Compare commits

..

3 Commits

22 changed files with 230 additions and 279 deletions

View File

@ -1,5 +1,21 @@
# 🚀 Perplexica - An AI-powered search engine 🔎 <!-- omit in toc -->
<div align="center" markdown="1">
<sup>Special thanks to:</sup>
<br>
<br>
<a href="https://www.warp.dev/perplexica">
<img alt="Warp sponsorship" width="400" src="https://github.com/user-attachments/assets/775dd593-9b5f-40f1-bf48-479faff4c27b">
</a>
### [Warp, the AI Devtool that lives in your terminal](https://www.warp.dev/perplexica)
[Available for MacOS, Linux, & Windows](https://www.warp.dev/perplexica)
</div>
<hr/>
[![Discord](https://dcbadge.vercel.app/api/server/26aArMy8tT?style=flat&compact=true)](https://discord.gg/26aArMy8tT)
![preview](.assets/perplexica-screenshot.png?)
@ -143,7 +159,6 @@ Perplexica runs on Next.js and handles all API requests. It works right away on
[![Deploy to Sealos](https://raw.githubusercontent.com/labring-actions/templates/main/Deploy-on-Sealos.svg)](https://usw.sealos.io/?openapp=system-template%3FtemplateName%3Dperplexica)
[![Deploy to RepoCloud](https://d16t0pc4846x52.cloudfront.net/deploylobe.svg)](https://repocloud.io/details/?app_id=267)
[![Run on ClawCloud](https://raw.githubusercontent.com/ClawCloud/Run-Template/refs/heads/main/Run-on-ClawCloud.svg)](https://template.run.claw.cloud/?referralCode=U11MRQ8U9RM4&openapp=system-fastdeploy%3FtemplateName%3Dperplexica)
## Upcoming Features

View File

@ -25,8 +25,9 @@ API_URL = "" # Ollama API URL - http://host.docker.internal:11434
[MODELS.DEEPSEEK]
API_KEY = ""
[MODELS.LM_STUDIO]
API_URL = "" # LM Studio API URL - http://host.docker.internal:1234
[API_ENDPOINTS]
SEARXNG = "" # SearxNG API URL - http://localhost:32768
TAVILY = "" # Tavily API key
[SEARCH]
ENGINE = "searxng" # "searxng" or "tavily"

View File

@ -8,7 +8,8 @@ import {
getOllamaApiEndpoint,
getOpenaiApiKey,
getDeepseekApiKey,
getLMStudioApiEndpoint,
getSearchEngine,
getTavilyApiKey,
updateConfig,
} from '@/lib/config';
import {
@ -52,7 +53,6 @@ export const GET = async (req: Request) => {
config['openaiApiKey'] = getOpenaiApiKey();
config['ollamaApiUrl'] = getOllamaApiEndpoint();
config['lmStudioApiUrl'] = getLMStudioApiEndpoint();
config['anthropicApiKey'] = getAnthropicApiKey();
config['groqApiKey'] = getGroqApiKey();
config['geminiApiKey'] = getGeminiApiKey();
@ -60,6 +60,8 @@ export const GET = async (req: Request) => {
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
config['customOpenaiModelName'] = getCustomOpenaiModelName();
config['searchEngine'] = getSearchEngine();
config['tavilyApiKey'] = getTavilyApiKey();
return Response.json({ ...config }, { status: 200 });
} catch (err) {
@ -95,15 +97,18 @@ export const POST = async (req: Request) => {
DEEPSEEK: {
API_KEY: config.deepseekApiKey,
},
LM_STUDIO: {
API_URL: config.lmStudioApiUrl,
},
CUSTOM_OPENAI: {
API_URL: config.customOpenaiApiUrl,
API_KEY: config.customOpenaiApiKey,
MODEL_NAME: config.customOpenaiModelName,
},
},
SEARCH: {
ENGINE: config.searchEngine,
},
API_ENDPOINTS: {
TAVILY: config.tavilyApiKey || '',
},
};
updateConfig(updatedConfig);

View File

@ -1,4 +1,4 @@
import { searchSearxng } from '@/lib/searxng';
import { searchSearxng } from '../../../lib/searchEngines/searxng';
const articleWebsites = [
'yahoo.com',

