Compare commits

...

40 Commits

Author SHA1 Message Date
83f1c6ce12 Merge pull request #736 from ItzCrazyKns/master
Merge master into feat/deep-research
2025-04-08 12:28:46 +05:30
fd6c58734d feat(metaSearchAgent): add quality optimization mode 2025-04-08 12:27:48 +05:30
da1123d84b feat(groq): update model name 2025-04-07 23:30:51 +05:30
627775c430 feat(groq): remove maverick (not being run yet) 2025-04-07 23:29:51 +05:30
245573efca feat(groq): update model list 2025-04-07 23:23:18 +05:30
a85f762c58 feat(package): bump version 2025-04-07 10:27:04 +05:30
3ddcceda0a feat(gemini-provider): update embedding models 2025-04-07 10:26:29 +05:30
114a7aa09d Merge pull request #728 from ItzCrazyKns/master-deep-research
Merge master into feat/deep-research
2025-04-07 10:21:34 +05:30
d0ba8c9038 Merge branch 'feat/deep-research' into master-deep-research 2025-04-07 10:21:22 +05:30
934fb0a23b Update metaSearchAgent.ts 2025-04-07 10:18:11 +05:30
e226645bc7 feat(app): lint & beautify 2025-04-06 13:48:58 +05:30
5447530ece Merge branch 'feat/deepseek-provider' 2025-04-06 13:48:10 +05:30
ed6d46a440 Merge branch 'pr/719' 2025-04-06 13:47:57 +05:30
588e68e93e feat(providers): add deepseek provider 2025-04-06 13:37:43 +05:30
c4440327db Merge pull request #720 from OmarElKadri/master
feat(search): add optional systemInstructions to API request body
2025-04-06 10:34:29 +05:30
64e2d457cc feat(search): add optional systemInstructions to API request body 2025-04-05 19:06:18 +01:00
bf705afc21 feat(message-box): change styles, lint & beautify 2025-04-05 22:32:56 +05:30
2e4433a6b3 feat(message-box): support [1,2,3,4] citation format instead of just [1][2][3] 2025-04-05 15:24:45 +00:00
8ecf3b4e99 feat(chat-window): update message handling 2025-04-02 13:02:45 +05:30
09661ae11d feat(prompts): fix typo, closes #715 2025-04-02 13:02:28 +05:30
a8d410bc2f Merge pull request #716 from ItzCrazyKns/feat/system-instructions
Feat/system instructions
2025-04-01 15:59:18 +05:30
7d52fbb368 feat(settings): add system instructions 2025-04-01 15:50:24 +05:30
4b8e0ea1aa feat(chat-window): handle system instructions 2025-04-01 15:50:05 +05:30
5b1055e8c9 feat(routes): add system instructions 2025-04-01 15:49:36 +05:30
b5ee8386e7 Merge pull request #714 from ItzCrazyKns/master
Merge master into feat/deep-research
2025-04-01 14:16:45 +05:30
4b2a7916fd feat(docker-build): fix image tag errors 2025-03-30 22:51:59 +05:30
97e64aa65e Merge branch 'pr/703' 2025-03-30 21:12:27 +05:30
90e303f737 feat(search): lint & beautify, update content type 2025-03-30 21:12:04 +05:30
7955d8e408 Merge pull request #705 from ottsch/add-gemini-2.5
feat(models): Update Gemini chat models
2025-03-29 21:53:02 +05:30
b285cb4323 Update Gemini chat models 2025-03-28 17:07:11 +01:00
5d60ab1139 feat(api): Switch to newline-delimited JSON streaming instead of SSE 2025-03-27 13:04:09 +01:00
9095996356 Merge branch 'ItzCrazyKns:master' into master 2025-03-27 13:01:09 +01:00
310c8a75fd feat(routes): fix typo, closes #692 2025-03-27 11:36:58 +05:30
191d1dc25f refactor(api): clean up comments and improve abort handling in search route 2025-03-26 11:32:46 +01:00
d3b2f8983d feat(api): add streaming support to search route 2025-03-26 11:28:05 +01:00
27286465a3 feat(package): bump version 2025-03-26 13:34:09 +05:30
defc677932 feat(providers): update gemini & anthropic provider 2025-03-25 22:01:24 +05:30
0fcd598ff7 feat(metaSearchAgent): eliminate runnables 2025-03-24 17:27:54 +05:30
45df9dc5bf feat(readme): update networking guide 2025-03-21 11:27:12 +05:30
06db95d7c0 feat(dockerfile): fix onnx issues 2025-03-21 11:25:28 +05:30
33 changed files with 833 additions and 348 deletions

View File

@ -114,6 +114,11 @@ jobs:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Extract version from release tag
if: github.event_name == 'release'
id: version
run: echo "RELEASE_VERSION=${GITHUB_REF#refs/tags/}" >> $GITHUB_ENV
- name: Create and push multi-arch manifest for main
if: github.ref == 'refs/heads/master' && github.event_name == 'push'
run: |

View File

@ -153,7 +153,7 @@ For more details, check out the full documentation [here](https://github.com/Itz
## Expose Perplexica to network
You can access Perplexica over your home network by following our networking guide [here](https://github.com/ItzCrazyKns/Perplexica/blob/master/docs/installation/NETWORKING.md).
Perplexica runs on Next.js and handles all API requests. It works right away on the same network and stays accessible even with port forwarding.
## One-Click Deployment

View File

@ -1,4 +1,4 @@
FROM node:20.18.0-alpine AS builder
FROM node:20.18.0-slim AS builder
WORKDIR /home/perplexica
@ -12,7 +12,7 @@ COPY public ./public
RUN mkdir -p /home/perplexica/data
RUN yarn build
FROM node:20.18.0-alpine
FROM node:20.18.0-slim
WORKDIR /home/perplexica

View File

@ -32,7 +32,9 @@ The API accepts a JSON object in the request body, where you define the focus mo
"history": [
["human", "Hi, how are you?"],
["assistant", "I am doing well, how can I help you today?"]
]
],
"systemInstructions": "Focus on providing technical details about Perplexica's architecture.",
"stream": false
}
```
@ -62,6 +64,8 @@ The API accepts a JSON object in the request body, where you define the focus mo
- **`query`** (string, required): The search query or question.
- **`systemInstructions`** (string, optional): Custom instructions provided by the user to guide the AI's response. These instructions are treated as user preferences and have lower priority than the system's core instructions. For example, you can specify a particular writing style, format, or focus area.
- **`history`** (array, optional): An array of message pairs representing the conversation history. Each pair consists of a role (either 'human' or 'assistant') and the message content. This allows the system to use the context of the conversation to refine results. Example:
```json
@ -71,11 +75,13 @@ The API accepts a JSON object in the request body, where you define the focus mo
]
```
- **`stream`** (boolean, optional): When set to `true`, enables streaming responses. Default is `false`.
### Response
The response from the API includes both the final message and the sources used to generate that message.
#### Example Response
#### Standard Response (stream: false)
```json
{
@ -100,6 +106,28 @@ The response from the API includes both the final message and the sources used t
}
```
#### Streaming Response (stream: true)
When streaming is enabled, the API returns a stream of newline-delimited JSON objects. Each line contains a complete, valid JSON object. The response has Content-Type: application/json.
