mirror of
https://github.com/ItzCrazyKns/Perplexica.git
synced 2025-07-21 07:58:45 +00:00
Compare commits
9 Commits
v1.11.0-rc
...
feat/struc
Author | SHA1 | Date | |
---|---|---|---|
df33229934 | |||
49fafaa096 | |||
ca9b32a23b | |||
76e3ff4e02 | |||
eabf3ca7d3 | |||
94e6db10bb | |||
26e1d5fec3 | |||
66be87b688 | |||
f7b4e32218 |
13
package.json
13
package.json
@ -15,11 +15,12 @@
|
||||
"@headlessui/react": "^2.2.0",
|
||||
"@iarna/toml": "^2.2.5",
|
||||
"@icons-pack/react-simple-icons": "^12.3.0",
|
||||
"@langchain/anthropic": "^0.3.15",
|
||||
"@langchain/community": "^0.3.36",
|
||||
"@langchain/core": "^0.3.42",
|
||||
"@langchain/google-genai": "^0.1.12",
|
||||
"@langchain/openai": "^0.0.25",
|
||||
"@langchain/anthropic": "^0.3.24",
|
||||
"@langchain/community": "^0.3.49",
|
||||
"@langchain/core": "^0.3.66",
|
||||
"@langchain/google-genai": "^0.2.15",
|
||||
"@langchain/ollama": "^0.2.3",
|
||||
"@langchain/openai": "^0.6.2",
|
||||
"@langchain/textsplitters": "^0.1.0",
|
||||
"@tailwindcss/typography": "^0.5.12",
|
||||
"@xenova/transformers": "^2.17.2",
|
||||
@ -31,7 +32,7 @@
|
||||
"drizzle-orm": "^0.40.1",
|
||||
"html-to-text": "^9.0.5",
|
||||
"jspdf": "^3.0.1",
|
||||
"langchain": "^0.1.30",
|
||||
"langchain": "^0.3.30",
|
||||
"lucide-react": "^0.363.0",
|
||||
"mammoth": "^1.9.1",
|
||||
"markdown-to-jsx": "^7.7.2",
|
||||
|
@ -223,7 +223,7 @@ export const POST = async (req: Request) => {
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
openAIApiKey: getCustomOpenaiApiKey(),
|
||||
apiKey: getCustomOpenaiApiKey(),
|
||||
modelName: getCustomOpenaiModelName(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
|
@ -36,6 +36,7 @@ export const GET = async (req: Request) => {
|
||||
{
|
||||
engines: ['bing news'],
|
||||
pageno: 1,
|
||||
language: 'en',
|
||||
},
|
||||
)
|
||||
).results;
|
||||
@ -49,7 +50,11 @@ export const GET = async (req: Request) => {
|
||||
data = (
|
||||
await searchSearxng(
|
||||
`site:${articleWebsites[Math.floor(Math.random() * articleWebsites.length)]} ${topics[Math.floor(Math.random() * topics.length)]}`,
|
||||
{ engines: ['bing news'], pageno: 1 },
|
||||
{
|
||||
engines: ['bing news'],
|
||||
pageno: 1,
|
||||
language: 'en',
|
||||
},
|
||||
)
|
||||
).results;
|
||||
}
|
||||
|
@ -49,7 +49,7 @@ export const POST = async (req: Request) => {
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
openAIApiKey: getCustomOpenaiApiKey(),
|
||||
apiKey: getCustomOpenaiApiKey(),
|
||||
modelName: getCustomOpenaiModelName(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
|
@ -81,7 +81,7 @@ export const POST = async (req: Request) => {
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
modelName: body.chatModel?.name || getCustomOpenaiModelName(),
|
||||
openAIApiKey:
|
||||
apiKey:
|
||||
body.chatModel?.customOpenAIKey || getCustomOpenaiApiKey(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
|
@ -48,7 +48,7 @@ export const POST = async (req: Request) => {
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
openAIApiKey: getCustomOpenaiApiKey(),
|
||||
apiKey: getCustomOpenaiApiKey(),
|
||||
modelName: getCustomOpenaiModelName(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
|
@ -49,7 +49,7 @@ export const POST = async (req: Request) => {
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
openAIApiKey: getCustomOpenaiApiKey(),
|
||||
apiKey: getCustomOpenaiApiKey(),
|
||||
modelName: getCustomOpenaiModelName(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
|
@ -1,6 +1,7 @@
|
||||
export const POST = async (req: Request) => {
|
||||
try {
|
||||
const body: { lat: number; lng: number } = await req.json();
|
||||
