Compare commits

..

9 Commits

Author SHA1 Message Date
Naman Bansal
bdba92f452 Merge 7288c97326 into 09661ae11d 2025-04-02 17:06:29 +05:30
ItzCrazyKns
09661ae11d feat(prompts): fix typo, closes #715 2025-04-02 13:02:28 +05:30
namanb
7288c97326 feat(providers): changed readme as well 2025-04-02 12:26:38 +05:30
namanb
3545137bc0 feat(providers): added openrouter support 2025-04-02 12:24:27 +05:30
ItzCrazyKns
a8d410bc2f Merge pull request #716 from ItzCrazyKns/feat/system-instructions
Feat/system instructions
2025-04-01 15:59:18 +05:30
ItzCrazyKns
7d52fbb368 feat(settings): add system instructions 2025-04-01 15:50:24 +05:30
ItzCrazyKns
4b8e0ea1aa feat(chat-window): handle system instructions 2025-04-01 15:50:05 +05:30
ItzCrazyKns
5b1055e8c9 feat(routes): add system instructions 2025-04-01 15:49:36 +05:30
ItzCrazyKns
4b2a7916fd feat(docker-build): fix image tag errors 2025-03-30 22:51:59 +05:30
18 changed files with 186 additions and 1 deletions

View File

@@ -114,6 +114,11 @@ jobs:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Extract version from release tag
if: github.event_name == 'release'
id: version
run: echo "RELEASE_VERSION=${GITHUB_REF#refs/tags/}" >> $GITHUB_ENV
- name: Create and push multi-arch manifest for main
if: github.ref == 'refs/heads/master' && github.event_name == 'push'
run: |

View File

@@ -89,6 +89,7 @@ There are mainly 2 ways of installing Perplexica - With Docker, Without Docker.
- `OPENAI`: Your OpenAI API key. **You only need to fill this if you wish to use OpenAI's models**.
- `OLLAMA`: Your Ollama API URL. You should enter it as `http://host.docker.internal:PORT_NUMBER`. If you installed Ollama on port 11434, use `http://host.docker.internal:11434`. For other ports, adjust accordingly. **You need to fill this if you wish to use Ollama's models instead of OpenAI's**.
- `GROQ`: Your Groq API key. **You only need to fill this if you wish to use Groq's hosted models**.
- `OPENROUTER`: Your OpenRouter API key. **You only need to fill this if you wish to use models via OpenRouter**.
- `ANTHROPIC`: Your Anthropic API key. **You only need to fill this if you wish to use Anthropic models**.
**Note**: You can change these after starting Perplexica from the settings dialog.

View File

@@ -11,6 +11,9 @@ API_KEY = ""
[MODELS.ANTHROPIC]
API_KEY = ""
[MODELS.OPENROUTER]
API_KEY = ""
[MODELS.GEMINI]
API_KEY = ""

View File

@@ -49,6 +49,7 @@ type Body = {
files: Array<string>;
chatModel: ChatModel;
embeddingModel: EmbeddingModel;
systemInstructions: string;
};
const handleEmitterEvents = async (
@@ -278,6 +279,7 @@ export const POST = async (req: Request) => {
embedding,
body.optimizationMode,
body.files,
body.systemInstructions,
);
const responseStream = new TransformStream();

View File

@@ -5,6 +5,7 @@ import {
getCustomOpenaiModelName,
getGeminiApiKey,
getGroqApiKey,
getOpenrouterApiKey,
getOllamaApiEndpoint,
getOpenaiApiKey,
updateConfig,
@@ -52,6 +53,7 @@ export const GET = async (req: Request) => {
config['ollamaApiUrl'] = getOllamaApiEndpoint();
config['anthropicApiKey'] = getAnthropicApiKey();
config['groqApiKey'] = getGroqApiKey();
config['openrouterApiKey'] = getOpenrouterApiKey();
config['geminiApiKey'] = getGeminiApiKey();
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
@@ -79,6 +81,9 @@ export const POST = async (req: Request) => {
GROQ: {
API_KEY: config.groqApiKey,
},
OPENROUTER: {
API_KEY: config.openrouterApiKey,
},
ANTHROPIC: {
API_KEY: config.anthropicApiKey,
},

