Compare commits

...

13 Commits

Author SHA1 Message Date
ItzCrazyKns
1da9b7655c Merge branch 'canary' into feat/improve-search-architecture 2025-11-14 14:38:58 +05:30
ItzCrazyKns
2edef888a3 Merge branch 'master' into canary 2025-11-14 13:29:22 +05:30
ItzCrazyKns
bd5628b390 feat(package): bump langchain package 2025-11-14 11:45:48 +05:30
ItzCrazyKns
3d5d04eda0 Merge branch 'canary' into feat/improve-search-architecture 2025-11-13 11:54:24 +05:30
ItzCrazyKns
07a17925b1 feat(media-search): supply full history 2025-11-13 11:53:53 +05:30
ItzCrazyKns
3bcf646af1 feat(search-route): handle history processing after llm validation 2025-11-13 11:52:12 +05:30
ItzCrazyKns
e499c0b96e feat(app): migrate video search chain 2025-11-13 11:51:25 +05:30
ItzCrazyKns
33b736e1e8 feat(app): migrate image search chain 2025-11-13 11:51:13 +05:30
Kushagra Srivastava
5e1746f646 Merge pull request #928 from ItzCrazyKns/master
Merge master into canary
2025-11-13 11:49:42 +05:30
ItzCrazyKns
41fe009847 feat(app): migrate suggestion chain 2025-11-13 11:47:28 +05:30
ItzCrazyKns
1a8889c71c feat(app): add new agents directory 2025-11-10 16:45:48 +05:30
ItzCrazyKns
2e736613c5 Merge branch 'master' into canary 2025-10-27 11:43:18 +05:30
ItzCrazyKns
046daf442a feat(docker): update searxng build script 2025-10-23 19:06:27 +05:30
16 changed files with 349 additions and 384 deletions

View File

@@ -16,13 +16,14 @@
"@huggingface/transformers": "^3.7.5",
"@iarna/toml": "^2.2.5",
"@icons-pack/react-simple-icons": "^12.3.0",
"@langchain/anthropic": "^1.0.0",
"@langchain/community": "^1.0.0",
"@langchain/core": "^1.0.1",
"@langchain/google-genai": "^1.0.0",
"@langchain/groq": "^1.0.0",
"@langchain/ollama": "^1.0.0",
"@langchain/openai": "^1.0.0",
"@langchain/anthropic": "^1.0.1",
"@langchain/community": "^1.0.3",
"@langchain/core": "^1.0.5",
"@langchain/google-genai": "^1.0.1",
"@langchain/groq": "^1.0.1",
"@langchain/langgraph": "^1.0.1",
"@langchain/ollama": "^1.0.1",
"@langchain/openai": "^1.1.1",
"@langchain/textsplitters": "^1.0.0",
"@tailwindcss/typography": "^0.5.12",
"axios": "^1.8.3",
@@ -33,7 +34,7 @@
"framer-motion": "^12.23.24",
"html-to-text": "^9.0.5",
"jspdf": "^3.0.1",
"langchain": "^1.0.1",
"langchain": "^1.0.4",
"lucide-react": "^0.363.0",
"mammoth": "^1.9.1",
"markdown-to-jsx": "^7.7.2",
@@ -48,7 +49,7 @@
"tailwind-merge": "^2.2.2",
"winston": "^3.17.0",
"yet-another-react-lightbox": "^3.17.2",
"zod": "^3.22.4"
"zod": "^4.1.12"
},
"devDependencies": {
"@types/better-sqlite3": "^7.6.12",

View File

@@ -1,4 +1,4 @@
import handleImageSearch from '@/lib/chains/imageSearchAgent';
import searchImages from '@/lib/agents/media/image';
import ModelRegistry from '@/lib/models/registry';
import { ModelWithProvider } from '@/lib/models/types';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
@@ -13,6 +13,13 @@ export const POST = async (req: Request) => {
try {
const body: ImageSearchBody = await req.json();
const registry = new ModelRegistry();
const llm = await registry.loadChatModel(
body.chatModel.providerId,
body.chatModel.key,
);
const chatHistory = body.chatHistory
.map((msg: any) => {
if (msg.role === 'user') {
@@ -23,16 +30,9 @@ export const POST = async (req: Request) => {
})
.filter((msg) => msg !== undefined) as BaseMessage[];
const registry = new ModelRegistry();
const llm = await registry.loadChatModel(
body.chatModel.providerId,
body.chatModel.key,
);
const images = await handleImageSearch(
const images = await searchImages(
{
chat_history: chatHistory,
chatHistory: chatHistory,
query: body.query,
},
llm,