const body: { lat: number; lng: number; temperatureUnit: 'C' | 'F' } =
|
||||
await req.json();
|
||||
|
||||
if (!body.lat || !body.lng) {
|
||||
return Response.json(
|
||||
@ -12,7 +13,7 @@ export const POST = async (req: Request) => {
|
||||
}
|
||||
|
||||
const res = await fetch(
|
||||
`https://api.open-meteo.com/v1/forecast?latitude=${body.lat}&longitude=${body.lng}¤t=weather_code,temperature_2m,is_day,relative_humidity_2m,wind_speed_10m&timezone=auto`,
|
||||
`https://api.open-meteo.com/v1/forecast?latitude=${body.lat}&longitude=${body.lng}¤t=weather_code,temperature_2m,is_day,relative_humidity_2m,wind_speed_10m&timezone=auto${body.temperatureUnit === 'C' ? '' : '&temperature_unit=fahrenheit'}`,
|
||||
);
|
||||
|
||||
const data = await res.json();
|
||||
@ -33,12 +34,14 @@ export const POST = async (req: Request) => {
|
||||
humidity: number;
|
||||
windSpeed: number;
|
||||
icon: string;
|
||||
temperatureUnit: 'C' | 'F';
|
||||
} = {
|
||||
temperature: data.current.temperature_2m,
|
||||
condition: '',
|
||||
humidity: data.current.relative_humidity_2m,
|
||||
windSpeed: data.current.wind_speed_10m,
|
||||
icon: '',
|
||||
temperatureUnit: body.temperatureUnit,
|
||||
};
|
||||
|
||||
const code = data.current.weather_code;
|
||||
|
@ -148,6 +148,7 @@ const Page = () => {
|
||||
const [automaticImageSearch, setAutomaticImageSearch] = useState(false);
|
||||
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
|
||||
const [systemInstructions, setSystemInstructions] = useState<string>('');
|
||||
const [temperatureUnit, setTemperatureUnit] = useState<'C' | 'F'>('C');
|
||||
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
|
||||
|
||||
useEffect(() => {
|
||||
@ -210,6 +211,8 @@ const Page = () => {
|
||||
|
||||
setSystemInstructions(localStorage.getItem('systemInstructions')!);
|
||||
|
||||
setTemperatureUnit(localStorage.getItem('temperatureUnit')! as 'C' | 'F');
|
||||
|
||||
setIsLoading(false);
|
||||
};
|
||||
|
||||
@ -368,6 +371,8 @@ const Page = () => {
|
||||
localStorage.setItem('embeddingModel', value);
|
||||
} else if (key === 'systemInstructions') {
|
||||
localStorage.setItem('systemInstructions', value);
|
||||
} else if (key === 'temperatureUnit') {
|
||||
localStorage.setItem('temperatureUnit', value.toString());
|
||||
}
|
||||
} catch (err) {
|
||||
console.error('Failed to save:', err);
|
||||
@ -416,13 +421,35 @@ const Page = () => {
|
||||
) : (
|
||||
config && (
|
||||
<div className="flex flex-col space-y-6 pb-28 lg:pb-8">
|
||||
<SettingsSection title="Appearance">
|
||||
<SettingsSection title="Preferences">
|
||||
<div className="flex flex-col space-y-1">
|
||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||
Theme
|
||||
</p>
|
||||
<ThemeSwitcher />
|
||||
</div>
|
||||
<div className="flex flex-col space-y-1">
|
||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||
Temperature Unit
|
||||
</p>
|
||||
<Select
|
||||
value={temperatureUnit ?? undefined}
|
||||
onChange={(e) => {
|
||||
setTemperatureUnit(e.target.value as 'C' | 'F');
|
||||
saveConfig('temperatureUnit', e.target.value);
|
||||
}}
|
||||
options={[
|
||||
{
|
||||
label: 'Celsius',
|
||||
value: 'C',
|
||||
},
|
||||
{
|
||||
label: 'Fahrenheit',
|
||||
value: 'F',
|
||||
},
|
||||
]}
|
||||
/>
|
||||
</div>
|
||||
</SettingsSection>
|
||||
|
||||
<SettingsSection title="Automatic Search">
|
||||
@ -516,7 +543,7 @@ const Page = () => {
|
||||
<SettingsSection title="System Instructions">
|
||||
<div className="flex flex-col space-y-4">
|
||||
<Textarea
|
||||
value={systemInstructions}
|
||||
value={systemInstructions ?? undefined}
|
||||
isSaving={savingStates['systemInstructions']}
|
||||
onChange={(e) => {
|
