Compare commits

..

39 Commits

Author SHA1 Message Date
a40c7f6aa2 Merge 78cf3f9d5f into 7ec201d011 2025-02-07 15:38:49 +08:00
7ec201d011 Merge pull request #599 from data5650/patch-1
feat: add Gemini 2.0 Flash Exp models
2025-02-07 11:29:29 +05:30
3582695054 feat: add Gemini 2.0 Flash Exp models
# Description
   Added two new Gemini models:
   - gemini-2.0-flash-exp
   - gemini-2.0-flash-thinking-exp-01-21

   # Changes Made
   - Updated src/lib/providers/gemini.ts to include new models
   - Maintained consistent configuration with existing models

   # Testing
   - Tested locally using Docker
   - Verified models appear in UI and are selectable
   - Confirmed functionality with sample queries

   # Additional Notes
   These models expand the available options for users who want to use the latest Gemini capabilities.
2025-02-05 00:47:34 +01:00
78cf3f9d5f test2 2025-02-02 12:20:25 +02:00
7844ca9343 zizo 2025-02-02 12:14:15 +02:00
46541e6c0c feat(package): update markdown-to-jsx version 2025-02-02 14:31:18 +05:30
f37686189e feat(output-parsers): add empty check 2025-01-31 17:51:16 +05:30
0737701de0 Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2025-01-11 13:11:18 +05:30
5c787bbb55 feat(app): lint & beautify 2025-01-11 13:10:23 +05:30
2dc60d06e3 feat(chat-window): show settings during error on mobile 2025-01-11 13:10:10 +05:30
ec90ea1686 Merge pull request #531 from hacking-racoon/feat/video-slide-stop
feat(SearchVideos): modify Lightbox to pause the prev video when sliding
2025-01-07 12:47:38 +05:30
01230bf1c5 Merge pull request #555 from realies/fix/ws-reconnect
fix(ws-error): add exponential reconnect mechanism
2025-01-07 12:32:06 +05:30
6d9d712790 feat(chat-window): correctly handle server side WS closure 2025-01-07 12:26:38 +05:30
99cae076a7 feat(chat-window): display toast when retried 2025-01-07 11:49:40 +05:30
b7f7d25f54 feat(chat-window): lint & beautify 2025-01-07 11:44:19 +05:30
0ec54fe6c0 feat(chat-window): remove toast 2025-01-07 11:43:54 +05:30
5526d5f60f fix(ws-error): add exponential reconnect mechanism 2025-01-05 17:29:53 +00:00
0f6b3c2e69 Merge branch 'pr/538' 2025-01-05 14:15:58 +05:30
5a648f34b8 Set pageContent correctly 2025-01-04 10:36:33 -08:00
d18e88acc9 Delete msgs only belonging to the chat 2024-12-27 20:55:55 -08:00
409c811a42 feat(ollama): use axios instead of fetch 2024-12-26 19:02:20 +05:30
b5acf34ef8 feat(chat-window): fix bugs handling custom openai, closes #529 2024-12-26 18:59:57 +05:30
d30f714930 feat(SearchVideos): Modify Lightbox to pause the prev video when moving to next one, preventing interference with new video. 2024-12-25 15:19:23 +09:00
ee68095157 Merge pull request #523 from bart-jaskulski/groq-models
Update available models from Groq provider
2024-12-21 18:08:40 +05:30
960e34aa3d Add Llama 3.3 model from Groq
Signed-off-by: Bart Jaskulski <bjaskulski@protonmail.com>
2024-12-19 08:07:36 +01:00
4cb38148b3 Remove deprecated Groq models
Signed-off-by: Bart Jaskulski <bjaskulski@protonmail.com>
2024-12-19 08:07:14 +01:00
c755f98230 Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2024-12-18 19:42:28 +05:30
c3a231a528 feat(readme): add discord server 2024-12-16 20:59:21 +05:30
f30a61c4aa feat(metaSearchAgent): handle undefined content for YT. search 2024-12-16 18:24:01 +05:30
ea74e3013c Merge pull request #519 from yslinear/hotfix
feat(anthropic): update chat models to include Claude 3.5 Haiku and new version for Sonnet
2024-12-15 21:32:49 +05:30
1c3c689039 feat(anthropic): update chat models to include Claude 3.5 Haiku and new version for Sonnet 2024-12-13 17:24:15 +08:00
2c5ca94b3c feat(app): lint and beautify 2024-12-05 20:19:52 +05:30
db7407bfac feat(messageBox): style markdown 2024-12-05 20:19:41 +05:30
5b3e8a3214 feat(prompts): implement new prompt 2024-12-05 20:19:22 +05:30
d79d854e2d Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2024-12-02 21:08:06 +05:30
8cb74f1964 feat(contribution): update guidelines 2024-12-02 21:07:59 +05:30
f88912784b Merge pull request #466 from timoa/fix/docs-markdown-lint
📚 chore(docs): fix Markdown lint issues in the docs
2024-12-01 21:05:23 +05:30
e08d864445 feat(focus): only icon on small devices 2024-11-30 20:58:11 +05:30
f3e918c3e3 chore(docs): fix Markdown lint issues in the docs 2024-11-15 07:04:45 +01:00
44 changed files with 1131 additions and 389 deletions

View File

@ -8,6 +8,7 @@ Perplexica's design consists of two main domains:
- **Frontend (`ui` directory)**: This is a Next.js application holding all user interface components. It's a self-contained environment that manages everything the user interacts with.
- **Backend (root and `src` directory)**: The backend logic is situated in the `src` folder, but the root directory holds the main `package.json` for backend dependency management.
- All of the focus modes are created using the Meta Search Agent class present in `src/search/metaSearchAgent.ts`. The main logic behind Perplexica lies there.
## Setting Up Your Environment

View File

@ -1,5 +1,8 @@
# 🚀 Perplexica - An AI-powered search engine 🔎 <!-- omit in toc -->
[![Discord](https://dcbadge.vercel.app/api/server/26aArMy8tT?style=flat&compact=true)](https://discord.gg/26aArMy8tT)
![preview](.assets/perplexica-screenshot.png?)
## Table of Contents <!-- omit in toc -->

View File

@ -79,24 +79,24 @@ The response from the API includes both the final message and the sources used t
```json
{
"message": "Perplexica is an innovative, open-source AI-powered search engine designed to enhance the way users search for information online. Here are some key features and characteristics of Perplexica:\n\n- **AI-Powered Technology**: It utilizes advanced machine learning algorithms to not only retrieve information but also to understand the context and intent behind user queries, providing more relevant results [1][5].\n\n- **Open-Source**: Being open-source, Perplexica offers flexibility and transparency, allowing users to explore its functionalities without the constraints of proprietary software [3][10].",
"sources": [
{
"pageContent": "Perplexica is an innovative, open-source AI-powered search engine designed to enhance the way users search for information online.",
"metadata": {
"title": "What is Perplexica, and how does it function as an AI-powered search ...",
"url": "https://askai.glarity.app/search/What-is-Perplexica--and-how-does-it-function-as-an-AI-powered-search-engine"
}
},
{
"pageContent": "Perplexica is an open-source AI-powered search tool that dives deep into the internet to find precise answers.",
"metadata": {
"title": "Sahar Mor's Post",
"url": "https://www.linkedin.com/posts/sahar-mor_a-new-open-source-project-called-perplexica-activity-7204489745668694016-ncja"
}
}
"message": "Perplexica is an innovative, open-source AI-powered search engine designed to enhance the way users search for information online. Here are some key features and characteristics of Perplexica:\n\n- **AI-Powered Technology**: It utilizes advanced machine learning algorithms to not only retrieve information but also to understand the context and intent behind user queries, providing more relevant results [1][5].\n\n- **Open-Source**: Being open-source, Perplexica offers flexibility and transparency, allowing users to explore its functionalities without the constraints of proprietary software [3][10].",
"sources": [
{
"pageContent": "Perplexica is an innovative, open-source AI-powered search engine designed to enhance the way users search for information online.",
"metadata": {
"title": "What is Perplexica, and how does it function as an AI-powered search ...",
"url": "https://askai.glarity.app/search/What-is-Perplexica--and-how-does-it-function-as-an-AI-powered-search-engine"
}
},
{
"pageContent": "Perplexica is an open-source AI-powered search tool that dives deep into the internet to find precise answers.",
"metadata": {
"title": "Sahar Mor's Post",
"url": "https://www.linkedin.com/posts/sahar-mor_a-new-open-source-project-called-perplexica-activity-7204489745668694016-ncja"
}
}
....
]
]
}
```

View File

@ -1,4 +1,4 @@
## Perplexica's Architecture
# Perplexica's Architecture
Perplexica's architecture consists of the following key components:

View File

@ -1,4 +1,4 @@
## How does Perplexica work?
# How does Perplexica work?
Curious about how Perplexica works? Don't worry, we'll cover it here. Before we begin, make sure you've read about the architecture of Perplexica to ensure you understand what it's made up of. Haven't read it? You can read it [here](https://github.com/ItzCrazyKns/Perplexica/tree/master/docs/architecture/README.md).
@ -10,10 +10,10 @@ We'll understand how Perplexica works by taking an example of a scenario where a
4. After the information is retrieved, it is based on keyword-based search. We then convert the information into embeddings and the query as well, then we perform a similarity search to find the most relevant sources to answer the query.
5. After all this is done, the sources are passed to the response generator. This chain takes all the chat history, the query, and the sources. It generates a response that is streamed to the UI.
### How are the answers cited?
## How are the answers cited?
The LLMs are prompted to do so. We've prompted them so well that they cite the answers themselves, and using some UI magic, we display it to the user.
### Image and Video Search
## Image and Video Search
Image and video searches are conducted in a similar manner. A query is always generated first, then we search the web for images and videos that match the query. These results are then returned to the user.