View File

@@ -30,12 +30,6 @@ export const POST = async (req: Request) => {
body.optimizationMode = body.optimizationMode || 'balanced';
body.stream = body.stream || false;
const history: BaseMessage[] = body.history.map((msg) => {
return msg[0] === 'human'
? new HumanMessage({ content: msg[1] })
: new AIMessage({ content: msg[1] });
});
const registry = new ModelRegistry();
const [llm, embeddings] = await Promise.all([
@@ -46,6 +40,12 @@ export const POST = async (req: Request) => {
),
]);
const history: BaseMessage[] = body.history.map((msg) => {
return msg[0] === 'human'
? new HumanMessage({ content: msg[1] })
: new AIMessage({ content: msg[1] });
});
const searchHandler: MetaSearchAgentType = searchHandlers[body.focusMode];
if (!searchHandler) {
@@ -128,7 +128,7 @@ export const POST = async (req: Request) => {
try {
controller.close();
} catch (error) {}
} catch (error) { }
});
emitter.on('data', (data: string) => {

View File

@@ -1,7 +1,6 @@
import generateSuggestions from '@/lib/chains/suggestionGeneratorAgent';
import generateSuggestions from '@/lib/agents/suggestions';
import ModelRegistry from '@/lib/models/registry';
import { ModelWithProvider } from '@/lib/models/types';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
interface SuggestionsGenerationBody {
@@ -13,6 +12,13 @@ export const POST = async (req: Request) => {
try {
const body: SuggestionsGenerationBody = await req.json();
const registry = new ModelRegistry();
const llm = await registry.loadChatModel(
body.chatModel.providerId,
body.chatModel.key,
);
const chatHistory = body.chatHistory
.map((msg: any) => {
if (msg.role === 'user') {
@@ -23,16 +29,9 @@ export const POST = async (req: Request) => {
})
.filter((msg) => msg !== undefined) as BaseMessage[];
const registry = new ModelRegistry();
const llm = await registry.loadChatModel(
body.chatModel.providerId,
body.chatModel.key,
);
const suggestions = await generateSuggestions(
{
chat_history: chatHistory,
chatHistory,
},
llm,
);

View File

@@ -1,4 +1,4 @@
import handleVideoSearch from '@/lib/chains/videoSearchAgent';
import handleVideoSearch from '@/lib/agents/media/video';
import ModelRegistry from '@/lib/models/registry';
import { ModelWithProvider } from '@/lib/models/types';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
@@ -13,6 +13,13 @@ export const POST = async (req: Request) => {
try {
const body: VideoSearchBody = await req.json();
const registry = new ModelRegistry();
const llm = await registry.loadChatModel(
body.chatModel.providerId,
body.chatModel.key,
);
const chatHistory = body.chatHistory
.map((msg: any) => {
if (msg.role === 'user') {
@@ -23,16 +30,9 @@ export const POST = async (req: Request) => {
})
.filter((msg) => msg !== undefined) as BaseMessage[];
const registry = new ModelRegistry();
const llm = await registry.loadChatModel(
body.chatModel.providerId,
body.chatModel.key,
);
const videos = await handleVideoSearch(
{
chat_history: chatHistory,
chatHistory: chatHistory,
query: body.query,
},
llm,

View File

@@ -205,11 +205,11 @@ const MessageBox = ({
<div className="lg:sticky lg:top-20 flex flex-col items-center space-y-3 w-full lg:w-3/12 z-30 h-full pb-4">
<SearchImages
query={section.userMessage.content}
chatHistory={chatTurns.slice(0, sectionIndex * 2)}
chatHistory={chatTurns}
messageId={section.assistantMessage.messageId}
/>
<SearchVideos
chatHistory={chatTurns.slice(0, sectionIndex * 2)}
chatHistory={chatTurns}
query={section.userMessage.content}
messageId={section.assistantMessage.messageId}
/>