View File

@@ -125,6 +125,7 @@ export const POST = async (req: Request) => {
embeddings,
body.optimizationMode,
[],
'',
);
if (!body.stream) {

View File

@@ -17,6 +17,7 @@ interface SettingsType {
};
openaiApiKey: string;
groqApiKey: string;
openrouterApiKey: string;
anthropicApiKey: string;
geminiApiKey: string;
ollamaApiUrl: string;
@@ -54,6 +55,38 @@ const Input = ({ className, isSaving, onSave, ...restProps }: InputProps) => {
);
};
interface TextareaProps extends React.InputHTMLAttributes<HTMLTextAreaElement> {
isSaving?: boolean;
onSave?: (value: string) => void;
}
const Textarea = ({
className,
isSaving,
onSave,
...restProps
}: TextareaProps) => {
return (
<div className="relative">
<textarea
placeholder="Any special instructions for the LLM"
className="placeholder:text-sm text-sm w-full flex items-center justify-between p-3 bg-light-secondary dark:bg-dark-secondary rounded-lg hover:bg-light-200 dark:hover:bg-dark-200 transition-colors"
rows={4}
onBlur={(e) => onSave?.(e.target.value)}
{...restProps}
/>
{isSaving && (
<div className="absolute right-3 top-3">
<Loader2
size={16}
className="animate-spin text-black/70 dark:text-white/70"
/>
</div>
)}
</div>
);
};
const Select = ({
className,
options,
@@ -111,6 +144,7 @@ const Page = () => {
const [isLoading, setIsLoading] = useState(false);
const [automaticImageSearch, setAutomaticImageSearch] = useState(false);
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
const [systemInstructions, setSystemInstructions] = useState<string>('');
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
useEffect(() => {
@@ -172,6 +206,8 @@ const Page = () => {
localStorage.getItem('autoVideoSearch') === 'true',
);
setSystemInstructions(localStorage.getItem('systemInstructions')!);
setIsLoading(false);
};
@@ -328,6 +364,8 @@ const Page = () => {
localStorage.setItem('embeddingModelProvider', value);
} else if (key === 'embeddingModel') {
localStorage.setItem('embeddingModel', value);
} else if (key === 'systemInstructions') {
localStorage.setItem('systemInstructions', value);
}
} catch (err) {
console.error('Failed to save:', err);
@@ -473,6 +511,19 @@ const Page = () => {
</div>
</SettingsSection>
<SettingsSection title="System Instructions">
<div className="flex flex-col space-y-4">
<Textarea
value={systemInstructions}
isSaving={savingStates['systemInstructions']}
onChange={(e) => {
setSystemInstructions(e.target.value);
}}
onSave={(value) => saveConfig('systemInstructions', value)}
/>
</div>
</SettingsSection>
<SettingsSection title="Model Settings">
{config.chatModelProviders && (
<div className="flex flex-col space-y-4">
@@ -751,6 +802,25 @@ const Page = () => {
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
OpenRouter API Key
</p>
<Input
type="text"
placeholder="OpenRouter API Key"
value={config.openrouterApiKey}
isSaving={savingStates['openrouterApiKey']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
openrouterApiKey: e.target.value,
}));
}}
onSave={(value) => saveConfig('openrouterApiKey', value)}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Anthropic API Key

View File

@@ -480,6 +480,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
name: embeddingModelProvider.name,
provider: embeddingModelProvider.provider,
},
systemInstructions: localStorage.getItem('systemInstructions'),
}),
});

View File

@@ -25,6 +25,9 @@ interface Config {
OLLAMA: {
API_URL: string;
};
OPENROUTER: {
API_KEY: string;
};
CUSTOM_OPENAI: {
API_URL: string;
API_KEY: string;
@@ -54,6 +57,8 @@ export const getOpenaiApiKey = () => loadConfig().MODELS.OPENAI.API_KEY;
export const getGroqApiKey = () => loadConfig().MODELS.GROQ.API_KEY;
export const getOpenrouterApiKey = () => loadConfig().MODELS.OPENROUTER.API_KEY;
export const getAnthropicApiKey = () => loadConfig().MODELS.ANTHROPIC.API_KEY;
export const getGeminiApiKey = () => loadConfig().MODELS.GEMINI.API_KEY;

View File

@@ -51,6 +51,10 @@ export const academicSearchResponsePrompt = `
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Academic', this means you will be searching for academic papers and articles on the web.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.