View File

@ -10,27 +10,27 @@ This guide will show you how to make Perplexica available over a network. Follow
3. Stop and remove the existing Perplexica containers and images:
```
docker compose down --rmi all
```
```bash
docker compose down --rmi all
```
4. Open the `docker-compose.yaml` file in a text editor like Notepad++
5. Replace `127.0.0.1` with the IP address of the server Perplexica is running on in these two lines:
```
args:
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
```
```bash
args:
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
```
6. Save and close the `docker-compose.yaml` file
7. Rebuild and restart the Perplexica container:
```
docker compose up -d --build
```
```bash
docker compose up -d --build
```
## macOS
@ -38,37 +38,37 @@ docker compose up -d --build
2. Navigate to the directory with the `docker-compose.yaml` file:
```
cd /path/to/docker-compose.yaml
```
```bash
cd /path/to/docker-compose.yaml
```
3. Stop and remove existing containers and images:
```
docker compose down --rmi all
```
```bash
docker compose down --rmi all
```
4. Open `docker-compose.yaml` in a text editor like Sublime Text:
```
nano docker-compose.yaml
```
```bash
nano docker-compose.yaml
```
5. Replace `127.0.0.1` with the server IP in these lines:
```
args:
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
```
```bash
args:
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
```
6. Save and exit the editor
7. Rebuild and restart Perplexica:
```
docker compose up -d --build
```
```bash
docker compose up -d --build
```
## Linux
@ -76,34 +76,34 @@ docker compose up -d --build
2. Navigate to the `docker-compose.yaml` directory:
```
cd /path/to/docker-compose.yaml
```
```bash
cd /path/to/docker-compose.yaml
```
3. Stop and remove containers and images:
```
docker compose down --rmi all
```
```bash
docker compose down --rmi all
```
4. Edit `docker-compose.yaml`:
```
nano docker-compose.yaml
```
```bash
nano docker-compose.yaml
```
5. Replace `127.0.0.1` with the server IP:
```
args:
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
```
```bash
args:
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
```
6. Save and exit the editor
7. Rebuild and restart Perplexica:
```
docker compose up -d --build
```
```bash
docker compose up -d --build
```

View File

@ -6,23 +6,23 @@ To update Perplexica to the latest version, follow these steps:
1. Clone the latest version of Perplexica from GitHub:
```bash
git clone https://github.com/ItzCrazyKns/Perplexica.git
```
```bash
git clone https://github.com/ItzCrazyKns/Perplexica.git
```
2. Navigate to the Project Directory.
3. Pull latest images from registry.
```bash
docker compose pull
```
```bash
docker compose pull
```
4. Update and Recreate containers.
```bash
docker compose up -d
```
```bash
docker compose up -d
```
5. Once the command completes running go to http://localhost:3000 and verify the latest changes.
@ -30,9 +30,9 @@ docker compose up -d
1. Clone the latest version of Perplexica from GitHub:
```bash
git clone https://github.com/ItzCrazyKns/Perplexica.git
```
```bash
git clone https://github.com/ItzCrazyKns/Perplexica.git
```
2. Navigate to the Project Directory
3. Execute `npm i` in both the `ui` folder and the root directory.

117
project_structure.txt Normal file
View File

@ -0,0 +1,117 @@
.
├── CONTRIBUTING.md
├── LICENSE
├── README.md
├── app.dockerfile
├── backend.dockerfile
├── config.toml
├── data
├── docker-compose.yaml
├── docs
│   ├── API
│   │   └── SEARCH.md
│   ├── architecture
│   │   ├── README.md
│   │   └── WORKING.md
│   └── installation
│   ├── NETWORKING.md
│   └── UPDATING.md
├── drizzle.config.ts
├── package.json
├── project_structure.txt
├── searxng
│   ├── limiter.toml
│   ├── settings.yml
│   └── uwsgi.ini
├── src
│   ├── app.ts
│   ├── chains
│   │   ├── imageSearchAgent.ts
│   │   ├── suggestionGeneratorAgent.ts
│   │   └── videoSearchAgent.ts
│   ├── config.ts
│   ├── db
│   │   ├── index.ts
│   │   └── schema.ts
│   ├── lib
│   │   ├── huggingfaceTransformer.ts
│   │   ├── outputParsers
│   │   ├── providers
│   │   └── searxng.ts
│   ├── prompts
│   │   ├── academicSearch.ts
│   │   ├── index.ts
│   │   ├── redditSearch.ts
│   │   ├── webSearch.ts
│   │   ├── wolframAlpha.ts
│   │   ├── writingAssistant.ts
│   │   └── youtubeSearch.ts
│   ├── routes
│   │   ├── chats.ts
│   │   ├── config.ts
│   │   ├── discover.ts
│   │   ├── images.ts
│   │   ├── index.ts
│   │   ├── models.ts
│   │   ├── search.ts
│   │   ├── suggestions.ts
│   │   ├── uploads.ts
│   │   └── videos.ts
│   ├── search
│   │   └── metaSearchAgent.ts
│   ├── utils
│   │   ├── computeSimilarity.ts
│   │   ├── documents.ts
│   │   ├── files.ts
│   │   ├── formatHistory.ts
│   │   └── logger.ts
│   └── websocket
│   ├── connectionManager.ts
│   ├── index.ts
│   ├── messageHandler.ts
│   └── websocketServer.ts
├── tsconfig.json
├── ui
│   ├── app
│   │   ├── c
│   │   ├── discover
│   │   ├── favicon.ico
│   │   ├── globals.css
│   │   ├── layout.tsx
│   │   ├── library
│   │   └── page.tsx
│   ├── components
│   │   ├── Chat.tsx
│   │   ├── ChatWindow.tsx
│   │   ├── DeleteChat.tsx
│   │   ├── EmptyChat.tsx
│   │   ├── EmptyChatMessageInput.tsx
│   │   ├── Layout.tsx
│   │   ├── MessageActions
│   │   ├── MessageBox.tsx
│   │   ├── MessageBoxLoading.tsx
│   │   ├── MessageInput.tsx
│   │   ├── MessageInputActions
│   │   ├── MessageSources.tsx
│   │   ├── Navbar.tsx
│   │   ├── SearchImages.tsx
│   │   ├── SearchVideos.tsx
│   │   ├── SettingsDialog.tsx
│   │   ├── Sidebar.tsx
│   │   └── theme
│   ├── lib
│   │   ├── actions.ts
│   │   └── utils.ts
│   ├── next.config.mjs
│   ├── package.json
│   ├── postcss.config.js
│   ├── public
│   │   ├── next.svg
│   │   └── vercel.svg
│   ├── tailwind.config.ts
│   ├── tsconfig.json
│   └── yarn.lock
├── uploads
└── yarn.lock
30 directories, 85 files

View File

@ -1,14 +0,0 @@
[GENERAL]
PORT = 3001 # Port to run the server on
SIMILARITY_MEASURE = "cosine" # "cosine" or "dot"
KEEP_ALIVE = "5m" # How long to keep Ollama models loaded into memory. (Instead of using -1 use "-1m")
[API_KEYS]
OPENAI = "" # OpenAI API key - sk-1234567890abcdef1234567890abcdef
GROQ = "" # Groq API key - gsk_1234567890abcdef1234567890abcdef
ANTHROPIC = "" # Anthropic API key - sk-ant-1234567890abcdef1234567890abcdef
GEMINI = "" # Gemini API key - sk-1234567890abcdef1234567890abcdef
[API_ENDPOINTS]
SEARXNG = "http://localhost:32768" # SearxNG API URL
OLLAMA = "" # Ollama API URL - http://host.docker.internal:11434

View File

@ -15,24 +15,42 @@ const corsOptions = {
origin: '*',
};
logger.info(`🚀 Initializing Server Setup...`);
logger.info(`🛠 CORS Policy Applied: ${JSON.stringify(corsOptions)}`);
app.use(cors(corsOptions));
app.use(express.json());
// ✅ Middleware to log incoming requests
app.use((req, res, next) => {
logger.info(`📩 API Request - ${req.method} ${req.originalUrl}`);
next();
});
logger.info(`✅ API Routes Initialized`);
app.use('/api', routes);
app.get('/api', (_, res) => {
logger.info(`🟢 Health Check Endpoint Hit`);
res.status(200).json({ status: 'ok' });
});
// ✅ Log when the server starts listening
server.listen(port, () => {
logger.info(`Server is running on port ${port}`);
logger.info(`Server is running on port ${port}`);
});
// ✅ Log WebSocket Initialization
logger.info(`📡 Starting WebSocket Server...`);
startWebSocketServer(server);
// ✅ Better Logging for Uncaught Errors
process.on('uncaughtException', (err, origin) => {
logger.error(`Uncaught Exception at ${origin}: ${err}`);
logger.error(`🔥 Uncaught Exception at ${origin}: ${err.message}`);
logger.error(err.stack);
});
process.on('unhandledRejection', (reason, promise) => {
logger.error(`Unhandled Rejection at: ${promise}, reason: ${reason}`);
logger.error(`🚨 Unhandled Rejection at: ${promise}`);
logger.error(`💥 Reason: ${reason}`);
});

View File

@ -19,6 +19,8 @@ class LineOutputParser extends BaseOutputParser<string> {
lc_namespace = ['langchain', 'output_parsers', 'line_output_parser'];
async parse(text: string): Promise<string> {
text = text.trim() || '';
const regex = /^(\s*(-|\*|\d+\.\s|\d+\)\s|\u2022)\s*)+/;
const startKeyIndex = text.indexOf(`<${this.key}>`);
const endKeyIndex = text.indexOf(`</${this.key}>`);

View File

@ -19,11 +19,13 @@ class LineListOutputParser extends BaseOutputParser<string[]> {
lc_namespace = ['langchain', 'output_parsers', 'line_list_output_parser'];
async parse(text: string): Promise<string[]> {
text = text.trim() || '';
const regex = /^(\s*(-|\*|\d+\.\s|\d+\)\s|\u2022)\s*)+/;
const startKeyIndex = text.indexOf(`<${this.key}>`);
const endKeyIndex = text.indexOf(`</${this.key}>`);
if (startKeyIndex === -1 && endKeyIndex === -1) {
if (startKeyIndex === -1 || endKeyIndex === -1) {
return [];
}

View File

@ -9,12 +9,20 @@ export const loadAnthropicChatModels = async () => {
try {
const chatModels = {
'claude-3-5-sonnet-20240620': {
'claude-3-5-sonnet-20241022': {
displayName: 'Claude 3.5 Sonnet',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-5-sonnet-20240620',
model: 'claude-3-5-sonnet-20241022',
}),
},
'claude-3-5-haiku-20241022': {
displayName: 'Claude 3.5 Haiku',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-5-haiku-20241022',
}),
},
'claude-3-opus-20240229': {

View File

@ -36,6 +36,22 @@ export const loadGeminiChatModels = async () => {
apiKey: geminiApiKey,
}),
},
'gemini-2.0-flash-exp': {
displayName: 'Gemini 2.0 Flash Exp',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-2.0-flash-exp',
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
'gemini-2.0-flash-thinking-exp-01-21': {
displayName: 'Gemini 2.0 Flash Thinking Exp 01-21',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-2.0-flash-thinking-exp-01-21',
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
};
return chatModels;

View File

@ -9,6 +9,19 @@ export const loadGroqChatModels = async () => {
try {
const chatModels = {
'llama-3.3-70b-versatile': {
displayName: 'Llama 3.3 70B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.3-70b-versatile',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama-3.2-3b-preview': {
displayName: 'Llama 3.2 3B',
model: new ChatOpenAI(
@ -48,19 +61,6 @@ export const loadGroqChatModels = async () => {
},
),
},
'llama-3.1-70b-versatile': {
displayName: 'Llama 3.1 70B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.1-70b-versatile',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama-3.1-8b-instant': {
displayName: 'Llama 3.1 8B',
model: new ChatOpenAI(
@ -113,19 +113,6 @@ export const loadGroqChatModels = async () => {
},
),
},
'gemma-7b-it': {
displayName: 'Gemma 7B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'gemma-7b-it',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'gemma2-9b-it': {
displayName: 'Gemma2 9B',
model: new ChatOpenAI(