View File

@ -7,7 +7,6 @@ import { Switch } from '@headlessui/react';
import ThemeSwitcher from '@/components/theme/Switcher';
import { ImagesIcon, VideoIcon } from 'lucide-react';
import Link from 'next/link';
import { PROVIDER_METADATA } from '@/lib/providers';
interface SettingsType {
chatModelProviders: {
@ -21,11 +20,12 @@ interface SettingsType {
anthropicApiKey: string;
geminiApiKey: string;
ollamaApiUrl: string;
lmStudioApiUrl: string;
deepseekApiKey: string;
customOpenaiApiKey: string;
customOpenaiApiUrl: string;
customOpenaiModelName: string;
searchEngine: string;
tavilyApiKey?: string;
}
interface InputProps extends React.InputHTMLAttributes<HTMLInputElement> {
@ -147,6 +147,7 @@ const Page = () => {
const [automaticImageSearch, setAutomaticImageSearch] = useState(false);
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
const [systemInstructions, setSystemInstructions] = useState<string>('');
const [searchEngine, setSearchEngine] = useState<string>('searxng');
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
useEffect(() => {
@ -209,6 +210,7 @@ const Page = () => {
);
setSystemInstructions(localStorage.getItem('systemInstructions')!);
setSearchEngine(localStorage.getItem('searchEngine') || 'searxng');
setIsLoading(false);
};
@ -368,6 +370,10 @@ const Page = () => {
localStorage.setItem('embeddingModel', value);
} else if (key === 'systemInstructions') {
localStorage.setItem('systemInstructions', value);
} else if (key === 'searchEngine') {
localStorage.setItem('searchEngine', value);
} else if (key === 'tavilyApiKey') {
localStorage.setItem('tavilyApiKey', value);
}
} catch (err) {
console.error('Failed to save:', err);
@ -510,6 +516,32 @@ const Page = () => {
/>
</Switch>
</div>
<div className="flex flex-col space-y-1 mt-2">
<p className="text-black/70 dark:text-white/70 text-sm">
Search Engine
</p>
<Select
value={searchEngine}
onChange={(e) => {
const value = e.target.value;
setSearchEngine(value);
saveConfig('searchEngine', value);
}}
options={[
{ value: 'searxng', label: 'SearxNG' },
...(config.tavilyApiKey ? [{ value: 'tavily', label: 'Tavily' }] : []),
]}
/>
<p className="text-xs text-black/60 dark:text-white/60 mt-1">
Select which search engine to use for web searches
</p>
{searchEngine === 'tavily' && !config.tavilyApiKey && (
<p className="text-xs text-red-500 mt-1">
Tavily API key is required to use this search engine
</p>
)}
</div>
</div>
</SettingsSection>
@ -550,9 +582,8 @@ const Page = () => {
(provider) => ({
value: provider,
label:
(PROVIDER_METADATA as any)[provider]?.displayName ||
provider.charAt(0).toUpperCase() +
provider.slice(1),
provider.slice(1),
}),
)}
/>
@ -693,9 +724,8 @@ const Page = () => {
(provider) => ({
value: provider,
label:
(PROVIDER_METADATA as any)[provider]?.displayName ||
provider.charAt(0).toUpperCase() +
provider.slice(1),
provider.slice(1),
}),
)}
/>
@ -863,22 +893,29 @@ const Page = () => {
/>
</div>
<div className="flex flex-col space-y-1 mt-4 pt-4 border-t border-light-200 dark:border-dark-200">
<p className="text-black/90 dark:text-white/90 font-medium">Search Engine API Keys</p>
<p className="text-sm text-black/60 dark:text-white/60 mt-0.5">
API keys for search engines used in the application
</p>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
LM Studio API URL
Tavily API Key
</p>
<Input
type="text"
placeholder="LM Studio API URL"
value={config.lmStudioApiUrl}
isSaving={savingStates['lmStudioApiUrl']}
placeholder="Tavily API key"
value={config.tavilyApiKey || ''}
isSaving={savingStates['tavilyApiKey']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
lmStudioApiUrl: e.target.value,
tavilyApiKey: e.target.value,
}));
}}
onSave={(value) => saveConfig('lmStudioApiUrl', value)}
onSave={(value) => saveConfig('tavilyApiKey', value)}
/>
</div>
</div>