Example of streamed response objects:
```
{"type":"init","data":"Stream connected"}
{"type":"sources","data":[{"pageContent":"...","metadata":{"title":"...","url":"..."}},...]}
{"type":"response","data":"Perplexica is an "}
{"type":"response","data":"innovative, open-source "}
{"type":"response","data":"AI-powered search engine..."}
{"type":"done"}
```
Clients should process each line as a separate JSON object. The different message types include:
- **`init`**: Initial connection message
- **`sources`**: All sources used for the response
- **`response`**: Chunks of the generated answer text
- **`done`**: Indicates the stream is complete
### Fields in the Response
- **`message`** (string): The search result, generated based on the query and focus mode.

View File

@ -1,6 +1,6 @@
{
"name": "perplexica-frontend",
"version": "1.10.0",
"version": "1.10.2",
"license": "MIT",
"author": "ItzCrazyKns",
"scripts": {
@ -15,8 +15,10 @@
"@headlessui/react": "^2.2.0",
"@iarna/toml": "^2.2.5",
"@icons-pack/react-simple-icons": "^12.3.0",
"@langchain/anthropic": "^0.3.15",
"@langchain/community": "^0.3.36",
"@langchain/core": "^0.3.42",
"@langchain/google-genai": "^0.1.12",
"@langchain/openai": "^0.0.25",
"@langchain/textsplitters": "^0.1.0",
"@tailwindcss/typography": "^0.5.12",

View File

@ -22,5 +22,8 @@ MODEL_NAME = ""
[MODELS.OLLAMA]
API_URL = "" # Ollama API URL - http://host.docker.internal:11434
[MODELS.DEEPSEEK]
API_KEY = ""
[API_ENDPOINTS]
SEARXNG = "" # SearxNG API URL - http://localhost:32768

View File

@ -49,6 +49,7 @@ type Body = {
files: Array<string>;
chatModel: ChatModel;
embeddingModel: EmbeddingModel;
systemInstructions: string;
};
const handleEmitterEvents = async (
@ -278,6 +279,7 @@ export const POST = async (req: Request) => {
embedding,
body.optimizationMode,
body.files,
body.systemInstructions,
);
const responseStream = new TransformStream();
@ -295,9 +297,9 @@ export const POST = async (req: Request) => {
},
});
} catch (err) {
console.error('An error ocurred while processing chat request:', err);
console.error('An error occurred while processing chat request:', err);
return Response.json(
{ message: 'An error ocurred while processing chat request' },
{ message: 'An error occurred while processing chat request' },
{ status: 500 },
);
}

View File

@ -7,6 +7,7 @@ import {
getGroqApiKey,
getOllamaApiEndpoint,
getOpenaiApiKey,
getDeepseekApiKey,
updateConfig,
} from '@/lib/config';
import {
@ -53,15 +54,16 @@ export const GET = async (req: Request) => {
config['anthropicApiKey'] = getAnthropicApiKey();
config['groqApiKey'] = getGroqApiKey();
config['geminiApiKey'] = getGeminiApiKey();
config['deepseekApiKey'] = getDeepseekApiKey();
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
config['customOpenaiModelName'] = getCustomOpenaiModelName();
return Response.json({ ...config }, { status: 200 });
} catch (err) {
console.error('An error ocurred while getting config:', err);
console.error('An error occurred while getting config:', err);
return Response.json(
{ message: 'An error ocurred while getting config' },
{ message: 'An error occurred while getting config' },
{ status: 500 },
);
}
@ -88,6 +90,9 @@ export const POST = async (req: Request) => {
OLLAMA: {
API_URL: config.ollamaApiUrl,
},
DEEPSEEK: {
API_KEY: config.deepseekApiKey,
},
CUSTOM_OPENAI: {
API_URL: config.customOpenaiApiUrl,
API_KEY: config.customOpenaiApiKey,
@ -100,9 +105,9 @@ export const POST = async (req: Request) => {
return Response.json({ message: 'Config updated' }, { status: 200 });
} catch (err) {
console.error('An error ocurred while updating config:', err);
console.error('An error occurred while updating config:', err);
return Response.json(
{ message: 'An error ocurred while updating config' },
{ message: 'An error occurred while updating config' },
{ status: 500 },
);
}

View File

@ -48,7 +48,7 @@ export const GET = async (req: Request) => {
},
);
} catch (err) {
console.error(`An error ocurred in discover route: ${err}`);
console.error(`An error occurred in discover route: ${err}`);
return Response.json(
{
message: 'An error has occurred',

View File

@ -74,9 +74,9 @@ export const POST = async (req: Request) => {
return Response.json({ images }, { status: 200 });
} catch (err) {
console.error(`An error ocurred while searching images: ${err}`);
console.error(`An error occurred while searching images: ${err}`);
return Response.json(
{ message: 'An error ocurred while searching images' },
{ message: 'An error occurred while searching images' },
{ status: 500 },
);
}

View File

@ -34,7 +34,7 @@ export const GET = async (req: Request) => {
},
);
} catch (err) {
console.error('An error ocurred while fetching models', err);
console.error('An error occurred while fetching models', err);
return Response.json(
{
message: 'An error has occurred.',

View File

@ -33,6 +33,8 @@ interface ChatRequestBody {
embeddingModel?: embeddingModel;
query: string;
history: Array<[string, string]>;
stream?: boolean;
systemInstructions?: string;
}
export const POST = async (req: Request) => {
@ -48,6 +50,7 @@ export const POST = async (req: Request) => {
body.history = body.history || [];
body.optimizationMode = body.optimizationMode || 'balanced';
body.stream = body.stream || false;
const history: BaseMessage[] = body.history.map((msg) => {
return msg[0] === 'human'
@ -123,42 +126,140 @@ export const POST = async (req: Request) => {
embeddings,
body.optimizationMode,
[],
body.systemInstructions || '',
);
return new Promise(
(
resolve: (value: Response) => void,
reject: (value: Response) => void,
) => {
let message = '';
if (!body.stream) {
return new Promise(
(
resolve: (value: Response) => void,
reject: (value: Response) => void,
) => {
let message = '';
let sources: any[] = [];
emitter.on('data', (data: string) => {
try {
const parsedData = JSON.parse(data);
if (parsedData.type === 'response') {
message += parsedData.data;
} else if (parsedData.type === 'sources') {
sources = parsedData.data;
}
} catch (error) {
reject(
Response.json(
{ message: 'Error parsing data' },
{ status: 500 },
),
);
}
});
emitter.on('end', () => {
resolve(Response.json({ message, sources }, { status: 200 }));
});
emitter.on('error', (error: any) => {
reject(
Response.json(
{ message: 'Search error', error },
{ status: 500 },
),
);
});
},
);
}
const encoder = new TextEncoder();
const abortController = new AbortController();
const { signal } = abortController;
const stream = new ReadableStream({
start(controller) {
let sources: any[] = [];
emitter.on('data', (data) => {
controller.enqueue(
encoder.encode(
JSON.stringify({
type: 'init',
data: 'Stream connected',
}) + '\n',
),
);
signal.addEventListener('abort', () => {
emitter.removeAllListeners();
try {
controller.close();
} catch (error) {}
});
emitter.on('data', (data: string) => {
if (signal.aborted) return;
try {
const parsedData = JSON.parse(data);
if (parsedData.type === 'response') {
message += parsedData.data;
controller.enqueue(
encoder.encode(
JSON.stringify({