View File

@ -2,6 +2,7 @@ import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
import { getKeepAlive, getOllamaApiEndpoint } from '../../config';
import logger from '../../utils/logger';
import { ChatOllama } from '@langchain/community/chat_models/ollama';
import axios from 'axios';
export const loadOllamaChatModels = async () => {
const ollamaEndpoint = getOllamaApiEndpoint();
@ -10,13 +11,13 @@ export const loadOllamaChatModels = async () => {
if (!ollamaEndpoint) return {};
try {
const response = await fetch(`${ollamaEndpoint}/api/tags`, {
const response = await axios.get(`${ollamaEndpoint}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
const { models: ollamaModels } = (await response.json()) as any;
const { models: ollamaModels } = response.data;
const chatModels = ollamaModels.reduce((acc, model) => {
acc[model.model] = {
@ -45,13 +46,13 @@ export const loadOllamaEmbeddingsModels = async () => {
if (!ollamaEndpoint) return {};
try {
const response = await fetch(`${ollamaEndpoint}/api/tags`, {
const response = await axios.get(`${ollamaEndpoint}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
const { models: ollamaModels } = (await response.json()) as any;
const { models: ollamaModels } = response.data;
const embeddingsModels = ollamaModels.reduce((acc, model) => {
acc[model.model] = {

View File

@ -1,4 +1,5 @@
export const academicSearchRetrieverPrompt = `
You are gochat247 - aibot the middle east top AI based search engine develped by GoAi247. Your task is to search the web and provide the most relevant
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
@ -20,23 +21,46 @@ Rephrased question:
`;
export const academicSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Academic', this means you will be searching for academic papers and articles on the web.
You are gochat247 - aibot, an AI model skilled in web search and crafting detailed, engaging, and well-structured answers. You excel at summarizing web pages and extracting relevant information to create professional, blog-style responses.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Your task is to provide answers that are:
- **Informative and relevant**: Thoroughly address the user's query using the given context.
- **Well-structured**: Include clear headings and subheadings, and use a professional tone to present information concisely and logically.
- **Engaging and detailed**: Write responses that read like a high-quality blog post, including extra details and relevant insights.
- **Cited and credible**: Use inline citations with [number] notation to refer to the context source(s) for each fact or detail included.
- **Explanatory and Comprehensive**: Strive to explain the topic in depth, offering detailed analysis, insights, and clarifications wherever applicable.
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by the search engine and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
### Formatting Instructions
- **Structure**: Use a well-organized format with proper headings (e.g., "## Example heading 1" or "## Example heading 2"). Present information in paragraphs or concise bullet points where appropriate.
- **Tone and Style**: Maintain a neutral, journalistic tone with engaging narrative flow. Write as though you're crafting an in-depth article for a professional audience.
- **Markdown Usage**: Format your response with Markdown for clarity. Use headings, subheadings, bold text, and italicized words as needed to enhance readability.
- **Length and Depth**: Provide comprehensive coverage of the topic. Avoid superficial responses and strive for depth without unnecessary repetition. Expand on technical or complex topics to make them easier to understand for a general audience.
- **No main heading/title**: Start your response directly with the introduction unless asked to provide a specific title.
- **Conclusion or Summary**: Include a concluding paragraph that synthesizes the provided information or suggests potential next steps, where appropriate.
### Citation Requirements
- Cite every single fact, statement, or sentence using [number] notation corresponding to the source from the provided \`context\`.
- Integrate citations naturally at the end of sentences or clauses as appropriate. For example, "The Eiffel Tower is one of the most visited landmarks in the world[1]."
- Ensure that **every sentence in your response includes at least one citation**, even when information is inferred or connected to general knowledge available in the provided context.
- Use multiple sources for a single detail if applicable, such as, "Paris is a cultural hub, attracting millions of visitors annually[1][2]."
- Always prioritize credibility and accuracy by linking all statements back to their respective context sources.
- Avoid citing unsupported assumptions or personal interpretations; if no source supports a statement, clearly indicate the limitation.
### Special Instructions
- If the query involves technical, historical, or complex topics, provide detailed background and explanatory sections to ensure clarity.
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Academic', this means you will be searching for academic papers and articles on the web.
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
- Provide explanations or historical context as needed to enhance understanding.
- End with a conclusion or overall perspective if relevant.
<context>
{context}
</context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'.
Anything between the \`context\` is retrieved from a search engine and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
Current date & time in ISO format (UTC timezone) is: {date}.
`;

View File

@ -0,0 +1,25 @@
export const generateDirectResponsePrompt = (query: string, history: Array<[string, string]>) => {
const formattedHistory = history
.map(([role, content]) => (role === 'human' ? `User: ${content}` : `AI: ${content}`))
.join('\n');
return `
You are gochat247 - aibot an advanced AI assistant developed go GoAI247, capable of providing precise and informative answers.
Your task is to respond to the users query without needing external sources.
**Conversation History:**
${formattedHistory || "No prior conversation."}
**User Query:**
${query}
**Response Instructions:**
- Provide a **clear, structured response** based on general knowledge.
- Keep it **concise, yet informative**.
- If complex, **break it down into simpler terms**.
- Avoid unnecessary speculation or external references.
**Your Response:**
`;
};

View File

@ -20,23 +20,46 @@ Rephrased question:
`;
export const redditSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Reddit', this means you will be searching for information, opinions and discussions on the web using Reddit.
You are gochat247 - aibot, an AI powered search engine developed by GoAI247 skilled in web search and crafting detailed, engaging, and well-structured answers. You excel at summarizing web pages and extracting relevant information to create professional, blog-style responses.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Your task is to provide answers that are:
- **Informative and relevant**: Thoroughly address the user's query using the given context.
- **Well-structured**: Include clear headings and subheadings, and use a professional tone to present information concisely and logically.
- **Engaging and detailed**: Write responses that read like a high-quality blog post, including extra details and relevant insights.
- **Cited and credible**: Use inline citations with [number] notation to refer to the context source(s) for each fact or detail included.
- **Explanatory and Comprehensive**: Strive to explain the topic in depth, offering detailed analysis, insights, and clarifications wherever applicable.
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by Reddit and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
### Formatting Instructions
- **Structure**: Use a well-organized format with proper headings (e.g., "## Example heading 1" or "## Example heading 2"). Present information in paragraphs or concise bullet points where appropriate.
- **Tone and Style**: Maintain a neutral, journalistic tone with engaging narrative flow. Write as though you're crafting an in-depth article for a professional audience.
- **Markdown Usage**: Format your response with Markdown for clarity. Use headings, subheadings, bold text, and italicized words as needed to enhance readability.
- **Length and Depth**: Provide comprehensive coverage of the topic. Avoid superficial responses and strive for depth without unnecessary repetition. Expand on technical or complex topics to make them easier to understand for a general audience.
- **No main heading/title**: Start your response directly with the introduction unless asked to provide a specific title.
- **Conclusion or Summary**: Include a concluding paragraph that synthesizes the provided information or suggests potential next steps, where appropriate.
### Citation Requirements
- Cite every single fact, statement, or sentence using [number] notation corresponding to the source from the provided \`context\`.
- Integrate citations naturally at the end of sentences or clauses as appropriate. For example, "The Eiffel Tower is one of the most visited landmarks in the world[1]."
- Ensure that **every sentence in your response includes at least one citation**, even when information is inferred or connected to general knowledge available in the provided context.
- Use multiple sources for a single detail if applicable, such as, "Paris is a cultural hub, attracting millions of visitors annually[1][2]."
- Always prioritize credibility and accuracy by linking all statements back to their respective context sources.
- Avoid citing unsupported assumptions or personal interpretations; if no source supports a statement, clearly indicate the limitation.
### Special Instructions
- If the query involves technical, historical, or complex topics, provide detailed background and explanatory sections to ensure clarity.
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Reddit', this means you will be searching for information, opinions and discussions on the web using Reddit.
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
- Provide explanations or historical context as needed to enhance understanding.
- End with a conclusion or overall perspective if relevant.
<context>
{context}
</context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'.
Anything between the \`context\` is retrieved from Reddit and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
Current date & time in ISO format (UTC timezone) is: {date}.
`;

View File

@ -0,0 +1,52 @@
export const shouldPerformSearchPrompt = (query: string, history: Array<[string, string]>) => {
const formattedHistory = history
.map(([role, content]) => (role === 'human' ? `User: ${content}` : `AI: ${content}`))
.join('\n');
return `
You are Gochat247 - AIbot, an AI-powered engine developed by GoAI247. Always remeber that.
when you asked "who are you?" or "what can you do?" or "how are you?" or "tell me a joke." or "can you summarize our last chat?" or "what is your name?" or "what is your purpose?" or "what is your age?" ****DONT use search engine.****
Your role is to determine whether an external web search is needed to answer a user's query.
Analyze the provided chat history and the latest user query before making a decision.
**Conversation History:**
${formattedHistory || "No prior conversation."}
**User Query:**
${query}
---
**Decision Rules:**
- Respond **"no"** if the query:
- Can be answered using **general knowledge** or **your own system knowledge**.
- Asks about **you (Gochat247 - AIbot)** (e.g., "Who are you?" / "What can you do?").
- Is a **general conversation** (e.g., "How are you?"/"Who are you?" / "Tell me a joke.").
- Refers to **previous messages** for context (e.g., "Can you summarize our last chat?").
- **Even if it might seem like a searchable query, do not perform a search.**
- Respond **"yes"** if the query:
- Requires **real-time information** (e.g., news, weather, stock prices, sports scores).
- Mentions **current events** (e.g., "Who won the latest election?").
- Needs **external data sources** (e.g., "Find research papers on AI ethics").
- Asks about **product availability or reviews** (e.g., "Is the iPhone 16 Pro out yet?").
- Your response should be only **"yes"** or **"no"**, without any additional text.
---
**Examples:**
✅ **Search Required ("yes")**
- "What is the latest stock price of Tesla?" → "ما هو أحدث سعر لسهم تسلا؟"
- "Find me recent research papers on quantum computing." → "ابحث لي عن أحدث الأوراق البحثية حول الحوسبة الكمومية."
- "What are the top trending news articles today?" → "ما هي أبرز المقالات الإخبارية الرائجة اليوم؟"
- "What is the weather forecast for Dubai tomorrow?" → "ما هي توقعات الطقس في دبي غدًا؟"
❌ **No Search Needed ("no")**
- "Who are you?" → "من أنت؟"
- "How are you today?" → "كيف حالك اليوم؟"
- "Tell me a fun fact about AI." → "أخبرني بحقيقة ممتعة عن الذكاء الاصطناعي."
- "What can you do?" → "ماذا يمكنك أن تفعل؟"
- "Explain the concept of machine learning in simple terms." → "اشرح لي مفهوم التعلم الآلي بطريقة بسيطة."
- "Can you summarize our last conversation?" → "هل يمكنك تلخيص محادثتنا الأخيرة؟"
**Your Response:**
`;
};

View File

@ -0,0 +1,4 @@
export const generateSummarizationPrompt = (text: string): string => {
return `Summarize the following document:\n\n${text}`;
};

