelProvider') || Object.keys(chatModelProviders)[0];
const chatModel =
searchParams.get('chatModel') || Object.keys(models[provider])[0];
searchParams.get('chatModel') ||
Object.keys(chatModelProviders[chatModelProvider])[0];
const embeddingModelProvider =
searchParams.get('embeddingModelProvider') ||
Object.keys(embeddingModelProviders)[0];
const embeddingModel =
searchParams.get('embeddingModel') ||
Object.keys(embeddingModelProviders[embeddingModelProvider])[0];
let llm: BaseChatModel | undefined;
let embeddings: Embeddings | undefined;
if (models[provider] && models[provider][chatModel]) {
llm = models[provider][chatModel] as BaseChatModel | undefined;
embeddings = models[provider].embeddings as Embeddings | undefined;
if (
chatModelProviders[chatModelProvider] &&
chatModelProviders[chatModelProvider][chatModel] &&
chatModelProvider != 'custom_openai'
) {
llm = chatModelProviders[chatModelProvider][chatModel] as
| BaseChatModel
| undefined;
} else if (chatModelProvider == 'custom_openai') {
llm = new ChatOpenAI({
modelName: chatModel,
openAIApiKey: searchParams.get('openAIApiKey'),
temperature: 0.7,
configuration: {
baseURL: searchParams.get('openAIBaseURL'),
},
});
}
if (
embeddingModelProviders[embeddingModelProvider] &&
embeddingModelProviders[embeddingModelProvider][embeddingModel]
) {
embeddings = embeddingModelProviders[embeddingModelProvider][
embeddingModel
] as Embeddings | undefined;
}
if (!llm || !embeddings) {
ws.send(
JSON.stringify({
type: 'error',
data: 'Invalid LLM or embeddings model selected',
data: 'Invalid LLM or embeddings model selected, please refresh the page and try again.',
key: 'INVALID_MODEL_SELECTED',
}),
);
ws.close();

View File

@ -57,7 +57,13 @@ const handleEmitterEvents = (
});
emitter.on('error', (data) => {
const parsedData = JSON.parse(data);
ws.send(JSON.stringify({ type: 'error', data: parsedData.data }));
ws.send(
JSON.stringify({
type: 'error',
data: parsedData.data,
key: 'CHAIN_ERROR',
}),
);
});
};
@ -73,7 +79,11 @@ export const handleMessage = async (
if (!parsedMessage.content)
return ws.send(
JSON.stringify({ type: 'error', data: 'Invalid message format' }),
JSON.stringify({
type: 'error',
data: 'Invalid message format',
key: 'INVALID_FORMAT',
}),
);
const history: BaseMessage[] = parsedMessage.history.map((msg) => {
@ -99,11 +109,23 @@ export const handleMessage = async (
);
handleEmitterEvents(emitter, ws, id);
} else {
ws.send(JSON.stringify({ type: 'error', data: 'Invalid focus mode' }));
ws.send(
JSON.stringify({
type: 'error',
data: 'Invalid focus mode',
key: 'INVALID_FOCUS_MODE',
}),
);
}
}
} catch (err) {
ws.send(JSON.stringify({ type: 'error', data: 'Invalid message format' }));
ws.send(
JSON.stringify({
type: 'error',
data: 'Invalid message format',
key: 'INVALID_FORMAT',
}),
);
logger.error(`Failed to handle message: ${err}`);
}
};

View File

@ -3,6 +3,7 @@ import { Montserrat } from 'next/font/google';
import './globals.css';
import { cn } from '@/lib/utils';
import Sidebar from '@/components/Sidebar';
import { Toaster } from 'sonner';
const montserrat = Montserrat({
weight: ['300', '400', '500', '700'],
@ -26,6 +27,15 @@ export default function RootLayout({
<html className="h-full" lang="en">
<body className={cn('h-full', montserrat.className)}>
<Sidebar>{children}</Sidebar>
<Toaster
toastOptions={{
unstyled: true,
classNames: {
toast:
'bg-[#111111] text-white rounded-lg p-4 flex flex-row items-center space-x-2',
},
}}
/>
</body>
</html>
);

