Compare commits

..

45 Commits

Author SHA1 Message Date
ItzCrazyKns
403d13eb50 feat(package): update scripts 2025-03-19 16:34:55 +05:30
ItzCrazyKns
217736d05a feat(app): remove backend 2025-03-19 16:23:27 +05:30
ItzCrazyKns
8a24572cd2 feat(app): add upload functionality 2025-03-19 15:32:32 +05:30
ItzCrazyKns
649c68f292 feat(ui): fix type errors 2025-03-19 13:42:28 +05:30
ItzCrazyKns
bab5dba6e1 feat(app): port history saving features 2025-03-19 13:42:15 +05:30
ItzCrazyKns
c24edac16d feat(app): add chat functionality 2025-03-19 13:41:52 +05:30
ItzCrazyKns
3150c21f17 feat(icons): fix type errors 2025-03-19 13:41:01 +05:30
ItzCrazyKns
c46fd7a9c8 feat(utils): add files utils, remove logger, fix API url 2025-03-19 13:40:35 +05:30
ItzCrazyKns
bab32e8d70 feat(app): add suggestions route 2025-03-19 13:40:10 +05:30
ItzCrazyKns
1130746f5d feat(app): add image & video search functionality 2025-03-19 13:38:40 +05:30
ItzCrazyKns
d1e9361665 feat(routes): add discover route 2025-03-19 13:37:54 +05:30
ItzCrazyKns
3bf2337697 feat(app): add db & schema 2025-03-19 13:37:01 +05:30
ItzCrazyKns
ee6e197ec0 feat(app): lint & beautify 2025-03-18 11:29:04 +05:30
ItzCrazyKns
32f26bb4e8 feat(app): add groq, gemini & anthropic provider 2025-03-18 11:28:47 +05:30
ItzCrazyKns
4cb20542a5 feat(config): update file path, add post endpoint 2025-03-18 10:33:32 +05:30
ItzCrazyKns
97f6196d9b feat(app): add GET config route 2025-03-18 10:25:09 +05:30
ItzCrazyKns
6c227cab6f feat(providers): move providers to UI 2025-03-18 10:24:51 +05:30
ItzCrazyKns
e9e34ddff9 feat(ui): add meta search agent 2025-03-18 10:24:33 +05:30
ItzCrazyKns
e29a08dc46 feat(ui): add necessary utils 2025-03-18 10:24:16 +05:30
ItzCrazyKns
5c313e9bed feat(ui): update packages, add config, add searxng 2025-03-18 10:23:59 +05:30
ItzCrazyKns
6b5bd9d79b feat(prompts): move to UI 2025-03-18 10:23:21 +05:30
ItzCrazyKns
64d2a467b0 Merge pull request #672 from sjiampojamarn/scrolling
Only set scrollIntoView for user msg.
2025-03-17 12:03:05 +05:30
sjiampojamarn
9a2c4fe3b6 Only set scrollIntoView for user msg. 2025-03-16 22:15:58 -07:00
ItzCrazyKns
060c68a900 feat(message-box): lint & beautify 2025-03-14 22:05:07 +05:30
ItzCrazyKns
e6b87f89ec feat(sample-config): add custom openai model name 2025-03-08 20:08:27 +05:30
ItzCrazyKns
89b5229ce9 Merge pull request #663 from ericdachen/master
Update Readme
2025-03-05 11:11:07 +05:30
ItzCrazyKns
7756340dd9 Update README.md 2025-03-05 11:09:19 +05:30
ItzCrazyKns
bbd2e9c359 feat(readme): update warp banner 2025-03-05 11:05:25 +05:30
ItzCrazyKns
a32eb1dda3 feat(readme): lint & beautify, update anchor URL 2025-03-05 10:55:02 +05:30
Eric Chen
aa834f7f04 Update README.md 2025-03-04 14:45:10 -05:00
Eric Chen
064c0fbe42 Update README.md 2025-03-04 12:16:10 -05:00
Eric Chen
bf4cf8eaeb Update README.md 2025-03-04 12:14:17 -05:00
ItzCrazyKns
a24992a3db Merge pull request #655 from ShortCipher5/patch-1
chore: Add Sealos 1-click deployment
2025-03-01 21:56:01 +05:30
ShortCipher5
d584067bb1 Update README.md 2025-02-27 23:26:45 -08:00
ItzCrazyKns
df4350f966 Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2025-02-26 10:40:34 +05:30
ItzCrazyKns
652ca2fdf4 Merge pull request #649 from QuietlyChan/fix/light-theme-ui-bug
fix(ui): improve dark mode text color for attachment buttons
2025-02-26 10:36:41 +05:30
QuietlyChan
216576128d fix(ui): update attachment text color for light and dark modes 2025-02-25 19:26:58 +08:00
QuietlyChan
bb3f180583 fix(ui): improve dark mode text color for attachment buttons 2025-02-25 17:26:33 +08:00
ItzCrazyKns
4d24d73161 Merge pull request #631 from user1007017/patch-1
Update README.md grammatical error
2025-02-20 10:37:33 +05:30
wellCh4n
2e166c217b fix(MessageBox): break too long message title 2025-02-19 10:34:51 +08:00
ItzCrazyKns
4c73caadf6 feat(custom-openai): save live changes 2025-02-17 16:24:41 +05:30
user1007017
5f0b87f4a9 Update README.md 2025-02-15 19:06:46 +01:00
ItzCrazyKns
115e6b2a71 Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2025-02-15 12:52:30 +05:30
ItzCrazyKns
a5c79c92ed feat(settings): add embedding provider settings 2025-02-15 12:52:27 +05:30
ItzCrazyKns
db3cea446e Update UPDATING.md 2025-02-15 12:33:43 +05:30
116 changed files with 4925 additions and 7124 deletions

6
.gitignore vendored
View File

@@ -4,9 +4,9 @@ npm-debug.log
yarn-error.log
# Build output
/.next/
/out/
/dist/
.next/
out/
dist/
# IDE/Editor specific
.vscode/

View File

@@ -6,7 +6,6 @@ const config = {
endOfLine: 'auto',
singleQuote: true,
tabWidth: 2,
semi: true,
};
module.exports = config;

View File

@@ -1,7 +1,22 @@
# 🚀 Perplexica - An AI-powered search engine 🔎 <!-- omit in toc -->
[![Discord](https://dcbadge.vercel.app/api/server/26aArMy8tT?style=flat&compact=true)](https://discord.gg/26aArMy8tT)
<div align="center" markdown="1">
<sup>Special thanks to:</sup>
<br>
<br>
<a href="https://www.warp.dev/perplexica">
<img alt="Warp sponsorship" width="400" src="https://github.com/user-attachments/assets/775dd593-9b5f-40f1-bf48-479faff4c27b">
</a>
### [Warp, the AI Devtool that lives in your terminal](https://www.warp.dev/perplexica)
[Available for MacOS, Linux, & Windows](https://www.warp.dev/perplexica)
</div>
<hr/>
[![Discord](https://dcbadge.vercel.app/api/server/26aArMy8tT?style=flat&compact=true)](https://discord.gg/26aArMy8tT)
![preview](.assets/perplexica-screenshot.png?)
@@ -44,7 +59,7 @@ Want to know more about its architecture and how it works? You can read it [here
- **Normal Mode:** Processes your query and performs a web search.
- **Focus Modes:** Special modes to better answer specific types of questions. Perplexica currently has 6 focus modes:
- **All Mode:** Searches the entire web to find the best results.
- **Writing Assistant Mode:** Helpful for writing tasks that does not require searching the web.
- **Writing Assistant Mode:** Helpful for writing tasks that do not require searching the web.
- **Academic Search Mode:** Finds articles and papers, ideal for academic research.
- **YouTube Search Mode:** Finds YouTube videos based on the search query.
- **Wolfram Alpha Search Mode:** Answers queries that need calculations or data analysis using Wolfram Alpha.
@@ -143,6 +158,7 @@ You can access Perplexica over your home network by following our networking gui
## One-Click Deployment
[![Deploy to Sealos](https://raw.githubusercontent.com/labring-actions/templates/main/Deploy-on-Sealos.svg)](https://usw.sealos.io/?openapp=system-template%3FtemplateName%3Dperplexica)
[![Deploy to RepoCloud](https://d16t0pc4846x52.cloudfront.net/deploylobe.svg)](https://repocloud.io/details/?app_id=267)
## Upcoming Features

View File

@@ -1,13 +1,20 @@
FROM node:20.18.0-alpine
ARG NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
ARG NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
ENV NEXT_PUBLIC_WS_URL=${NEXT_PUBLIC_WS_URL}
ENV NEXT_PUBLIC_API_URL=${NEXT_PUBLIC_API_URL}
WORKDIR /home/perplexica
COPY ui /home/perplexica/
COPY src /home/perplexica/src
COPY public /home/perplexica/public
COPY package.json /home/perplexica/package.json
COPY yarn.lock /home/perplexica/yarn.lock
COPY tsconfig.json /home/perplexica/tsconfig.json
COPY next.config.mjs /home/perplexica/next.config.mjs
COPY next-env.d.ts /home/perplexica/next-env.d.ts
COPY postcss.config.js /home/perplexica/postcss.config.js
COPY drizzle.config.ts /home/perplexica/drizzle.config.ts
COPY tailwind.config.ts /home/perplexica/tailwind.config.ts
RUN mkdir /home/perplexica/data
RUN mkdir /home/perplexica/uploads
RUN yarn install --frozen-lockfile
RUN yarn build

View File

@@ -1,17 +0,0 @@
FROM node:18-slim
WORKDIR /home/perplexica
COPY src /home/perplexica/src
COPY tsconfig.json /home/perplexica/
COPY drizzle.config.ts /home/perplexica/
COPY package.json /home/perplexica/
COPY yarn.lock /home/perplexica/
RUN mkdir /home/perplexica/data
RUN mkdir /home/perplexica/uploads
RUN yarn install --frozen-lockfile --network-timeout 600000
RUN yarn build
CMD ["yarn", "start"]

View File

@@ -9,41 +9,20 @@ services:
- perplexica-network
restart: unless-stopped
perplexica-backend:
build:
context: .
dockerfile: backend.dockerfile
image: itzcrazykns1337/perplexica-backend:main
environment:
- SEARXNG_API_URL=http://searxng:8080
depends_on:
- searxng
ports:
- 3001:3001
volumes:
- backend-dbstore:/home/perplexica/data
- uploads:/home/perplexica/uploads
- ./config.toml:/home/perplexica/config.toml
extra_hosts:
- 'host.docker.internal:host-gateway'
networks:
- perplexica-network
restart: unless-stopped
perplexica-frontend:
app:
build:
context: .
dockerfile: app.dockerfile
args:
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
image: itzcrazykns1337/perplexica-frontend:main
depends_on:
- perplexica-backend
environment:
- SEARXNG_API_URL=http://searxng:8080
ports:
- 3000:3000
networks:
- perplexica-network
volumes:
- backend-dbstore:/home/perplexica/data
- uploads:/home/perplexica/uploads
- ./config.toml:/home/perplexica/config.toml
restart: unless-stopped
networks:

View File

@@ -7,34 +7,43 @@ To update Perplexica to the latest version, follow these steps:
1. Clone the latest version of Perplexica from GitHub:
```bash
git clone https://github.com/ItzCrazyKns/Perplexica.git
git clone https://github.com/ItzCrazyKns/Perplexica.git
```
2. Navigate to the Project Directory.
2. Navigate to the project directory.
3. Pull latest images from registry.
3. Check for changes in the configuration files. If the `sample.config.toml` file contains new fields, delete your existing `config.toml` file, rename `sample.config.toml` to `config.toml`, and update the configuration accordingly.
4. Pull the latest images from the registry.
```bash
docker compose pull
```
4. Update and Recreate containers.
5. Update and recreate the containers.
```bash
docker compose up -d
```
5. Once the command completes running go to http://localhost:3000 and verify the latest changes.
6. Once the command completes, go to http://localhost:3000 and verify the latest changes.
## For non Docker users
## For non-Docker users
1. Clone the latest version of Perplexica from GitHub:
```bash
git clone https://github.com/ItzCrazyKns/Perplexica.git
git clone https://github.com/ItzCrazyKns/Perplexica.git
```
2. Navigate to the Project Directory
3. Execute `npm i` in both the `ui` folder and the root directory.
4. Once packages are updated, execute `npm run build` in both the `ui` folder and the root directory.
5. Finally, start both the frontend and the backend by running `npm run start` in both the `ui` folder and the root directory.
2. Navigate to the project directory.
3. Check for changes in the configuration files. If the `sample.config.toml` file contains new fields, delete your existing `config.toml` file, rename `sample.config.toml` to `config.toml`, and update the configuration accordingly.
4. Execute `npm i` in both the `ui` folder and the root directory.
5. Once the packages are updated, execute `npm run build` in both the `ui` folder and the root directory.
6. Finally, start both the frontend and the backend by running `npm run start` in both the `ui` folder and the root directory.
---

View File

@@ -2,7 +2,7 @@ import { defineConfig } from 'drizzle-kit';
export default defineConfig({
dialect: 'sqlite',
schema: './src/db/schema.ts',
schema: './src/lib/db/schema.ts',
out: './drizzle',
dbCredentials: {
url: './data/db.sqlite',

5
next-env.d.ts vendored Normal file
View File

@@ -0,0 +1,5 @@
/// <reference types="next" />
/// <reference types="next/image-types/global" />
// NOTE: This file should not be edited
// see https://nextjs.org/docs/app/api-reference/config/typescript for more information.