type: 'response',
data: parsedData.data,
}) + '\n',
),
);
} else if (parsedData.type === 'sources') {
sources = parsedData.data;
controller.enqueue(
encoder.encode(
JSON.stringify({
type: 'sources',
data: sources,
}) + '\n',
),
);
}
} catch (error) {
reject(
Response.json({ message: 'Error parsing data' }, { status: 500 }),
);
controller.error(error);
}
});
emitter.on('end', () => {
resolve(Response.json({ message, sources }, { status: 200 }));
if (signal.aborted) return;
controller.enqueue(
encoder.encode(
JSON.stringify({
type: 'done',
}) + '\n',
),
);
controller.close();
});
emitter.on('error', (error) => {
reject(
Response.json({ message: 'Search error', error }, { status: 500 }),
);
emitter.on('error', (error: any) => {
if (signal.aborted) return;
controller.error(error);
});
},
);
cancel() {
abortController.abort();
},
});
return new Response(stream, {
headers: {
'Content-Type': 'text/event-stream',
'Cache-Control': 'no-cache, no-transform',
Connection: 'keep-alive',
},
});
} catch (err: any) {
console.error(`Error in getting search results: ${err.message}`);
return Response.json(

View File

@ -72,9 +72,9 @@ export const POST = async (req: Request) => {
return Response.json({ suggestions }, { status: 200 });
} catch (err) {
console.error(`An error ocurred while generating suggestions: ${err}`);
console.error(`An error occurred while generating suggestions: ${err}`);
return Response.json(
{ message: 'An error ocurred while generating suggestions' },
{ message: 'An error occurred while generating suggestions' },
{ status: 500 },
);
}

View File

@ -74,9 +74,9 @@ export const POST = async (req: Request) => {
return Response.json({ videos }, { status: 200 });
} catch (err) {
console.error(`An error ocurred while searching videos: ${err}`);
console.error(`An error occurred while searching videos: ${err}`);
return Response.json(
{ message: 'An error ocurred while searching videos' },
{ message: 'An error occurred while searching videos' },
{ status: 500 },
);
}

View File

@ -20,6 +20,7 @@ interface SettingsType {
anthropicApiKey: string;
geminiApiKey: string;
ollamaApiUrl: string;
deepseekApiKey: string;
customOpenaiApiKey: string;
customOpenaiApiUrl: string;
customOpenaiModelName: string;
@ -54,6 +55,38 @@ const Input = ({ className, isSaving, onSave, ...restProps }: InputProps) => {
);
};
interface TextareaProps extends React.InputHTMLAttributes<HTMLTextAreaElement> {
isSaving?: boolean;
onSave?: (value: string) => void;
}
const Textarea = ({
className,
isSaving,
onSave,
...restProps
}: TextareaProps) => {
return (
<div className="relative">
<textarea
placeholder="Any special instructions for the LLM"
className="placeholder:text-sm text-sm w-full flex items-center justify-between p-3 bg-light-secondary dark:bg-dark-secondary rounded-lg hover:bg-light-200 dark:hover:bg-dark-200 transition-colors"
rows={4}
onBlur={(e) => onSave?.(e.target.value)}
{...restProps}
/>
{isSaving && (
<div className="absolute right-3 top-3">
<Loader2
size={16}
className="animate-spin text-black/70 dark:text-white/70"
/>
</div>
)}
</div>
);
};
const Select = ({
className,
options,
@ -111,6 +144,7 @@ const Page = () => {
const [isLoading, setIsLoading] = useState(false);
const [automaticImageSearch, setAutomaticImageSearch] = useState(false);
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
const [systemInstructions, setSystemInstructions] = useState<string>('');
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
useEffect(() => {
@ -172,6 +206,8 @@ const Page = () => {
localStorage.getItem('autoVideoSearch') === 'true',
);
setSystemInstructions(localStorage.getItem('systemInstructions')!);
setIsLoading(false);
};
@ -328,6 +364,8 @@ const Page = () => {
localStorage.setItem('embeddingModelProvider', value);
} else if (key === 'embeddingModel') {
localStorage.setItem('embeddingModel', value);
} else if (key === 'systemInstructions') {
localStorage.setItem('systemInstructions', value);
}
} catch (err) {
console.error('Failed to save:', err);
@ -473,6 +511,19 @@ const Page = () => {
</div>
</SettingsSection>
<SettingsSection title="System Instructions">
<div className="flex flex-col space-y-4">
<Textarea
value={systemInstructions}
isSaving={savingStates['systemInstructions']}
onChange={(e) => {
setSystemInstructions(e.target.value);
}}
onSave={(value) => saveConfig('systemInstructions', value)}
/>
</div>
</SettingsSection>
<SettingsSection title="Model Settings">
{config.chatModelProviders && (
<div className="flex flex-col space-y-4">
@ -788,6 +839,25 @@ const Page = () => {
onSave={(value) => saveConfig('geminiApiKey', value)}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Deepseek API Key
</p>
<Input
type="text"
placeholder="Deepseek API Key"
value={config.deepseekApiKey}
isSaving={savingStates['deepseekApiKey']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
deepseekApiKey: e.target.value,
}));
}}
onSave={(value) => saveConfig('deepseekApiKey', value)}
/>
</div>
</div>
</SettingsSection>
</div>

View File

@ -363,20 +363,18 @@ const ChatWindow = ({ id }: { id?: string }) => {
if (data.type === 'sources') {
sources = data.data;
if (!added) {
setMessages((prevMessages) => [
...prevMessages,
{
content: '',
messageId: data.messageId,
chatId: chatId!,
role: 'assistant',
sources: sources,
createdAt: new Date(),
},
]);
added = true;
}
setMessages((prevMessages) => [
...prevMessages,
{
content: '',
messageId: data.messageId,
chatId: chatId!,
role: 'assistant',
sources: sources,
createdAt: new Date(),
},
]);
added = true;
setMessageAppeared(true);
}
@ -394,20 +392,20 @@ const ChatWindow = ({ id }: { id?: string }) => {
},
]);
added = true;
setMessageAppeared(true);
} else {
setMessages((prev) =>
prev.map((message) => {
if (message.messageId === data.messageId) {
return { ...message, content: message.content + data.data };
}
return message;
}),
);
}
setMessages((prev) =>
prev.map((message) => {
if (message.messageId === data.messageId) {
return { ...message, content: message.content + data.data };
}
return message;
}),
);
recievedMessage += data.data;
setMessageAppeared(true);
}
if (data.type === 'messageEnd') {
@ -480,6 +478,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
name: embeddingModelProvider.name,
provider: embeddingModelProvider.provider,
},
systemInstructions: localStorage.getItem('systemInstructions'),
}),
});

View File

@ -48,6 +48,7 @@ const MessageBox = ({
const [speechMessage, setSpeechMessage] = useState(message.content);
useEffect(() => {
const citationRegex = /\[([^\]]+)\]/g;
const regex = /\[(\d+)\]/g;
let processedMessage = message.content;
@ -67,11 +68,33 @@ const MessageBox = ({
) {
setParsedMessage(
processedMessage.replace(
regex,
(_, number) =>
`<a href="${
message.sources?.[number - 1]?.metadata?.url
}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${number}</a>`,
citationRegex,
(_, capturedContent: string) => {
const numbers = capturedContent
.split(',')
.map((numStr) => numStr.trim());
const linksHtml = numbers
.map((numStr) => {