View File

@ -5,6 +5,7 @@ import { Document } from '@langchain/core/documents';
import Navbar from './Navbar';
import Chat from './Chat';
import EmptyChat from './EmptyChat';
import { toast } from 'sonner';
export type Message = {
id: string;
@ -22,11 +23,28 @@ const useSocket = (url: string) => {
const connectWs = async () => {
let chatModel = localStorage.getItem('chatModel');
let chatModelProvider = localStorage.getItem('chatModelProvider');
let embeddingModel = localStorage.getItem('embeddingModel');
let embeddingModelProvider = localStorage.getItem(
'embeddingModelProvider',
);
if (!chatModel || !chatModelProvider) {
const chatModelProviders = await fetch(
if (
!chatModel ||
!chatModelProvider ||
!embeddingModel ||
!embeddingModelProvider
) {
const providers = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/models`,
).then(async (res) => (await res.json())['providers']);
{
headers: {
'Content-Type': 'application/json',
},
},
).then(async (res) => await res.json());
const chatModelProviders = providers.chatModelProviders;
const embeddingModelProviders = providers.embeddingModelProviders;
if (
!chatModelProviders ||
@ -34,27 +52,73 @@ const useSocket = (url: string) => {
)
return console.error('No chat models available');
if (
!embeddingModelProviders ||
Object.keys(embeddingModelProviders).length === 0
)
return console.error('No embedding models available');
chatModelProvider = Object.keys(chatModelProviders)[0];
chatModel = Object.keys(chatModelProviders[chatModelProvider])[0];
embeddingModelProvider = Object.keys(embeddingModelProviders)[0];
embeddingModel = Object.keys(
embeddingModelProviders[embeddingModelProvider],
)[0];
localStorage.setItem('chatModel', chatModel!);
localStorage.setItem('chatModelProvider', chatModelProvider);
localStorage.setItem('embeddingModel', embeddingModel!);
localStorage.setItem(
'embeddingModelProvider',
embeddingModelProvider,
);
}
const ws = new WebSocket(
`${url}?chatModel=${chatModel}&chatModelProvider=${chatModelProvider}`,
);
const wsURL = new URL(url);
const searchParams = new URLSearchParams({});
searchParams.append('chatModel', chatModel!);
searchParams.append('chatModelProvider', chatModelProvider);
if (chatModelProvider === 'custom_openai') {
searchParams.append(
'openAIApiKey',
localStorage.getItem('openAIApiKey')!,
);
searchParams.append(
'openAIBaseURL',
localStorage.getItem('openAIBaseURL')!,
);
}
searchParams.append('embeddingModel', embeddingModel!);
searchParams.append('embeddingModelProvider', embeddingModelProvider);
wsURL.search = searchParams.toString();
const ws = new WebSocket(wsURL.toString());
ws.onopen = () => {
console.log('[DEBUG] open');
setWs(ws);
};
ws.onmessage = (e) => {
const parsedData = JSON.parse(e.data);
if (parsedData.type === 'error') {
toast.error(parsedData.data);
if (parsedData.key === 'INVALID_MODEL_SELECTED') {
localStorage.clear();
}
}
};
};
connectWs();
}
return () => {
1;
ws?.close();
console.log('[DEBUG] closed');
};
@ -102,6 +166,12 @@ const ChatWindow = () => {
const messageHandler = (e: MessageEvent) => {
const data = JSON.parse(e.data);
if (data.type === 'error') {
toast.error(data.data);
setLoading(false);
return;
}
if (data.type === 'sources') {
sources = data.data;
if (!added) {

View File

@ -34,15 +34,13 @@ const MessageBox = ({
const [speechMessage, setSpeechMessage] = useState(message.content);
useEffect(() => {
const regex = /\[(\d+)\]/g;
if (
message.role === 'assistant' &&
message?.sources &&
message.sources.length > 0
) {
const regex = /\[(\d+)\]/g;
setSpeechMessage(message.content.replace(regex, ''));
return setParsedMessage(
message.content.replace(
regex,
@ -51,6 +49,8 @@ const MessageBox = ({
),
);
}
setSpeechMessage(message.content.replace(regex, ''));
setParsedMessage(message.content);
}, [message.content, message.sources, message.role]);
@ -95,7 +95,7 @@ const MessageBox = ({
<Markdown className="prose max-w-none break-words prose-invert prose-p:leading-relaxed prose-pre:p-0 text-white text-sm md:text-base font-medium">
{parsedMessage}
</Markdown>
{!loading && (
{loading && isLast ? null : (
<div className="flex flex-row items-center justify-between w-full text-white py-4 -mx-2">
<div className="flex flex-row items-center space-x-1">
<button className="p-2 text-white/70 rounded-xl hover:bg-[#1c1c1c] transition duration-200 hover:text-white">