View File

@ -97,7 +97,6 @@ const MessageBox = ({
},
),
);
setSpeechMessage(message.content.replace(regex, ''));
return;
}

View File

@ -7,7 +7,7 @@ import { PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { searchSearxng } from '../searxng';
import { searchSearxng } from '../searchEngines/searxng';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
const imageSearchChainPrompt = `

View File

@ -7,7 +7,7 @@ import { PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { searchSearxng } from '../searxng';
import { searchSearxng } from '../searchEngines/searxng';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
const VideoSearchChainPrompt = `

View File

@ -1,14 +1,7 @@
import fs from 'fs';
import path from 'path';
import toml from '@iarna/toml';
// Use dynamic imports for Node.js modules to prevent client-side errors
let fs: any;
let path: any;
if (typeof window === 'undefined') {
// We're on the server
fs = require('fs');
path = require('path');
}
const configFileName = 'config.toml';
interface Config {
@ -35,9 +28,6 @@ interface Config {
DEEPSEEK: {
API_KEY: string;
};
LM_STUDIO: {
API_URL: string;
};
CUSTOM_OPENAI: {
API_URL: string;
API_KEY: string;
@ -46,6 +36,10 @@ interface Config {
};
API_ENDPOINTS: {
SEARXNG: string;
TAVILY: string;
};
SEARCH: {
ENGINE: string;
};
}
@ -53,17 +47,10 @@ type RecursivePartial<T> = {
[P in keyof T]?: RecursivePartial<T[P]>;
};
const loadConfig = () => {
// Server-side only
if (typeof window === 'undefined') {
return toml.parse(
fs.readFileSync(path.join(process.cwd(), `${configFileName}`), 'utf-8'),
) as any as Config;
}
// Client-side fallback - settings will be loaded via API
return {} as Config;
};
const loadConfig = () =>
toml.parse(
fs.readFileSync(path.join(process.cwd(), `${configFileName}`), 'utf-8'),
) as any as Config;
export const getSimilarityMeasure = () =>
loadConfig().GENERAL.SIMILARITY_MEASURE;
@ -81,6 +68,12 @@ export const getGeminiApiKey = () => loadConfig().MODELS.GEMINI.API_KEY;
export const getSearxngApiEndpoint = () =>
process.env.SEARXNG_API_URL || loadConfig().API_ENDPOINTS.SEARXNG;
export const getTavilyApiKey = () =>
process.env.TAVILY_API_KEY || loadConfig().API_ENDPOINTS.TAVILY;
export const getSearchEngine = () =>
process.env.SEARCH_ENGINE || loadConfig().SEARCH?.ENGINE || 'searxng';
export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL;
export const getDeepseekApiKey = () => loadConfig().MODELS.DEEPSEEK.API_KEY;
@ -94,9 +87,6 @@ export const getCustomOpenaiApiUrl = () =>
export const getCustomOpenaiModelName = () =>
loadConfig().MODELS.CUSTOM_OPENAI.MODEL_NAME;
export const getLMStudioApiEndpoint = () =>
loadConfig().MODELS.LM_STUDIO.API_URL;
const mergeConfigs = (current: any, update: any): any => {
if (update === null || update === undefined) {
return current;
@ -129,13 +119,10 @@ const mergeConfigs = (current: any, update: any): any => {
};
export const updateConfig = (config: RecursivePartial<Config>) => {
// Server-side only
if (typeof window === 'undefined') {
const currentConfig = loadConfig();
const mergedConfig = mergeConfigs(currentConfig, config);
fs.writeFileSync(
path.join(path.join(process.cwd(), `${configFileName}`)),
toml.stringify(mergedConfig),
);
}
const currentConfig = loadConfig();
const mergedConfig = mergeConfigs(currentConfig, config);
fs.writeFileSync(
path.join(path.join(process.cwd(), `${configFileName}`)),
toml.stringify(mergedConfig),
);
};