const number = parseInt(numStr);
if (isNaN(number) || number <= 0) {
return `[${numStr}]`;
}
const source = message.sources?.[number - 1];
const url = source?.metadata?.url;
if (url) {
return `<a href="${url}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${numStr}</a>`;
} else {
return `[${numStr}]`;
}
})
.join('');
return linksHtml;
},
),
);
return;

View File

@ -76,13 +76,11 @@ const Optimization = ({
<PopoverButton
onClick={() => setOptimizationMode(mode.key)}
key={i}
disabled={mode.key === 'quality'}
className={cn(
'p-2 rounded-lg flex flex-col items-start justify-start text-start space-y-1 duration-200 cursor-pointer transition',
optimizationMode === mode.key
? 'bg-light-secondary dark:bg-dark-secondary'
: 'hover:bg-light-secondary dark:hover:bg-dark-secondary',
mode.key === 'quality' && 'opacity-50 cursor-not-allowed',
)}
>
<div className="flex flex-row items-center space-x-1 text-black dark:text-white">

View File

@ -25,6 +25,9 @@ interface Config {
OLLAMA: {
API_URL: string;
};
DEEPSEEK: {
API_KEY: string;
};
CUSTOM_OPENAI: {
API_URL: string;
API_KEY: string;
@ -63,6 +66,8 @@ export const getSearxngApiEndpoint = () =>
export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL;
export const getDeepseekApiKey = () => loadConfig().MODELS.DEEPSEEK.API_KEY;
export const getCustomOpenaiApiKey = () =>
loadConfig().MODELS.CUSTOM_OPENAI.API_KEY;

View File

@ -51,6 +51,10 @@ export const academicSearchResponsePrompt = `
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Academic', this means you will be searching for academic papers and articles on the web.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.

View File

@ -51,6 +51,10 @@ export const redditSearchResponsePrompt = `
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Reddit', this means you will be searching for information, opinions and discussions on the web using Reddit.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.

View File

@ -1,6 +1,6 @@
export const webSearchRetrieverPrompt = `
You are an AI question rephraser. You will be given a conversation and a follow-up question, you will have to rephrase the follow up question so it is a standalone question and can be used by another LLM to search the web for information to answer it.
If it is a smple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
If it is a simple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block.
You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response.
@ -92,6 +92,10 @@ export const webSearchResponsePrompt = `
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.

View File

@ -51,6 +51,10 @@ export const wolframAlphaSearchResponsePrompt = `
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Wolfram Alpha', this means you will be searching for information on the web using Wolfram Alpha. It is a computational knowledge engine that can answer factual queries and perform computations.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.

View File

@ -7,6 +7,10 @@ You have to cite the answer using [number] notation. You must cite the sentences
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
<context>
{context}
</context>

View File

@ -51,6 +51,10 @@ export const youtubeSearchResponsePrompt = `
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Youtube', this means you will be searching for videos on the web using Youtube and providing information based on the video's transcrip
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.

View File

@ -1,4 +1,4 @@
import { ChatOpenAI } from '@langchain/openai';
import { ChatAnthropic } from '@langchain/anthropic';
import { ChatModel } from '.';
import { getAnthropicApiKey } from '../config';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
@ -45,13 +45,10 @@ export const loadAnthropicChatModels = async () => {
anthropicChatModels.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatOpenAI({
openAIApiKey: anthropicApiKey,
model: new ChatAnthropic({
apiKey: anthropicApiKey,
modelName: model.key,
temperature: 0.7,
configuration: {
baseURL: 'https://api.anthropic.com/v1/',
},
}) as unknown as BaseChatModel,
};
});

View File

@ -0,0 +1,44 @@
import { ChatOpenAI } from '@langchain/openai';
import { getDeepseekApiKey } from '../config';
import { ChatModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const deepseekChatModels: Record<string, string>[] = [
{
displayName: 'Deepseek Chat (Deepseek V3)',
key: 'deepseek-chat',
},
{
displayName: 'Deepseek Reasoner (Deepseek R1)',
key: 'deepseek-reasoner',
},
];
export const loadDeepseekChatModels = async () => {
const deepseekApiKey = getDeepseekApiKey();
if (!deepseekApiKey) return {};
try {
const chatModels: Record<string, ChatModel> = {};
deepseekChatModels.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatOpenAI({
openAIApiKey: deepseekApiKey,
modelName: model.key,
temperature: 0.7,
configuration: {
baseURL: 'https://api.deepseek.com',
},
}) as unknown as BaseChatModel,
};
});
return chatModels;
} catch (err) {
console.error(`Error loading Deepseek models: ${err}`);
return {};
}
};

View File

@ -1,10 +1,17 @@
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
import {
ChatGoogleGenerativeAI,
GoogleGenerativeAIEmbeddings,
} from '@langchain/google-genai';
import { getGeminiApiKey } from '../config';
import { ChatModel, EmbeddingModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { Embeddings } from '@langchain/core/embeddings';
const geminiChatModels: Record<string, string>[] = [
{
displayName: 'Gemini 2.5 Pro Experimental',
key: 'gemini-2.5-pro-exp-03-25',
},
{
displayName: 'Gemini 2.0 Flash',
key: 'gemini-2.0-flash',
@ -14,8 +21,8 @@ const geminiChatModels: Record<string, string>[] = [
key: 'gemini-2.0-flash-lite',
},
{
displayName: 'Gemini 2.0 Pro Experimental',
key: 'gemini-2.0-pro-exp-02-05',
displayName: 'Gemini 2.0 Flash Thinking Experimental',
key: 'gemini-2.0-flash-thinking-exp-01-21',
},
{
displayName: 'Gemini 1.5 Flash',
@ -33,8 +40,12 @@ const geminiChatModels: Record<string, string>[] = [
const geminiEmbeddingModels: Record<string, string>[] = [
{
displayName: 'Gemini Embedding',
key: 'gemini-embedding-exp',
displayName: 'Text Embedding 004',
key: 'models/text-embedding-004',
},
{
displayName: 'Embedding 001',
key: 'models/embedding-001',
},
];
@ -49,13 +60,10 @@ export const loadGeminiChatModels = async () => {
geminiChatModels.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatOpenAI({
openAIApiKey: geminiApiKey,
model: new ChatGoogleGenerativeAI({
apiKey: geminiApiKey,
modelName: model.key,
temperature: 0.7,
configuration: {
baseURL: 'https://generativelanguage.googleapis.com/v1beta/openai/',
},
}) as unknown as BaseChatModel,
};
});
@ -78,12 +86,9 @@ export const loadGeminiEmbeddingModels = async () => {
geminiEmbeddingModels.forEach((model) => {
embeddingModels[model.key] = {
displayName: model.displayName,
model: new OpenAIEmbeddings({
openAIApiKey: geminiApiKey,
model: new GoogleGenerativeAIEmbeddings({
apiKey: geminiApiKey,
modelName: model.key,