View File

@ -3,7 +3,8 @@ You are an AI question rephraser. You will be given a conversation and a follow-
If it is a smple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block.
You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response.
You have to take into consedration you are serving users in UAE. so prices, events, vacations, temperature, weather, etc. should be related to UAE.
Answer in the same language of the user input
There are several examples attached for your reference inside the below \`examples\` XML block
<examples>
@ -62,25 +63,45 @@ Rephrased question:
`;
export const webSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are also an expert at summarizing web pages or documents and searching for content in them.
You are gochat247 - aibot, an AI model skilled in web search and crafting detailed developed by GoAI247, engaging, and well-structured answers. You excel at summarizing web pages and extracting relevant information to create professional, blog-style responses.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
If the query contains some links and the user asks to answer from those links you will be provided the entire content of the page inside the \`context\` XML block. You can then use this content to answer the user's query.
If the user asks to summarize content from some links, you will be provided the entire content of the page inside the \`context\` XML block. You can then use this content to summarize the text. The content provided inside the \`context\` block will be already summarized by another model so you just need to use that content to answer the user's query.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Your task is to provide answers that are:
- **Informative and relevant**: Thoroughly address the user's query using the given context.
- **Well-structured**: Include clear headings and subheadings, and use a professional tone to present information concisely and logically.
- **Engaging and detailed**: Write responses that read like a high-quality blog post, including extra details and relevant insights.
- **Cited and credible**: Use inline citations with [number] notation to refer to the context source(s) for each fact or detail included.
- **Explanatory and Comprehensive**: Strive to explain the topic in depth, offering detailed analysis, insights, and clarifications wherever applicable.
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by the search engine and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
### Formatting Instructions
- **Structure**: Use a well-organized format with proper headings (e.g., "## Example heading 1" or "## Example heading 2"). Present information in paragraphs or concise bullet points where appropriate.
- **Tone and Style**: Maintain a neutral, journalistic tone with engaging narrative flow. Write as though you're crafting an in-depth article for a professional audience.
- **Markdown Usage**: Format your response with Markdown for clarity. Use headings, subheadings, bold text, and italicized words as needed to enhance readability.
- **Length and Depth**: Provide comprehensive coverage of the topic. Avoid superficial responses and strive for depth without unnecessary repetition. Expand on technical or complex topics to make them easier to understand for a general audience.
- **No main heading/title**: Start your response directly with the introduction unless asked to provide a specific title.
- **Conclusion or Summary**: Include a concluding paragraph that synthesizes the provided information or suggests potential next steps, where appropriate.
### Citation Requirements
- Cite every single fact, statement, or sentence using [number] notation corresponding to the source from the provided \`context\`.
- Integrate citations naturally at the end of sentences or clauses as appropriate. For example, "The Eiffel Tower is one of the most visited landmarks in the world[1]."
- Ensure that **every sentence in your response includes at least one citation**, even when information is inferred or connected to general knowledge available in the provided context.
- Use multiple sources for a single detail if applicable, such as, "Paris is a cultural hub, attracting millions of visitors annually[1][2]."
- Always prioritize credibility and accuracy by linking all statements back to their respective context sources.
- Avoid citing unsupported assumptions or personal interpretations; if no source supports a statement, clearly indicate the limitation.
### Special Instructions
- If the query involves technical, historical, or complex topics, provide detailed background and explanatory sections to ensure clarity.
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
- Provide explanations or historical context as needed to enhance understanding.
- End with a conclusion or overall perspective if relevant.
<context>
{context}
</context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'. You do not need to do this for summarization tasks.
Anything between the \`context\` is retrieved from a search engine and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
Current date & time in ISO format (UTC timezone) is: {date}.
`;

View File

@ -20,23 +20,46 @@ Rephrased question:
`;
export const wolframAlphaSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Wolfram Alpha', this means you will be searching for information on the web using Wolfram Alpha. It is a computational knowledge engine that can answer factual queries and perform computations.
You are gochat247 - aibot, an AI model developed by GoAI247 skilled in web search and crafting detailed, engaging, and well-structured answers. You excel at summarizing web pages and extracting relevant information to create professional, blog-style responses.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Your task is to provide answers that are:
- **Informative and relevant**: Thoroughly address the user's query using the given context.
- **Well-structured**: Include clear headings and subheadings, and use a professional tone to present information concisely and logically.
- **Engaging and detailed**: Write responses that read like a high-quality blog post, including extra details and relevant insights.
- **Cited and credible**: Use inline citations with [number] notation to refer to the context source(s) for each fact or detail included.
- **Explanatory and Comprehensive**: Strive to explain the topic in depth, offering detailed analysis, insights, and clarifications wherever applicable.
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by Wolfram Alpha and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
### Formatting Instructions
- **Structure**: Use a well-organized format with proper headings (e.g., "## Example heading 1" or "## Example heading 2"). Present information in paragraphs or concise bullet points where appropriate.
- **Tone and Style**: Maintain a neutral, journalistic tone with engaging narrative flow. Write as though you're crafting an in-depth article for a professional audience.
- **Markdown Usage**: Format your response with Markdown for clarity. Use headings, subheadings, bold text, and italicized words as needed to enhance readability.
- **Length and Depth**: Provide comprehensive coverage of the topic. Avoid superficial responses and strive for depth without unnecessary repetition. Expand on technical or complex topics to make them easier to understand for a general audience.
- **No main heading/title**: Start your response directly with the introduction unless asked to provide a specific title.
- **Conclusion or Summary**: Include a concluding paragraph that synthesizes the provided information or suggests potential next steps, where appropriate.
### Citation Requirements
- Cite every single fact, statement, or sentence using [number] notation corresponding to the source from the provided \`context\`.
- Integrate citations naturally at the end of sentences or clauses as appropriate. For example, "The Eiffel Tower is one of the most visited landmarks in the world[1]."
- Ensure that **every sentence in your response includes at least one citation**, even when information is inferred or connected to general knowledge available in the provided context.
- Use multiple sources for a single detail if applicable, such as, "Paris is a cultural hub, attracting millions of visitors annually[1][2]."
- Always prioritize credibility and accuracy by linking all statements back to their respective context sources.
- Avoid citing unsupported assumptions or personal interpretations; if no source supports a statement, clearly indicate the limitation.
### Special Instructions
- If the query involves technical, historical, or complex topics, provide detailed background and explanatory sections to ensure clarity.
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Wolfram Alpha', this means you will be searching for information on the web using Wolfram Alpha. It is a computational knowledge engine that can answer factual queries and perform computations.
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
- Provide explanations or historical context as needed to enhance understanding.
- End with a conclusion or overall perspective if relevant.
<context>
{context}
</context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'.
Anything between the \`context\` is retrieved from Wolfram Alpha and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
Current date & time in ISO format (UTC timezone) is: {date}.
`;

View File

@ -1,5 +1,5 @@
export const writingAssistantPrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are currently set on focus mode 'Writing Assistant', this means you will be helping the user write a response to a given query.
You are gochat247 - aibot, an AI model developed by GoAI247 who is expert at searching the web and answering user's queries. You are currently set on focus mode 'Writing Assistant', this means you will be helping the user write a response to a given query.
Since you are a writing assistant, you would not perform web searches. If you think you lack information to answer the query, you can ask the user for more information or suggest them to switch to a different focus mode.
You will be shared a context that can contain information from files user has uploaded to get answers from. You will have to generate answers upon that.

View File

@ -1,5 +1,5 @@
export const youtubeSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
You are gochat247 - aibot, an AI model developed by GoAI247.You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
Example:
@ -20,23 +20,46 @@ Rephrased question:
`;
export const youtubeSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Youtube', this means you will be searching for videos on the web using Youtube and providing information based on the video's transcript.
You are gochat247 - aibot, an AI model skilled in web search and crafting detailed, engaging, and well-structured answers. You excel at summarizing web pages and extracting relevant information to create professional, blog-style responses.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Your task is to provide answers that are:
- **Informative and relevant**: Thoroughly address the user's query using the given context.
- **Well-structured**: Include clear headings and subheadings, and use a professional tone to present information concisely and logically.
- **Engaging and detailed**: Write responses that read like a high-quality blog post, including extra details and relevant insights.
- **Cited and credible**: Use inline citations with [number] notation to refer to the context source(s) for each fact or detail included.
- **Explanatory and Comprehensive**: Strive to explain the topic in depth, offering detailed analysis, insights, and clarifications wherever applicable.
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by Youtube and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
### Formatting Instructions
- **Structure**: Use a well-organized format with proper headings (e.g., "## Example heading 1" or "## Example heading 2"). Present information in paragraphs or concise bullet points where appropriate.
- **Tone and Style**: Maintain a neutral, journalistic tone with engaging narrative flow. Write as though you're crafting an in-depth article for a professional audience.
- **Markdown Usage**: Format your response with Markdown for clarity. Use headings, subheadings, bold text, and italicized words as needed to enhance readability.
- **Length and Depth**: Provide comprehensive coverage of the topic. Avoid superficial responses and strive for depth without unnecessary repetition. Expand on technical or complex topics to make them easier to understand for a general audience.
- **No main heading/title**: Start your response directly with the introduction unless asked to provide a specific title.
- **Conclusion or Summary**: Include a concluding paragraph that synthesizes the provided information or suggests potential next steps, where appropriate.
### Citation Requirements
- Cite every single fact, statement, or sentence using [number] notation corresponding to the source from the provided \`context\`.
- Integrate citations naturally at the end of sentences or clauses as appropriate. For example, "The Eiffel Tower is one of the most visited landmarks in the world[1]."
- Ensure that **every sentence in your response includes at least one citation**, even when information is inferred or connected to general knowledge available in the provided context.
- Use multiple sources for a single detail if applicable, such as, "Paris is a cultural hub, attracting millions of visitors annually[1][2]."
- Always prioritize credibility and accuracy by linking all statements back to their respective context sources.
- Avoid citing unsupported assumptions or personal interpretations; if no source supports a statement, clearly indicate the limitation.
### Special Instructions
- If the query involves technical, historical, or complex topics, provide detailed background and explanatory sections to ensure clarity.
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Youtube', this means you will be searching for videos on the web using Youtube and providing information based on the video's transcrip
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
- Provide explanations or historical context as needed to enhance understanding.
- End with a conclusion or overall perspective if relevant.
<context>
{context}
</context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'.
Anything between the \`context\` is retrieved from Youtube and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
Current date & time in ISO format (UTC timezone) is: {date}.
`;

View File

@ -54,7 +54,7 @@ router.get('/', async (_, res) => {
config['anthropicApiKey'] = getAnthropicApiKey();
config['groqApiKey'] = getGroqApiKey();
config['geminiApiKey'] = getGeminiApiKey();
res.status(200).json(config);
} catch (err: any) {
res.status(500).json({ message: 'An error has occurred.' });

View File

@ -6,29 +6,45 @@ const router = express.Router();
router.get('/', async (req, res) => {
try {
// Example: Searching UAE-based news sites for "AI" & "Tech"
const data = (
await Promise.all([
searchSearxng('site:businessinsider.com AI', {
// Gulf News
searchSearxng('site:gulfnews.com AI', {
engines: ['bing news'],
pageno: 1,
}),
searchSearxng('site:www.exchangewire.com AI', {
searchSearxng('site:gulfnews.com Tech', {
engines: ['bing news'],
pageno: 1,
}),
searchSearxng('site:yahoo.com AI', {
// Khaleej Times
searchSearxng('site:khaleejtimes.com AI', {
engines: ['bing news'],
pageno: 1,
}),
searchSearxng('site:businessinsider.com tech', {
searchSearxng('site:khaleejtimes.com Tech', {
engines: ['bing news'],
pageno: 1,
}),
searchSearxng('site:www.exchangewire.com tech', {
// The National
searchSearxng('site:thenationalnews.com AI', {
engines: ['bing news'],
pageno: 1,
}),
searchSearxng('site:yahoo.com tech', {
searchSearxng('site:thenationalnews.com Tech', {
engines: ['bing news'],
pageno: 1,
}),
// Arabian Business
searchSearxng('site:arabianbusiness.com AI', {
engines: ['bing news'],
pageno: 1,
}),
searchSearxng('site:arabianbusiness.com Tech', {
engines: ['bing news'],
pageno: 1,
}),
@ -36,6 +52,7 @@ router.get('/', async (req, res) => {
)
.map((result) => result.results)
.flat()
// Randomize the order
.sort(() => Math.random() - 0.5);
return res.json({ blogs: data });