View File

@@ -7,6 +7,7 @@ const nextConfig = {
},
],
},
serverExternalPackages: ['pdf-parse'],
};
export default nextConfig;

View File

@@ -1,53 +1,62 @@
{
"name": "perplexica-backend",
"name": "perplexica-frontend",
"version": "1.10.0-rc3",
"license": "MIT",
"author": "ItzCrazyKns",
"scripts": {
"start": "npm run db:push && node dist/app.js",
"build": "tsc",
"dev": "nodemon --ignore uploads/ src/app.ts ",
"db:push": "drizzle-kit push sqlite",
"format": "prettier . --check",
"format:write": "prettier . --write"
},
"devDependencies": {
"@types/better-sqlite3": "^7.6.10",
"@types/cors": "^2.8.17",
"@types/express": "^4.17.21",
"@types/html-to-text": "^9.0.4",
"@types/multer": "^1.4.12",
"@types/pdf-parse": "^1.1.4",
"@types/readable-stream": "^4.0.11",
"@types/ws": "^8.5.12",
"drizzle-kit": "^0.22.7",
"nodemon": "^3.1.0",
"prettier": "^3.2.5",
"ts-node": "^10.9.2",
"typescript": "^5.4.3"
"dev": "next dev",
"build": "next build",
"start": "npm run db:push && next start",
"lint": "next lint",
"format:write": "prettier . --write",
"db:push": "drizzle-kit push"
},
"dependencies": {
"@headlessui/react": "^2.2.0",
"@iarna/toml": "^2.2.5",
"@langchain/anthropic": "^0.2.3",
"@langchain/community": "^0.2.16",
"@icons-pack/react-simple-icons": "^12.3.0",
"@langchain/community": "^0.3.36",
"@langchain/core": "^0.3.42",
"@langchain/openai": "^0.0.25",
"@langchain/google-genai": "^0.0.23",
"@xenova/transformers": "^2.17.1",
"axios": "^1.6.8",
"better-sqlite3": "^11.0.0",
"@langchain/textsplitters": "^0.1.0",
"@tailwindcss/typography": "^0.5.12",
"axios": "^1.8.3",
"better-sqlite3": "^11.9.1",
"clsx": "^2.1.0",
"compute-cosine-similarity": "^1.1.0",
"compute-dot": "^1.1.0",
"cors": "^2.8.5",
"dotenv": "^16.4.5",
"drizzle-orm": "^0.31.2",
"express": "^4.19.2",
"drizzle-orm": "^0.40.1",
"html-to-text": "^9.0.5",
"langchain": "^0.1.30",
"mammoth": "^1.8.0",
"multer": "^1.4.5-lts.1",
"lucide-react": "^0.363.0",
"markdown-to-jsx": "^7.7.2",
"next": "^15.2.2",
"next-themes": "^0.3.0",
"pdf-parse": "^1.1.1",
"winston": "^3.13.0",
"ws": "^8.17.1",
"react": "^18",
"react-dom": "^18",
"react-text-to-speech": "^0.14.5",
"react-textarea-autosize": "^8.5.3",
"sonner": "^1.4.41",
"tailwind-merge": "^2.2.2",
"winston": "^3.17.0",
"yet-another-react-lightbox": "^3.17.2",
"zod": "^3.22.4"
},
"devDependencies": {
"@types/better-sqlite3": "^7.6.12",
"@types/html-to-text": "^9.0.4",
"@types/node": "^20",
"@types/pdf-parse": "^1.1.4",
"@types/react": "^18",
"@types/react-dom": "^18",
"autoprefixer": "^10.0.1",
"drizzle-kit": "^0.30.5",
"eslint": "^8",
"eslint-config-next": "14.1.4",
"postcss": "^8",
"prettier": "^3.2.5",
"tailwindcss": "^3.3.0",
"typescript": "^5"
}
}

View File

Before

Width:  |  Height:  |  Size: 1.3 KiB

After

Width:  |  Height:  |  Size: 1.3 KiB

View File

Before

Width:  |  Height:  |  Size: 629 B

After

Width:  |  Height:  |  Size: 629 B

View File

@@ -18,9 +18,10 @@ API_KEY = ""
[MODELS.CUSTOM_OPENAI]
API_KEY = ""
API_URL = ""
MODEL_NAME = ""
[MODELS.OLLAMA]
API_URL = "" # Ollama API URL - http://host.docker.internal:11434
[API_ENDPOINTS]
SEARXNG = "http://localhost:32768" # SearxNG API URL
SEARXNG = "" # SearxNG API URL - http://localhost:32768

View File

@@ -1,38 +0,0 @@
import { startWebSocketServer } from './websocket';
import express from 'express';
import cors from 'cors';
import http from 'http';
import routes from './routes';
import { getPort } from './config';
import logger from './utils/logger';
const port = getPort();
const app = express();
const server = http.createServer(app);
const corsOptions = {
origin: '*',
};
app.use(cors(corsOptions));
app.use(express.json());
app.use('/api', routes);
app.get('/api', (_, res) => {
res.status(200).json({ status: 'ok' });
});
server.listen(port, () => {
logger.info(`Server is running on port ${port}`);
});
startWebSocketServer(server);
process.on('uncaughtException', (err, origin) => {
logger.error(`Uncaught Exception at ${origin}: ${err}`);
});
process.on('unhandledRejection', (reason, promise) => {
logger.error(`Unhandled Rejection at: ${promise}, reason: ${reason}`);
});

360
src/app/api/chat/route.ts Normal file
View File

@@ -0,0 +1,360 @@
import prompts from '@/lib/prompts';
import MetaSearchAgent from '@/lib/search/metaSearchAgent';
import crypto from 'crypto';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
import { EventEmitter } from 'stream';
import {
chatModelProviders,
embeddingModelProviders,
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '@/lib/providers';
import db from '@/lib/db';
import { chats, messages as messagesSchema } from '@/lib/db/schema';
import { and, eq, gt } from 'drizzle-orm';
import { getFileDetails } from '@/lib/utils/files';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { ChatOpenAI } from '@langchain/openai';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '@/lib/config';
export const runtime = 'nodejs';
export const dynamic = 'force-dynamic';
const searchHandlers: Record<string, MetaSearchAgent> = {
webSearch: new MetaSearchAgent({
activeEngines: [],
queryGeneratorPrompt: prompts.webSearchRetrieverPrompt,
responsePrompt: prompts.webSearchResponsePrompt,
rerank: true,
rerankThreshold: 0.3,
searchWeb: true,
summarizer: true,
}),
academicSearch: new MetaSearchAgent({
activeEngines: ['arxiv', 'google scholar', 'pubmed'],
queryGeneratorPrompt: prompts.academicSearchRetrieverPrompt,
responsePrompt: prompts.academicSearchResponsePrompt,
rerank: true,
rerankThreshold: 0,
searchWeb: true,
summarizer: false,
}),
writingAssistant: new MetaSearchAgent({
activeEngines: [],
queryGeneratorPrompt: '',
responsePrompt: prompts.writingAssistantPrompt,
rerank: true,
rerankThreshold: 0,
searchWeb: false,
summarizer: false,
}),
wolframAlphaSearch: new MetaSearchAgent({
activeEngines: ['wolframalpha'],
queryGeneratorPrompt: prompts.wolframAlphaSearchRetrieverPrompt,
responsePrompt: prompts.wolframAlphaSearchResponsePrompt,
rerank: false,
rerankThreshold: 0,
searchWeb: true,
summarizer: false,
}),
youtubeSearch: new MetaSearchAgent({
activeEngines: ['youtube'],
queryGeneratorPrompt: prompts.youtubeSearchRetrieverPrompt,
responsePrompt: prompts.youtubeSearchResponsePrompt,
rerank: true,
rerankThreshold: 0.3,
searchWeb: true,
summarizer: false,
}),
redditSearch: new MetaSearchAgent({
activeEngines: ['reddit'],
queryGeneratorPrompt: prompts.redditSearchRetrieverPrompt,
responsePrompt: prompts.redditSearchResponsePrompt,
rerank: true,
rerankThreshold: 0.3,
searchWeb: true,
summarizer: false,
}),
};
type Message = {
messageId: string;
chatId: string;
content: string;
};
type ChatModel = {
provider: string;
name: string;
};
type EmbeddingModel = {
provider: string;
name: string;
};
type Body = {
message: Message;
optimizationMode: 'speed' | 'balanced' | 'quality';
focusMode: string;
history: Array<[string, string]>;
files: Array<string>;
chatModel: ChatModel;
embeddingModel: EmbeddingModel;
};
const handleEmitterEvents = async (
stream: EventEmitter,
writer: WritableStreamDefaultWriter,
encoder: TextEncoder,
aiMessageId: string,
chatId: string,
) => {
let recievedMessage = '';
let sources: any[] = [];
stream.on('data', (data) => {
const parsedData = JSON.parse(data);
if (parsedData.type === 'response') {
writer.write(
encoder.encode(
JSON.stringify({
type: 'message',
data: parsedData.data,
messageId: aiMessageId,
}) + '\n',
),
);
recievedMessage += parsedData.data;
} else if (parsedData.type === 'sources') {
writer.write(
encoder.encode(
JSON.stringify({
type: 'sources',
data: parsedData.data,
messageId: aiMessageId,
}) + '\n',
),
);
sources = parsedData.data;
}
});
stream.on('end', () => {
writer.write(
encoder.encode(
JSON.stringify({
type: 'messageEnd',
messageId: aiMessageId,
}) + '\n',
),
);
writer.close();
db.insert(messagesSchema)
.values({
content: recievedMessage,
chatId: chatId,
messageId: aiMessageId,
role: 'assistant',
metadata: JSON.stringify({
createdAt: new Date(),
...(sources && sources.length > 0 && { sources }),
}),
})
.execute();
});
stream.on('error', (data) => {
const parsedData = JSON.parse(data);
writer.write(
encoder.encode(
JSON.stringify({
type: 'error',
data: parsedData.data,
}),
),
);
writer.close();
});
};
const handleHistorySave = async (
message: Message,
humanMessageId: string,
focusMode: string,
files: string[],
) => {
const chat = await db.query.chats.findFirst({
where: eq(chats.id, message.chatId),
});
if (!chat) {
await db
.insert(chats)
.values({
id: message.chatId,
title: message.content,
createdAt: new Date().toString(),
focusMode: focusMode,
files: files.map(getFileDetails),
})
.execute();
}
const messageExists = await db.query.messages.findFirst({
where: eq(messagesSchema.messageId, humanMessageId),
});
if (!messageExists) {
await db
.insert(messagesSchema)
.values({
content: message.content,
chatId: message.chatId,
messageId: humanMessageId,
role: 'user',
metadata: JSON.stringify({
createdAt: new Date(),
}),
})
.execute();
} else {
await db
.delete(messagesSchema)
.where(
and(
gt(messagesSchema.id, messageExists.id),
eq(messagesSchema.chatId, message.chatId),
),
)
.execute();
}
};
export const POST = async (req: Request) => {
try {
const body = (await req.json()) as Body;
const { message } = body;
if (message.content === '') {
return Response.json(
{
message: 'Please provide a message to process',
},
{ status: 400 },
);
}
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
const chatModelProvider =
chatModelProviders[
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
];
const chatModel =
chatModelProvider[
body.chatModel?.name || Object.keys(chatModelProvider)[0]
];
const embeddingProvider =
embeddingModelProviders[
body.embeddingModel?.provider || Object.keys(embeddingModelProviders)[0]
];
const embeddingModel =
embeddingProvider[
body.embeddingModel?.name || Object.keys(embeddingProvider)[0]
];
let llm: BaseChatModel | undefined;
let embedding = embeddingModel.model;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
openAIApiKey: getCustomOpenaiApiKey(),
modelName: getCustomOpenaiModelName(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (chatModelProvider && chatModel) {
llm = chatModel.model;
}
if (!llm) {
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
}
if (!embedding) {
return Response.json(
{ error: 'Invalid embedding model' },
{ status: 400 },
);
}
const humanMessageId =
message.messageId ?? crypto.randomBytes(7).toString('hex');
const aiMessageId = crypto.randomBytes(7).toString('hex');
const history: BaseMessage[] = body.history.map((msg) => {
if (msg[0] === 'human') {
return new HumanMessage({
content: msg[1],
});
} else {
return new AIMessage({
content: msg[1],
});
}
});
const handler = searchHandlers[body.focusMode];
if (!handler) {
return Response.json(
{
message: 'Invalid focus mode',
},
{ status: 400 },
);
}
const stream = await handler.searchAndAnswer(
message.content,
history,
llm,
embedding,
body.optimizationMode,
body.files,
);
const responseStream = new TransformStream();
const writer = responseStream.writable.getWriter();
const encoder = new TextEncoder();
handleEmitterEvents(stream, writer, encoder, aiMessageId, message.chatId);
handleHistorySave(message, humanMessageId, body.focusMode, body.files);
return new Response(responseStream.readable, {
headers: {
'Content-Type': 'text/event-stream',
Connection: 'keep-alive',
'Cache-Control': 'no-cache, no-transform',
},
});
} catch (err) {
console.error('An error ocurred while processing chat request:', err);
return Response.json(
{ message: 'An error ocurred while processing chat request' },
{ status: 500 },
);
}
};

View File

@@ -0,0 +1,69 @@
import db from '@/lib/db';
import { chats, messages } from '@/lib/db/schema';
import { eq } from 'drizzle-orm';
export const GET = async (
req: Request,
{ params }: { params: Promise<{ id: string }> },
) => {
try {
const { id } = await params;
const chatExists = await db.query.chats.findFirst({
where: eq(chats.id, id),
});
if (!chatExists) {
return Response.json({ message: 'Chat not found' }, { status: 404 });
}
const chatMessages = await db.query.messages.findMany({
where: eq(messages.chatId, id),
});
return Response.json(
{
chat: chatExists,
messages: chatMessages,
},
{ status: 200 },
);
} catch (err) {
console.error('Error in getting chat by id: ', err);
return Response.json(
{ message: 'An error has occurred.' },
{ status: 500 },
);
}
};
export const DELETE = async (
req: Request,
{ params }: { params: Promise<{ id: string }> },
) => {
try {
const { id } = await params;
const chatExists = await db.query.chats.findFirst({
where: eq(chats.id, id),
});
if (!chatExists) {
return Response.json({ message: 'Chat not found' }, { status: 404 });
}
await db.delete(chats).where(eq(chats.id, id)).execute();
await db.delete(messages).where(eq(messages.chatId, id)).execute();
return Response.json(
{ message: 'Chat deleted successfully' },
{ status: 200 },
);
} catch (err) {
console.error('Error in deleting chat by id: ', err);
return Response.json(
{ message: 'An error has occurred.' },
{ status: 500 },
);
}
};

View File

@@ -0,0 +1,15 @@
import db from '@/lib/db';
export const GET = async (req: Request) => {
try {
let chats = await db.query.chats.findMany();
chats = chats.reverse();
return Response.json({ chats: chats }, { status: 200 });
} catch (err) {
console.error('Error in getting chats: ', err);
return Response.json(
{ message: 'An error has occurred.' },
{ status: 500 },
);
}
};

View File

@@ -1,26 +1,22 @@
import express from 'express';
import {
getAnthropicApiKey,
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
getGeminiApiKey,
getGroqApiKey,
getOllamaApiEndpoint,
getOpenaiApiKey,
updateConfig,
} from '@/lib/config';
import {
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '../lib/providers';
import {
getGroqApiKey,
getOllamaApiEndpoint,
getAnthropicApiKey,
getGeminiApiKey,
getOpenaiApiKey,
updateConfig,
getCustomOpenaiApiUrl,
getCustomOpenaiApiKey,
getCustomOpenaiModelName,
} from '../config';
import logger from '../utils/logger';
} from '@/lib/providers';
const router = express.Router();
router.get('/', async (_, res) => {
export const GET = async (req: Request) => {
try {
const config = {};
const config: Record<string, any> = {};
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
@@ -61,44 +57,53 @@ router.get('/', async (_, res) => {
config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
config['customOpenaiModelName'] = getCustomOpenaiModelName();
res.status(200).json(config);
} catch (err: any) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error getting config: ${err.message}`);
return Response.json({ ...config }, { status: 200 });
} catch (err) {
console.error('An error ocurred while getting config:', err);
return Response.json(
{ message: 'An error ocurred while getting config' },
{ status: 500 },
);
}
});
};
router.post('/', async (req, res) => {
const config = req.body;
export const POST = async (req: Request) => {
try {
const config = await req.json();
const updatedConfig = {
MODELS: {
OPENAI: {
API_KEY: config.openaiApiKey,
const updatedConfig = {
MODELS: {
OPENAI: {
API_KEY: config.openaiApiKey,
},
GROQ: {
API_KEY: config.groqApiKey,
},
ANTHROPIC: {
API_KEY: config.anthropicApiKey,
},
GEMINI: {
API_KEY: config.geminiApiKey,
},
OLLAMA: {
API_URL: config.ollamaApiUrl,
},
CUSTOM_OPENAI: {
API_URL: config.customOpenaiApiUrl,
API_KEY: config.customOpenaiApiKey,
MODEL_NAME: config.customOpenaiModelName,
},
},
GROQ: {
API_KEY: config.groqApiKey,
},
ANTHROPIC: {
API_KEY: config.anthropicApiKey,
},
GEMINI: {
API_KEY: config.geminiApiKey,
},
OLLAMA: {
API_URL: config.ollamaApiUrl,
},
CUSTOM_OPENAI: {
API_URL: config.customOpenaiApiUrl,
API_KEY: config.customOpenaiApiKey,
MODEL_NAME: config.customOpenaiModelName,
},
},
};
};
updateConfig(updatedConfig);
updateConfig(updatedConfig);
res.status(200).json({ message: 'Config updated' });
});
export default router;
return Response.json({ message: 'Config updated' }, { status: 200 });
} catch (err) {
console.error('An error ocurred while updating config:', err);
return Response.json(
{ message: 'An error ocurred while updating config' },
{ status: 500 },
);
}
};