configuration: {
baseURL: 'https://generativelanguage.googleapis.com/v1beta/openai/',
},
}) as unknown as Embeddings,
};
});

View File

@ -72,6 +72,14 @@ const groqChatModels: Record<string, string>[] = [
displayName: 'Llama 3.2 90B Vision Preview (Preview)',
key: 'llama-3.2-90b-vision-preview',
},
/* {
displayName: 'Llama 4 Maverick 17B 128E Instruct (Preview)',
key: 'meta-llama/llama-4-maverick-17b-128e-instruct',
}, */
{
displayName: 'Llama 4 Scout 17B 16E Instruct (Preview)',
key: 'meta-llama/llama-4-scout-17b-16e-instruct',
},
];
export const loadGroqChatModels = async () => {

View File

@ -12,6 +12,7 @@ import { loadGroqChatModels } from './groq';
import { loadAnthropicChatModels } from './anthropic';
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini';
import { loadTransformersEmbeddingsModels } from './transformers';
import { loadDeepseekChatModels } from './deepseek';
export interface ChatModel {
displayName: string;
@ -32,6 +33,7 @@ export const chatModelProviders: Record<
groq: loadGroqChatModels,
anthropic: loadAnthropicChatModels,
gemini: loadGeminiChatModels,
deepseek: loadDeepseekChatModels,
};
export const embeddingModelProviders: Record<

View File

@ -6,24 +6,20 @@ import {
MessagesPlaceholder,
PromptTemplate,
} from '@langchain/core/prompts';
import {
RunnableLambda,
RunnableMap,
RunnableSequence,
} from '@langchain/core/runnables';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import LineListOutputParser from '../outputParsers/listLineOutputParser';
import LineOutputParser from '../outputParsers/lineOutputParser';
import { getDocumentsFromLinks } from '../utils/documents';
import { Document } from 'langchain/document';
import { searchSearxng } from '../searxng';
import { searchSearxng, SearxngSearchResult } from '../searxng';
import path from 'node:path';
import fs from 'node:fs';
import computeSimilarity from '../utils/computeSimilarity';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import { StreamEvent } from '@langchain/core/tracers/log_stream';
import { EventEmitter } from 'node:stream';
export interface MetaSearchAgentType {
searchAndAnswer: (
@ -33,6 +29,7 @@ export interface MetaSearchAgentType {
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
fileIds: string[],
systemInstructions: string,
) => Promise<eventEmitter>;
}
@ -46,7 +43,7 @@ interface Config {
activeEngines: string[];
}
type BasicChainInput = {
type SearchInput = {
chat_history: BaseMessage[];
query: string;
};
@ -59,235 +56,385 @@ class MetaSearchAgent implements MetaSearchAgentType {
this.config = config;
}
private async createSearchRetrieverChain(llm: BaseChatModel) {
private async searchSources(
llm: BaseChatModel,
input: SearchInput,
emitter: EventEmitter,
) {
(llm as unknown as ChatOpenAI).temperature = 0;
return RunnableSequence.from([
PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt),
llm,
this.strParser,
RunnableLambda.from(async (input: string) => {
const linksOutputParser = new LineListOutputParser({
key: 'links',
});
const chatPrompt = PromptTemplate.fromTemplate(
this.config.queryGeneratorPrompt,
);
const questionOutputParser = new LineOutputParser({
key: 'question',
});
const processedChatPrompt = await chatPrompt.invoke({
chat_history: formatChatHistoryAsString(input.chat_history),
query: input.query,
});
const links = await linksOutputParser.parse(input);
let question = this.config.summarizer
? await questionOutputParser.parse(input)
: input;
const llmRes = await llm.invoke(processedChatPrompt);
const messageStr = await this.strParser.invoke(llmRes);
if (question === 'not_needed') {
return { query: '', docs: [] };
const linksOutputParser = new LineListOutputParser({
key: 'links',
});
const questionOutputParser = new LineOutputParser({
key: 'question',
});
const links = await linksOutputParser.parse(messageStr);
let question = this.config.summarizer
? await questionOutputParser.parse(messageStr)
: messageStr;
if (question === 'not_needed') {
return { query: '', docs: [] };
}
if (links.length > 0) {
if (question.length === 0) {
question = 'summarize';
}
let docs: Document[] = [];
const linkDocs = await getDocumentsFromLinks({ links });
const docGroups: Document[] = [];
linkDocs.map((doc) => {
const URLDocExists = docGroups.find(
(d) =>
d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10,
);
if (!URLDocExists) {
docGroups.push({
...doc,
metadata: {
...doc.metadata,
totalDocs: 1,
},
});
}
if (links.length > 0) {
if (question.length === 0) {
question = 'summarize';
}
const docIndex = docGroups.findIndex(
(d) =>
d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10,
);
let docs: Document[] = [];
const linkDocs = await getDocumentsFromLinks({ links });
const docGroups: Document[] = [];
linkDocs.map((doc) => {
const URLDocExists = docGroups.find(
(d) =>
d.metadata.url === doc.metadata.url &&
d.metadata.totalDocs < 10,
);
if (!URLDocExists) {
docGroups.push({
...doc,
metadata: {
...doc.metadata,
totalDocs: 1,
},
});
}
const docIndex = docGroups.findIndex(
(d) =>
d.metadata.url === doc.metadata.url &&
d.metadata.totalDocs < 10,
);
if (docIndex !== -1) {
docGroups[docIndex].pageContent =
docGroups[docIndex].pageContent + `\n\n` + doc.pageContent;
docGroups[docIndex].metadata.totalDocs += 1;
}
});
await Promise.all(
docGroups.map(async (doc) => {
const res = await llm.invoke(`
You are a web search summarizer, tasked with summarizing a piece of text retrieved from a web search. Your job is to summarize the
text into a detailed, 2-4 paragraph explanation that captures the main ideas and provides a comprehensive answer to the query.
If the query is \"summarize\", you should provide a detailed summary of the text. If the query is a specific question, you should answer it in the summary.
- **Journalistic tone**: The summary should sound professional and journalistic, not too casual or vague.
- **Thorough and detailed**: Ensure that every key point from the text is captured and that the summary directly answers the query.
- **Not too lengthy, but detailed**: The summary should be informative but not excessively long. Focus on providing detailed information in a concise format.
The text will be shared inside the \`text\` XML tag, and the query inside the \`query\` XML tag.
<example>
1. \`<text>
Docker is a set of platform-as-a-service products that use OS-level virtualization to deliver software in packages called containers.
It was first released in 2013 and is developed by Docker, Inc. Docker is designed to make it easier to create, deploy, and run applications
by using containers.
</text>
<query>
What is Docker and how does it work?
</query>
Response:
Docker is a revolutionary platform-as-a-service product developed by Docker, Inc., that uses container technology to make application
deployment more efficient. It allows developers to package their software with all necessary dependencies, making it easier to run in
any environment. Released in 2013, Docker has transformed the way applications are built, deployed, and managed.