View File

@@ -0,0 +1,65 @@
/* I don't think can be classified as agents but to keep the structure consistent i guess ill keep it here */
import {
RunnableSequence,
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { ChatPromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '@/lib/utils/formatHistory';
import { BaseMessage, HumanMessage, SystemMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { searchSearxng } from '@/lib/searxng';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import LineOutputParser from '@/lib/outputParsers/lineOutputParser';
import { imageSearchFewShots, imageSearchPrompt } from '@/lib/prompts/media/image';
type ImageSearchChainInput = {
chatHistory: BaseMessage[];
query: string;
};
type ImageSearchResult = {
img_src: string;
url: string;
title: string;
}
const outputParser = new LineOutputParser({
key: 'query',
})
const searchImages = async (
input: ImageSearchChainInput,
llm: BaseChatModel,
) => {
const chatPrompt = await ChatPromptTemplate.fromMessages([
new SystemMessage(imageSearchPrompt),
...imageSearchFewShots,
new HumanMessage(`<conversation>\n${formatChatHistoryAsString(input.chatHistory)}\n</conversation>\n<follow_up>\n${input.query}\n</follow_up>`)
]).formatMessages({})
const res = await llm.invoke(chatPrompt)
const query = await outputParser.invoke(res)
const searchRes = await searchSearxng(query!, {
engines: ['bing images', 'google images'],
});
const images: ImageSearchResult[] = [];
searchRes.results.forEach((result) => {
if (result.img_src && result.url && result.title) {
images.push({
img_src: result.img_src,
url: result.url,
title: result.title,
});
}
});
return images.slice(0, 10);
};
export default searchImages;

View File

@@ -0,0 +1,65 @@
import { ChatPromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '@/lib/utils/formatHistory';
import { BaseMessage, HumanMessage, SystemMessage } from '@langchain/core/messages';
import { searchSearxng } from '@/lib/searxng';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import LineOutputParser from '@/lib/outputParsers/lineOutputParser';
import { videoSearchFewShots, videoSearchPrompt } from '@/lib/prompts/media/videos';
type VideoSearchChainInput = {
chatHistory: BaseMessage[];
query: string;
};
type VideoSearchResult = {
img_src: string;
url: string;
title: string;
iframe_src: string;
}
const outputParser = new LineOutputParser({
key: 'query',
});
const searchVideos = async (
input: VideoSearchChainInput,
llm: BaseChatModel,
) => {
const chatPrompt = await ChatPromptTemplate.fromMessages([
new SystemMessage(videoSearchPrompt),
...videoSearchFewShots,
new HumanMessage(`<conversation>${formatChatHistoryAsString(input.chatHistory)}\n</conversation>\n<follow_up>\n${input.query}\n</follow_up>`)
]).formatMessages({})
const res = await llm.invoke(chatPrompt)
const query = await outputParser.invoke(res)
const searchRes = await searchSearxng(query!, {
engines: ['youtube'],
});
const videos: VideoSearchResult[] = [];
searchRes.results.forEach((result) => {
if (
result.thumbnail &&
result.url &&
result.title &&
result.iframe_src
) {
videos.push({
img_src: result.thumbnail,
url: result.url,
title: result.title,
iframe_src: result.iframe_src,
});
}
});
return videos.slice(0, 10);
};
export default searchVideos;

View File

@@ -0,0 +1,32 @@
import ListLineOutputParser from '@/lib/outputParsers/listLineOutputParser';
import { ChatPromptTemplate, PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '@/lib/utils/formatHistory';
import { BaseMessage, HumanMessage, SystemMessage } from '@langchain/core/messages';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { suggestionGeneratorPrompt } from '@/lib/prompts/suggestions';
type SuggestionGeneratorInput = {
chatHistory: BaseMessage[];
};
const outputParser = new ListLineOutputParser({
key: 'suggestions',
});
const generateSuggestions = async (
input: SuggestionGeneratorInput,
llm: BaseChatModel,
) => {
const chatPrompt = await ChatPromptTemplate.fromMessages([
new SystemMessage(suggestionGeneratorPrompt),
new HumanMessage(`<conversation>${formatChatHistoryAsString(input.chatHistory)}</conversation>`)
]).formatMessages({})
const res = await llm.invoke(chatPrompt)
const suggestions = await outputParser.invoke(res)
return suggestions
};
export default generateSuggestions;