View File

@@ -0,0 +1,61 @@
import { searchSearxng } from '@/lib/searxng';
const articleWebsites = [
'yahoo.com',
'www.exchangewire.com',
'businessinsider.com',
/* 'wired.com',
'mashable.com',
'theverge.com',
'gizmodo.com',
'cnet.com',
'venturebeat.com', */
];
const topics = ['AI', 'tech']; /* TODO: Add UI to customize this */
export const GET = async (req: Request) => {
try {
const data = (
await Promise.all([
...new Array(articleWebsites.length * topics.length)
.fill(0)
.map(async (_, i) => {
return (
await searchSearxng(
`site:${articleWebsites[i % articleWebsites.length]} ${
topics[i % topics.length]
}`,
{
engines: ['bing news'],
pageno: 1,
},
)
).results;
}),
])
)
.map((result) => result)
.flat()
.sort(() => Math.random() - 0.5);
return Response.json(
{
blogs: data,
},
{
status: 200,
},
);
} catch (err) {
console.error(`An error ocurred in discover route: ${err}`);
return Response.json(
{
message: 'An error has occurred',
},
{
status: 500,
},
);
}
};

View File

@@ -0,0 +1,83 @@
import handleImageSearch from '@/lib/chains/imageSearchAgent';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '@/lib/config';
import { getAvailableChatModelProviders } from '@/lib/providers';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
import { ChatOpenAI } from '@langchain/openai';
interface ChatModel {
provider: string;
model: string;
}
interface ImageSearchBody {
query: string;
chatHistory: any[];
chatModel?: ChatModel;
}
export const POST = async (req: Request) => {
try {
const body: ImageSearchBody = await req.json();
const chatHistory = body.chatHistory
.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
return new AIMessage(msg.content);
}
})
.filter((msg) => msg !== undefined) as BaseMessage[];
const chatModelProviders = await getAvailableChatModelProviders();
const chatModelProvider =
chatModelProviders[
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
];
const chatModel =
chatModelProvider[
body.chatModel?.model || Object.keys(chatModelProvider)[0]
];
let llm: BaseChatModel | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
openAIApiKey: getCustomOpenaiApiKey(),
modelName: getCustomOpenaiModelName(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (chatModelProvider && chatModel) {
llm = chatModel.model;
}
if (!llm) {
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
}
const images = await handleImageSearch(
{
chat_history: chatHistory,
query: body.query,
},
llm,
);
return Response.json({ images }, { status: 200 });
} catch (err) {
console.error(`An error ocurred while searching images: ${err}`);
return Response.json(
{ message: 'An error ocurred while searching images' },
{ status: 500 },
);
}
};

View File

@@ -0,0 +1,47 @@
import {
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '@/lib/providers';
export const GET = async (req: Request) => {
try {
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
Object.keys(chatModelProviders).forEach((provider) => {
Object.keys(chatModelProviders[provider]).forEach((model) => {
delete (chatModelProviders[provider][model] as { model?: unknown })
.model;
});
});
Object.keys(embeddingModelProviders).forEach((provider) => {
Object.keys(embeddingModelProviders[provider]).forEach((model) => {
delete (embeddingModelProviders[provider][model] as { model?: unknown })
.model;
});
});
return Response.json(
{
chatModelProviders,
embeddingModelProviders,
},
{
status: 200,
},
);
} catch (err) {
console.error('An error ocurred while fetching models', err);
return Response.json(
{
message: 'An error has occurred.',
},
{
status: 500,
},
);
}
};

View File

@@ -0,0 +1,81 @@
import generateSuggestions from '@/lib/chains/suggestionGeneratorAgent';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '@/lib/config';
import { getAvailableChatModelProviders } from '@/lib/providers';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
import { ChatOpenAI } from '@langchain/openai';
interface ChatModel {
provider: string;
model: string;
}
interface SuggestionsGenerationBody {
chatHistory: any[];
chatModel?: ChatModel;
}
export const POST = async (req: Request) => {
try {
const body: SuggestionsGenerationBody = await req.json();
const chatHistory = body.chatHistory
.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
return new AIMessage(msg.content);
}
})
.filter((msg) => msg !== undefined) as BaseMessage[];
const chatModelProviders = await getAvailableChatModelProviders();
const chatModelProvider =
chatModelProviders[
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
];
const chatModel =
chatModelProvider[
body.chatModel?.model || Object.keys(chatModelProvider)[0]
];
let llm: BaseChatModel | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
openAIApiKey: getCustomOpenaiApiKey(),
modelName: getCustomOpenaiModelName(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (chatModelProvider && chatModel) {
llm = chatModel.model;
}
if (!llm) {
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
}
const suggestions = await generateSuggestions(
{
chat_history: chatHistory,
},
llm,
);
return Response.json({ suggestions }, { status: 200 });
} catch (err) {
console.error(`An error ocurred while generating suggestions: ${err}`);
return Response.json(
{ message: 'An error ocurred while generating suggestions' },
{ status: 500 },
);
}
};

View File

@@ -0,0 +1,134 @@
import { NextResponse } from 'next/server';
import fs from 'fs';
import path from 'path';
import crypto from 'crypto';
import { getAvailableEmbeddingModelProviders } from '@/lib/providers';
import { PDFLoader } from '@langchain/community/document_loaders/fs/pdf';
import { DocxLoader } from '@langchain/community/document_loaders/fs/docx';
import { RecursiveCharacterTextSplitter } from '@langchain/textsplitters';
import { Document } from 'langchain/document';
interface FileRes {
fileName: string;
fileExtension: string;
fileId: string;
}
const uploadDir = path.join(process.cwd(), 'uploads');
if (!fs.existsSync(uploadDir)) {
fs.mkdirSync(uploadDir, { recursive: true });
}
const splitter = new RecursiveCharacterTextSplitter({
chunkSize: 500,
chunkOverlap: 100,
});
export async function POST(req: Request) {
try {
const formData = await req.formData();
const files = formData.getAll('files') as File[];
const embedding_model = formData.get('embedding_model');
const embedding_model_provider = formData.get('embedding_model_provider');
if (!embedding_model || !embedding_model_provider) {
return NextResponse.json(
{ message: 'Missing embedding model or provider' },
{ status: 400 },
);
}
const embeddingModels = await getAvailableEmbeddingModelProviders();
const provider =
embedding_model_provider ?? Object.keys(embeddingModels)[0];
const embeddingModel =
embedding_model ?? Object.keys(embeddingModels[provider as string])[0];
let embeddingsModel =
embeddingModels[provider as string]?.[embeddingModel as string]?.model;
if (!embeddingsModel) {
return NextResponse.json(
{ message: 'Invalid embedding model selected' },
{ status: 400 },
);
}
const processedFiles: FileRes[] = [];
await Promise.all(
files.map(async (file: any) => {
const fileExtension = file.name.split('.').pop();
if (!['pdf', 'docx', 'txt'].includes(fileExtension!)) {
return NextResponse.json(
{ message: 'File type not supported' },
{ status: 400 },
);
}
const uniqueFileName = `${crypto.randomBytes(16).toString('hex')}.${fileExtension}`;
const filePath = path.join(uploadDir, uniqueFileName);
const buffer = Buffer.from(await file.arrayBuffer());
fs.writeFileSync(filePath, new Uint8Array(buffer));
let docs: any[] = [];
if (fileExtension === 'pdf') {
const loader = new PDFLoader(filePath);
docs = await loader.load();
} else if (fileExtension === 'docx') {
const loader = new DocxLoader(filePath);
docs = await loader.load();
} else if (fileExtension === 'txt') {
const text = fs.readFileSync(filePath, 'utf-8');
docs = [
new Document({ pageContent: text, metadata: { title: file.name } }),
];
}
const splitted = await splitter.splitDocuments(docs);
const extractedDataPath = filePath.replace(/\.\w+$/, '-extracted.json');
fs.writeFileSync(
extractedDataPath,
JSON.stringify({
title: file.name,
contents: splitted.map((doc) => doc.pageContent),
}),
);
const embeddings = await embeddingsModel.embedDocuments(
splitted.map((doc) => doc.pageContent),
);
const embeddingsDataPath = filePath.replace(
/\.\w+$/,
'-embeddings.json',
);
fs.writeFileSync(
embeddingsDataPath,
JSON.stringify({
title: file.name,
embeddings,
}),
);
processedFiles.push({
fileName: file.name,
fileExtension: fileExtension,
fileId: uniqueFileName.replace(/\.\w+$/, ''),
});
}),
);
return NextResponse.json({
files: processedFiles,
});
} catch (error) {
console.error('Error uploading file:', error);
return NextResponse.json(
{ message: 'An error has occurred.' },
{ status: 500 },
);
}
}

View File

@@ -0,0 +1,83 @@
import handleVideoSearch from '@/lib/chains/videoSearchAgent';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '@/lib/config';
import { getAvailableChatModelProviders } from '@/lib/providers';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
import { ChatOpenAI } from '@langchain/openai';
interface ChatModel {
provider: string;
model: string;
}
interface VideoSearchBody {
query: string;
chatHistory: any[];
chatModel?: ChatModel;
}
export const POST = async (req: Request) => {
try {
const body: VideoSearchBody = await req.json();
const chatHistory = body.chatHistory
.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
return new AIMessage(msg.content);
}
})
.filter((msg) => msg !== undefined) as BaseMessage[];
const chatModelProviders = await getAvailableChatModelProviders();
const chatModelProvider =
chatModelProviders[
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
];
const chatModel =
chatModelProvider[
body.chatModel?.model || Object.keys(chatModelProvider)[0]
];
let llm: BaseChatModel | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
openAIApiKey: getCustomOpenaiApiKey(),
modelName: getCustomOpenaiModelName(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (chatModelProvider && chatModel) {
llm = chatModel.model;
}
if (!llm) {
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
}
const videos = await handleVideoSearch(
{
chat_history: chatHistory,
query: body.query,
},
llm,
);
return Response.json({ videos }, { status: 200 });
} catch (err) {
console.error(`An error ocurred while searching videos: ${err}`);
return Response.json(
{ message: 'An error ocurred while searching videos' },
{ status: 500 },
);
}
};

View File

@@ -0,0 +1,9 @@
import ChatWindow from '@/components/ChatWindow';
import React from 'react';
const Page = ({ params }: { params: Promise<{ chatId: string }> }) => {
const { chatId } = React.use(params);
return <ChatWindow id={chatId} />;
};
export default Page;

View File

@@ -19,7 +19,7 @@ const Page = () => {
useEffect(() => {
const fetchData = async () => {
try {
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/discover`, {
const res = await fetch(`/api/discover`, {
method: 'GET',
headers: {
'Content-Type': 'application/json',

View File

Before

Width:  |  Height:  |  Size: 25 KiB

After

Width:  |  Height:  |  Size: 25 KiB

View File

@@ -21,7 +21,7 @@ const Page = () => {
const fetchChats = async () => {
setLoading(true);
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/chats`, {
const res = await fetch(`/api/chats`, {
method: 'GET',
headers: {
'Content-Type': 'application/json',