||||
setSystemInstructions(e.target.value);
|
||||
|
@ -9,7 +9,9 @@ const WeatherWidget = () => {
|
||||
humidity: 0,
|
||||
windSpeed: 0,
|
||||
icon: '',
|
||||
temperatureUnit: 'C',
|
||||
});
|
||||
|
||||
const [loading, setLoading] = useState(true);
|
||||
|
||||
useEffect(() => {
|
||||
@ -73,6 +75,7 @@ const WeatherWidget = () => {
|
||||
body: JSON.stringify({
|
||||
lat: location.latitude,
|
||||
lng: location.longitude,
|
||||
temperatureUnit: localStorage.getItem('temperatureUnit') ?? 'C',
|
||||
}),
|
||||
});
|
||||
|
||||
@ -91,6 +94,7 @@ const WeatherWidget = () => {
|
||||
humidity: data.humidity,
|
||||
windSpeed: data.windSpeed,
|
||||
icon: data.icon,
|
||||
temperatureUnit: data.temperatureUnit,
|
||||
});
|
||||
setLoading(false);
|
||||
});
|
||||
@ -125,7 +129,7 @@ const WeatherWidget = () => {
|
||||
className="h-10 w-auto"
|
||||
/>
|
||||
<span className="text-base font-semibold text-black dark:text-white">
|
||||
{data.temperature}°C
|
||||
{data.temperature}°{data.temperatureUnit}
|
||||
</span>
|
||||
</div>
|
||||
<div className="flex flex-col justify-between flex-1 h-full py-1">
|
||||
|
@ -1,63 +1,41 @@
|
||||
export const webSearchRetrieverPrompt = `
|
||||
You are an AI question rephraser. You will be given a conversation and a follow-up question, you will have to rephrase the follow up question so it is a standalone question and can be used by another LLM to search the web for information to answer it.
|
||||
If it is a simple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
|
||||
If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block.
|
||||
You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response.
|
||||
You are an AI question rephraser. You will be given a conversation and a follow-up question; rephrase it into a standalone question that another LLM can use to search the web.
|
||||
|
||||
There are several examples attached for your reference inside the below \`examples\` XML block
|
||||
Return ONLY a JSON object that matches this schema:
|
||||
query: string // the standalone question (or "summarize")
|
||||
links: string[] // URLs extracted from the user query (empty if none)
|
||||
searchRequired: boolean // true if web search is needed, false for greetings/simple writing tasks
|
||||
searchMode: "" | "normal" | "news" // "" when searchRequired is false; "news" if the user asks for news/articles, otherwise "normal"
|
||||
|
||||
<examples>
|
||||
1. Follow up question: What is the capital of France
|
||||
Rephrased question:\`
|
||||
<question>
|
||||
Capital of france
|
||||
</question>
|
||||
\`
|
||||
Rules
|
||||
- Greetings / simple writing tasks → query:"", links:[], searchRequired:false, searchMode:""
|
||||
- Summarizing a URL → query:"summarize", links:[url...], searchRequired:true, searchMode:"normal"
|
||||
- Asking for news/articles → searchMode:"news"
|
||||
|
||||
Examples
|
||||
1. Follow-up: What is the capital of France?
|
||||
"query":"capital of France","links":[],"searchRequired":true,"searchMode":"normal"
|
||||
|
||||
2. Hi, how are you?
|
||||
Rephrased question\`
|
||||
<question>
|
||||
not_needed
|
||||
</question>
|
||||
\`
|
||||
"query":"","links":[],"searchRequired":false,"searchMode":""
|
||||
|
||||
3. Follow up question: What is Docker?
|
||||
Rephrased question: \`
|
||||
<question>
|
||||
What is Docker
|
||||
</question>
|
||||
\`
|
||||
3. Follow-up: What is Docker?
|
||||
"query":"what is Docker","links":[],"searchRequired":true,"searchMode":"normal"
|
||||
|
||||
4. Follow up question: Can you tell me what is X from https://example.com
|
||||
Rephrased question: \`
|
||||
<question>
|
||||
Can you tell me what is X?