View File

@@ -51,6 +51,10 @@ export const redditSearchResponsePrompt = `
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Reddit', this means you will be searching for information, opinions and discussions on the web using Reddit.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.

View File

@@ -1,6 +1,6 @@
export const webSearchRetrieverPrompt = `
You are an AI question rephraser. You will be given a conversation and a follow-up question, you will have to rephrase the follow up question so it is a standalone question and can be used by another LLM to search the web for information to answer it.
If it is a smple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
If it is a simple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block.
You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response.
@@ -92,6 +92,10 @@ export const webSearchResponsePrompt = `
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.

View File

@@ -51,6 +51,10 @@ export const wolframAlphaSearchResponsePrompt = `
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Wolfram Alpha', this means you will be searching for information on the web using Wolfram Alpha. It is a computational knowledge engine that can answer factual queries and perform computations.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.

View File

@@ -7,6 +7,10 @@ You have to cite the answer using [number] notation. You must cite the sentences
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
<context>
{context}
</context>

View File

@@ -51,6 +51,10 @@ export const youtubeSearchResponsePrompt = `
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Youtube', this means you will be searching for videos on the web using Youtube and providing information based on the video's transcrip
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.

View File

@@ -12,6 +12,7 @@ import { loadGroqChatModels } from './groq';
import { loadAnthropicChatModels } from './anthropic';
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini';
import { loadTransformersEmbeddingsModels } from './transformers';
import { loadOpenrouterChatModels } from '@/lib/providers/openrouter';
export interface ChatModel {
displayName: string;
@@ -32,6 +33,7 @@ export const chatModelProviders: Record<
groq: loadGroqChatModels,
anthropic: loadAnthropicChatModels,
gemini: loadGeminiChatModels,
openrouter: loadOpenrouterChatModels,
};
export const embeddingModelProviders: Record<

View File

@@ -0,0 +1,61 @@
import { ChatOpenAI } from '@langchain/openai';
import { getOpenrouterApiKey } from '../config';
import { ChatModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
let openrouterChatModels: Record<string, string>[] = [];
async function fetchModelList(): Promise<void> {
try {
const response = await fetch('https://openrouter.ai/api/v1/models', {
method: 'GET',
headers: {
'Content-Type': 'application/json',
},
});
if (!response.ok) {
throw new Error(`API request failed with status: ${response.status}`);
}
const data = await response.json();
openrouterChatModels = data.data.map((model: any) => ({
displayName: model.name,
key: model.id,
}));
} catch (error) {
console.error('Error fetching models:', error);
}
}
export const loadOpenrouterChatModels = async () => {
await fetchModelList();
const openrouterApikey = getOpenrouterApiKey();
if (!openrouterApikey) return {};
try {
const chatModels: Record<string, ChatModel> = {};
openrouterChatModels.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatOpenAI({
openAIApiKey: openrouterApikey,
modelName: model.key,
temperature: 0.7,
configuration: {
baseURL: 'https://openrouter.ai/api/v1',
},
}) as unknown as BaseChatModel,
};
});
return chatModels;
} catch (err) {
console.error(`Error loading Openrouter models: ${err}`);
return {};
}
};

View File

@@ -33,6 +33,7 @@ export interface MetaSearchAgentType {
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
fileIds: string[],
systemInstructions: string,
) => Promise<eventEmitter>;
}
@@ -236,9 +237,11 @@ class MetaSearchAgent implements MetaSearchAgentType {
fileIds: string[],
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
systemInstructions: string,
) {
return RunnableSequence.from([
RunnableMap.from({
systemInstructions: () => systemInstructions,
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
date: () => new Date().toISOString(),
@@ -468,6 +471,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
fileIds: string[],
systemInstructions: string,
) {
const emitter = new eventEmitter();
@@ -476,6 +480,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
fileIds,
embeddings,
optimizationMode,
systemInstructions,
);
const stream = answeringChain.streamEvents(