View File

@@ -116,7 +116,7 @@ const Page = () => {
useEffect(() => {
const fetchConfig = async () => {
setIsLoading(true);
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/config`, {
const res = await fetch(`/api/config`, {
headers: {
'Content-Type': 'application/json',
},
@@ -187,16 +187,13 @@ const Page = () => {
[key]: value,
} as SettingsType;
const response = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/config`,
{
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify(updatedConfig),
const response = await fetch(`/api/config`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
);
body: JSON.stringify(updatedConfig),
});
if (!response.ok) {
throw new Error('Failed to update config');
@@ -208,7 +205,7 @@ const Page = () => {
key.toLowerCase().includes('api') ||
key.toLowerCase().includes('url')
) {
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/config`, {
const res = await fetch(`/api/config`, {
headers: {
'Content-Type': 'application/json',
},
@@ -223,11 +220,11 @@ const Page = () => {
setChatModels(data.chatModelProviders || {});
setEmbeddingModels(data.embeddingModelProviders || {});
const currentProvider = selectedChatModelProvider;
const newProviders = Object.keys(data.chatModelProviders || {});
const currentChatProvider = selectedChatModelProvider;
const newChatProviders = Object.keys(data.chatModelProviders || {});
if (!currentProvider && newProviders.length > 0) {
const firstProvider = newProviders[0];
if (!currentChatProvider && newChatProviders.length > 0) {
const firstProvider = newChatProviders[0];
const firstModel = data.chatModelProviders[firstProvider]?.[0]?.name;
if (firstModel) {
@@ -237,11 +234,11 @@ const Page = () => {
localStorage.setItem('chatModel', firstModel);
}
} else if (
currentProvider &&
currentChatProvider &&
(!data.chatModelProviders ||
!data.chatModelProviders[currentProvider] ||
!Array.isArray(data.chatModelProviders[currentProvider]) ||
data.chatModelProviders[currentProvider].length === 0)
!data.chatModelProviders[currentChatProvider] ||
!Array.isArray(data.chatModelProviders[currentChatProvider]) ||
data.chatModelProviders[currentChatProvider].length === 0)
) {
const firstValidProvider = Object.entries(
data.chatModelProviders || {},
@@ -267,6 +264,55 @@ const Page = () => {
}
}
const currentEmbeddingProvider = selectedEmbeddingModelProvider;
const newEmbeddingProviders = Object.keys(
data.embeddingModelProviders || {},
);
if (!currentEmbeddingProvider && newEmbeddingProviders.length > 0) {
const firstProvider = newEmbeddingProviders[0];
const firstModel =
data.embeddingModelProviders[firstProvider]?.[0]?.name;
if (firstModel) {
setSelectedEmbeddingModelProvider(firstProvider);
setSelectedEmbeddingModel(firstModel);
localStorage.setItem('embeddingModelProvider', firstProvider);
localStorage.setItem('embeddingModel', firstModel);
}
} else if (
currentEmbeddingProvider &&
(!data.embeddingModelProviders ||
!data.embeddingModelProviders[currentEmbeddingProvider] ||
!Array.isArray(
data.embeddingModelProviders[currentEmbeddingProvider],
) ||
data.embeddingModelProviders[currentEmbeddingProvider].length === 0)
) {
const firstValidProvider = Object.entries(
data.embeddingModelProviders || {},
).find(
([_, models]) => Array.isArray(models) && models.length > 0,
)?.[0];
if (firstValidProvider) {
setSelectedEmbeddingModelProvider(firstValidProvider);
setSelectedEmbeddingModel(
data.embeddingModelProviders[firstValidProvider][0].name,
);
localStorage.setItem('embeddingModelProvider', firstValidProvider);
localStorage.setItem(
'embeddingModel',
data.embeddingModelProviders[firstValidProvider][0].name,
);
} else {
setSelectedEmbeddingModelProvider(null);
setSelectedEmbeddingModel(null);
localStorage.removeItem('embeddingModelProvider');
localStorage.removeItem('embeddingModel');
}
}
setConfig(data);
}
@@ -278,6 +324,10 @@ const Page = () => {
localStorage.setItem('chatModelProvider', value);
} else if (key === 'chatModel') {
localStorage.setItem('chatModel', value);
} else if (key === 'embeddingModelProvider') {
localStorage.setItem('embeddingModelProvider', value);
} else if (key === 'embeddingModel') {
localStorage.setItem('embeddingModel', value);
}
} catch (err) {
console.error('Failed to save:', err);
@@ -436,7 +486,6 @@ const Page = () => {
const value = e.target.value;
setSelectedChatModelProvider(value);
saveConfig('chatModelProvider', value);
// Auto-select first model of new provider
const firstModel =
config.chatModelProviders[value]?.[0]?.name;
if (firstModel) {
@@ -511,12 +560,16 @@ const Page = () => {
<Input
type="text"
placeholder="Model name"
defaultValue={config.customOpenaiModelName}
onChange={(e) =>
setConfig({
...config,
value={config.customOpenaiModelName}
isSaving={savingStates['customOpenaiModelName']}
onChange={(e: React.ChangeEvent<HTMLInputElement>) => {
setConfig((prev) => ({
...prev!,
customOpenaiModelName: e.target.value,
})
}));
}}
onSave={(value) =>
saveConfig('customOpenaiModelName', value)
}
/>
</div>
@@ -527,12 +580,16 @@ const Page = () => {
<Input
type="text"
placeholder="Custom OpenAI API Key"
defaultValue={config.customOpenaiApiKey}
onChange={(e) =>
setConfig({
...config,
value={config.customOpenaiApiKey}
isSaving={savingStates['customOpenaiApiKey']}
onChange={(e: React.ChangeEvent<HTMLInputElement>) => {
setConfig((prev) => ({
...prev!,
customOpenaiApiKey: e.target.value,
})
}));
}}
onSave={(value) =>
saveConfig('customOpenaiApiKey', value)
}
/>
</div>
@@ -543,17 +600,96 @@ const Page = () => {
<Input
type="text"
placeholder="Custom OpenAI Base URL"
defaultValue={config.customOpenaiApiUrl}
onChange={(e) =>
setConfig({
...config,
value={config.customOpenaiApiUrl}
isSaving={savingStates['customOpenaiApiUrl']}
onChange={(e: React.ChangeEvent<HTMLInputElement>) => {
setConfig((prev) => ({
...prev!,
customOpenaiApiUrl: e.target.value,
})
}));
}}
onSave={(value) =>
saveConfig('customOpenaiApiUrl', value)
}
/>
</div>
</div>
)}
{config.embeddingModelProviders && (
<div className="flex flex-col space-y-4 mt-4 pt-4 border-t border-light-200 dark:border-dark-200">
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Embedding Model Provider
</p>
<Select
value={selectedEmbeddingModelProvider ?? undefined}
onChange={(e) => {
const value = e.target.value;
setSelectedEmbeddingModelProvider(value);
saveConfig('embeddingModelProvider', value);
const firstModel =
config.embeddingModelProviders[value]?.[0]?.name;
if (firstModel) {
setSelectedEmbeddingModel(firstModel);
saveConfig('embeddingModel', firstModel);
}
}}
options={Object.keys(config.embeddingModelProviders).map(
(provider) => ({
value: provider,
label:
provider.charAt(0).toUpperCase() +
provider.slice(1),
}),
)}
/>
</div>
{selectedEmbeddingModelProvider && (
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Embedding Model
</p>
<Select
value={selectedEmbeddingModel ?? undefined}
onChange={(e) => {
const value = e.target.value;
setSelectedEmbeddingModel(value);
saveConfig('embeddingModel', value);
}}
options={(() => {
const embeddingModelProvider =
config.embeddingModelProviders[
selectedEmbeddingModelProvider
];
return embeddingModelProvider
? embeddingModelProvider.length > 0
? embeddingModelProvider.map((model) => ({
value: model.name,
label: model.displayName,
}))
: [
{
value: '',
label: 'No models available',
disabled: true,
},
]
: [
{
value: '',
label:
'Invalid provider, please check backend logs',
disabled: true,
},
];
})()}
/>
</div>
)}
</div>
)}
</SettingsSection>
<SettingsSection title="API Keys">

View File

@@ -48,11 +48,17 @@ const Chat = ({
});
useEffect(() => {
messageEnd.current?.scrollIntoView({ behavior: 'smooth' });
const scroll = () => {
messageEnd.current?.scrollIntoView({ behavior: 'smooth' });
};
if (messages.length === 1) {
document.title = `${messages[0].content.substring(0, 30)} - Perplexica`;
}
if (messages[messages.length - 1]?.role == 'user') {
scroll();
}
}, [messages]);
return (

View File

@@ -29,280 +29,154 @@ export interface File {
fileId: string;
}
const useSocket = (
url: string,
setIsWSReady: (ready: boolean) => void,
setError: (error: boolean) => void,
interface ChatModelProvider {
name: string;
provider: string;
}
interface EmbeddingModelProvider {
name: string;
provider: string;
}
const checkConfig = async (
setChatModelProvider: (provider: ChatModelProvider) => void,
setEmbeddingModelProvider: (provider: EmbeddingModelProvider) => void,
setIsConfigReady: (ready: boolean) => void,
setHasError: (hasError: boolean) => void,
) => {
const wsRef = useRef<WebSocket | null>(null);
const reconnectTimeoutRef = useRef<NodeJS.Timeout>();
const retryCountRef = useRef(0);
const isCleaningUpRef = useRef(false);
const MAX_RETRIES = 3;
const INITIAL_BACKOFF = 1000; // 1 second
const isConnectionErrorRef = useRef(false);
try {
let chatModel = localStorage.getItem('chatModel');
let chatModelProvider = localStorage.getItem('chatModelProvider');
let embeddingModel = localStorage.getItem('embeddingModel');
let embeddingModelProvider = localStorage.getItem('embeddingModelProvider');
const getBackoffDelay = (retryCount: number) => {
return Math.min(INITIAL_BACKOFF * Math.pow(2, retryCount), 10000); // Cap at 10 seconds
};
const autoImageSearch = localStorage.getItem('autoImageSearch');
const autoVideoSearch = localStorage.getItem('autoVideoSearch');
useEffect(() => {
const connectWs = async () => {
if (wsRef.current?.readyState === WebSocket.OPEN) {
wsRef.current.close();
if (!autoImageSearch) {
localStorage.setItem('autoImageSearch', 'true');
}
if (!autoVideoSearch) {
localStorage.setItem('autoVideoSearch', 'false');
}
const providers = await fetch(`/api/models`, {
headers: {
'Content-Type': 'application/json',
},
}).then(async (res) => {
if (!res.ok)
throw new Error(
`Failed to fetch models: ${res.status} ${res.statusText}`,
);
return res.json();
});
if (
!chatModel ||
!chatModelProvider ||
!embeddingModel ||
!embeddingModelProvider
) {
if (!chatModel || !chatModelProvider) {
const chatModelProviders = providers.chatModelProviders;
chatModelProvider =
chatModelProvider || Object.keys(chatModelProviders)[0];
chatModel = Object.keys(chatModelProviders[chatModelProvider])[0];
if (!chatModelProviders || Object.keys(chatModelProviders).length === 0)
return toast.error('No chat models available');
}
try {
let chatModel = localStorage.getItem('chatModel');
let chatModelProvider = localStorage.getItem('chatModelProvider');
let embeddingModel = localStorage.getItem('embeddingModel');
let embeddingModelProvider = localStorage.getItem(
'embeddingModelProvider',
);
const autoImageSearch = localStorage.getItem('autoImageSearch');
const autoVideoSearch = localStorage.getItem('autoVideoSearch');
if (!autoImageSearch) {
localStorage.setItem('autoImageSearch', 'true');
}
if (!autoVideoSearch) {
localStorage.setItem('autoVideoSearch', 'false');
}
const providers = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/models`,
{
headers: {
'Content-Type': 'application/json',
},
},
).then(async (res) => {
if (!res.ok)
throw new Error(
`Failed to fetch models: ${res.status} ${res.statusText}`,
);
return res.json();
});
if (!embeddingModel || !embeddingModelProvider) {
const embeddingModelProviders = providers.embeddingModelProviders;
if (
!chatModel ||
!chatModelProvider ||
!embeddingModel ||
!embeddingModelProvider
) {
if (!chatModel || !chatModelProvider) {
const chatModelProviders = providers.chatModelProviders;
!embeddingModelProviders ||
Object.keys(embeddingModelProviders).length === 0
)
return toast.error('No embedding models available');
chatModelProvider =
chatModelProvider || Object.keys(chatModelProviders)[0];
chatModel = Object.keys(chatModelProviders[chatModelProvider])[0];
if (
!chatModelProviders ||
Object.keys(chatModelProviders).length === 0
)
return toast.error('No chat models available');
}
if (!embeddingModel || !embeddingModelProvider) {
const embeddingModelProviders = providers.embeddingModelProviders;
if (
!embeddingModelProviders ||
Object.keys(embeddingModelProviders).length === 0
)
return toast.error('No embedding models available');
embeddingModelProvider = Object.keys(embeddingModelProviders)[0];
embeddingModel = Object.keys(
embeddingModelProviders[embeddingModelProvider],
)[0];
}
localStorage.setItem('chatModel', chatModel!);
localStorage.setItem('chatModelProvider', chatModelProvider);
localStorage.setItem('embeddingModel', embeddingModel!);
localStorage.setItem(
'embeddingModelProvider',
embeddingModelProvider,
);
} else {
const chatModelProviders = providers.chatModelProviders;
const embeddingModelProviders = providers.embeddingModelProviders;
if (
Object.keys(chatModelProviders).length > 0 &&
!chatModelProviders[chatModelProvider]
) {
const chatModelProvidersKeys = Object.keys(chatModelProviders);
chatModelProvider =
chatModelProvidersKeys.find(
(key) => Object.keys(chatModelProviders[key]).length > 0,
) || chatModelProvidersKeys[0];
localStorage.setItem('chatModelProvider', chatModelProvider);
}
if (
chatModelProvider &&
!chatModelProviders[chatModelProvider][chatModel]
) {
chatModel = Object.keys(
chatModelProviders[
Object.keys(chatModelProviders[chatModelProvider]).length > 0
? chatModelProvider
: Object.keys(chatModelProviders)[0]
],
)[0];
localStorage.setItem('chatModel', chatModel);
}
if (
Object.keys(embeddingModelProviders).length > 0 &&
!embeddingModelProviders[embeddingModelProvider]
) {
embeddingModelProvider = Object.keys(embeddingModelProviders)[0];
localStorage.setItem(
'embeddingModelProvider',
embeddingModelProvider,
);
}
if (
embeddingModelProvider &&
!embeddingModelProviders[embeddingModelProvider][embeddingModel]
) {
embeddingModel = Object.keys(
embeddingModelProviders[embeddingModelProvider],
)[0];
localStorage.setItem('embeddingModel', embeddingModel);
}
}
const wsURL = new URL(url);
const searchParams = new URLSearchParams({});
searchParams.append('chatModel', chatModel!);
searchParams.append('chatModelProvider', chatModelProvider);
if (chatModelProvider === 'custom_openai') {
searchParams.append(
'openAIApiKey',
localStorage.getItem('openAIApiKey')!,
);
searchParams.append(
'openAIBaseURL',
localStorage.getItem('openAIBaseURL')!,
);
}
searchParams.append('embeddingModel', embeddingModel!);
searchParams.append('embeddingModelProvider', embeddingModelProvider);
wsURL.search = searchParams.toString();
const ws = new WebSocket(wsURL.toString());
wsRef.current = ws;
const timeoutId = setTimeout(() => {
if (ws.readyState !== 1) {
toast.error(
'Failed to connect to the server. Please try again later.',
);
}
}, 10000);
ws.addEventListener('message', (e) => {
const data = JSON.parse(e.data);
if (data.type === 'signal' && data.data === 'open') {
const interval = setInterval(() => {
if (ws.readyState === 1) {
setIsWSReady(true);
setError(false);
if (retryCountRef.current > 0) {
toast.success('Connection restored.');
}
retryCountRef.current = 0;
clearInterval(interval);
}
}, 5);
clearTimeout(timeoutId);
console.debug(new Date(), 'ws:connected');
}
if (data.type === 'error') {
isConnectionErrorRef.current = true;
setError(true);
toast.error(data.data);
}
});
ws.onerror = () => {
clearTimeout(timeoutId);
setIsWSReady(false);
toast.error('WebSocket connection error.');
};
ws.onclose = () => {
clearTimeout(timeoutId);
setIsWSReady(false);
console.debug(new Date(), 'ws:disconnected');
if (!isCleaningUpRef.current && !isConnectionErrorRef.current) {
toast.error('Connection lost. Attempting to reconnect...');
attemptReconnect();
}
};
} catch (error) {
console.debug(new Date(), 'ws:error', error);
setIsWSReady(false);
attemptReconnect();
}
};
const attemptReconnect = () => {
retryCountRef.current += 1;
if (retryCountRef.current > MAX_RETRIES) {
console.debug(new Date(), 'ws:max_retries');
setError(true);
toast.error(
'Unable to connect to server after multiple attempts. Please refresh the page to try again.',
);
return;
embeddingModelProvider = Object.keys(embeddingModelProviders)[0];
embeddingModel = Object.keys(
embeddingModelProviders[embeddingModelProvider],
)[0];
}
const backoffDelay = getBackoffDelay(retryCountRef.current);
console.debug(
new Date(),
`ws:retry attempt=${retryCountRef.current}/${MAX_RETRIES} delay=${backoffDelay}ms`,
);
localStorage.setItem('chatModel', chatModel!);
localStorage.setItem('chatModelProvider', chatModelProvider);
localStorage.setItem('embeddingModel', embeddingModel!);
localStorage.setItem('embeddingModelProvider', embeddingModelProvider);
} else {
const chatModelProviders = providers.chatModelProviders;
const embeddingModelProviders = providers.embeddingModelProviders;
if (reconnectTimeoutRef.current) {
clearTimeout(reconnectTimeoutRef.current);
if (
Object.keys(chatModelProviders).length > 0 &&
!chatModelProviders[chatModelProvider]
) {
const chatModelProvidersKeys = Object.keys(chatModelProviders);
chatModelProvider =
chatModelProvidersKeys.find(
(key) => Object.keys(chatModelProviders[key]).length > 0,
) || chatModelProvidersKeys[0];
localStorage.setItem('chatModelProvider', chatModelProvider);
}
reconnectTimeoutRef.current = setTimeout(() => {
connectWs();
}, backoffDelay);
};
connectWs();
return () => {
if (reconnectTimeoutRef.current) {
clearTimeout(reconnectTimeoutRef.current);
if (
chatModelProvider &&
!chatModelProviders[chatModelProvider][chatModel]
) {
chatModel = Object.keys(
chatModelProviders[
Object.keys(chatModelProviders[chatModelProvider]).length > 0
? chatModelProvider
: Object.keys(chatModelProviders)[0]
],
)[0];
localStorage.setItem('chatModel', chatModel);
}
if (wsRef.current?.readyState === WebSocket.OPEN) {
wsRef.current.close();
isCleaningUpRef.current = true;
console.debug(new Date(), 'ws:cleanup');
}
};
}, [url, setIsWSReady, setError]);
return wsRef.current;
if (
Object.keys(embeddingModelProviders).length > 0 &&
!embeddingModelProviders[embeddingModelProvider]
) {
embeddingModelProvider = Object.keys(embeddingModelProviders)[0];
localStorage.setItem('embeddingModelProvider', embeddingModelProvider);
}
if (
embeddingModelProvider &&
!embeddingModelProviders[embeddingModelProvider][embeddingModel]
) {
embeddingModel = Object.keys(
embeddingModelProviders[embeddingModelProvider],
)[0];
localStorage.setItem('embeddingModel', embeddingModel);
}
}
setChatModelProvider({
name: chatModel!,
provider: chatModelProvider,
});
setEmbeddingModelProvider({
name: embeddingModel!,
provider: embeddingModelProvider,
});
setIsConfigReady(true);
} catch (err) {
console.error('An error occurred while checking the configuration:', err);
setIsConfigReady(false);
setHasError(true);
}
};
const loadMessages = async (
@@ -315,15 +189,12 @@ const loadMessages = async (
setFiles: (files: File[]) => void,
setFileIds: (fileIds: string[]) => void,
) => {
const res = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/chats/${chatId}`,
{
method: 'GET',
headers: {
'Content-Type': 'application/json',
},
const res = await fetch(`/api/chats/${chatId}`, {
method: 'GET',
headers: {
'Content-Type': 'application/json',
},
);
});
if (res.status === 404) {
setNotFound(true);
@@ -373,15 +244,32 @@ const ChatWindow = ({ id }: { id?: string }) => {
const [chatId, setChatId] = useState<string | undefined>(id);
const [newChatCreated, setNewChatCreated] = useState(false);
const [chatModelProvider, setChatModelProvider] = useState<ChatModelProvider>(
{
name: '',
provider: '',
},
);
const [embeddingModelProvider, setEmbeddingModelProvider] =
useState<EmbeddingModelProvider>({
name: '',
provider: '',
});
const [isConfigReady, setIsConfigReady] = useState(false);
const [hasError, setHasError] = useState(false);
const [isReady, setIsReady] = useState(false);
const [isWSReady, setIsWSReady] = useState(false);
const ws = useSocket(
process.env.NEXT_PUBLIC_WS_URL!,
setIsWSReady,
setHasError,
);
useEffect(() => {
checkConfig(
setChatModelProvider,
setEmbeddingModelProvider,
setIsConfigReady,
setHasError,
);
// eslint-disable-next-line react-hooks/exhaustive-deps
}, []);
const [loading, setLoading] = useState(false);
const [messageAppeared, setMessageAppeared] = useState(false);
@@ -399,8 +287,6 @@ const ChatWindow = ({ id }: { id?: string }) => {
const [notFound, setNotFound] = useState(false);
const [isSettingsOpen, setIsSettingsOpen] = useState(false);
useEffect(() => {
if (
chatId &&
@@ -426,16 +312,6 @@ const ChatWindow = ({ id }: { id?: string }) => {
// eslint-disable-next-line react-hooks/exhaustive-deps
}, []);
useEffect(() => {
return () => {
if (ws?.readyState === 1) {
ws.close();
console.debug(new Date(), 'ws:cleanup');
}
};
// eslint-disable-next-line react-hooks/exhaustive-deps
}, []);
const messagesRef = useRef<Message[]>([]);
useEffect(() => {
@@ -443,18 +319,18 @@ const ChatWindow = ({ id }: { id?: string }) => {
}, [messages]);
useEffect(() => {
if (isMessagesLoaded && isWSReady) {
if (isMessagesLoaded && isConfigReady) {
setIsReady(true);
console.debug(new Date(), 'app:ready');
} else {
setIsReady(false);
}
}, [isMessagesLoaded, isWSReady]);
}, [isMessagesLoaded, isConfigReady]);
const sendMessage = async (message: string, messageId?: string) => {
if (loading) return;
if (!ws || ws.readyState !== WebSocket.OPEN) {
toast.error('Cannot send message while disconnected');
if (!isConfigReady) {
toast.error('Cannot send message before the configuration is ready');
return;
}
@@ -467,18 +343,27 @@ const ChatWindow = ({ id }: { id?: string }) => {
messageId = messageId ?? crypto.randomBytes(7).toString('hex');
ws.send(
console.log(
JSON.stringify({
type: 'message',
content: message,
message: {
messageId: messageId,
chatId: chatId!,
content: message,
},
chatId: chatId!,
files: fileIds,
focusMode: focusMode,
optimizationMode: optimizationMode,
history: [...chatHistory, ['human', message]],
history: chatHistory,
chatModel: {
name: chatModelProvider.name,
provider: chatModelProvider.provider,
},
embeddingModel: {
name: embeddingModelProvider.name,
provider: embeddingModelProvider.provider,
},
}),
);
@@ -493,9 +378,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
},
]);
const messageHandler = async (e: MessageEvent) => {
const data = JSON.parse(e.data);
const messageHandler = async (data: any) => {
if (data.type === 'error') {
toast.error(data.data);
setLoading(false);
@@ -558,7 +441,6 @@ const ChatWindow = ({ id }: { id?: string }) => {
['assistant', recievedMessage],
]);
ws?.removeEventListener('message', messageHandler);
setLoading(false);
const lastMsg = messagesRef.current[messagesRef.current.length - 1];
@@ -584,16 +466,72 @@ const ChatWindow = ({ id }: { id?: string }) => {
const autoVideoSearch = localStorage.getItem('autoVideoSearch');
if (autoImageSearch === 'true') {
document.getElementById('search-images')?.click();
document
.getElementById(`search-images-${lastMsg.messageId}`)
?.click();
}
if (autoVideoSearch === 'true') {
document.getElementById('search-videos')?.click();
document
.getElementById(`search-videos-${lastMsg.messageId}`)
?.click();
}
}
};
ws?.addEventListener('message', messageHandler);
const res = await fetch('/api/chat', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
content: message,
message: {
messageId: messageId,
chatId: chatId!,
content: message,
},
chatId: chatId!,
files: fileIds,
focusMode: focusMode,
optimizationMode: optimizationMode,
history: chatHistory,
chatModel: {
name: chatModelProvider.name,
provider: chatModelProvider.provider,
},
embeddingModel: {
name: embeddingModelProvider.name,
provider: embeddingModelProvider.provider,
},
}),
});
if (!res.body) throw new Error('No response body');
const reader = res.body?.getReader();
const decoder = new TextDecoder('utf-8');
let partialChunk = '';
while (true) {
const { value, done } = await reader.read();
if (done) break;
partialChunk += decoder.decode(value, { stream: true });
try {
const messages = partialChunk.split('\n');
for (const msg of messages) {
if (!msg.trim()) continue;
const json = JSON.parse(msg);
messageHandler(json);
}
partialChunk = '';
} catch (error) {
console.warn('Incomplete JSON, waiting for next chunk...');
}
}
};
const rewrite = (messageId: string) => {
@@ -614,11 +552,11 @@ const ChatWindow = ({ id }: { id?: string }) => {
};
useEffect(() => {
if (isReady && initialMessage && ws?.readyState === 1) {
if (isReady && initialMessage && isConfigReady) {
sendMessage(initialMessage);
}
// eslint-disable-next-line react-hooks/exhaustive-deps
}, [ws?.readyState, isReady, initialMessage, isWSReady]);
}, [isConfigReady, isReady, initialMessage]);
if (hasError) {
return (