View File

@ -3,7 +3,10 @@ import { CloudUpload, RefreshCcw, RefreshCw } from 'lucide-react';
import React, { Fragment, useEffect, useState } from 'react';
interface SettingsType {
providers: {
chatModelProviders: {
[key: string]: string[];
};
embeddingModelProviders: {
[key: string]: string[];
};
openaiApiKey: string;
@ -25,6 +28,17 @@ const SettingsDialog = ({
const [selectedChatModel, setSelectedChatModel] = useState<string | null>(
null,
);
const [selectedEmbeddingModelProvider, setSelectedEmbeddingModelProvider] =
useState<string | null>(null);
const [selectedEmbeddingModel, setSelectedEmbeddingModel] = useState<
string | null
>(null);
const [customOpenAIApiKey, setCustomOpenAIApiKey] = useState<string | null>(
null,
);
const [customOpenAIBaseURL, setCustomOpenAIBaseURL] = useState<string | null>(
null,
);
const [isLoading, setIsLoading] = useState(false);
const [isUpdating, setIsUpdating] = useState(false);
@ -32,7 +46,11 @@ const SettingsDialog = ({
if (isOpen) {
const fetchConfig = async () => {
setIsLoading(true);
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/config`);
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/config`, {
headers: {
'Content-Type': 'application/json',
},
});
const data = await res.json();
setConfig(data);
setIsLoading(false);
@ -46,6 +64,12 @@ const SettingsDialog = ({
useEffect(() => {
setSelectedChatModelProvider(localStorage.getItem('chatModelProvider'));
setSelectedChatModel(localStorage.getItem('chatModel'));
setSelectedEmbeddingModelProvider(
localStorage.getItem('embeddingModelProvider'),
);
setSelectedEmbeddingModel(localStorage.getItem('embeddingModel'));
setCustomOpenAIApiKey(localStorage.getItem('openAIApiKey'));
setCustomOpenAIBaseURL(localStorage.getItem('openAIBaseUrl'));
}, []);
const handleSubmit = async () => {
@ -62,6 +86,13 @@ const SettingsDialog = ({
localStorage.setItem('chatModelProvider', selectedChatModelProvider!);
localStorage.setItem('chatModel', selectedChatModel!);
localStorage.setItem(
'embeddingModelProvider',
selectedEmbeddingModelProvider!,
);
localStorage.setItem('embeddingModel', selectedEmbeddingModel!);
localStorage.setItem('openAIApiKey', customOpenAIApiKey!);
localStorage.setItem('openAIBaseURL', customOpenAIBaseURL!);
} catch (err) {
console.log(err);
} finally {
@ -107,7 +138,7 @@ const SettingsDialog = ({
</Dialog.Title>
{config && !isLoading && (
<div className="flex flex-col space-y-4 mt-6">
{config.providers && (
{config.chatModelProviders && (
<div className="flex flex-col space-y-1">
<p className="text-white/70 text-sm">
Chat model Provider
@ -116,36 +147,47 @@ const SettingsDialog = ({
onChange={(e) => {
setSelectedChatModelProvider(e.target.value);
setSelectedChatModel(
config.providers[e.target.value][0],
config.chatModelProviders[e.target.value][0],
);
}}
className="bg-[#111111] px-3 py-2 flex items-center overflow-hidden border border-[#1C1C1C] text-white rounded-lg text-sm"
>
{Object.keys(config.providers).map((provider) => (
<option
key={provider}
value={provider}
selected={provider === selectedChatModelProvider}
>
{provider.charAt(0).toUpperCase() +
provider.slice(1)}
</option>
))}
{Object.keys(config.chatModelProviders).map(
(provider) => (
<option
key={provider}
value={provider}
selected={
provider === selectedChatModelProvider
}
>
{provider.charAt(0).toUpperCase() +
provider.slice(1)}
</option>
),
)}
</select>
</div>
)}
{selectedChatModelProvider && (
<div className="flex flex-col space-y-1">
<p className="text-white/70 text-sm">Chat Model</p>
<select
onChange={(e) => setSelectedChatModel(e.target.value)}
className="bg-[#111111] px-3 py-2 flex items-center overflow-hidden border border-[#1C1C1C] text-white rounded-lg text-sm"
>