View File

@ -1,11 +1,6 @@
import { ChatAnthropic } from '@langchain/anthropic';
import { ChatModel } from '.';
import { getAnthropicApiKey } from '../config';
export const PROVIDER_INFO = {
key: 'anthropic',
displayName: 'Anthropic',
};
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const anthropicChatModels: Record<string, string>[] = [

View File

@ -3,11 +3,6 @@ import { getDeepseekApiKey } from '../config';
import { ChatModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
export const PROVIDER_INFO = {
key: 'deepseek',
displayName: 'Deepseek AI',
};
const deepseekChatModels: Record<string, string>[] = [
{
displayName: 'Deepseek Chat (Deepseek V3)',

View File

@ -4,11 +4,6 @@ import {
} from '@langchain/google-genai';
import { getGeminiApiKey } from '../config';
import { ChatModel, EmbeddingModel } from '.';
export const PROVIDER_INFO = {
key: 'gemini',
displayName: 'Google Gemini',
};
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { Embeddings } from '@langchain/core/embeddings';

View File

@ -1,11 +1,6 @@
import { ChatOpenAI } from '@langchain/openai';
import { getGroqApiKey } from '../config';
import { ChatModel } from '.';
export const PROVIDER_INFO = {
key: 'groq',
displayName: 'Groq',
};
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const groqChatModels: Record<string, string>[] = [

View File

@ -1,60 +1,18 @@
import { Embeddings } from '@langchain/core/embeddings';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import {
loadOpenAIChatModels,
loadOpenAIEmbeddingModels,
PROVIDER_INFO as OpenAIInfo,
PROVIDER_INFO,
} from './openai';
import { loadOpenAIChatModels, loadOpenAIEmbeddingModels } from './openai';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '../config';
import { ChatOpenAI } from '@langchain/openai';
import {
loadOllamaChatModels,
loadOllamaEmbeddingModels,
PROVIDER_INFO as OllamaInfo,
} from './ollama';
import { loadGroqChatModels, PROVIDER_INFO as GroqInfo } from './groq';
import {
loadAnthropicChatModels,
PROVIDER_INFO as AnthropicInfo,
} from './anthropic';
import {
loadGeminiChatModels,
loadGeminiEmbeddingModels,
PROVIDER_INFO as GeminiInfo,
} from './gemini';
import {
loadTransformersEmbeddingsModels,
PROVIDER_INFO as TransformersInfo,
} from './transformers';
import {
loadDeepseekChatModels,
PROVIDER_INFO as DeepseekInfo,
} from './deepseek';
import {
loadLMStudioChatModels,
loadLMStudioEmbeddingsModels,
PROVIDER_INFO as LMStudioInfo,
} from './lmstudio';
export const PROVIDER_METADATA = {
openai: OpenAIInfo,
ollama: OllamaInfo,
groq: GroqInfo,
anthropic: AnthropicInfo,
gemini: GeminiInfo,
transformers: TransformersInfo,
deepseek: DeepseekInfo,
lmstudio: LMStudioInfo,
custom_openai: {
key: 'custom_openai',
displayName: 'Custom OpenAI',
},
};
import { loadOllamaChatModels, loadOllamaEmbeddingModels } from './ollama';
import { loadGroqChatModels } from './groq';
import { loadAnthropicChatModels } from './anthropic';
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini';
import { loadTransformersEmbeddingsModels } from './transformers';
import { loadDeepseekChatModels } from './deepseek';
export interface ChatModel {
displayName: string;
@ -76,7 +34,6 @@ export const chatModelProviders: Record<
anthropic: loadAnthropicChatModels,
gemini: loadGeminiChatModels,
deepseek: loadDeepseekChatModels,
lmstudio: loadLMStudioChatModels,
};
export const embeddingModelProviders: Record<
@ -87,7 +44,6 @@ export const embeddingModelProviders: Record<
ollama: loadOllamaEmbeddingModels,
gemini: loadGeminiEmbeddingModels,
transformers: loadTransformersEmbeddingsModels,
lmstudio: loadLMStudioEmbeddingsModels,
};
export const getAvailableChatModelProviders = async () => {