|
||||
</question>
|
||||
4. Follow-up: Can you tell me what is X from https://example.com?
|
||||
"query":"what is X","links":["https://example.com"],"searchRequired":true,"searchMode":"normal"
|
||||
|
||||
<links>
|
||||
https://example.com
|
||||
</links>
|
||||
\`
|
||||
5. Follow-up: Summarize the content from https://example.com
|
||||
"query":"summarize","links":["https://example.com"],"searchRequired":true,"searchMode":"normal"
|
||||
|
||||
5. Follow up question: Summarize the content from https://example.com
|
||||
Rephrased question: \`
|
||||
<question>
|
||||
summarize
|
||||
</question>
|
||||
|
||||
<links>
|
||||
https://example.com
|
||||
</links>
|
||||
\`
|
||||
</examples>
|
||||
|
||||
Anything below is the part of the actual conversation and you need to use conversation and the follow-up question to rephrase the follow-up question as a standalone question based on the guidelines shared above.
|
||||
6. Follow-up: Latest news about AI
|
||||
"query":"latest news about AI","links":[],"searchRequired":true,"searchMode":"news"
|
||||
|
||||
<conversation>
|
||||
{chat_history}
|
||||
</conversation>
|
||||
|
||||
Follow up question: {query}
|
||||
Follow-up question: {query}
|
||||
Rephrased question:
|
||||
`;
|
||||
|
||||
|
@ -38,7 +38,7 @@ export const loadAimlApiChatModels = async () => {
|
||||
chatModels[model.id] = {
|
||||
displayName: model.name || model.id,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey: apiKey,
|
||||
apiKey: apiKey,
|
||||
modelName: model.id,
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
@ -76,7 +76,7 @@ export const loadAimlApiEmbeddingModels = async () => {
|
||||
embeddingModels[model.id] = {
|
||||
displayName: model.name || model.id,
|
||||
model: new OpenAIEmbeddings({
|
||||
openAIApiKey: apiKey,
|
||||
apiKey: apiKey,
|
||||
modelName: model.id,
|
||||
configuration: {
|
||||
baseURL: API_URL,
|
||||
|
@ -31,7 +31,7 @@ export const loadDeepseekChatModels = async () => {
|
||||
chatModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey: deepseekApiKey,
|
||||
apiKey: deepseekApiKey,
|
||||
modelName: model.key,
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
|
@ -29,12 +29,15 @@ export const loadGroqChatModels = async () => {
|
||||
chatModels[model.id] = {
|
||||
displayName: model.id,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey: groqApiKey,
|
||||
apiKey: groqApiKey,
|
||||
modelName: model.id,
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
baseURL: 'https://api.groq.com/openai/v1',
|
||||
},
|
||||
metadata: {
|
||||
'model-type': 'groq',
|
||||
},
|
||||
}) as unknown as BaseChatModel,
|
||||
};
|
||||
});
|
||||
|
@ -118,7 +118,7 @@ export const getAvailableChatModelProviders = async () => {
|
||||
[customOpenAiModelName]: {
|
||||
displayName: customOpenAiModelName,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey: customOpenAiApiKey,
|
||||
apiKey: customOpenAiApiKey,
|
||||
modelName: customOpenAiModelName,
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
|
@ -47,7 +47,7 @@ export const loadLMStudioChatModels = async () => {
|
||||
chatModels[model.id] = {
|
||||
displayName: model.name || model.id,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey: 'lm-studio',
|
||||
apiKey: 'lm-studio',
|
||||
configuration: {
|
||||
baseURL: ensureV1Endpoint(endpoint),
|
||||
},
|
||||
@ -83,7 +83,7 @@ export const loadLMStudioEmbeddingsModels = async () => {
|
||||
embeddingsModels[model.id] = {
|
||||
displayName: model.name || model.id,
|
||||
model: new OpenAIEmbeddings({
|
||||
openAIApiKey: 'lm-studio',
|
||||
apiKey: 'lm-studio',
|
||||
configuration: {
|
||||
baseURL: ensureV1Endpoint(endpoint),
|
||||
},
|
||||
|
@ -6,8 +6,8 @@ export const PROVIDER_INFO = {
|
||||
key: 'ollama',
|
||||
displayName: 'Ollama',
|
||||
};
|
||||
import { ChatOllama } from '@langchain/community/chat_models/ollama';