View File

@ -21,4 +21,5 @@ router.use('/search', searchRouter);
router.use('/discover', discoverRouter);
router.use('/uploads', uploadsRouter);
export default router;

View File

@ -1,3 +1,181 @@
// import express from 'express';
// import logger from '../utils/logger';
// import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
// import type { Embeddings } from '@langchain/core/embeddings';
// import { ChatOpenAI } from '@langchain/openai';
// import {
// getAvailableChatModelProviders,
// getAvailableEmbeddingModelProviders,
// } from '../lib/providers';
// import { searchHandlers } from '../websocket/messageHandler';
// import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
// import { MetaSearchAgentType } from '../search/metaSearchAgent';
// import { checkIfSearchIsNeeded } from '../utils/checkSearch';
// import { generateDirectResponsePrompt } from '../prompts/directResponse'; // ✅ Fixed Import
// const router = express.Router();
// interface chatModel {
// provider: string;
// model: string;
// customOpenAIBaseURL?: string;
// customOpenAIKey?: string;
// }
// interface embeddingModel {
// provider: string;
// model: string;
// }
// interface ChatRequestBody {
// optimizationMode: 'speed' | 'balanced';
// focusMode: string;
// chatModel?: chatModel;
// embeddingModel?: embeddingModel;
// query: string;
// history: Array<[string, string]>;
// }
// router.post('/', async (req, res) => {
// try {
// const body: ChatRequestBody = req.body;
// logger.info(`📥 - Query: "${body.query}", Focus Mode: "${body.focusMode}"`);
// if (!body.focusMode || !body.query) {
// logger.warn(`⚠️ Missing required fields: Focus Mode or Query`);
// return res.status(400).json({ message: 'Missing focus mode or query' });
// }
// body.history = body.history || [];
// body.optimizationMode = body.optimizationMode || 'balanced';
// const history: BaseMessage[] = body.history.map((msg) => {
// if (msg[0] === 'human') {
// return new HumanMessage({ content: msg[1] });
// } else {
// return new AIMessage({ content: msg[1] });
// }
// });
// const [chatModelProviders, embeddingModelProviders] = await Promise.all([
// getAvailableChatModelProviders(),
// getAvailableEmbeddingModelProviders(),
// ]);
// const chatModelProvider =
// body.chatModel?.provider || Object.keys(chatModelProviders)[0];
// const chatModel =
// body.chatModel?.model ||
// Object.keys(chatModelProviders[chatModelProvider])[0];
// const embeddingModelProvider =
// body.embeddingModel?.provider || Object.keys(embeddingModelProviders)[0];
// const embeddingModel =
// body.embeddingModel?.model ||
// Object.keys(embeddingModelProviders[embeddingModelProvider])[0];
// let llm: BaseChatModel | undefined;
// let embeddings: Embeddings | undefined;
// if (body.chatModel?.provider === 'custom_openai') {
// if (!body.chatModel?.customOpenAIBaseURL || !body.chatModel?.customOpenAIKey) {
// logger.warn(`⚠️ Missing custom OpenAI base URL or key`);
// return res.status(400).json({ message: 'Missing custom OpenAI base URL or key' });
// }
// llm = new ChatOpenAI({
// modelName: body.chatModel.model,
// openAIApiKey: body.chatModel.customOpenAIKey,
// temperature: 0.7,
// configuration: {
// baseURL: body.chatModel.customOpenAIBaseURL,
// },
// }) as unknown as BaseChatModel;
// } else if (
// chatModelProviders[chatModelProvider] &&
// chatModelProviders[chatModelProvider][chatModel]
// ) {
// llm = chatModelProviders[chatModelProvider][chatModel]
// .model as unknown as BaseChatModel | undefined;
// }
// if (
// embeddingModelProviders[embeddingModelProvider] &&
// embeddingModelProviders[embeddingModelProvider][embeddingModel]
// ) {
// embeddings = embeddingModelProviders[embeddingModelProvider][embeddingModel]
// .model as Embeddings | undefined;
// }
// if (!llm || !embeddings) {
// logger.error(`❌ Invalid model selection`);
// return res.status(400).json({ message: 'Invalid model selected' });
// }
// // ✅ Determine whether a search is required
// logger.info(`🔍 Checking if external search is needed for query: "${body.query}"`);
// const shouldSearch = await checkIfSearchIsNeeded(llm, body.query, body.history);
// logger.info(`🔍 Search Decision for query "${body.query}": ${shouldSearch ? 'YES' : 'NO'}`);
// if (!shouldSearch) {
// // ✅ AI can answer directly without search
// logger.info(`🤖 Generating AI response without external search for: "${body.query}"`);
// const directPrompt = generateDirectResponsePrompt(body.query, body.history);
// const directResponse = await llm.invoke([new HumanMessage({ content: directPrompt })]);
// logger.info(`✅ AI Response Generated: "${directResponse.content}"`);
// return res.status(200).json({ message: directResponse.content, sources: [] });
// }
// // ✅ Proceed with search if needed
// logger.info(`🌐 Performing external search for: "${body.query}"`);
// const searchHandler: MetaSearchAgentType = searchHandlers[body.focusMode];
// if (!searchHandler) {
// logger.error(`❌ Invalid focus mode: "${body.focusMode}"`);
// return res.status(400).json({ message: 'Invalid focus mode' });
// }
// const emitter = await searchHandler.searchAndAnswer(
// body.query,
// history,
// llm,
// embeddings,
// body.optimizationMode,
// [],
// );
// let message = '';
// let sources = [];
// emitter.on('data', (data) => {
// const parsedData = JSON.parse(data);
// if (parsedData.type === 'response') {
// message += parsedData.data;
// } else if (parsedData.type === 'sources') {
// sources = parsedData.data;
// }
// });
// emitter.on('end', () => {
// logger.info(`✅ Search Completed: Message: "${message}", Sources: ${JSON.stringify(sources)}`);
// res.status(200).json({ message, sources });
// });
// emitter.on('error', (data) => {
// const parsedData = JSON.parse(data);
// logger.error(`❌ Error in search processing: ${parsedData.data}`);
// res.status(500).json({ message: parsedData.data });
// });
// } catch (err: any) {
// logger.error(`❌ Error in processing request: ${err.message}`);
// res.status(500).json({ message: 'An error has occurred.' });
// }
// });
// export default router;
import express from 'express';
import logger from '../utils/logger';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
@ -157,4 +335,4 @@ router.post('/', async (req, res) => {
}
});
export default router;
export default router;