View File

@@ -1,105 +0,0 @@
import {
RunnableSequence,
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { ChatPromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { searchSearxng } from '../searxng';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import LineOutputParser from '../outputParsers/lineOutputParser';
const imageSearchChainPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search the web for images.
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
Output only the rephrased query wrapped in an XML <query> element. Do not include any explanation or additional text.
`;
type ImageSearchChainInput = {
chat_history: BaseMessage[];
query: string;
};
interface ImageSearchResult {
img_src: string;
url: string;
title: string;
}
const strParser = new StringOutputParser();
const createImageSearchChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
RunnableMap.from({
chat_history: (input: ImageSearchChainInput) => {
return formatChatHistoryAsString(input.chat_history);
},
query: (input: ImageSearchChainInput) => {
return input.query;
},
}),
ChatPromptTemplate.fromMessages([
['system', imageSearchChainPrompt],
[
'user',
'<conversation>\n</conversation>\n<follow_up>\nWhat is a cat?\n</follow_up>',
],
['assistant', '<query>A cat</query>'],
[
'user',
'<conversation>\n</conversation>\n<follow_up>\nWhat is a car? How does it work?\n</follow_up>',
],
['assistant', '<query>Car working</query>'],
[
'user',
'<conversation>\n</conversation>\n<follow_up>\nHow does an AC work?\n</follow_up>',
],
['assistant', '<query>AC working</query>'],
[
'user',
'<conversation>{chat_history}</conversation>\n<follow_up>\n{query}\n</follow_up>',
],
]),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
const queryParser = new LineOutputParser({
key: 'query',
});
return await queryParser.parse(input);
}),
RunnableLambda.from(async (input: string) => {
const res = await searchSearxng(input, {
engines: ['bing images', 'google images'],
});
const images: ImageSearchResult[] = [];
res.results.forEach((result) => {
if (result.img_src && result.url && result.title) {
images.push({
img_src: result.img_src,
url: result.url,
title: result.title,
});
}
});
return images.slice(0, 10);
}),
]);
};
const handleImageSearch = (
input: ImageSearchChainInput,
llm: BaseChatModel,
) => {
const imageSearchChain = createImageSearchChain(llm);
return imageSearchChain.invoke(input);
};
export default handleImageSearch;

View File

@@ -1,55 +0,0 @@
import { RunnableSequence, RunnableMap } from '@langchain/core/runnables';
import ListLineOutputParser from '../outputParsers/listLineOutputParser';
import { PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { ChatOpenAI } from '@langchain/openai';
const suggestionGeneratorPrompt = `
You are an AI suggestion generator for an AI powered search engine. You will be given a conversation below. You need to generate 4-5 suggestions based on the conversation. The suggestion should be relevant to the conversation that can be used by the user to ask the chat model for more information.
You need to make sure the suggestions are relevant to the conversation and are helpful to the user. Keep a note that the user might use these suggestions to ask a chat model for more information.
Make sure the suggestions are medium in length and are informative and relevant to the conversation.
Provide these suggestions separated by newlines between the XML tags <suggestions> and </suggestions>. For example:
<suggestions>
Tell me more about SpaceX and their recent projects
What is the latest news on SpaceX?
Who is the CEO of SpaceX?
</suggestions>
Conversation:
{chat_history}
`;
type SuggestionGeneratorInput = {
chat_history: BaseMessage[];
};
const outputParser = new ListLineOutputParser({
key: 'suggestions',
});
const createSuggestionGeneratorChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
RunnableMap.from({
chat_history: (input: SuggestionGeneratorInput) =>
formatChatHistoryAsString(input.chat_history),
}),
PromptTemplate.fromTemplate(suggestionGeneratorPrompt),
llm,
outputParser,
]);
};
const generateSuggestions = (
input: SuggestionGeneratorInput,
llm: BaseChatModel,
) => {
(llm as unknown as ChatOpenAI).temperature = 0;
const suggestionGeneratorChain = createSuggestionGeneratorChain(llm);
return suggestionGeneratorChain.invoke(input);
};
export default generateSuggestions;