|
||||
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
|
||||
import { ChatOllama } from '@langchain/ollama';
|
||||
import { OllamaEmbeddings } from '@langchain/ollama';
|
||||
|
||||
export const loadOllamaChatModels = async () => {
|
||||
const ollamaApiEndpoint = getOllamaApiEndpoint();
|
||||
|
@ -67,7 +67,7 @@ export const loadOpenAIChatModels = async () => {
|
||||
chatModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey: openaiApiKey,
|
||||
apiKey: openaiApiKey,
|
||||
modelName: model.key,
|
||||
temperature: 0.7,
|
||||
}) as unknown as BaseChatModel,
|
||||
@ -93,7 +93,7 @@ export const loadOpenAIEmbeddingModels = async () => {
|
||||
embeddingModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new OpenAIEmbeddings({
|
||||
openAIApiKey: openaiApiKey,
|
||||
apiKey: openaiApiKey,
|
||||
modelName: model.key,
|
||||
}) as unknown as Embeddings,
|
||||
};
|
||||
|
@ -24,6 +24,7 @@ import computeSimilarity from '../utils/computeSimilarity';
|
||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||
import eventEmitter from 'events';
|
||||
import { StreamEvent } from '@langchain/core/tracers/log_stream';
|
||||
import { z } from 'zod';
|
||||
|
||||
export interface MetaSearchAgentType {
|
||||
searchAndAnswer: (
|
||||
@ -52,6 +53,17 @@ type BasicChainInput = {
|
||||
query: string;
|
||||
};
|
||||
|
||||
const retrieverLLMOutputSchema = z.object({
|
||||
query: z.string().describe('The query to search the web for.'),
|
||||
links: z
|
||||
.array(z.string())
|
||||
.describe('The links to search/summarize if present'),
|
||||
searchRequired: z
|
||||
.boolean()
|
||||
.describe('Wether there is a need to search the web'),
|
||||
searchMode: z.enum(['', 'normal', 'news']).describe('The search mode.'),
|
||||
});
|
||||
|
||||
class MetaSearchAgent implements MetaSearchAgentType {
|
||||
private config: Config;
|
||||
private strParser = new StringOutputParser();
|
||||
@ -62,26 +74,24 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
|
||||
private async createSearchRetrieverChain(llm: BaseChatModel) {
|
||||
(llm as unknown as ChatOpenAI).temperature = 0;
|
||||
|
||||
return RunnableSequence.from([
|
||||
PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt),
|
||||
Object.assign(
|
||||
Object.create(Object.getPrototypeOf(llm)),
|
||||
llm,
|
||||
this.strParser,
|
||||
RunnableLambda.from(async (input: string) => {
|
||||
const linksOutputParser = new LineListOutputParser({
|
||||
key: 'links',
|
||||
});
|
||||
).withStructuredOutput(retrieverLLMOutputSchema, {
|
||||
...(llm.metadata?.['model-type'] === 'groq'
|
||||
? {
|
||||
method: 'json-object',
|
||||
}
|
||||
: {}),
|
||||
}),
|
||||
RunnableLambda.from(
|
||||
async (input: z.infer<typeof retrieverLLMOutputSchema>) => {
|
||||
let question = input.query;
|
||||
const links = input.links;
|
||||
|
||||
const questionOutputParser = new LineOutputParser({
|
||||
key: 'question',
|
||||
});
|
||||
|
||||
const links = await linksOutputParser.parse(input);
|
||||
let question = this.config.summarizer
|
||||
? await questionOutputParser.parse(input)
|
||||
: input;
|
||||
|
||||
if (question === 'not_needed') {
|
||||
if (!input.searchRequired) {
|
||||
return { query: '', docs: [] };
|
||||
}
|
||||
|
||||
@ -207,7 +217,10 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
|
||||
const res = await searchSearxng(question, {
|
||||
language: 'en',
|
||||
engines: this.config.activeEngines,
|
||||
engines:
|
||||
input.searchMode === 'normal'
|
||||
? this.config.activeEngines
|
||||
: ['bing news'],
|
||||
});
|
||||
|
||||
const documents = res.results.map(
|
||||
@ -228,7 +241,8 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
|
||||
return { query: question, docs: documents };
|
||||
}
|
||||
}),
|
||||
},
|
||||
),
|
||||
]);
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user