View File

@ -25,6 +25,7 @@ import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import { StreamEvent } from '@langchain/core/tracers/log_stream';
import { IterableReadableStream } from '@langchain/core/utils/stream';
import logger from '../utils/logger'; // Winston logger
export interface MetaSearchAgentType {
searchAndAnswer: (
@ -36,7 +37,7 @@ export interface MetaSearchAgentType {
fileIds: string[],
) => Promise<eventEmitter>;
}
// twst
interface Config {
searchWeb: boolean;
rerank: boolean;
@ -58,20 +59,24 @@ class MetaSearchAgent implements MetaSearchAgentType {
constructor(config: Config) {
this.config = config;
// Optional: log the configuration at instantiation
logger.info(`MetaSearchAgent created with config: ${JSON.stringify(config)}`);
}
private async createSearchRetrieverChain(llm: BaseChatModel) {
(llm as unknown as ChatOpenAI).temperature = 0;
logger.info('createSearchRetrieverChain: LLM temperature set to 0');
return RunnableSequence.from([
PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt),
llm,
this.strParser,
RunnableLambda.from(async (input: string) => {
logger.info(`Parsed query: ${input}`);
const linksOutputParser = new LineListOutputParser({
key: 'links',
});
const questionOutputParser = new LineOutputParser({
key: 'question',
});
@ -81,21 +86,25 @@ class MetaSearchAgent implements MetaSearchAgentType {
? await questionOutputParser.parse(input)
: input;
logger.info(`Links found: ${JSON.stringify(links, null, 2)}`);
logger.info(`Question parsed: ${question}`);
if (question === 'not_needed') {
logger.info('No question needed ("not_needed"), returning empty docs.');
return { query: '', docs: [] };
}
if (links.length > 0) {
logger.info('Handling user-provided links...');
if (question.length === 0) {
question = 'summarize';
}
let docs = [];
let docs: Document[] = [];
const linkDocs = await getDocumentsFromLinks({ links });
logger.info(`Fetched ${linkDocs.length} documents from user links.`);
const docGroups: Document[] = [];
linkDocs.map((doc) => {
const URLDocExists = docGroups.find(
(d) =>
@ -129,65 +138,8 @@ class MetaSearchAgent implements MetaSearchAgentType {
await Promise.all(
docGroups.map(async (doc) => {
const res = await llm.invoke(`
You are a web search summarizer, tasked with summarizing a piece of text retrieved from a web search. Your job is to summarize the
text into a detailed, 2-4 paragraph explanation that captures the main ideas and provides a comprehensive answer to the query.
If the query is \"summarize\", you should provide a detailed summary of the text. If the query is a specific question, you should answer it in the summary.
- **Journalistic tone**: The summary should sound professional and journalistic, not too casual or vague.
- **Thorough and detailed**: Ensure that every key point from the text is captured and that the summary directly answers the query.
- **Not too lengthy, but detailed**: The summary should be informative but not excessively long. Focus on providing detailed information in a concise format.
The text will be shared inside the \`text\` XML tag, and the query inside the \`query\` XML tag.
<example>
1. \`<text>
Docker is a set of platform-as-a-service products that use OS-level virtualization to deliver software in packages called containers.
It was first released in 2013 and is developed by Docker, Inc. Docker is designed to make it easier to create, deploy, and run applications
by using containers.
</text>
<query>
What is Docker and how does it work?
</query>
Response:
Docker is a revolutionary platform-as-a-service product developed by Docker, Inc., that uses container technology to make application
deployment more efficient. It allows developers to package their software with all necessary dependencies, making it easier to run in
any environment. Released in 2013, Docker has transformed the way applications are built, deployed, and managed.
\`
2. \`<text>
The theory of relativity, or simply relativity, encompasses two interrelated theories of Albert Einstein: special relativity and general
relativity. However, the word "relativity" is sometimes used in reference to Galilean invariance. The term "theory of relativity" was based
on the expression "relative theory" used by Max Planck in 1906. The theory of relativity usually encompasses two interrelated theories by
Albert Einstein: special relativity and general relativity. Special relativity applies to all physical phenomena in the absence of gravity.
General relativity explains the law of gravitation and its relation to other forces of nature. It applies to the cosmological and astrophysical
realm, including astronomy.
</text>
<query>
summarize
</query>
Response:
The theory of relativity, developed by Albert Einstein, encompasses two main theories: special relativity and general relativity. Special
relativity applies to all physical phenomena in the absence of gravity, while general relativity explains the law of gravitation and its
relation to other forces of nature. The theory of relativity is based on the concept of "relative theory," as introduced by Max Planck in
1906. It is a fundamental theory in physics that has revolutionized our understanding of the universe.
\`
</example>
Everything below is the actual data you will be working with. Good luck!
<query>
${question}
</query>
<text>
${doc.pageContent}
</text>
Make sure to answer the query in the summary.
`);
... // Summarizer prompt ...
`);
const document = new Document({
pageContent: res.content as string,
@ -200,18 +152,25 @@ class MetaSearchAgent implements MetaSearchAgentType {
docs.push(document);
}),
);
logger.info('Docs after summarizing user-provided links: ', docs);
return { query: question, docs: docs };
return { query: question, docs };
} else {
logger.info(`No links specified, searching via Searxng on query: "${question}"`);
const res = await searchSearxng(question, {
language: 'en',
engines: this.config.activeEngines,
});
logger.info(`Searxng returned ${res.results.length} results.`);
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content,
pageContent:
result.content ||
(this.config.activeEngines.includes('youtube')
? result.title
: ''),
metadata: {
title: result.title,
url: result.url,
@ -232,14 +191,15 @@ class MetaSearchAgent implements MetaSearchAgentType {
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
) {
logger.info(`Creating answering chain. Optimization mode: ${optimizationMode}`);
return RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
date: () => new Date().toISOString(),
context: RunnableLambda.from(async (input: BasicChainInput) => {
const processedHistory = formatChatHistoryAsString(
input.chat_history,
);
logger.info('Retrieving final source documents...');
const processedHistory = formatChatHistoryAsString(input.chat_history);
let docs: Document[] | null = null;
let query = input.query;
@ -255,6 +215,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
query = searchRetrieverResult.query;
docs = searchRetrieverResult.docs;
logger.info(`Got ${docs.length} docs from searchRetriever.`);
}
const sortedDocs = await this.rerankDocs(
@ -264,6 +225,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
embeddings,
optimizationMode,
);
logger.info(`Sorted docs length: ${sortedDocs?.length ?? 0}`);
return sortedDocs;
})
@ -291,7 +253,9 @@ class MetaSearchAgent implements MetaSearchAgentType {
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
) {
logger.info(`Reranking. Query="${query}", initial docs=${docs.length}, fileIds=${fileIds.length}`);
if (docs.length === 0 && fileIds.length === 0) {
logger.info('No docs or fileIds to rerank. Returning empty.');
return docs;
}
@ -302,32 +266,34 @@ class MetaSearchAgent implements MetaSearchAgentType {
const contentPath = filePath + '-extracted.json';
const embeddingsPath = filePath + '-embeddings.json';
logger.info(`Reading content from ${contentPath}`);
logger.info(`Reading embeddings from ${embeddingsPath}`);
const content = JSON.parse(fs.readFileSync(contentPath, 'utf8'));
const embeddings = JSON.parse(fs.readFileSync(embeddingsPath, 'utf8'));
const fileEmbeddings = JSON.parse(fs.readFileSync(embeddingsPath, 'utf8'));
const fileSimilaritySearchObject = content.contents.map(
(c: string, i) => {
return {
fileName: content.title,
content: c,
embeddings: embeddings.embeddings[i],
};
},
(c: string, i: number) => ({
fileName: content.title,
content: c,
embeddings: fileEmbeddings.embeddings[i],
}),
);
return fileSimilaritySearchObject;
})
.flat();
// If only summarizing, just return top docs
if (query.toLocaleLowerCase() === 'summarize') {
logger.info(`Query is "summarize". Returning top 15 docs from web sources.`);
return docs.slice(0, 15);
}
const docsWithContent = docs.filter(
(doc) => doc.pageContent && doc.pageContent.length > 0,
);
const docsWithContent = docs.filter((doc) => doc.pageContent && doc.pageContent.length > 0);
if (optimizationMode === 'speed' || this.config.rerank === false) {
logger.info(`Reranking in 'speed' mode or no rerank. Docs with content: ${docsWithContent.length}`);
if (filesData.length > 0) {
const [queryEmbedding] = await Promise.all([
embeddings.embedQuery(query),
@ -338,14 +304,13 @@ class MetaSearchAgent implements MetaSearchAgentType {
pageContent: fileData.content,
metadata: {
title: fileData.fileName,
url: `File`,
url: 'File',
},
});
});
const similarity = filesData.map((fileData, i) => {
const sim = computeSimilarity(queryEmbedding, fileData.embeddings);
return {
index: i,
similarity: sim,
@ -353,28 +318,23 @@ class MetaSearchAgent implements MetaSearchAgentType {
});
let sortedDocs = similarity
.filter(
(sim) => sim.similarity > (this.config.rerankThreshold ?? 0.3),
)
.filter((sim) => sim.similarity > (this.config.rerankThreshold ?? 0.3))
.sort((a, b) => b.similarity - a.similarity)
.slice(0, 15)
.map((sim) => fileDocs[sim.index]);
sortedDocs =
docsWithContent.length > 0 ? sortedDocs.slice(0, 8) : sortedDocs;
return [
...sortedDocs,
...docsWithContent.slice(0, 15 - sortedDocs.length),
];
sortedDocs = docsWithContent.length > 0 ? sortedDocs.slice(0, 8) : sortedDocs;
logger.info(`Final sorted docs in 'speed' mode: ${sortedDocs.length}`);
return [...sortedDocs, ...docsWithContent.slice(0, 15 - sortedDocs.length)];
} else {
logger.info('No file data, returning top 15 from docsWithContent.');
return docsWithContent.slice(0, 15);
}
} else if (optimizationMode === 'balanced') {
logger.info('Reranking in balanced mode.');
const [docEmbeddings, queryEmbedding] = await Promise.all([
embeddings.embedDocuments(
docsWithContent.map((doc) => doc.pageContent),
),
embeddings.embedDocuments(docsWithContent.map((doc) => doc.pageContent)),
embeddings.embedQuery(query),
]);
@ -384,7 +344,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
pageContent: fileData.content,
metadata: {
title: fileData.fileName,
url: `File`,
url: 'File',
},
});
}),
@ -394,7 +354,6 @@ class MetaSearchAgent implements MetaSearchAgentType {
const similarity = docEmbeddings.map((docEmbedding, i) => {
const sim = computeSimilarity(queryEmbedding, docEmbedding);
return {
index: i,
similarity: sim,
@ -407,13 +366,21 @@ class MetaSearchAgent implements MetaSearchAgentType {
.slice(0, 15)
.map((sim) => docsWithContent[sim.index]);
logger.info(`Final sorted docs in 'balanced' mode: ${sortedDocs.length}`);
return sortedDocs;
}
// If "quality" is passed but not implemented, you might want to log or fallback
logger.warn(`Optimization mode "${optimizationMode}" not fully implemented. Returning docs as-is.`);
return docsWithContent.slice(0, 15);
}
private processDocs(docs: Document[]) {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.map(
(_, index) =>
`${index + 1}. ${docs[index].metadata.title} ${docs[index].pageContent}`,
)
.join('\n');
}
@ -421,12 +388,16 @@ class MetaSearchAgent implements MetaSearchAgentType {
stream: IterableReadableStream<StreamEvent>,
emitter: eventEmitter,
) {
logger.info('Starting to stream chain events...');
for await (const event of stream) {
// You can add debug logs here to see each event
// logger.info(`Event: ${JSON.stringify(event, null, 2)}`);
if (
event.event === 'on_chain_end' &&
event.name === 'FinalSourceRetriever'
) {
``;
logger.info('FinalSourceRetriever ended, sending docs to front-end...');
emitter.emit(
'data',
JSON.stringify({ type: 'sources', data: event.data.output }),
@ -436,6 +407,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
logger.info('Response chunk received, streaming to client...');
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
@ -445,9 +417,11 @@ class MetaSearchAgent implements MetaSearchAgentType {
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
logger.info('FinalResponseGenerator ended, signaling end of stream.');
emitter.emit('end');
}
}
logger.info('Finished streaming chain events.');
}
async searchAndAnswer(
@ -460,6 +434,11 @@ class MetaSearchAgent implements MetaSearchAgentType {
) {
const emitter = new eventEmitter();
logger.info(`Received query: "${message}"`);
logger.info(`History length: ${history.length}`);
logger.info(`Optimization mode: ${optimizationMode}`);
logger.info(`File IDs: ${fileIds.join(', ') || 'None'}`);
const answeringChain = await this.createAnsweringChain(
llm,
fileIds,
@ -467,17 +446,17 @@ class MetaSearchAgent implements MetaSearchAgentType {
optimizationMode,
);
const stream = answeringChain.streamEvents(
{
chat_history: history,
query: message,
},
{
version: 'v1',
},
);
this.handleStream(stream, emitter);
// .streamEvents(...) can throw, so a try/catch can help you catch/log errors
try {
const stream = answeringChain.streamEvents(
{ chat_history: history, query: message },
{ version: 'v1' },
);
this.handleStream(stream, emitter);
} catch (error: any) {
logger.error(`Error in searchAndAnswer streaming: ${error.message}`);
emitter.emit('error', error);
}
return emitter;
}

48
src/utils/checkSearch.ts Normal file
View File

@ -0,0 +1,48 @@
import { shouldPerformSearchPrompt } from '../prompts/shouldSearch';
import { HumanMessage } from '@langchain/core/messages';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import logger from './logger'; // Ensure the logger module is correctly imported
/**
* Determines whether an external search is required.
* @param llm - The AI language model instance.
* @param query - The user's message.
* @param history - Chat history.
* @returns {Promise<boolean>} - True if search is needed, False otherwise.
*/
export const checkIfSearchIsNeeded = async (
llm: BaseChatModel,
query: string,
history: Array<[string, string]>
): Promise<boolean> => {
const prompt = shouldPerformSearchPrompt(query, history);
logger.info(`📜 Generated Search Decision Prompt for query "${query}":\n${prompt}`);
try {
const response = await llm.invoke([new HumanMessage({ content: prompt })]);
// Log the raw response from LLM
logger.info(`🔍 Raw Response from LLM for query "${query}": ${JSON.stringify(response)}`);
const decision = String(response?.content || '').trim().toLowerCase();
// Log the decision for debugging
logger.info(`🔍 Search Decision for query "${query}": "${decision}"`);
if (decision === 'yes') {
logger.debug(`✅ Search Required for Query: "${query}"`);
return true;
} else if (decision === 'no') {
logger.debug(`❌ No Search Needed for Query: "${query}"`);
return false;
} else {
logger.warn(`⚠️ Unexpected Search Decision Output: "${decision}" (Defaulting to NO)`);
return false;
}
} catch (error) {
logger.error(`❌ Error in Search Decision: ${error}`);
return false;
}
};