\`
2. \`<text>
The theory of relativity, or simply relativity, encompasses two interrelated theories of Albert Einstein: special relativity and general
relativity. However, the word "relativity" is sometimes used in reference to Galilean invariance. The term "theory of relativity" was based
on the expression "relative theory" used by Max Planck in 1906. The theory of relativity usually encompasses two interrelated theories by
Albert Einstein: special relativity and general relativity. Special relativity applies to all physical phenomena in the absence of gravity.
General relativity explains the law of gravitation and its relation to other forces of nature. It applies to the cosmological and astrophysical
realm, including astronomy.
</text>
<query>
summarize
</query>
Response:
The theory of relativity, developed by Albert Einstein, encompasses two main theories: special relativity and general relativity. Special
relativity applies to all physical phenomena in the absence of gravity, while general relativity explains the law of gravitation and its
relation to other forces of nature. The theory of relativity is based on the concept of "relative theory," as introduced by Max Planck in
1906. It is a fundamental theory in physics that has revolutionized our understanding of the universe.
\`
</example>
Everything below is the actual data you will be working with. Good luck!
<query>
${question}
</query>
<text>
${doc.pageContent}
</text>
Make sure to answer the query in the summary.
`);
const document = new Document({
pageContent: res.content as string,
metadata: {
title: doc.metadata.title,
url: doc.metadata.url,
},
});
docs.push(document);
}),
);
return { query: question, docs: docs };
} else {
question = question.replace(/<think>.*?<\/think>/g, '');
const res = await searchSearxng(question, {
language: 'en',
engines: this.config.activeEngines,
});
const documents = res.results.map(
(result) =>
new Document({
pageContent:
result.content ||
(this.config.activeEngines.includes('youtube')
? result.title
: '') /* Todo: Implement transcript grabbing using Youtubei (source: https://www.npmjs.com/package/youtubei) */,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: question, docs: documents };
if (docIndex !== -1) {
docGroups[docIndex].pageContent =
docGroups[docIndex].pageContent + `\n\n` + doc.pageContent;
docGroups[docIndex].metadata.totalDocs += 1;
}
}),
]);
});
await Promise.all(
docGroups.map(async (doc) => {
const res = await llm.invoke(`
You are a web search summarizer, tasked with summarizing a piece of text retrieved from a web search. Your job is to summarize the
text into a detailed, 2-4 paragraph explanation that captures the main ideas and provides a comprehensive answer to the query.
If the query is \"summarize\", you should provide a detailed summary of the text. If the query is a specific question, you should answer it in the summary.
- **Journalistic tone**: The summary should sound professional and journalistic, not too casual or vague.
- **Thorough and detailed**: Ensure that every key point from the text is captured and that the summary directly answers the query.
- **Not too lengthy, but detailed**: The summary should be informative but not excessively long. Focus on providing detailed information in a concise format.
The text will be shared inside the \`text\` XML tag, and the query inside the \`query\` XML tag.
<example>
1. \`<text>
Docker is a set of platform-as-a-service products that use OS-level virtualization to deliver software in packages called containers.
It was first released in 2013 and is developed by Docker, Inc. Docker is designed to make it easier to create, deploy, and run applications
by using containers.
</text>
<query>
What is Docker and how does it work?
</query>
Response:
Docker is a revolutionary platform-as-a-service product developed by Docker, Inc., that uses container technology to make application
deployment more efficient. It allows developers to package their software with all necessary dependencies, making it easier to run in
any environment. Released in 2013, Docker has transformed the way applications are built, deployed, and managed.
\`
2. \`<text>
The theory of relativity, or simply relativity, encompasses two interrelated theories of Albert Einstein: special relativity and general
relativity. However, the word "relativity" is sometimes used in reference to Galilean invariance. The term "theory of relativity" was based
on the expression "relative theory" used by Max Planck in 1906. The theory of relativity usually encompasses two interrelated theories by
Albert Einstein: special relativity and general relativity. Special relativity applies to all physical phenomena in the absence of gravity.
General relativity explains the law of gravitation and its relation to other forces of nature. It applies to the cosmological and astrophysical
realm, including astronomy.
</text>
<query>
summarize
</query>
Response:
The theory of relativity, developed by Albert Einstein, encompasses two main theories: special relativity and general relativity. Special
relativity applies to all physical phenomena in the absence of gravity, while general relativity explains the law of gravitation and its
relation to other forces of nature. The theory of relativity is based on the concept of "relative theory," as introduced by Max Planck in
1906. It is a fundamental theory in physics that has revolutionized our understanding of the universe.
\`
</example>
Everything below is the actual data you will be working with. Good luck!
<query>
${question}
</query>
<text>
${doc.pageContent}
</text>
Make sure to answer the query in the summary.
`);
const document = new Document({
pageContent: res.content as string,
metadata: {
title: doc.metadata.title,
url: doc.metadata.url,
},
});
docs.push(document);
}),
);
return { query: question, docs: docs };
} else {
question = question.replace(/<think>.*?<\/think>/g, '');
const res = await searchSearxng(question, {
language: 'en',
engines: this.config.activeEngines,
});
const documents = res.results.map(
(result) =>
new Document({
pageContent:
result.content ||
(this.config.activeEngines.includes('youtube')
? result.title
: '') /* Todo: Implement transcript grabbing using Youtubei (source: https://www.npmjs.com/package/youtubei) */,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: question, docs: documents };
}
}
private async createAnsweringChain(
private async performDeepResearch(
llm: BaseChatModel,
input: SearchInput,
emitter: EventEmitter,
) {
(llm as unknown as ChatOpenAI).temperature = 0;
const queryGenPrompt = PromptTemplate.fromTemplate(
this.config.queryGeneratorPrompt,
);
const formattedChatPrompt = await queryGenPrompt.invoke({
chat_history: formatChatHistoryAsString(input.chat_history),
query: input.query,
});
let i = 0;
let currentQuery = await this.strParser.invoke(
await llm.invoke(formattedChatPrompt),
);
const originalQuery = currentQuery;
const pastQueries: string[] = [];
const results: SearxngSearchResult[] = [];
while (i < 10) {
const res = await searchSearxng(currentQuery, {
language: 'en',
engines: this.config.activeEngines,
});
results.push(...res.results);
const reflectorPrompt = PromptTemplate.fromTemplate(`
You are an LLM that is tasked with reflecting on the results of a search query.
## Goal
You will be given question of the user, a list of search results collected from the web to answer that question along with past queries made to collect those results. You have to analyze the results based on user's question and do the following:
1. Identify unexplored areas or areas with less detailed information in the results and generate a new query that focuses on those areas. The new queries should be more specific and a similar query shall not exist in past queries which will be provided to you. Make sure to include keywords that you're looking for because the new query will be used to search the web for information on that topic. Make sure the query contains only 1 question and is not too long to ensure it is Search Engine friendly.
2. You'll have to generate a description explaining what you are doing for example "I am looking for more information about X" or "Understanding how X works" etc. The description should be short and concise.
## Output format
You need to output in XML format and do not generate any other text. ake sure to not include any other text in the output or start a conversation in the output. The output should be in the following format:
<query>(query)</query>
<description>(description)</description>
## Example
Say the user asked "What is Llama 4 by Meta?" and let search results contain information about Llama 4 being an LLM and very little information about its features. You can output:
<query>Llama 4 features</query> // Generate queries that capture keywords for SEO and not making words like "How", "What", "Why" etc.