{config.providers[selectedChatModelProvider] ? (
config.providers[selectedChatModelProvider].length >
0 ? (
config.providers[selectedChatModelProvider].map(
(model) => (
{selectedChatModelProvider &&
selectedChatModelProvider != 'custom_openai' && (
<div className="flex flex-col space-y-1">
<p className="text-white/70 text-sm">Chat Model</p>
<select
onChange={(e) =>
setSelectedChatModel(e.target.value)
}
className="bg-[#111111] px-3 py-2 flex items-center overflow-hidden border border-[#1C1C1C] text-white rounded-lg text-sm"
>
{config.chatModelProviders[
selectedChatModelProvider
] ? (
config.chatModelProviders[
selectedChatModelProvider
].length > 0 ? (
config.chatModelProviders[
selectedChatModelProvider
].map((model) => (
<option
key={model}
value={model}
@ -153,11 +195,126 @@ const SettingsDialog = ({
>
{model}
</option>
),
))
) : (
<option value="" disabled selected>
No models available
</option>
)
) : (
<option value="" disabled selected>
No models available
Invalid provider, please check backend logs
</option>
)}
</select>
</div>
)}
{selectedChatModelProvider &&
selectedChatModelProvider === 'custom_openai' && (
<>
<div className="flex flex-col space-y-1">
<p className="text-white/70 text-sm">Model name</p>
<input
type="text"
placeholder="Model name"
defaultValue={selectedChatModel!}
onChange={(e) =>
setSelectedChatModel(e.target.value)
}
className="bg-[#111111] px-3 py-2 flex items-center overflow-hidden border border-[#1C1C1C] text-white rounded-lg text-sm"
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-white/70 text-sm">
Custom OpenAI API Key (optional)
</p>
<input
type="text"
placeholder="Custom OpenAI API Key"
defaultValue={customOpenAIApiKey!}
onChange={(e) =>
setCustomOpenAIApiKey(e.target.value)
}
className="bg-[#111111] px-3 py-2 flex items-center overflow-hidden border border-[#1C1C1C] text-white rounded-lg text-sm"
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-white/70 text-sm">
Custom OpenAI Base URL
</p>
<input
type="text"
placeholder="Custom OpenAI Base URL"
defaultValue={customOpenAIBaseURL!}
onChange={(e) =>
setCustomOpenAIBaseURL(e.target.value)
}
className="bg-[#111111] px-3 py-2 flex items-center overflow-hidden border border-[#1C1C1C] text-white rounded-lg text-sm"
/>
</div>
</>
)}
{/* Embedding models */}
{config.embeddingModelProviders && (
<div className="flex flex-col space-y-1">
<p className="text-white/70 text-sm">
Embedding model Provider
</p>
<select
onChange={(e) => {
setSelectedEmbeddingModelProvider(e.target.value);
setSelectedEmbeddingModel(
config.embeddingModelProviders[e.target.value][0],
);
}}
className="bg-[#111111] px-3 py-2 flex items-center overflow-hidden border border-[#1C1C1C] text-white rounded-lg text-sm"
>
{Object.keys(config.embeddingModelProviders).map(
(provider) => (
<option
key={provider}
value={provider}
selected={
provider === selectedEmbeddingModelProvider
}
>
{provider.charAt(0).toUpperCase() +
provider.slice(1)}
</option>
),
)}
</select>
</div>
)}
{selectedEmbeddingModelProvider && (
<div className="flex flex-col space-y-1">
<p className="text-white/70 text-sm">Embedding Model</p>
<select
onChange={(e) =>
setSelectedEmbeddingModel(e.target.value)
}
className="bg-[#111111] px-3 py-2 flex items-center overflow-hidden border border-[#1C1C1C] text-white rounded-lg text-sm"
>
{config.embeddingModelProviders[
selectedEmbeddingModelProvider
] ? (
config.embeddingModelProviders[
selectedEmbeddingModelProvider
].length > 0 ? (
config.embeddingModelProviders[
selectedEmbeddingModelProvider
].map((model) => (
<option
key={model}
value={model}
selected={model === selectedEmbeddingModel}
>
{model}
</option>
))
) : (
<option value="" disabled selected>
No embedding models available
</option>
)
) : (