View File

@@ -29,15 +29,12 @@ const DeleteChat = ({
const handleDelete = async () => {
setLoading(true);
try {
const res = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/chats/${chatId}`,
{
method: 'DELETE',
headers: {
'Content-Type': 'application/json',
},
const res = await fetch(`/api/chats/${chatId}`, {
method: 'DELETE',
headers: {
'Content-Type': 'application/json',
},
);
});
if (res.status != 200) {
throw new Error('Failed to delete chat');

View File

@@ -68,7 +68,13 @@ const MessageBox = ({
return (
<div>
{message.role === 'user' && (
<div className={cn('w-full', messageIndex === 0 ? 'pt-16' : 'pt-8')}>
<div
className={cn(
'w-full',
messageIndex === 0 ? 'pt-16' : 'pt-8',
'break-words',
)}
>
<h2 className="text-black dark:text-white font-medium text-3xl lg:w-9/12">
{message.content}
</h2>
@@ -187,10 +193,12 @@ const MessageBox = ({
<SearchImages
query={history[messageIndex - 1].content}
chatHistory={history.slice(0, messageIndex - 1)}
messageId={message.messageId}
/>
<SearchVideos
chatHistory={history.slice(0, messageIndex - 1)}
query={history[messageIndex - 1].content}
messageId={message.messageId}
/>
</div>
</div>

View File

@@ -41,7 +41,7 @@ const Attach = ({
data.append('embedding_model_provider', embeddingModelProvider!);
data.append('embedding_model', embeddingModel!);
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/uploads`, {
const res = await fetch(`/api/uploads`, {
method: 'POST',
body: data,
});
@@ -110,7 +110,7 @@ const Attach = ({
<button
type="button"
onClick={() => fileInputRef.current.click()}
className="flex flex-row items-center space-x-1 text-white/70 hover:text-white transition duration-200"
className="flex flex-row items-center space-x-1 text-black/70 dark:text-white/70 hover:text-black hover:dark:text-white transition duration-200"
>
<input
type="file"
@@ -128,7 +128,7 @@ const Attach = ({
setFiles([]);
setFileIds([]);
}}
className="flex flex-row items-center space-x-1 text-white/70 hover:text-white transition duration-200"
className="flex flex-row items-center space-x-1 text-black/70 dark:text-white/70 hover:text-black hover:dark:text-white transition duration-200"
>
<Trash size={14} />
<p className="text-xs">Clear</p>
@@ -145,7 +145,7 @@ const Attach = ({
<div className="bg-dark-100 flex items-center justify-center w-10 h-10 rounded-md">
<File size={16} className="text-white/70" />
</div>
<p className="text-white/70 text-sm">
<p className="text-black/70 dark:text-white/70 text-sm">
{file.fileName.length > 25
? file.fileName.replace(/\.\w+$/, '').substring(0, 25) +
'...' +

View File

@@ -39,7 +39,7 @@ const AttachSmall = ({
data.append('embedding_model_provider', embeddingModelProvider!);
data.append('embedding_model', embeddingModel!);
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/uploads`, {
const res = await fetch(`/api/uploads`, {
method: 'POST',
body: data,
});
@@ -82,7 +82,7 @@ const AttachSmall = ({
<button
type="button"
onClick={() => fileInputRef.current.click()}
className="flex flex-row items-center space-x-1 text-white/70 hover:text-white transition duration-200"
className="flex flex-row items-center space-x-1 text-black/70 dark:text-white/70 hover:text-black hover:dark:text-white transition duration-200"
>
<input
type="file"
@@ -100,7 +100,7 @@ const AttachSmall = ({
setFiles([]);
setFileIds([]);
}}
className="flex flex-row items-center space-x-1 text-white/70 hover:text-white transition duration-200"
className="flex flex-row items-center space-x-1 text-black/70 dark:text-white/70 hover:text-black hover:dark:text-white transition duration-200"
>
<Trash size={14} />
<p className="text-xs">Clear</p>
@@ -117,7 +117,7 @@ const AttachSmall = ({
<div className="bg-dark-100 flex items-center justify-center w-10 h-10 rounded-md">
<File size={16} className="text-white/70" />
</div>
<p className="text-white/70 text-sm">
<p className="text-black/70 dark:text-white/70 text-sm">
{file.fileName.length > 25
? file.fileName.replace(/\.\w+$/, '').substring(0, 25) +
'...' +

View File

@@ -45,25 +45,13 @@ const focusModes = [
key: 'youtubeSearch',
title: 'Youtube',
description: 'Search and watch videos',
icon: (
<SiYoutube
className="h-5 w-auto mr-0.5"
onPointerEnterCapture={undefined}
onPointerLeaveCapture={undefined}
/>
),
icon: <SiYoutube className="h-5 w-auto mr-0.5" />,
},
{
key: 'redditSearch',
title: 'Reddit',
description: 'Search for discussions and opinions',
icon: (
<SiReddit
className="h-5 w-auto mr-0.5"
onPointerEnterCapture={undefined}
onPointerLeaveCapture={undefined}
/>
),
icon: <SiReddit className="h-5 w-auto mr-0.5" />,
},
];

View File

@@ -69,11 +69,15 @@ const MessageSources = ({ sources }: { sources: Document[] }) => {
<div className="flex flex-row items-center space-x-1">
{sources.slice(3, 6).map((source, i) => {
return source.metadata.url === 'File' ? (
<div className="bg-dark-200 hover:bg-dark-100 transition duration-200 flex items-center justify-center w-6 h-6 rounded-full">
<div
key={i}
className="bg-dark-200 hover:bg-dark-100 transition duration-200 flex items-center justify-center w-6 h-6 rounded-full"
>
<File size={12} className="text-white/70" />
</div>
) : (
<img
key={i}
src={`https://s2.googleusercontent.com/s2/favicons?domain_url=${source.metadata.url}`}
width={16}
height={16}

View File

@@ -14,9 +14,11 @@ type Image = {
const SearchImages = ({
query,
chatHistory,
messageId,
}: {
query: string;
chatHistory: Message[];
messageId: string;
}) => {
const [images, setImages] = useState<Image[] | null>(null);
const [loading, setLoading] = useState(false);
@@ -27,7 +29,7 @@ const SearchImages = ({
<>
{!loading && images === null && (
<button
id="search-images"
id={`search-images-${messageId}`}
onClick={async () => {
setLoading(true);
@@ -37,27 +39,24 @@ const SearchImages = ({
const customOpenAIBaseURL = localStorage.getItem('openAIBaseURL');
const customOpenAIKey = localStorage.getItem('openAIApiKey');
const res = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/images`,
{
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
query: query,
chatHistory: chatHistory,
chatModel: {
provider: chatModelProvider,
model: chatModel,
...(chatModelProvider === 'custom_openai' && {
customOpenAIBaseURL: customOpenAIBaseURL,
customOpenAIKey: customOpenAIKey,
}),
},
}),
const res = await fetch(`/api/images`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
);
body: JSON.stringify({
query: query,
chatHistory: chatHistory,
chatModel: {
provider: chatModelProvider,
model: chatModel,
...(chatModelProvider === 'custom_openai' && {
customOpenAIBaseURL: customOpenAIBaseURL,
customOpenAIKey: customOpenAIKey,
}),
},
}),
});
const data = await res.json();