<description>Looking for new features in Llama 4</description>
or something like
<query>How is Llama 4 better than its previous generation models</query>
<description>Understanding the difference between Llama 4 and previous generation models.</description>
## BELOW IS THE ACTUAL DATA YOU WILL BE WORKING WITH. IT IS NOT A PART OF EXAMPLES. YOU'LL HAVE TO GENERATE YOUR ANSWER BASED ON THIS DATA.
<user_question>\n{question}\n</user_question>
<search_results>\n{search_results}\n</search_results>
<past_queries>\n{past_queries}\n</past_queries>
Response:
`);
const formattedReflectorPrompt = await reflectorPrompt.invoke({
question: originalQuery,
search_results: results
.map(
(result) => `<result>${result.title} - ${result.content}</result>`,
)
.join('\n'),
past_queries: pastQueries.map((q) => `<query>${q}</query>`).join('\n'),
});
const feedback = await this.strParser.invoke(
await llm.invoke(formattedReflectorPrompt),
);
console.log(`Feedback: ${feedback}`);
const queryOutputParser = new LineOutputParser({
key: 'query',
});
const descriptionOutputParser = new LineOutputParser({
key: 'description',
});
currentQuery = await queryOutputParser.parse(feedback);
const description = await descriptionOutputParser.parse(feedback);
console.log(`Query: ${currentQuery}`);
console.log(`Description: ${description}`);
pastQueries.push(currentQuery);
++i;
}
const uniqueResults: SearxngSearchResult[] = [];
results.forEach((res) => {
const exists = uniqueResults.find((r) => r.url === res.url);
if (!exists) {
uniqueResults.push(res);
} else {
exists.content += `\n\n` + res.content;
}
});
const documents = uniqueResults /* .slice(0, 50) */
.map(
(r) =>
new Document({
pageContent: r.content || '',
metadata: {
title: r.title,
url: r.url,
...(r.img_src && { img_src: r.img_src }),
},
}),
);
return documents;
}
private async streamAnswer(
llm: BaseChatModel,
fileIds: string[],
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
systemInstructions: string,
input: SearchInput,
emitter: EventEmitter,
) {
return RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
date: () => new Date().toISOString(),
context: RunnableLambda.from(async (input: BasicChainInput) => {
const processedHistory = formatChatHistoryAsString(
input.chat_history,
);
const chatPrompt = ChatPromptTemplate.fromMessages([
['system', this.config.responsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]);
let docs: Document[] | null = null;
let query = input.query;
let context = '';
if (this.config.searchWeb) {
const searchRetrieverChain =
await this.createSearchRetrieverChain(llm);
if (optimizationMode === 'speed' || optimizationMode === 'balanced') {
let docs: Document[] | null = null;
let query = input.query;
const searchRetrieverResult = await searchRetrieverChain.invoke({
chat_history: processedHistory,
query,
});
if (this.config.searchWeb) {
const searchResults = await this.searchSources(llm, input, emitter);
query = searchRetrieverResult.query;
docs = searchRetrieverResult.docs;
}
query = searchResults.query;
docs = searchResults.docs;
}
const sortedDocs = await this.rerankDocs(
query,
docs ?? [],
fileIds,
embeddings,
optimizationMode,
);
const sortedDocs = await this.rerankDocs(
query,
docs ?? [],
fileIds,
embeddings,
optimizationMode,
);
return sortedDocs;
})
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(this.processDocs),
}),
ChatPromptTemplate.fromMessages([
['system', this.config.responsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
llm,
this.strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
emitter.emit(
'data',
JSON.stringify({ type: 'sources', data: sortedDocs }),
);
context = this.processDocs(sortedDocs);
} else if (optimizationMode === 'quality') {
let docs: Document[] = [];
docs = await this.performDeepResearch(llm, input, emitter);
emitter.emit('data', JSON.stringify({ type: 'sources', data: docs }));
context = this.processDocs(docs);
}
const formattedChatPrompt = await chatPrompt.invoke({
query: input.query,
chat_history: input.chat_history,
date: new Date().toISOString(),
context: context,
systemInstructions: systemInstructions,
});
const llmRes = await llm.stream(formattedChatPrompt);
for await (const data of llmRes) {
const messageStr = await this.strParser.invoke(data);
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: messageStr }),
);
}
emitter.emit('end');
}
private async rerankDocs(
@ -423,44 +570,13 @@ class MetaSearchAgent implements MetaSearchAgentType {
return docs
.map(
(_, index) =>
`${index + 1}. ${docs[index].metadata.title} ${docs[index].pageContent}`,
`${index + 1}. ${docs[index].metadata.title} ${
docs[index].pageContent
}`,
)
.join('\n');
}
private async handleStream(
stream: AsyncGenerator<StreamEvent, any, any>,
emitter: eventEmitter,
) {
for await (const event of stream) {
if (
event.event === 'on_chain_end' &&
event.name === 'FinalSourceRetriever'
) {
``;
emitter.emit(
'data',
JSON.stringify({ type: 'sources', data: event.data.output }),
);
}
if (
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
);
}
if (
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit('end');
}
}
}
async searchAndAnswer(
message: string,
history: BaseMessage[],
@ -468,28 +584,23 @@ class MetaSearchAgent implements MetaSearchAgentType {
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
fileIds: string[],
systemInstructions: string,
) {
const emitter = new eventEmitter();
const answeringChain = await this.createAnsweringChain(
this.streamAnswer(