View File

@ -1,22 +1,28 @@
import winston from 'winston';
const { combine, timestamp, printf, colorize } = winston.format;
const logFormat = printf(({ timestamp, level, message }) => {
return `${timestamp} [${level.toUpperCase()}]: ${message}`;
});
const logger = winston.createLogger({
level: 'info',
level: process.env.LOG_LEVEL || 'info',
format: combine(
timestamp({ format: 'YYYY-MM-DD HH:mm:ss' }),
colorize(), // optional color in dev
logFormat
),
transports: [
new winston.transports.Console({
format: winston.format.combine(
winston.format.colorize(),
winston.format.simple(),
),
}),
new winston.transports.File({
filename: 'app.log',
format: winston.format.combine(
winston.format.timestamp(),
winston.format.json(),
),
}),
// Console transport ensures Docker sees logs on stdout
new winston.transports.Console(),
new winston.transports.File({ filename: 'app.log' }),
// Optional: file transport if you also want to persist logs on the containers filesystem
// new winston.transports.File({ filename: 'app.log' }),
],
});
logger.info("✅ Winston logger active, logging to console!");
export default logger;

View File

@ -15,6 +15,8 @@ export const handleConnection = async (
request: IncomingMessage,
) => {
try {
logger.info(`🔗 New WebSocket connection from ${request.socket.remoteAddress}`);
const searchParams = new URL(request.url, `http://${request.headers.host}`)
.searchParams;
@ -23,9 +25,11 @@ export const handleConnection = async (
getAvailableEmbeddingModelProviders(),
]);
// Retrieve query parameters
const chatModelProvider =
searchParams.get('chatModelProvider') ||
Object.keys(chatModelProviders)[0];
const chatModel =
searchParams.get('chatModel') ||
Object.keys(chatModelProviders[chatModelProvider])[0];
@ -33,21 +37,32 @@ export const handleConnection = async (
const embeddingModelProvider =
searchParams.get('embeddingModelProvider') ||
Object.keys(embeddingModelProviders)[0];
const embeddingModel =
searchParams.get('embeddingModel') ||
Object.keys(embeddingModelProviders[embeddingModelProvider])[0];
logger.debug(
`📜 WebSocket Connection - Model Selection:
🔹 Chat Model Provider: ${chatModelProvider}
🔹 Chat Model: ${chatModel}
🔹 Embedding Model Provider: ${embeddingModelProvider}
🔹 Embedding Model: ${embeddingModel}`
);
let llm: BaseChatModel | undefined;
let embeddings: Embeddings | undefined;
// Handle model selection
if (
chatModelProviders[chatModelProvider] &&
chatModelProviders[chatModelProvider][chatModel] &&
chatModelProvider != 'custom_openai'
chatModelProvider !== 'custom_openai'
) {
llm = chatModelProviders[chatModelProvider][chatModel]
.model as unknown as BaseChatModel | undefined;
} else if (chatModelProvider == 'custom_openai') {
} else if (chatModelProvider === 'custom_openai') {
logger.info(`🛠 Using custom OpenAI model: ${chatModel}`);
llm = new ChatOpenAI({
modelName: chatModel,
openAIApiKey: searchParams.get('openAIApiKey'),
@ -62,12 +77,12 @@ export const handleConnection = async (
embeddingModelProviders[embeddingModelProvider] &&
embeddingModelProviders[embeddingModelProvider][embeddingModel]
) {
embeddings = embeddingModelProviders[embeddingModelProvider][
embeddingModel
].model as Embeddings | undefined;
embeddings = embeddingModelProviders[embeddingModelProvider][embeddingModel]
.model as Embeddings | undefined;
}
if (!llm || !embeddings) {
logger.error(`❌ Invalid LLM or embeddings model selection!`);
ws.send(
JSON.stringify({
type: 'error',
@ -76,10 +91,15 @@ export const handleConnection = async (
}),
);
ws.close();
return;
}
logger.info(`✅ WebSocket setup complete - Ready for messages`);
// Send an initial "open" signal once connection is ready
const interval = setInterval(() => {
if (ws.readyState === ws.OPEN) {
logger.debug(`📡 Sending initial 'open' signal to client`);
ws.send(
JSON.stringify({
type: 'signal',
@ -90,14 +110,19 @@ export const handleConnection = async (
}
}, 5);
ws.on(
'message',
async (message) =>
await handleMessage(message.toString(), ws, llm, embeddings),
);
// Handle incoming messages
ws.on('message', async (message) => {
logger.info(`📩 Received message from client: ${message.toString()}`);
await handleMessage(message.toString(), ws, llm, embeddings);
});
// Handle WebSocket closure
ws.on('close', () => {
logger.warn(`❌ WebSocket connection closed for ${request.socket.remoteAddress}`);
});
ws.on('close', () => logger.debug('Connection closed'));
} catch (err) {
logger.error(`❌ WebSocket error: ${err.message}`);
ws.send(
JSON.stringify({
type: 'error',
@ -106,6 +131,5 @@ export const handleConnection = async (
}),
);
ws.close();
logger.error(err);
}
};

View File

@ -5,7 +5,7 @@ import type { Embeddings } from '@langchain/core/embeddings';
import logger from '../utils/logger';
import db from '../db';
import { chats, messages as messagesSchema } from '../db/schema';
import { eq, asc, gt } from 'drizzle-orm';
import { eq, asc, gt, and } from 'drizzle-orm';
import crypto from 'crypto';
import { getFileDetails } from '../utils/files';
import MetaSearchAgent, {
@ -134,6 +134,8 @@ const handleEmitterEvents = (
});
emitter.on('error', (data) => {
const parsedData = JSON.parse(data);
logger.debug(`📡 Emitter received data: ${JSON.stringify(parsedData)}`);
ws.send(
JSON.stringify({
type: 'error',
@ -151,6 +153,7 @@ export const handleMessage = async (
embeddings: Embeddings,
) => {
try {
logger.debug('Handling message...');
const parsedWSMessage = JSON.parse(message) as WSMessage;
const parsedMessage = parsedWSMessage.message;
@ -238,7 +241,12 @@ export const handleMessage = async (
} else {
await db
.delete(messagesSchema)
.where(gt(messagesSchema.id, messageExists.id))
.where(
and(
gt(messagesSchema.id, messageExists.id),
eq(messagesSchema.chatId, parsedMessage.chatId),
),
)
.execute();
}
} catch (err) {

View File

@ -14,9 +14,9 @@ const montserrat = Montserrat({
});
export const metadata: Metadata = {
title: 'Perplexica - Chat with the internet',
title: 'gochat247 - aibot - Chat with the internet',
description:
'Perplexica is an AI powered chatbot that is connected to the internet.',
'gochat247 - aibot is an AI powered chatbot that is connected to the internet.',
};
export default function RootLayout({

View File

@ -2,7 +2,7 @@ import { Metadata } from 'next';
import React from 'react';
export const metadata: Metadata = {
title: 'Library - Perplexica',
title: 'Library - gochat247 - aibot',
};
const Layout = ({ children }: { children: React.ReactNode }) => {

View File

@ -3,8 +3,8 @@ import { Metadata } from 'next';
import { Suspense } from 'react';
export const metadata: Metadata = {
title: 'Chat - Perplexica',
description: 'Chat with the internet, chat with Perplexica.',
title: 'Chat - gochat247 - aibot',
description: 'Chat with the internet, chat with gochat247 - aibot.',
};
const Home = () => {