View File

@@ -27,9 +27,11 @@ declare module 'yet-another-react-lightbox' {
const Searchvideos = ({
query,
chatHistory,
messageId,
}: {
query: string;
chatHistory: Message[];
messageId: string;
}) => {
const [videos, setVideos] = useState<Video[] | null>(null);
const [loading, setLoading] = useState(false);
@@ -42,7 +44,7 @@ const Searchvideos = ({
<>
{!loading && videos === null && (
<button
id="search-videos"
id={`search-videos-${messageId}`}
onClick={async () => {
setLoading(true);
@@ -52,27 +54,24 @@ const Searchvideos = ({
const customOpenAIBaseURL = localStorage.getItem('openAIBaseURL');
const customOpenAIKey = localStorage.getItem('openAIApiKey');
const res = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/videos`,
{
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
query: query,
chatHistory: chatHistory,
chatModel: {
provider: chatModelProvider,
model: chatModel,
...(chatModelProvider === 'custom_openai' && {
customOpenAIBaseURL: customOpenAIBaseURL,
customOpenAIKey: customOpenAIKey,
}),
},
}),
const res = await fetch(`/api/videos`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
);
body: JSON.stringify({
query: query,
chatHistory: chatHistory,
chatModel: {
provider: chatModelProvider,
model: chatModel,
...(chatModelProvider === 'custom_openai' && {
customOpenAIBaseURL: customOpenAIBaseURL,
customOpenAIKey: customOpenAIKey,
}),
},
}),
});
const data = await res.json();

View File

@@ -7,7 +7,7 @@ export const getSuggestions = async (chatHisory: Message[]) => {
const customOpenAIKey = localStorage.getItem('openAIApiKey');
const customOpenAIBaseURL = localStorage.getItem('openAIBaseURL');
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/suggestions`, {
const res = await fetch(`/api/suggestions`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',

View File

@@ -7,7 +7,7 @@ import { PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { searchSearxng } from '../lib/searxng';
import { searchSearxng } from '../searxng';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
const imageSearchChainPrompt = `
@@ -36,6 +36,12 @@ type ImageSearchChainInput = {
query: string;
};
interface ImageSearchResult {
img_src: string;
url: string;
title: string;
}
const strParser = new StringOutputParser();
const createImageSearchChain = (llm: BaseChatModel) => {
@@ -56,7 +62,7 @@ const createImageSearchChain = (llm: BaseChatModel) => {
engines: ['bing images', 'google images'],
});
const images = [];
const images: ImageSearchResult[] = [];
res.results.forEach((result) => {
if (result.img_src && result.url && result.title) {

View File

@@ -1,5 +1,5 @@
import { RunnableSequence, RunnableMap } from '@langchain/core/runnables';
import ListLineOutputParser from '../lib/outputParsers/listLineOutputParser';
import ListLineOutputParser from '../outputParsers/listLineOutputParser';
import { PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages';

View File

@@ -7,7 +7,7 @@ import { PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { searchSearxng } from '../lib/searxng';
import { searchSearxng } from '../searxng';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
const VideoSearchChainPrompt = `
@@ -36,6 +36,13 @@ type VideoSearchChainInput = {
query: string;
};
interface VideoSearchResult {
img_src: string;
url: string;
title: string;
iframe_src: string;
}
const strParser = new StringOutputParser();
const createVideoSearchChain = (llm: BaseChatModel) => {
@@ -56,7 +63,7 @@ const createVideoSearchChain = (llm: BaseChatModel) => {
engines: ['youtube'],
});
const videos = [];
const videos: VideoSearchResult[] = [];
res.results.forEach((result) => {
if (

View File

@@ -43,7 +43,7 @@ type RecursivePartial<T> = {
const loadConfig = () =>
toml.parse(
fs.readFileSync(path.join(__dirname, `../${configFileName}`), 'utf-8'),
fs.readFileSync(path.join(process.cwd(), `${configFileName}`), 'utf-8'),
) as any as Config;
export const getPort = () => loadConfig().GENERAL.PORT;
@@ -62,7 +62,7 @@ export const getAnthropicApiKey = () => loadConfig().MODELS.ANTHROPIC.API_KEY;
export const getGeminiApiKey = () => loadConfig().MODELS.GEMINI.API_KEY;
export const getSearxngApiEndpoint = () =>
process.env.SEARXNG_API_URL || loadConfig().API_ENDPOINTS.SEARXNG;
loadConfig().API_ENDPOINTS.SEARXNG || process.env.SEARXNG_API_URL;
export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL;
@@ -109,9 +109,8 @@ const mergeConfigs = (current: any, update: any): any => {
export const updateConfig = (config: RecursivePartial<Config>) => {
const currentConfig = loadConfig();
const mergedConfig = mergeConfigs(currentConfig, config);
fs.writeFileSync(
path.join(__dirname, `../${configFileName}`),
path.join(path.join(process.cwd(), `${configFileName}`)),
toml.stringify(mergedConfig),
);
};

View File

@@ -1,8 +1,9 @@
import { drizzle } from 'drizzle-orm/better-sqlite3';
import Database from 'better-sqlite3';
import * as schema from './schema';
import path from 'path';
const sqlite = new Database('data/db.sqlite');
const sqlite = new Database(path.join(process.cwd(), 'data/db.sqlite'));
const db = drizzle(sqlite, {
schema: schema,
});

View File

@@ -1,82 +0,0 @@
import { Embeddings, type EmbeddingsParams } from '@langchain/core/embeddings';
import { chunkArray } from '@langchain/core/utils/chunk_array';
export interface HuggingFaceTransformersEmbeddingsParams
extends EmbeddingsParams {
modelName: string;
model: string;
timeout?: number;
batchSize?: number;
stripNewLines?: boolean;
}
export class HuggingFaceTransformersEmbeddings
extends Embeddings
implements HuggingFaceTransformersEmbeddingsParams
{
modelName = 'Xenova/all-MiniLM-L6-v2';
model = 'Xenova/all-MiniLM-L6-v2';
batchSize = 512;
stripNewLines = true;
timeout?: number;
private pipelinePromise: Promise<any>;
constructor(fields?: Partial<HuggingFaceTransformersEmbeddingsParams>) {
super(fields ?? {});
this.modelName = fields?.model ?? fields?.modelName ?? this.model;
this.model = this.modelName;
this.stripNewLines = fields?.stripNewLines ?? this.stripNewLines;
this.timeout = fields?.timeout;
}
async embedDocuments(texts: string[]): Promise<number[][]> {
const batches = chunkArray(
this.stripNewLines ? texts.map((t) => t.replace(/\n/g, ' ')) : texts,
this.batchSize,
);
const batchRequests = batches.map((batch) => this.runEmbedding(batch));
const batchResponses = await Promise.all(batchRequests);
const embeddings: number[][] = [];
for (let i = 0; i < batchResponses.length; i += 1) {
const batchResponse = batchResponses[i];
for (let j = 0; j < batchResponse.length; j += 1) {
embeddings.push(batchResponse[j]);
}
}
return embeddings;
}
async embedQuery(text: string): Promise<number[]> {
const data = await this.runEmbedding([
this.stripNewLines ? text.replace(/\n/g, ' ') : text,
]);
return data[0];
}
private async runEmbedding(texts: string[]) {
const { pipeline } = await import('@xenova/transformers');
const pipe = await (this.pipelinePromise ??= pipeline(
'feature-extraction',
this.model,
));
return this.caller.call(async () => {
const output = await pipe(texts, { pooling: 'mean', normalize: true });
return output.tolist();
});
}
}

View File

@@ -9,7 +9,7 @@ class LineOutputParser extends BaseOutputParser<string> {
constructor(args?: LineOutputParserArgs) {
super();
this.key = args.key ?? this.key;
this.key = args?.key ?? this.key;
}
static lc_name() {

View File

@@ -9,7 +9,7 @@ class LineListOutputParser extends BaseOutputParser<string[]> {
constructor(args?: LineListOutputParserArgs) {
super();
this.key = args.key ?? this.key;
this.key = args?.key ?? this.key;
}
static lc_name() {

View File

@@ -1,6 +1,38 @@
import { ChatAnthropic } from '@langchain/anthropic';
import { getAnthropicApiKey } from '../../config';
import logger from '../../utils/logger';
import { ChatOpenAI } from '@langchain/openai';
import { ChatModel } from '.';
import { getAnthropicApiKey } from '../config';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const anthropicChatModels: Record<string, string>[] = [
{
displayName: 'Claude 3.7 Sonnet',
key: 'claude-3-7-sonnet-20250219',
},
{
displayName: 'Claude 3.5 Haiku',
key: 'claude-3-5-haiku-20241022',
},
{
displayName: 'Claude 3.5 Sonnet v2',
key: 'claude-3-5-sonnet-20241022',
},
{
displayName: 'Claude 3.5 Sonnet',
key: 'claude-3-5-sonnet-20240620',
},
{
displayName: 'Claude 3 Opus',
key: 'claude-3-opus-20240229',
},
{
displayName: 'Claude 3 Sonnet',
key: 'claude-3-sonnet-20240229',
},
{
displayName: 'Claude 3 Haiku',
key: 'claude-3-haiku-20240307',
},
];
export const loadAnthropicChatModels = async () => {
const anthropicApiKey = getAnthropicApiKey();
@@ -8,52 +40,25 @@ export const loadAnthropicChatModels = async () => {
if (!anthropicApiKey) return {};
try {
const chatModels = {
'claude-3-5-sonnet-20241022': {
displayName: 'Claude 3.5 Sonnet',
model: new ChatAnthropic({
const chatModels: Record<string, ChatModel> = {};
anthropicChatModels.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatOpenAI({
openAIApiKey: anthropicApiKey,
modelName: model.key,
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-5-sonnet-20241022',
}),
},
'claude-3-5-haiku-20241022': {
displayName: 'Claude 3.5 Haiku',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-5-haiku-20241022',
}),
},
'claude-3-opus-20240229': {
displayName: 'Claude 3 Opus',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-opus-20240229',
}),
},
'claude-3-sonnet-20240229': {
displayName: 'Claude 3 Sonnet',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-sonnet-20240229',
}),
},
'claude-3-haiku-20240307': {
displayName: 'Claude 3 Haiku',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-haiku-20240307',
}),
},
};
configuration: {
baseURL: 'https://api.anthropic.com/v1/',
},
}) as unknown as BaseChatModel,
};
});
return chatModels;
} catch (err) {
logger.error(`Error loading Anthropic models: ${err}`);
console.error(`Error loading Anthropic models: ${err}`);
return {};
}
};

View File

@@ -1,9 +1,42 @@
import {
ChatGoogleGenerativeAI,
GoogleGenerativeAIEmbeddings,
} from '@langchain/google-genai';
import { getGeminiApiKey } from '../../config';
import logger from '../../utils/logger';
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
import { getGeminiApiKey } from '../config';
import { ChatModel, EmbeddingModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { Embeddings } from '@langchain/core/embeddings';
const geminiChatModels: Record<string, string>[] = [
{
displayName: 'Gemini 2.0 Flash',
key: 'gemini-2.0-flash',
},
{
displayName: 'Gemini 2.0 Flash-Lite',
key: 'gemini-2.0-flash-lite',
},
{
displayName: 'Gemini 2.0 Pro Experimental',
key: 'gemini-2.0-pro-exp-02-05',
},
{
displayName: 'Gemini 1.5 Flash',
key: 'gemini-1.5-flash',
},
{
displayName: 'Gemini 1.5 Flash-8B',
key: 'gemini-1.5-flash-8b',
},
{
displayName: 'Gemini 1.5 Pro',
key: 'gemini-1.5-pro',
},
];
const geminiEmbeddingModels: Record<string, string>[] = [
{
displayName: 'Gemini Embedding',
key: 'gemini-embedding-exp',
},
];
export const loadGeminiChatModels = async () => {
const geminiApiKey = getGeminiApiKey();
@@ -11,75 +44,53 @@ export const loadGeminiChatModels = async () => {
if (!geminiApiKey) return {};
try {
const chatModels = {
'gemini-1.5-flash': {
displayName: 'Gemini 1.5 Flash',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-1.5-flash',
const chatModels: Record<string, ChatModel> = {};
geminiChatModels.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatOpenAI({
openAIApiKey: geminiApiKey,
modelName: model.key,
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
'gemini-1.5-flash-8b': {
displayName: 'Gemini 1.5 Flash 8B',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-1.5-flash-8b',
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
'gemini-1.5-pro': {
displayName: 'Gemini 1.5 Pro',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-1.5-pro',
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
'gemini-2.0-flash-exp': {
displayName: 'Gemini 2.0 Flash Exp',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-2.0-flash-exp',
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
'gemini-2.0-flash-thinking-exp-01-21': {
displayName: 'Gemini 2.0 Flash Thinking Exp 01-21',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-2.0-flash-thinking-exp-01-21',
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
};
configuration: {
baseURL: 'https://generativelanguage.googleapis.com/v1beta/openai/',
},
}) as unknown as BaseChatModel,
};
});
return chatModels;
} catch (err) {
logger.error(`Error loading Gemini models: ${err}`);
console.error(`Error loading Gemini models: ${err}`);
return {};
}
};
export const loadGeminiEmbeddingsModels = async () => {
export const loadGeminiEmbeddingModels = async () => {
const geminiApiKey = getGeminiApiKey();
if (!geminiApiKey) return {};
try {
const embeddingModels = {
'text-embedding-004': {
displayName: 'Text Embedding',
model: new GoogleGenerativeAIEmbeddings({
apiKey: geminiApiKey,
modelName: 'text-embedding-004',
}),
},
};
const embeddingModels: Record<string, EmbeddingModel> = {};
geminiEmbeddingModels.forEach((model) => {
embeddingModels[model.key] = {
displayName: model.displayName,
model: new OpenAIEmbeddings({
openAIApiKey: geminiApiKey,
modelName: model.key,
configuration: {
baseURL: 'https://generativelanguage.googleapis.com/v1beta/openai/',
},
}) as unknown as Embeddings,
};
});
return embeddingModels;
} catch (err) {
logger.error(`Error loading Gemini embeddings model: ${err}`);
console.error(`Error loading OpenAI embeddings models: ${err}`);
return {};
}
};