llm,
fileIds,
embeddings,
optimizationMode,
);
const stream = answeringChain.streamEvents(
systemInstructions,
{
chat_history: history,
query: message,
},
{
version: 'v1',
},
emitter,
);
this.handleStream(stream, emitter);
return emitter;
}
}

View File

@ -8,7 +8,7 @@ interface SearxngSearchOptions {
pageno?: number;
}
interface SearxngSearchResult {
export interface SearxngSearchResult {
title: string;
url: string;
img_src?: string;

View File

@ -12,6 +12,19 @@
resolved "https://registry.yarnpkg.com/@alloc/quick-lru/-/quick-lru-5.2.0.tgz#7bf68b20c0a350f936915fcae06f58e32007ce30"
integrity sha512-UrcABB+4bUrFABwbluTIBErXwvbsU/V7TZWfmbgJfbkwiBuziS9gxdODUyuiecfdGQ85jglMW6juS3+z5TsKLw==
"@anthropic-ai/sdk@^0.37.0":
version "0.37.0"
resolved "https://registry.yarnpkg.com/@anthropic-ai/sdk/-/sdk-0.37.0.tgz#0018127404ecb9b8a12968068e0c4b3e8bbd6386"
integrity sha512-tHjX2YbkUBwEgg0JZU3EFSSAQPoK4qQR/NFYa8Vtzd5UAyXzZksCw2In69Rml4R/TyHPBfRYaLK35XiOe33pjw==
dependencies:
"@types/node" "^18.11.18"
"@types/node-fetch" "^2.6.4"
abort-controller "^3.0.0"
agentkeepalive "^4.2.1"
form-data-encoder "1.7.2"
formdata-node "^4.3.2"
node-fetch "^2.6.7"
"@anthropic-ai/sdk@^0.9.1":
version "0.9.1"
resolved "https://registry.yarnpkg.com/@anthropic-ai/sdk/-/sdk-0.9.1.tgz#b2d2b7bf05c90dce502c9a2e869066870f69ba88"
@ -374,6 +387,11 @@
resolved "https://registry.yarnpkg.com/@floating-ui/utils/-/utils-0.2.8.tgz#21a907684723bbbaa5f0974cf7730bd797eb8e62"
integrity sha512-kym7SodPp8/wloecOpcmSnWJsK7M0E5Wg8UcFA+uO4B9s5d0ywXOEro/8HM9x0rW+TljRzul/14UYz3TleT3ig==
"@google/generative-ai@^0.24.0":
version "0.24.0"
resolved "https://registry.yarnpkg.com/@google/generative-ai/-/generative-ai-0.24.0.tgz#4d27af7d944c924a27a593c17ad1336535d53846"
integrity sha512-fnEITCGEB7NdX0BhoYZ/cq/7WPZ1QS5IzJJfC3Tg/OwkvBetMiVJciyaan297OvE4B9Jg1xvo0zIazX/9sGu1Q==
"@headlessui/react@^2.2.0":
version "2.2.0"
resolved "https://registry.yarnpkg.com/@headlessui/react/-/react-2.2.0.tgz#a8e32f0899862849a1ce1615fa280e7891431ab7"
@ -575,6 +593,16 @@
"@jridgewell/resolve-uri" "^3.1.0"
"@jridgewell/sourcemap-codec" "^1.4.14"
"@langchain/anthropic@^0.3.15":
version "0.3.15"
resolved "https://registry.yarnpkg.com/@langchain/anthropic/-/anthropic-0.3.15.tgz#0244cdb345cb492eb40aedd681881ebadfbb73f2"
integrity sha512-Ar2viYcZ64idgV7EtCBCb36tIkNtPAhQRxSaMTWPHGspFgMfvwRoleVri9e90sCpjpS9xhlHsIQ0LlUS/Atsrw==
dependencies:
"@anthropic-ai/sdk" "^0.37.0"
fast-xml-parser "^4.4.1"
zod "^3.22.4"
zod-to-json-schema "^3.22.4"
"@langchain/community@^0.3.36":
version "0.3.36"
resolved "https://registry.yarnpkg.com/@langchain/community/-/community-0.3.36.tgz#e4c13b8f928b17e0f9257395f43be2246dfada40"
@ -640,6 +668,14 @@
zod "^3.22.4"
zod-to-json-schema "^3.22.3"
"@langchain/google-genai@^0.1.12":
version "0.1.12"
resolved "https://registry.yarnpkg.com/@langchain/google-genai/-/google-genai-0.1.12.tgz#6727253bda6f0d87cd74cf0bb6b1e0f398f60f32"
integrity sha512-0Ea0E2g63ejCuormVxbuoyJQ5BYN53i2/fb6WP8bMKzyh+y43R13V8JqOtr3e/GmgNyv3ou/VeaZjx7KAvu/0g==
dependencies:
"@google/generative-ai" "^0.24.0"
zod-to-json-schema "^3.22.4"
"@langchain/openai@>=0.1.0 <0.5.0", "@langchain/openai@>=0.2.0 <0.5.0":
version "0.4.5"
resolved "https://registry.yarnpkg.com/@langchain/openai/-/openai-0.4.5.tgz#d18e207c3ec3f2ecaa4698a5a5888092f643da52"
@ -2369,6 +2405,13 @@ fast-levenshtein@^2.0.6:
resolved "https://registry.yarnpkg.com/fast-levenshtein/-/fast-levenshtein-2.0.6.tgz#3d8a5c66883a16a30ca8643e851f19baa7797917"
integrity sha512-DCXu6Ifhqcks7TZKY3Hxp3y6qphY5SJZmrWMDrKcERSOXWQdMhU9Ig/PYrzyw/ul9jOIyh0N4M0tbC5hodg8dw==
fast-xml-parser@^4.4.1:
version "4.5.3"
resolved "https://registry.yarnpkg.com/fast-xml-parser/-/fast-xml-parser-4.5.3.tgz#c54d6b35aa0f23dc1ea60b6c884340c006dc6efb"
integrity sha512-RKihhV+SHsIUGXObeVy9AXiBbFwkVk7Syp8XgwN5U3JV416+Gwp/GO9i0JYKmikykgz/UHRrrV4ROuZEo/T0ig==
dependencies:
strnum "^1.1.1"
fastq@^1.6.0:
version "1.17.1"
resolved "https://registry.yarnpkg.com/fastq/-/fastq-1.17.1.tgz#2a523f07a4e7b1e81a42b91b8bf2254107753b47"
@ -4458,6 +4501,11 @@ strip-json-comments@~2.0.1:
resolved "https://registry.yarnpkg.com/strip-json-comments/-/strip-json-comments-2.0.1.tgz#3c531942e908c2697c0ec344858c286c7ca0a60a"
integrity sha512-4gB8na07fecVVkOI6Rs4e7T6NOTki5EmL7TUduTs6bu3EdnSycntVJ4re8kgZA+wx9IueI2Y11bfbgwtzuE0KQ==
strnum@^1.1.1:
version "1.1.2"
resolved "https://registry.yarnpkg.com/strnum/-/strnum-1.1.2.tgz#57bca4fbaa6f271081715dbc9ed7cee5493e28e4"
integrity sha512-vrN+B7DBIoTTZjnPNewwhx6cBA/H+IS7rfW68n7XxC1y7uoiGQBxaKzqucGUgavX15dJgiGztLJ8vxuEzwqBdA==
styled-jsx@5.1.6:
version "5.1.6"
resolved "https://registry.yarnpkg.com/styled-jsx/-/styled-jsx-5.1.6.tgz#83b90c077e6c6a80f7f5e8781d0f311b2fe41499"
@ -4955,6 +5003,11 @@ zod-to-json-schema@^3.22.3, zod-to-json-schema@^3.22.5:
resolved "https://registry.yarnpkg.com/zod-to-json-schema/-/zod-to-json-schema-3.22.5.tgz#3646e81cfc318dbad2a22519e5ce661615418673"
integrity sha512-+akaPo6a0zpVCCseDed504KBJUQpEW5QZw7RMneNmKw+fGaML1Z9tUNLnHHAC8x6dzVRO1eB2oEMyZRnuBZg7Q==
zod-to-json-schema@^3.22.4:
version "3.24.5"
resolved "https://registry.yarnpkg.com/zod-to-json-schema/-/zod-to-json-schema-3.24.5.tgz#d1095440b147fb7c2093812a53c54df8d5df50a3"
integrity sha512-/AuWwMP+YqiPbsJx5D6TfgRTc4kTLjsh5SOcd4bLsfUg2RcEXrFMJl1DGgdHy2aCfsIA/cr/1JM0xcB2GZji8g==
zod@^3.22.3, zod@^3.22.4:
version "3.22.4"
resolved "https://registry.yarnpkg.com/zod/-/zod-3.22.4.tgz#f31c3a9386f61b1f228af56faa9255e845cf3fff"