View File

@ -1,100 +0,0 @@
import { getKeepAlive, getLMStudioApiEndpoint } from '../config';
import axios from 'axios';
import { ChatModel, EmbeddingModel } from '.';
export const PROVIDER_INFO = {
key: 'lmstudio',
displayName: 'LM Studio',
};
import { ChatOpenAI } from '@langchain/openai';
import { OpenAIEmbeddings } from '@langchain/openai';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { Embeddings } from '@langchain/core/embeddings';
interface LMStudioModel {
id: string;
name?: string;
}
const ensureV1Endpoint = (endpoint: string): string =>
endpoint.endsWith('/v1') ? endpoint : `${endpoint}/v1`;
const checkServerAvailability = async (endpoint: string): Promise<boolean> => {
try {
await axios.get(`${ensureV1Endpoint(endpoint)}/models`, {
headers: { 'Content-Type': 'application/json' },
});
return true;
} catch {
return false;
}
};
export const loadLMStudioChatModels = async () => {
const endpoint = getLMStudioApiEndpoint();
if (!endpoint) return {};
if (!(await checkServerAvailability(endpoint))) return {};
try {
const response = await axios.get(`${ensureV1Endpoint(endpoint)}/models`, {
headers: { 'Content-Type': 'application/json' },
});
const chatModels: Record<string, ChatModel> = {};
response.data.data.forEach((model: LMStudioModel) => {
chatModels[model.id] = {
displayName: model.name || model.id,
model: new ChatOpenAI({
openAIApiKey: 'lm-studio',
configuration: {
baseURL: ensureV1Endpoint(endpoint),
},
modelName: model.id,
temperature: 0.7,
streaming: true,
maxRetries: 3,
}) as unknown as BaseChatModel,
};
});
return chatModels;
} catch (err) {
console.error(`Error loading LM Studio models: ${err}`);
return {};
}
};
export const loadLMStudioEmbeddingsModels = async () => {
const endpoint = getLMStudioApiEndpoint();
if (!endpoint) return {};
if (!(await checkServerAvailability(endpoint))) return {};
try {
const response = await axios.get(`${ensureV1Endpoint(endpoint)}/models`, {
headers: { 'Content-Type': 'application/json' },
});
const embeddingsModels: Record<string, EmbeddingModel> = {};
response.data.data.forEach((model: LMStudioModel) => {
embeddingsModels[model.id] = {
displayName: model.name || model.id,
model: new OpenAIEmbeddings({
openAIApiKey: 'lm-studio',
configuration: {
baseURL: ensureV1Endpoint(endpoint),
},
modelName: model.id,
}) as unknown as Embeddings,
};
});
return embeddingsModels;
} catch (err) {
console.error(`Error loading LM Studio embeddings model: ${err}`);
return {};
}
};

View File

@ -1,11 +1,6 @@
import axios from 'axios';
import { getKeepAlive, getOllamaApiEndpoint } from '../config';
import { ChatModel, EmbeddingModel } from '.';
export const PROVIDER_INFO = {
key: 'ollama',
displayName: 'Ollama',
};
import { ChatOllama } from '@langchain/community/chat_models/ollama';
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';

View File

@ -1,11 +1,6 @@
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
import { getOpenaiApiKey } from '../config';
import { ChatModel, EmbeddingModel } from '.';
export const PROVIDER_INFO = {
key: 'openai',
displayName: 'OpenAI',
};
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { Embeddings } from '@langchain/core/embeddings';
@ -30,18 +25,6 @@ const openaiChatModels: Record<string, string>[] = [
displayName: 'GPT-4 omni mini',
key: 'gpt-4o-mini',
},
{
displayName: 'GPT 4.1 nano',
key: 'gpt-4.1-nano',
},
{
displayName: 'GPT 4.1 mini',
key: 'gpt-4.1-mini',
},
{
displayName: 'GPT 4.1',
key: 'gpt-4.1',
},
];
const openaiEmbeddingModels: Record<string, string>[] = [

View File

@ -1,10 +1,5 @@
import { HuggingFaceTransformersEmbeddings } from '../huggingfaceTransformer';
export const PROVIDER_INFO = {
key: 'transformers',
displayName: 'Hugging Face',
};
export const loadTransformersEmbeddingsModels = async () => {
try {
const embeddingModels = {