View File

@ -1,6 +1,6 @@
{
"name": "perplexica-frontend",
"version": "1.2.0",
"version": "1.3.2",
"license": "MIT",
"author": "ItzCrazyKns",
"scripts": {
@ -22,8 +22,9 @@
"next": "14.1.4",
"react": "^18",
"react-dom": "^18",
"react-speech-kit": "^3.0.1",
"react-text-to-speech": "^0.14.5",
"react-textarea-autosize": "^8.5.3",
"sonner": "^1.4.41",
"tailwind-merge": "^2.2.2",
"yet-another-react-lightbox": "^3.17.2",
"zod": "^3.22.4"

View File

@ -2632,10 +2632,10 @@ react-is@^16.13.1:
resolved "https://registry.yarnpkg.com/react-is/-/react-is-16.13.1.tgz#789729a4dc36de2999dc156dd6c1d9c18cea56a4"
integrity sha512-24e6ynE2H+OKt4kqsOvNd8kBpV65zoxbA4BVsEOB3ARVWQki/DHzaUoC5KuON/BiccDaCCTZBuOcfZs70kR8bQ==
react-speech-kit@^3.0.1:
version "3.0.1"
resolved "https://registry.yarnpkg.com/react-speech-kit/-/react-speech-kit-3.0.1.tgz#8bd936adfe064be1c5a07e2992dfdfd772e80d14"
integrity sha512-MXNOciISanhmnxpHJkBOev3M3NPDpW1T7nTc/eGw5pO9cXpoUccRxZkmr/IlpTPbPEneDNeTmbwri/YweyctZg==
react-text-to-speech@^0.14.5:
version "0.14.5"
resolved "https://registry.yarnpkg.com/react-text-to-speech/-/react-text-to-speech-0.14.5.tgz#f918786ab283311535682011045bd49777193300"
integrity sha512-3brr/IrK/5YTtOZSTo+Y8b+dnWelzfZiDZvkXnOct1e7O7fgA/h9bYAVrtwSRo/VxKfdw+wh6glkj6M0mlQuQQ==
react-textarea-autosize@^8.5.3:
version "8.5.3"
@ -2839,6 +2839,11 @@ slash@^3.0.0:
resolved "https://registry.yarnpkg.com/slash/-/slash-3.0.0.tgz#6539be870c165adbd5240220dbe361f1bc4d4634"
integrity sha512-g9Q1haeby36OSStwb4ntCGGGaKsaVSjQ68fBxoQcutl5fS1vuY18H3wSt3jFyFtrkx+Kz0V1G85A4MyAdDMi2Q==
sonner@^1.4.41:
version "1.4.41"
resolved "https://registry.yarnpkg.com/sonner/-/sonner-1.4.41.tgz#ff085ae4f4244713daf294959beaa3e90f842d2c"
integrity sha512-uG511ggnnsw6gcn/X+YKkWPo5ep9il9wYi3QJxHsYe7yTZ4+cOd1wuodOUmOpFuXL+/RE3R04LczdNCDygTDgQ==
source-map-js@^1.0.2, source-map-js@^1.2.0:
version "1.2.0"
resolved "https://registry.yarnpkg.com/source-map-js/-/source-map-js-1.2.0.tgz#16b809c162517b5b8c3e7dcd315a2a5c2612b2af"

View File

@ -1291,11 +1291,6 @@ raw-body@2.5.2:
iconv-lite "0.4.24"
unpipe "1.0.0"
react-text-to-speech@^0.14.5:
version "0.14.5"
resolved "https://registry.yarnpkg.com/react-text-to-speech/-/react-text-to-speech-0.14.5.tgz#f918786ab283311535682011045bd49777193300"
integrity sha512-3brr/IrK/5YTtOZSTo+Y8b+dnWelzfZiDZvkXnOct1e7O7fgA/h9bYAVrtwSRo/VxKfdw+wh6glkj6M0mlQuQQ==
readable-stream@^3.4.0, readable-stream@^3.6.0:
version "3.6.2"
resolved "https://registry.yarnpkg.com/readable-stream/-/readable-stream-3.6.2.tgz#56a9b36ea965c00c5a93ef31eb111a0f11056967"