View File

@@ -1,6 +1,82 @@
import { ChatOpenAI } from '@langchain/openai';
import { getGroqApiKey } from '../../config';
import logger from '../../utils/logger';
import { getGroqApiKey } from '../config';
import { ChatModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const groqChatModels: Record<string, string>[] = [
{
displayName: 'Gemma2 9B IT',
key: 'gemma2-9b-it',
},
{
displayName: 'Llama 3.3 70B Versatile',
key: 'llama-3.3-70b-versatile',
},
{
displayName: 'Llama 3.1 8B Instant',
key: 'llama-3.1-8b-instant',
},
{
displayName: 'Llama3 70B 8192',
key: 'llama3-70b-8192',
},
{
displayName: 'Llama3 8B 8192',
key: 'llama3-8b-8192',
},
{
displayName: 'Mixtral 8x7B 32768',
key: 'mixtral-8x7b-32768',
},
{
displayName: 'Qwen QWQ 32B (Preview)',
key: 'qwen-qwq-32b',
},
{
displayName: 'Mistral Saba 24B (Preview)',
key: 'mistral-saba-24b',
},
{
displayName: 'Qwen 2.5 Coder 32B (Preview)',
key: 'qwen-2.5-coder-32b',
},
{
displayName: 'Qwen 2.5 32B (Preview)',
key: 'qwen-2.5-32b',
},
{
displayName: 'DeepSeek R1 Distill Qwen 32B (Preview)',
key: 'deepseek-r1-distill-qwen-32b',
},
{
displayName: 'DeepSeek R1 Distill Llama 70B SpecDec (Preview)',
key: 'deepseek-r1-distill-llama-70b-specdec',
},
{
displayName: 'DeepSeek R1 Distill Llama 70B (Preview)',
key: 'deepseek-r1-distill-llama-70b',
},
{
displayName: 'Llama 3.3 70B SpecDec (Preview)',
key: 'llama-3.3-70b-specdec',
},
{
displayName: 'Llama 3.2 1B Preview (Preview)',
key: 'llama-3.2-1b-preview',
},
{
displayName: 'Llama 3.2 3B Preview (Preview)',
key: 'llama-3.2-3b-preview',
},
{
displayName: 'Llama 3.2 11B Vision Preview (Preview)',
key: 'llama-3.2-11b-vision-preview',
},
{
displayName: 'Llama 3.2 90B Vision Preview (Preview)',
key: 'llama-3.2-90b-vision-preview',
},
];
export const loadGroqChatModels = async () => {
const groqApiKey = getGroqApiKey();
@@ -8,129 +84,25 @@ export const loadGroqChatModels = async () => {
if (!groqApiKey) return {};
try {
const chatModels = {
'llama-3.3-70b-versatile': {
displayName: 'Llama 3.3 70B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.3-70b-versatile',
temperature: 0.7,
},
{
const chatModels: Record<string, ChatModel> = {};
groqChatModels.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatOpenAI({
openAIApiKey: groqApiKey,
modelName: model.key,
temperature: 0.7,
configuration: {
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama-3.2-3b-preview': {
displayName: 'Llama 3.2 3B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.2-3b-preview',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama-3.2-11b-vision-preview': {
displayName: 'Llama 3.2 11B Vision',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.2-11b-vision-preview',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama-3.2-90b-vision-preview': {
displayName: 'Llama 3.2 90B Vision',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.2-90b-vision-preview',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama-3.1-8b-instant': {
displayName: 'Llama 3.1 8B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.1-8b-instant',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama3-8b-8192': {
displayName: 'LLaMA3 8B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama3-8b-8192',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama3-70b-8192': {
displayName: 'LLaMA3 70B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama3-70b-8192',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'mixtral-8x7b-32768': {
displayName: 'Mixtral 8x7B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'mixtral-8x7b-32768',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'gemma2-9b-it': {
displayName: 'Gemma2 9B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'gemma2-9b-it',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
};
}) as unknown as BaseChatModel,
};
});
return chatModels;
} catch (err) {
logger.error(`Error loading Groq models: ${err}`);
console.error(`Error loading Groq models: ${err}`);
return {};
}
};

View File

@@ -1,33 +1,49 @@
import { loadGroqChatModels } from './groq';
import { loadOllamaChatModels, loadOllamaEmbeddingsModels } from './ollama';
import { loadOpenAIChatModels, loadOpenAIEmbeddingsModels } from './openai';
import { loadAnthropicChatModels } from './anthropic';
import { loadTransformersEmbeddingsModels } from './transformers';
import { loadGeminiChatModels, loadGeminiEmbeddingsModels } from './gemini';
import { Embeddings } from '@langchain/core/embeddings';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { loadOpenAIChatModels, loadOpenAIEmbeddingModels } from './openai';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '../../config';
} from '../config';
import { ChatOpenAI } from '@langchain/openai';
import { loadOllamaChatModels, loadOllamaEmbeddingModels } from './ollama';
import { loadGroqChatModels } from './groq';
import { loadAnthropicChatModels } from './anthropic';
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini';
const chatModelProviders = {
export interface ChatModel {
displayName: string;
model: BaseChatModel;
}
export interface EmbeddingModel {
displayName: string;
model: Embeddings;
}
export const chatModelProviders: Record<
string,
() => Promise<Record<string, ChatModel>>
> = {
openai: loadOpenAIChatModels,
groq: loadGroqChatModels,
ollama: loadOllamaChatModels,
groq: loadGroqChatModels,
anthropic: loadAnthropicChatModels,
gemini: loadGeminiChatModels,
};
const embeddingModelProviders = {
openai: loadOpenAIEmbeddingsModels,
local: loadTransformersEmbeddingsModels,
ollama: loadOllamaEmbeddingsModels,
gemini: loadGeminiEmbeddingsModels,
export const embeddingModelProviders: Record<
string,
() => Promise<Record<string, EmbeddingModel>>
> = {
openai: loadOpenAIEmbeddingModels,
ollama: loadOllamaEmbeddingModels,
gemini: loadGeminiEmbeddingModels,
};
export const getAvailableChatModelProviders = async () => {
const models = {};
const models: Record<string, Record<string, ChatModel>> = {};
for (const provider in chatModelProviders) {
const providerModels = await chatModelProviders[provider]();
@@ -52,7 +68,7 @@ export const getAvailableChatModelProviders = async () => {
configuration: {
baseURL: customOpenAiApiUrl,
},
}),
}) as unknown as BaseChatModel,
},
}
: {}),
@@ -62,7 +78,7 @@ export const getAvailableChatModelProviders = async () => {
};
export const getAvailableEmbeddingModelProviders = async () => {
const models = {};
const models: Record<string, Record<string, EmbeddingModel>> = {};
for (const provider in embeddingModelProviders) {
const providerModels = await embeddingModelProviders[provider]();

View File

@@ -1,74 +1,73 @@
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
import { getKeepAlive, getOllamaApiEndpoint } from '../../config';
import logger from '../../utils/logger';
import { ChatOllama } from '@langchain/community/chat_models/ollama';
import axios from 'axios';
import { getKeepAlive, getOllamaApiEndpoint } from '../config';
import { ChatModel, EmbeddingModel } from '.';
import { ChatOllama } from '@langchain/community/chat_models/ollama';
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
export const loadOllamaChatModels = async () => {
const ollamaEndpoint = getOllamaApiEndpoint();
const keepAlive = getKeepAlive();
const ollamaApiEndpoint = getOllamaApiEndpoint();
if (!ollamaEndpoint) return {};
if (!ollamaApiEndpoint) return {};
try {
const response = await axios.get(`${ollamaEndpoint}/api/tags`, {
const res = await axios.get(`${ollamaApiEndpoint}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
const { models: ollamaModels } = response.data;
const { models } = res.data;
const chatModels = ollamaModels.reduce((acc, model) => {
acc[model.model] = {
const chatModels: Record<string, ChatModel> = {};
models.forEach((model: any) => {
chatModels[model.model] = {
displayName: model.name,
model: new ChatOllama({
baseUrl: ollamaEndpoint,
baseUrl: ollamaApiEndpoint,
model: model.model,
temperature: 0.7,
keepAlive: keepAlive,
keepAlive: getKeepAlive(),
}),
};
return acc;
}, {});
});
return chatModels;
} catch (err) {
logger.error(`Error loading Ollama models: ${err}`);
console.error(`Error loading Ollama models: ${err}`);
return {};
}
};
export const loadOllamaEmbeddingsModels = async () => {
const ollamaEndpoint = getOllamaApiEndpoint();
export const loadOllamaEmbeddingModels = async () => {
const ollamaApiEndpoint = getOllamaApiEndpoint();
if (!ollamaEndpoint) return {};
if (!ollamaApiEndpoint) return {};
try {
const response = await axios.get(`${ollamaEndpoint}/api/tags`, {
const res = await axios.get(`${ollamaApiEndpoint}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
const { models: ollamaModels } = response.data;
const { models } = res.data;
const embeddingsModels = ollamaModels.reduce((acc, model) => {
acc[model.model] = {
const embeddingModels: Record<string, EmbeddingModel> = {};
models.forEach((model: any) => {
embeddingModels[model.model] = {
displayName: model.name,
model: new OllamaEmbeddings({
baseUrl: ollamaEndpoint,
baseUrl: ollamaApiEndpoint,
model: model.model,
}),
};
});
return acc;
}, {});
return embeddingsModels;
return embeddingModels;
} catch (err) {
logger.error(`Error loading Ollama embeddings model: ${err}`);
console.error(`Error loading Ollama embeddings models: ${err}`);
return {};
}
};

View File

@@ -1,89 +1,90 @@
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
import { getOpenaiApiKey } from '../../config';
import logger from '../../utils/logger';
import { getOpenaiApiKey } from '../config';
import { ChatModel, EmbeddingModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { Embeddings } from '@langchain/core/embeddings';
const openaiChatModels: Record<string, string>[] = [
{
displayName: 'GPT-3.5 Turbo',
key: 'gpt-3.5-turbo',
},
{
displayName: 'GPT-4',
key: 'gpt-4',
},
{
displayName: 'GPT-4 turbo',
key: 'gpt-4-turbo',
},
{
displayName: 'GPT-4 omni',
key: 'gpt-4o',
},
{
displayName: 'GPT-4 omni mini',
key: 'gpt-4o-mini',
},
];
const openaiEmbeddingModels: Record<string, string>[] = [
{
displayName: 'Text Embedding 3 Small',
key: 'text-embedding-3-small',
},
{
displayName: 'Text Embedding 3 Large',
key: 'text-embedding-3-large',
},
];
export const loadOpenAIChatModels = async () => {
const openAIApiKey = getOpenaiApiKey();
const openaiApiKey = getOpenaiApiKey();
if (!openAIApiKey) return {};
if (!openaiApiKey) return {};
try {
const chatModels = {
'gpt-3.5-turbo': {
displayName: 'GPT-3.5 Turbo',
const chatModels: Record<string, ChatModel> = {};
openaiChatModels.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-3.5-turbo',
openAIApiKey: openaiApiKey,
modelName: model.key,
temperature: 0.7,
}),
},
'gpt-4': {
displayName: 'GPT-4',
model: new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4',
temperature: 0.7,
}),
},
'gpt-4-turbo': {
displayName: 'GPT-4 turbo',
model: new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4-turbo',
temperature: 0.7,
}),
},
'gpt-4o': {
displayName: 'GPT-4 omni',
model: new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4o',
temperature: 0.7,
}),
},
'gpt-4o-mini': {
displayName: 'GPT-4 omni mini',
model: new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4o-mini',
temperature: 0.7,
}),
},
};
}) as unknown as BaseChatModel,
};
});
return chatModels;
} catch (err) {
logger.error(`Error loading OpenAI models: ${err}`);
console.error(`Error loading OpenAI models: ${err}`);
return {};
}
};
export const loadOpenAIEmbeddingsModels = async () => {
const openAIApiKey = getOpenaiApiKey();
export const loadOpenAIEmbeddingModels = async () => {
const openaiApiKey = getOpenaiApiKey();
if (!openAIApiKey) return {};
if (!openaiApiKey) return {};
try {
const embeddingModels = {
'text-embedding-3-small': {
displayName: 'Text Embedding 3 Small',
const embeddingModels: Record<string, EmbeddingModel> = {};
openaiEmbeddingModels.forEach((model) => {
embeddingModels[model.key] = {
displayName: model.displayName,
model: new OpenAIEmbeddings({
openAIApiKey,
modelName: 'text-embedding-3-small',
}),
},
'text-embedding-3-large': {
displayName: 'Text Embedding 3 Large',
model: new OpenAIEmbeddings({
openAIApiKey,
modelName: 'text-embedding-3-large',
}),
},
};
openAIApiKey: openaiApiKey,
modelName: model.key,
}) as unknown as Embeddings,
};
});
return embeddingModels;
} catch (err) {
logger.error(`Error loading OpenAI embeddings model: ${err}`);
console.error(`Error loading OpenAI embeddings models: ${err}`);
return {};
}
};

View File

@@ -1,32 +0,0 @@
import logger from '../../utils/logger';
import { HuggingFaceTransformersEmbeddings } from '../huggingfaceTransformer';
export const loadTransformersEmbeddingsModels = async () => {
try {
const embeddingModels = {
'xenova-bge-small-en-v1.5': {
displayName: 'BGE Small',
model: new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/bge-small-en-v1.5',
}),
},
'xenova-gte-small': {
displayName: 'GTE Small',
model: new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/gte-small',
}),
},
'xenova-bert-base-multilingual-uncased': {
displayName: 'Bert Multilingual',
model: new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/bert-base-multilingual-uncased',
}),
},
};
return embeddingModels;
} catch (err) {
logger.error(`Error loading Transformers embeddings model: ${err}`);
return {};
}
};

View File

@@ -13,18 +13,17 @@ import {
} from '@langchain/core/runnables';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import LineListOutputParser from '../lib/outputParsers/listLineOutputParser';
import LineOutputParser from '../lib/outputParsers/lineOutputParser';
import LineListOutputParser from '../outputParsers/listLineOutputParser';
import LineOutputParser from '../outputParsers/lineOutputParser';
import { getDocumentsFromLinks } from '../utils/documents';
import { Document } from 'langchain/document';
import { searchSearxng } from '../lib/searxng';
import path from 'path';
import fs from 'fs';
import { searchSearxng } from '../searxng';
import path from 'node:path';
import fs from 'node:fs';
import computeSimilarity from '../utils/computeSimilarity';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import { StreamEvent } from '@langchain/core/tracers/log_stream';
import { IterableReadableStream } from '@langchain/core/utils/stream';
export interface MetaSearchAgentType {
searchAndAnswer: (
@@ -90,7 +89,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
question = 'summarize';
}
let docs = [];
let docs: Document[] = [];
const linkDocs = await getDocumentsFromLinks({ links });
@@ -311,7 +310,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
const embeddings = JSON.parse(fs.readFileSync(embeddingsPath, 'utf8'));
const fileSimilaritySearchObject = content.contents.map(
(c: string, i) => {
(c: string, i: number) => {
return {
fileName: content.title,
content: c,
@@ -414,6 +413,8 @@ class MetaSearchAgent implements MetaSearchAgentType {
return sortedDocs;
}
return [];
}
private processDocs(docs: Document[]) {
@@ -426,7 +427,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
}
private async handleStream(
stream: IterableReadableStream<StreamEvent>,
stream: AsyncGenerator<StreamEvent, any, any>,
emitter: eventEmitter,
) {
for await (const event of stream) {

View File

@@ -1,5 +1,5 @@
import axios from 'axios';
import { getSearxngApiEndpoint } from '../config';
import { getSearxngApiEndpoint } from './config';
interface SearxngSearchOptions {
categories?: string[];
@@ -30,11 +30,12 @@ export const searchSearxng = async (
if (opts) {
Object.keys(opts).forEach((key) => {
if (Array.isArray(opts[key])) {
url.searchParams.append(key, opts[key].join(','));
const value = opts[key as keyof SearxngSearchOptions];
if (Array.isArray(value)) {
url.searchParams.append(key, value.join(','));
return;
}
url.searchParams.append(key, opts[key]);
url.searchParams.append(key, value as string);
});
}

5
src/lib/types/compute-dot.d.ts vendored Normal file
View File

@@ -0,0 +1,5 @@
declare function computeDot(vectorA: number[], vectorB: number[]): number;
declare module 'compute-dot' {
export default computeDot;
}

View File

@@ -6,7 +6,7 @@ const computeSimilarity = (x: number[], y: number[]): number => {
const similarityMeasure = getSimilarityMeasure();
if (similarityMeasure === 'cosine') {
return cosineSimilarity(x, y);
return cosineSimilarity(x, y) as number;
} else if (similarityMeasure === 'dot') {
return dot(x, y);
}