View File

@ -9,7 +9,9 @@ import crypto from 'crypto';
import { toast } from 'sonner';
import { useSearchParams } from 'next/navigation';
import { getSuggestions } from '@/lib/actions';
import Error from 'next/error';
import { Settings } from 'lucide-react';
import SettingsDialog from './SettingsDialog';
import NextError from 'next/error';
export type Message = {
messageId: string;
@ -32,17 +34,38 @@ const useSocket = (
setIsWSReady: (ready: boolean) => void,
setError: (error: boolean) => void,
) => {
const [ws, setWs] = useState<WebSocket | null>(null);
const wsRef = useRef<WebSocket | null>(null);
const reconnectTimeoutRef = useRef<NodeJS.Timeout>();
const retryCountRef = useRef(0);
const isCleaningUpRef = useRef(false);
const MAX_RETRIES = 3;
const INITIAL_BACKOFF = 1000; // 1 second
const getBackoffDelay = (retryCount: number) => {
return Math.min(INITIAL_BACKOFF * Math.pow(2, retryCount), 10000); // Cap at 10 seconds
};
useEffect(() => {
if (!ws) {
const connectWs = async () => {
const connectWs = async () => {
if (wsRef.current?.readyState === WebSocket.OPEN) {
wsRef.current.close();
}
try {
let chatModel = localStorage.getItem('chatModel');
let chatModelProvider = localStorage.getItem('chatModelProvider');
let embeddingModel = localStorage.getItem('embeddingModel');
let embeddingModelProvider = localStorage.getItem(
'embeddingModelProvider',
);
let openAIBaseURL =
chatModelProvider === 'custom_openai'
? localStorage.getItem('openAIBaseURL')
: null;
let openAIPIKey =
chatModelProvider === 'custom_openai'
? localStorage.getItem('openAIApiKey')
: null;
const providers = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/models`,
@ -51,7 +74,13 @@ const useSocket = (
'Content-Type': 'application/json',
},
},
).then(async (res) => await res.json());
).then(async (res) => {
if (!res.ok)
throw new Error(
`Failed to fetch models: ${res.status} ${res.statusText}`,
);
return res.json();
});
if (
!chatModel ||
@ -62,16 +91,18 @@ const useSocket = (
if (!chatModel || !chatModelProvider) {
const chatModelProviders = providers.chatModelProviders;
chatModelProvider = Object.keys(chatModelProviders)[0];
chatModelProvider =
chatModelProvider || Object.keys(chatModelProviders)[0];
if (chatModelProvider === 'custom_openai') {
toast.error(
'Seems like you are using the custom OpenAI provider, please open the settings and configure the API key and base URL',
'Seems like you are using the custom OpenAI provider, please open the settings and enter a model name to use.',
);
setError(true);
return;
} else {
chatModel = Object.keys(chatModelProviders[chatModelProvider])[0];
if (
!chatModelProviders ||
Object.keys(chatModelProviders).length === 0
@ -108,18 +139,42 @@ const useSocket = (
if (
Object.keys(chatModelProviders).length > 0 &&
!chatModelProviders[chatModelProvider]
(((!openAIBaseURL || !openAIPIKey) &&
chatModelProvider === 'custom_openai') ||
!chatModelProviders[chatModelProvider])
) {
chatModelProvider = Object.keys(chatModelProviders)[0];
const chatModelProvidersKeys = Object.keys(chatModelProviders);
chatModelProvider =
chatModelProvidersKeys.find(
(key) => Object.keys(chatModelProviders[key]).length > 0,
) || chatModelProvidersKeys[0];
if (
chatModelProvider === 'custom_openai' &&
(!openAIBaseURL || !openAIPIKey)
) {
toast.error(
'Seems like you are using the custom OpenAI provider, please open the settings and configure the API key and base URL',
);
setError(true);
return;
}
localStorage.setItem('chatModelProvider', chatModelProvider);
}
if (
chatModelProvider &&
chatModelProvider != 'custom_openai' &&
(!openAIBaseURL || !openAIPIKey) &&
!chatModelProviders[chatModelProvider][chatModel]
) {
chatModel = Object.keys(chatModelProviders[chatModelProvider])[0];
chatModel = Object.keys(
chatModelProviders[
Object.keys(chatModelProviders[chatModelProvider]).length > 0
? chatModelProvider
: Object.keys(chatModelProviders)[0]
],
)[0];
localStorage.setItem('chatModel', chatModel);
}
@ -168,6 +223,7 @@ const useSocket = (
wsURL.search = searchParams.toString();
const ws = new WebSocket(wsURL.toString());
wsRef.current = ws;
const timeoutId = setTimeout(() => {
if (ws.readyState !== 1) {
@ -183,11 +239,16 @@ const useSocket = (
const interval = setInterval(() => {
if (ws.readyState === 1) {
setIsWSReady(true);
setError(false);
if (retryCountRef.current > 0) {
toast.success('Connection restored.');
}
retryCountRef.current = 0;
clearInterval(interval);
}
}, 5);
clearTimeout(timeoutId);
console.log('[DEBUG] opened');
console.debug(new Date(), 'ws:connected');
}
if (data.type === 'error') {
toast.error(data.data);
@ -196,24 +257,68 @@ const useSocket = (
ws.onerror = () => {
clearTimeout(timeoutId);
setError(true);
setIsWSReady(false);
toast.error('WebSocket connection error.');
};
ws.onclose = () => {
clearTimeout(timeoutId);
setError(true);
console.log('[DEBUG] closed');
setIsWSReady(false);
console.debug(new Date(), 'ws:disconnected');
if (!isCleaningUpRef.current) {
toast.error('Connection lost. Attempting to reconnect...');
attemptReconnect();
}
};
} catch (error) {
console.debug(new Date(), 'ws:error', error);
setIsWSReady(false);
attemptReconnect();
}
};
setWs(ws);
};
const attemptReconnect = () => {
retryCountRef.current += 1;
connectWs();
}
}, [ws, url, setIsWSReady, setError]);
if (retryCountRef.current > MAX_RETRIES) {
console.debug(new Date(), 'ws:max_retries');
setError(true);
toast.error(
'Unable to connect to server after multiple attempts. Please refresh the page to try again.',
);
return;
}
return ws;
const backoffDelay = getBackoffDelay(retryCountRef.current);
console.debug(
new Date(),
`ws:retry attempt=${retryCountRef.current}/${MAX_RETRIES} delay=${backoffDelay}ms`,
);
if (reconnectTimeoutRef.current) {
clearTimeout(reconnectTimeoutRef.current);
}
reconnectTimeoutRef.current = setTimeout(() => {
connectWs();
}, backoffDelay);
};
connectWs();
return () => {
if (reconnectTimeoutRef.current) {
clearTimeout(reconnectTimeoutRef.current);
}
if (wsRef.current?.readyState === WebSocket.OPEN) {
wsRef.current.close();
isCleaningUpRef.current = true;
console.debug(new Date(), 'ws:cleanup');
}
};
}, [url, setIsWSReady, setError]);
return wsRef.current;
};
const loadMessages = async (
@ -257,7 +362,7 @@ const loadMessages = async (
return [msg.role, msg.content];
}) as [string, string][];
console.log('[DEBUG] messages loaded');
console.debug(new Date(), 'app:messages_loaded');
document.title = messages[0].content;
@ -310,6 +415,8 @@ const ChatWindow = ({ id }: { id?: string }) => {
const [notFound, setNotFound] = useState(false);
const [isSettingsOpen, setIsSettingsOpen] = useState(false);
useEffect(() => {
if (
chatId &&
@ -339,7 +446,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
return () => {
if (ws?.readyState === 1) {
ws.close();
console.log('[DEBUG] closed');
console.debug(new Date(), 'ws:cleanup');
}
};
// eslint-disable-next-line react-hooks/exhaustive-deps
@ -354,12 +461,18 @@ const ChatWindow = ({ id }: { id?: string }) => {
useEffect(() => {
if (isMessagesLoaded && isWSReady) {
setIsReady(true);
console.log('[DEBUG] ready');
console.debug(new Date(), 'app:ready');
} else {
setIsReady(false);
}
}, [isMessagesLoaded, isWSReady]);
const sendMessage = async (message: string, messageId?: string) => {
if (loading) return;
if (!ws || ws.readyState !== WebSocket.OPEN) {
toast.error('Cannot send message while disconnected');
return;
}
setLoading(true);
setMessageAppeared(false);
@ -370,7 +483,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
messageId = messageId ?? crypto.randomBytes(7).toString('hex');
ws?.send(
ws.send(
JSON.stringify({
type: 'message',
message: {
@ -514,17 +627,26 @@ const ChatWindow = ({ id }: { id?: string }) => {
if (hasError) {
return (
<div className="flex flex-col items-center justify-center min-h-screen">
<p className="dark:text-white/70 text-black/70 text-sm">
Failed to connect to the server. Please try again later.
</p>
<div className="relative">
<div className="absolute w-full flex flex-row items-center justify-end mr-5 mt-5">
<Settings
className="cursor-pointer lg:hidden"
onClick={() => setIsSettingsOpen(true)}
/>
</div>
<div className="flex flex-col items-center justify-center min-h-screen">
<p className="dark:text-white/70 text-black/70 text-sm">
Failed to connect to the server. Please try again later.
</p>
</div>
<SettingsDialog isOpen={isSettingsOpen} setIsOpen={setIsSettingsOpen} />
</div>
);
}
return isReady ? (
notFound ? (
<Error statusCode={404} />
<NextError statusCode={404} />
) : (
<div>
{messages.length > 0 ? (

View File

@ -38,7 +38,7 @@ const EmptyChat = ({
</div>
<div className="flex flex-col items-center justify-center min-h-screen max-w-screen-sm mx-auto p-2 space-y-8">
<h2 className="text-black/70 dark:text-white/70 text-3xl font-medium -mt-8">
Research begins here.
gochat247 - aibot : knowledge with some privacy
</h2>
<EmptyChatMessageInput
sendMessage={sendMessage}

View File

@ -107,8 +107,8 @@ const MessageBox = ({
</div>
<Markdown
className={cn(
'prose dark:prose-invert prose-p:leading-relaxed prose-pre:p-0',
'max-w-none break-words text-black dark:text-white text-sm md:text-base font-medium',
'prose prose-h1:mb-3 prose-h2:mb-2 prose-h2:mt-6 prose-h2:font-[800] prose-h3:mt-4 prose-h3:mb-1.5 prose-h3:font-[600] dark:prose-invert prose-p:leading-relaxed prose-pre:p-0 font-[400]',
'max-w-none break-words text-black dark:text-white',
)}
>
{parsedMessage}

View File

@ -83,7 +83,7 @@ const Focus = ({
{focusMode !== 'webSearch' ? (
<div className="flex flex-row items-center space-x-1">
{focusModes.find((mode) => mode.key === focusMode)?.icon}
<p className="text-xs font-medium">
<p className="text-xs font-medium hidden lg:block">
{focusModes.find((mode) => mode.key === focusMode)?.title}
</p>
<ChevronDown size={20} className="-translate-x-1" />
@ -91,7 +91,7 @@ const Focus = ({
) : (
<div className="flex flex-row items-center space-x-1">
<ScanEye size={20} />
<p className="text-xs font-medium">Focus</p>
<p className="text-xs font-medium hidden lg:block">Focus</p>
</div>
)}
</PopoverButton>

View File

@ -1,6 +1,6 @@
/* eslint-disable @next/next/no-img-element */
import { PlayCircle, PlayIcon, PlusIcon, VideoIcon } from 'lucide-react';
import { useState } from 'react';
import { useRef, useState } from 'react';
import Lightbox, { GenericSlide, VideoSlide } from 'yet-another-react-lightbox';
import 'yet-another-react-lightbox/styles.css';
import { Message } from './ChatWindow';
@ -35,6 +35,8 @@ const Searchvideos = ({
const [loading, setLoading] = useState(false);
const [open, setOpen] = useState(false);
const [slides, setSlides] = useState<VideoSlide[]>([]);
const [currentIndex, setCurrentIndex] = useState(0);
const videoRefs = useRef<(HTMLIFrameElement | null)[]>([]);
return (
<>
@ -182,18 +184,39 @@ const Searchvideos = ({
open={open}
close={() => setOpen(false)}
slides={slides}
index={currentIndex}
on={{
view: ({ index }) => {
const previousIframe = videoRefs.current[currentIndex];
if (previousIframe?.contentWindow) {
previousIframe.contentWindow.postMessage(
'{"event":"command","func":"pauseVideo","args":""}',
'*',
);
}
setCurrentIndex(index);
},
}}
render={{
slide: ({ slide }) =>
slide.type === 'video-slide' ? (
slide: ({ slide }) => {
const index = slides.findIndex((s) => s === slide);
return slide.type === 'video-slide' ? (
<div className="h-full w-full flex flex-row items-center justify-center">
<iframe
src={slide.iframe_src}
src={`${slide.iframe_src}${slide.iframe_src.includes('?') ? '&' : '?'}enablejsapi=1`}
ref={(el) => {
if (el) {
videoRefs.current[index] = el;
}
}}
className="aspect-video max-h-[95vh] w-[95vw] rounded-2xl md:w-[80vw]"
allowFullScreen
allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture"
/>
</div>
) : null,
) : null;
},
}}
/>
</>

View File

@ -18,7 +18,7 @@
"clsx": "^2.1.0",
"langchain": "^0.1.30",
"lucide-react": "^0.363.0",
"markdown-to-jsx": "^7.6.2",
"markdown-to-jsx": "^7.7.2",
"next": "14.1.4",
"next-themes": "^0.3.0",
"react": "^18",

View File

@ -2210,10 +2210,10 @@ lucide-react@^0.363.0:
resolved "https://registry.yarnpkg.com/lucide-react/-/lucide-react-0.363.0.tgz#2bb1f9d09b830dda86f5118fcd097f87247fe0e3"
integrity sha512-AlsfPCsXQyQx7wwsIgzcKOL9LwC498LIMAo+c0Es5PkHJa33xwmYAkkSoKoJWWWSYQEStqu58/jT4tL2gi32uQ==
markdown-to-jsx@^7.6.2:
version "7.6.2"
resolved "https://registry.yarnpkg.com/markdown-to-jsx/-/markdown-to-jsx-7.6.2.tgz#254cbf7d412a37073486c0a2dd52266d2191a793"
integrity sha512-gEcyiJXzBxmId2Y/kydLbD6KRNccDiUy/Src1cFGn3s2X0LZZ/hUiEc2VisFyA5kUE3SXclTCczjQiAuqKZiFQ==
markdown-to-jsx@^7.7.2:
version "7.7.2"
resolved "https://registry.yarnpkg.com/markdown-to-jsx/-/markdown-to-jsx-7.7.2.tgz#59c1dd64f48b53719311ab140be3cd51cdabccd3"
integrity sha512-N3AKfYRvxNscvcIH6HDnDKILp4S8UWbebp+s92Y8SwIq0CuSbLW4Jgmrbjku3CWKjTQO0OyIMS6AhzqrwjEa3g==
md5@^2.3.0:
version "2.3.0"