View File

@ -17,7 +17,9 @@ import LineListOutputParser from '../outputParsers/listLineOutputParser';
import LineOutputParser from '../outputParsers/lineOutputParser';
import { getDocumentsFromLinks } from '../utils/documents';
import { Document } from 'langchain/document';
import { searchSearxng } from '../searxng';
import { searchTavily } from '../searchEngines/tavily';
import { searchSearxng } from '../searchEngines/searxng';
import { getSearchEngine } from '../config';
import path from 'node:path';
import fs from 'node:fs';
import computeSimilarity from '../utils/computeSimilarity';
@ -205,25 +207,42 @@ class MetaSearchAgent implements MetaSearchAgentType {
} else {
question = question.replace(/<think>.*?<\/think>/g, '');
const res = await searchSearxng(question, {
language: 'en',
engines: this.config.activeEngines,
});
const searchEngine = getSearchEngine();
const documents = res.results.map(
(result) =>
new Document({
pageContent:
result.content ||
(this.config.activeEngines.includes('youtube')
? result.title
: '') /* Todo: Implement transcript grabbing using Youtubei (source: https://www.npmjs.com/package/youtubei) */,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
let res;
if (searchEngine === 'tavily') {
res = await searchTavily(question, {
search_depth: 'basic',
max_results: 15,
include_images: true,
});
} else {
// Default to SearxNG
res = await searchSearxng(question, {
language: 'en',
engines: this.config.activeEngines,
});
}
let documents: Document[] = [];
documents = documents.concat(
res.results.map(
(result) =>
new Document({
pageContent:
result.content ||
(this.config.activeEngines.includes('youtube')
? result.title
: ''),
metadata: {
title: result.title,
url: result.url,
...(result.img_src ? { img_src: result.img_src } : {}),
},
}),
)
);
return { query: question, docs: documents };

View File

@ -1,5 +1,5 @@
import axios from 'axios';
import { getSearxngApiEndpoint } from './config';
import { getSearxngApiEndpoint } from '../config';
interface SearxngSearchOptions {
categories?: string[];

View File

@ -0,0 +1,79 @@
import axios from 'axios';
import { getTavilyApiKey } from '../config';
interface TavilySearchOptions {
topic?: 'general' | 'news';
search_depth?: 'basic' | 'advanced';
chunks_per_source?: number;
max_results?: number;
time_range?: 'day' | 'week' | 'month' | 'year' | 'd' | 'w' | 'm' | 'y';
days?: number;
include_answer?: boolean | 'basic' | 'advanced';
include_raw_content?: boolean;
include_images?: boolean;
include_image_descriptions?: boolean;
include_domains?: string[];
exclude_domains?: string[];
}
interface TavilySearchResult {
title: string;
url: string;
content: string;
score: number;
raw_content?: string;
}
interface TavilySearchResponse {
query: string;
answer?: string;
images?: Array<{
url: string;
description?: string;
}>;
results: TavilySearchResult[];
response_time: string;
}
export const searchTavily = async (
query: string,
opts?: TavilySearchOptions,
) => {
const tavilyApiKey = getTavilyApiKey();
if (!tavilyApiKey) {
throw new Error('Tavily API key is not configured');
}
const url = 'https://api.tavily.com/search';
const response = await axios.post<TavilySearchResponse>(
url,
{
query,
...opts,
},
{
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${tavilyApiKey}`,
},
}
);
const results = response.data.results;
// Convert Tavily results to match the format expected by the rest of the application
const formattedResults = results.map(result => ({
title: result.title,
url: result.url,
content: result.content,
img_src: undefined, // Tavily doesn't provide image URLs in the standard response
}));
return {
results: formattedResults,
suggestions: [], // Tavily doesn't provide suggestions, so return empty array
answer: response.data.answer, // Include the AI-generated answer if available
};
};

View File

@ -64,7 +64,7 @@ export const getDocumentsFromLinks = async ({ links }: { links: string[] }) => {
const splittedText = await splitter.splitText(parsedText);
const title = res.data
.toString('utf8')
.match(/<title.*>(.*?)<\/title>/)?.[1];
.match(/<title>(.*?)<\/title>/)?.[1];
const linkDocs = splittedText.map((text) => {
return new Document({