View File

@@ -3,7 +3,6 @@ import { htmlToText } from 'html-to-text';
import { RecursiveCharacterTextSplitter } from 'langchain/text_splitter';
import { Document } from '@langchain/core/documents';
import pdfParse from 'pdf-parse';
import logger from './logger';
export const getDocumentsFromLinks = async ({ links }: { links: string[] }) => {
const splitter = new RecursiveCharacterTextSplitter();
@@ -79,12 +78,13 @@ export const getDocumentsFromLinks = async ({ links }: { links: string[] }) => {
docs.push(...linkDocs);
} catch (err) {
logger.error(
`Error at generating documents from links: ${err.message}`,
console.error(
'An error occurred while getting documents from links: ',
err,
);
docs.push(
new Document({
pageContent: `Failed to retrieve content from the link: ${err.message}`,
pageContent: `Failed to retrieve content from the link: ${err}`,
metadata: {
title: 'Failed to retrieve content',
url: link,

View File

@@ -1,66 +0,0 @@
import express from 'express';
import logger from '../utils/logger';
import db from '../db/index';
import { eq } from 'drizzle-orm';
import { chats, messages } from '../db/schema';
const router = express.Router();
router.get('/', async (_, res) => {
try {
let chats = await db.query.chats.findMany();
chats = chats.reverse();
return res.status(200).json({ chats: chats });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error in getting chats: ${err.message}`);
}
});
router.get('/:id', async (req, res) => {
try {
const chatExists = await db.query.chats.findFirst({
where: eq(chats.id, req.params.id),
});
if (!chatExists) {
return res.status(404).json({ message: 'Chat not found' });
}
const chatMessages = await db.query.messages.findMany({
where: eq(messages.chatId, req.params.id),
});
return res.status(200).json({ chat: chatExists, messages: chatMessages });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error in getting chat: ${err.message}`);
}
});
router.delete(`/:id`, async (req, res) => {
try {
const chatExists = await db.query.chats.findFirst({
where: eq(chats.id, req.params.id),
});
if (!chatExists) {
return res.status(404).json({ message: 'Chat not found' });
}
await db.delete(chats).where(eq(chats.id, req.params.id)).execute();
await db
.delete(messages)
.where(eq(messages.chatId, req.params.id))
.execute();
return res.status(200).json({ message: 'Chat deleted successfully' });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error in deleting chat: ${err.message}`);
}
});
export default router;

View File

@@ -1,48 +0,0 @@
import express from 'express';
import { searchSearxng } from '../lib/searxng';
import logger from '../utils/logger';
const router = express.Router();
router.get('/', async (req, res) => {
try {
const data = (
await Promise.all([
searchSearxng('site:businessinsider.com AI', {
engines: ['bing news'],
pageno: 1,
}),
searchSearxng('site:www.exchangewire.com AI', {
engines: ['bing news'],
pageno: 1,
}),
searchSearxng('site:yahoo.com AI', {
engines: ['bing news'],
pageno: 1,
}),
searchSearxng('site:businessinsider.com tech', {
engines: ['bing news'],
pageno: 1,
}),
searchSearxng('site:www.exchangewire.com tech', {
engines: ['bing news'],
pageno: 1,
}),
searchSearxng('site:yahoo.com tech', {
engines: ['bing news'],
pageno: 1,
}),
])
)
.map((result) => result.results)
.flat()
.sort(() => Math.random() - 0.5);
return res.json({ blogs: data });
} catch (err: any) {
logger.error(`Error in discover route: ${err.message}`);
return res.status(500).json({ message: 'An error has occurred' });
}
});
export default router;

View File

@@ -1,82 +0,0 @@
import express from 'express';
import handleImageSearch from '../chains/imageSearchAgent';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { getAvailableChatModelProviders } from '../lib/providers';
import { HumanMessage, AIMessage } from '@langchain/core/messages';
import logger from '../utils/logger';
import { ChatOpenAI } from '@langchain/openai';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '../config';
const router = express.Router();
interface ChatModel {
provider: string;
model: string;
}
interface ImageSearchBody {
query: string;
chatHistory: any[];
chatModel?: ChatModel;
}
router.post('/', async (req, res) => {
try {
let body: ImageSearchBody = req.body;
const chatHistory = body.chatHistory.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
return new AIMessage(msg.content);
}
});
const chatModelProviders = await getAvailableChatModelProviders();
const chatModelProvider =
body.chatModel?.provider || Object.keys(chatModelProviders)[0];
const chatModel =
body.chatModel?.model ||
Object.keys(chatModelProviders[chatModelProvider])[0];
let llm: BaseChatModel | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
modelName: getCustomOpenaiModelName(),
openAIApiKey: getCustomOpenaiApiKey(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (
chatModelProviders[chatModelProvider] &&
chatModelProviders[chatModelProvider][chatModel]
) {
llm = chatModelProviders[chatModelProvider][chatModel]
.model as unknown as BaseChatModel | undefined;
}
if (!llm) {
return res.status(400).json({ message: 'Invalid model selected' });
}
const images = await handleImageSearch(
{ query: body.query, chat_history: chatHistory },
llm,
);
res.status(200).json({ images });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error in image search: ${err.message}`);
}
});
export default router;

View File

@@ -1,24 +0,0 @@
import express from 'express';
import imagesRouter from './images';
import videosRouter from './videos';
import configRouter from './config';
import modelsRouter from './models';
import suggestionsRouter from './suggestions';
import chatsRouter from './chats';
import searchRouter from './search';
import discoverRouter from './discover';
import uploadsRouter from './uploads';
const router = express.Router();
router.use('/images', imagesRouter);
router.use('/videos', videosRouter);
router.use('/config', configRouter);
router.use('/models', modelsRouter);
router.use('/suggestions', suggestionsRouter);
router.use('/chats', chatsRouter);
router.use('/search', searchRouter);
router.use('/discover', discoverRouter);
router.use('/uploads', uploadsRouter);
export default router;

View File

@@ -1,36 +0,0 @@
import express from 'express';
import logger from '../utils/logger';
import {
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '../lib/providers';
const router = express.Router();
router.get('/', async (req, res) => {
try {
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
Object.keys(chatModelProviders).forEach((provider) => {
Object.keys(chatModelProviders[provider]).forEach((model) => {
delete chatModelProviders[provider][model].model;
});
});
Object.keys(embeddingModelProviders).forEach((provider) => {
Object.keys(embeddingModelProviders[provider]).forEach((model) => {
delete embeddingModelProviders[provider][model].model;
});
});
res.status(200).json({ chatModelProviders, embeddingModelProviders });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(err.message);
}
});
export default router;

View File

@@ -1,156 +0,0 @@
import express from 'express';
import logger from '../utils/logger';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import { ChatOpenAI } from '@langchain/openai';
import {
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '../lib/providers';
import { searchHandlers } from '../websocket/messageHandler';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
import { MetaSearchAgentType } from '../search/metaSearchAgent';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '../config';
const router = express.Router();
interface chatModel {
provider: string;
model: string;
customOpenAIKey?: string;
customOpenAIBaseURL?: string;
}
interface embeddingModel {
provider: string;
model: string;
}
interface ChatRequestBody {
optimizationMode: 'speed' | 'balanced';
focusMode: string;
chatModel?: chatModel;
embeddingModel?: embeddingModel;
query: string;
history: Array<[string, string]>;
}
router.post('/', async (req, res) => {
try {
const body: ChatRequestBody = req.body;
if (!body.focusMode || !body.query) {
return res.status(400).json({ message: 'Missing focus mode or query' });
}
body.history = body.history || [];
body.optimizationMode = body.optimizationMode || 'balanced';
const history: BaseMessage[] = body.history.map((msg) => {
if (msg[0] === 'human') {
return new HumanMessage({
content: msg[1],
});
} else {
return new AIMessage({
content: msg[1],
});
}
});
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
const chatModelProvider =
body.chatModel?.provider || Object.keys(chatModelProviders)[0];
const chatModel =
body.chatModel?.model ||
Object.keys(chatModelProviders[chatModelProvider])[0];
const embeddingModelProvider =
body.embeddingModel?.provider || Object.keys(embeddingModelProviders)[0];
const embeddingModel =
body.embeddingModel?.model ||
Object.keys(embeddingModelProviders[embeddingModelProvider])[0];
let llm: BaseChatModel | undefined;
let embeddings: Embeddings | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
modelName: body.chatModel?.model || getCustomOpenaiModelName(),
openAIApiKey: body.chatModel?.customOpenAIKey || getCustomOpenaiApiKey(),
temperature: 0.7,
configuration: {
baseURL: body.chatModel?.customOpenAIBaseURL || getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (
chatModelProviders[chatModelProvider] &&
chatModelProviders[chatModelProvider][chatModel]
) {
llm = chatModelProviders[chatModelProvider][chatModel]
.model as unknown as BaseChatModel | undefined;
}
if (
embeddingModelProviders[embeddingModelProvider] &&
embeddingModelProviders[embeddingModelProvider][embeddingModel]
) {
embeddings = embeddingModelProviders[embeddingModelProvider][
embeddingModel
].model as Embeddings | undefined;
}
if (!llm || !embeddings) {
return res.status(400).json({ message: 'Invalid model selected' });
}
const searchHandler: MetaSearchAgentType = searchHandlers[body.focusMode];
if (!searchHandler) {
return res.status(400).json({ message: 'Invalid focus mode' });
}
const emitter = await searchHandler.searchAndAnswer(
body.query,
history,
llm,
embeddings,
body.optimizationMode,
[],
);
let message = '';
let sources = [];
emitter.on('data', (data) => {
const parsedData = JSON.parse(data);
if (parsedData.type === 'response') {
message += parsedData.data;
} else if (parsedData.type === 'sources') {
sources = parsedData.data;
}
});
emitter.on('end', () => {
res.status(200).json({ message, sources });
});
emitter.on('error', (data) => {
const parsedData = JSON.parse(data);
res.status(500).json({ message: parsedData.data });
});
} catch (err: any) {
logger.error(`Error in getting search results: ${err.message}`);
res.status(500).json({ message: 'An error has occurred.' });
}
});
export default router;

View File

@@ -1,81 +0,0 @@
import express from 'express';
import generateSuggestions from '../chains/suggestionGeneratorAgent';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { getAvailableChatModelProviders } from '../lib/providers';
import { HumanMessage, AIMessage } from '@langchain/core/messages';
import logger from '../utils/logger';
import { ChatOpenAI } from '@langchain/openai';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '../config';
const router = express.Router();
interface ChatModel {
provider: string;
model: string;
}
interface SuggestionsBody {
chatHistory: any[];
chatModel?: ChatModel;
}
router.post('/', async (req, res) => {
try {
let body: SuggestionsBody = req.body;
const chatHistory = body.chatHistory.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
return new AIMessage(msg.content);
}
});
const chatModelProviders = await getAvailableChatModelProviders();
const chatModelProvider =
body.chatModel?.provider || Object.keys(chatModelProviders)[0];
const chatModel =
body.chatModel?.model ||
Object.keys(chatModelProviders[chatModelProvider])[0];
let llm: BaseChatModel | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
modelName: getCustomOpenaiModelName(),
openAIApiKey: getCustomOpenaiApiKey(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (
chatModelProviders[chatModelProvider] &&
chatModelProviders[chatModelProvider][chatModel]
) {
llm = chatModelProviders[chatModelProvider][chatModel]
.model as unknown as BaseChatModel | undefined;
}
if (!llm) {
return res.status(400).json({ message: 'Invalid model selected' });
}
const suggestions = await generateSuggestions(
{ chat_history: chatHistory },
llm,
);
res.status(200).json({ suggestions: suggestions });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error in generating suggestions: ${err.message}`);
}
});
export default router;

View File

@@ -1,151 +0,0 @@
import express from 'express';
import logger from '../utils/logger';
import multer from 'multer';
import path from 'path';
import crypto from 'crypto';
import fs from 'fs';
import { Embeddings } from '@langchain/core/embeddings';
import { getAvailableEmbeddingModelProviders } from '../lib/providers';
import { PDFLoader } from '@langchain/community/document_loaders/fs/pdf';
import { DocxLoader } from '@langchain/community/document_loaders/fs/docx';
import { RecursiveCharacterTextSplitter } from '@langchain/textsplitters';
import { Document } from 'langchain/document';
const router = express.Router();
const splitter = new RecursiveCharacterTextSplitter({
chunkSize: 500,
chunkOverlap: 100,
});
const storage = multer.diskStorage({
destination: (req, file, cb) => {
cb(null, path.join(process.cwd(), './uploads'));
},
filename: (req, file, cb) => {
const splitedFileName = file.originalname.split('.');
const fileExtension = splitedFileName[splitedFileName.length - 1];
if (!['pdf', 'docx', 'txt'].includes(fileExtension)) {
return cb(new Error('File type is not supported'), '');
}
cb(null, `${crypto.randomBytes(16).toString('hex')}.${fileExtension}`);
},
});
const upload = multer({ storage });
router.post(
'/',
upload.fields([
{ name: 'files' },
{ name: 'embedding_model', maxCount: 1 },
{ name: 'embedding_model_provider', maxCount: 1 },
]),
async (req, res) => {
try {
const { embedding_model, embedding_model_provider } = req.body;
if (!embedding_model || !embedding_model_provider) {
res
.status(400)
.json({ message: 'Missing embedding model or provider' });
return;
}
const embeddingModels = await getAvailableEmbeddingModelProviders();
const provider =
embedding_model_provider ?? Object.keys(embeddingModels)[0];
const embeddingModel: Embeddings =
embedding_model ?? Object.keys(embeddingModels[provider])[0];
let embeddingsModel: Embeddings | undefined;
if (
embeddingModels[provider] &&
embeddingModels[provider][embeddingModel]
) {
embeddingsModel = embeddingModels[provider][embeddingModel].model as
| Embeddings
| undefined;
}
if (!embeddingsModel) {
res.status(400).json({ message: 'Invalid LLM model selected' });
return;
}
const files = req.files['files'] as Express.Multer.File[];
if (!files || files.length === 0) {
res.status(400).json({ message: 'No files uploaded' });
return;
}
await Promise.all(
files.map(async (file) => {
let docs: Document[] = [];
if (file.mimetype === 'application/pdf') {
const loader = new PDFLoader(file.path);
docs = await loader.load();
} else if (
file.mimetype ===
'application/vnd.openxmlformats-officedocument.wordprocessingml.document'
) {
const loader = new DocxLoader(file.path);
docs = await loader.load();
} else if (file.mimetype === 'text/plain') {
const text = fs.readFileSync(file.path, 'utf-8');
docs = [
new Document({
pageContent: text,
metadata: {
title: file.originalname,
},
}),
];
}
const splitted = await splitter.splitDocuments(docs);
const json = JSON.stringify({
title: file.originalname,
contents: splitted.map((doc) => doc.pageContent),
});
const pathToSave = file.path.replace(/\.\w+$/, '-extracted.json');
fs.writeFileSync(pathToSave, json);
const embeddings = await embeddingsModel.embedDocuments(
splitted.map((doc) => doc.pageContent),
);
const embeddingsJSON = JSON.stringify({
title: file.originalname,
embeddings: embeddings,
});
const pathToSaveEmbeddings = file.path.replace(
/\.\w+$/,
'-embeddings.json',
);
fs.writeFileSync(pathToSaveEmbeddings, embeddingsJSON);
}),
);
res.status(200).json({
files: files.map((file) => {
return {
fileName: file.originalname,
fileExtension: file.filename.split('.').pop(),
fileId: file.filename.replace(/\.\w+$/, ''),
};
}),
});
} catch (err: any) {
logger.error(`Error in uploading file results: ${err.message}`);
res.status(500).json({ message: 'An error has occurred.' });
}
},
);
export default router;

Some files were not shown because too many files have changed in this diff Show More