View File

@@ -1,110 +0,0 @@
import {
RunnableSequence,
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { ChatPromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { searchSearxng } from '../searxng';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import LineOutputParser from '../outputParsers/lineOutputParser';
const videoSearchChainPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search Youtube for videos.
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
Output only the rephrased query wrapped in an XML <query> element. Do not include any explanation or additional text.
`;
type VideoSearchChainInput = {
chat_history: BaseMessage[];
query: string;
};
interface VideoSearchResult {
img_src: string;
url: string;
title: string;
iframe_src: string;
}
const strParser = new StringOutputParser();
const createVideoSearchChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
RunnableMap.from({
chat_history: (input: VideoSearchChainInput) => {
return formatChatHistoryAsString(input.chat_history);
},
query: (input: VideoSearchChainInput) => {
return input.query;
},
}),
ChatPromptTemplate.fromMessages([
['system', videoSearchChainPrompt],
[
'user',
'<conversation>\n</conversation>\n<follow_up>\nHow does a car work?\n</follow_up>',
],
['assistant', '<query>How does a car work?</query>'],
[
'user',
'<conversation>\n</conversation>\n<follow_up>\nWhat is the theory of relativity?\n</follow_up>',
],
['assistant', '<query>Theory of relativity</query>'],
[
'user',
'<conversation>\n</conversation>\n<follow_up>\nHow does an AC work?\n</follow_up>',
],
['assistant', '<query>AC working</query>'],
[
'user',
'<conversation>{chat_history}</conversation>\n<follow_up>\n{query}\n</follow_up>',
],
]),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
const queryParser = new LineOutputParser({
key: 'query',
});
return await queryParser.parse(input);
}),
RunnableLambda.from(async (input: string) => {
const res = await searchSearxng(input, {
engines: ['youtube'],
});
const videos: VideoSearchResult[] = [];
res.results.forEach((result) => {
if (
result.thumbnail &&
result.url &&
result.title &&
result.iframe_src
) {
videos.push({
img_src: result.thumbnail,
url: result.url,
title: result.title,
iframe_src: result.iframe_src,
});
}
});
return videos.slice(0, 10);
}),
]);
};
const handleVideoSearch = (
input: VideoSearchChainInput,
llm: BaseChatModel,
) => {
const videoSearchChain = createVideoSearchChain(llm);
return videoSearchChain.invoke(input);
};
export default handleVideoSearch;

View File

@@ -0,0 +1,26 @@
import { BaseMessageLike } from "@langchain/core/messages";
export const imageSearchPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search the web for images.
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
Output only the rephrased query wrapped in an XML <query> element. Do not include any explanation or additional text.
`;
export const imageSearchFewShots: BaseMessageLike[] = [
[
'user',
'<conversation>\n</conversation>\n<follow_up>\nWhat is a cat?\n</follow_up>',
],
['assistant', '<query>A cat</query>'],
[
'user',
'<conversation>\n</conversation>\n<follow_up>\nWhat is a car? How does it work?\n</follow_up>',
],
['assistant', '<query>Car working</query>'],
[
'user',
'<conversation>\n</conversation>\n<follow_up>\nHow does an AC work?\n</follow_up>',
],
['assistant', '<query>AC working</query>']
]

View File

@@ -0,0 +1,25 @@
import { BaseMessageLike } from "@langchain/core/messages";
export const videoSearchPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search Youtube for videos.
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
Output only the rephrased query wrapped in an XML <query> element. Do not include any explanation or additional text.
`;
export const videoSearchFewShots: BaseMessageLike[] = [
[
'user',
'<conversation>\n</conversation>\n<follow_up>\nHow does a car work?\n</follow_up>',
],
['assistant', '<query>How does a car work?</query>'],
[
'user',
'<conversation>\n</conversation>\n<follow_up>\nWhat is the theory of relativity?\n</follow_up>',
],
['assistant', '<query>Theory of relativity</query>'],
[
'user',
'<conversation>\n</conversation>\n<follow_up>\nHow does an AC work?\n</follow_up>',
],
['assistant', '<query>AC working</query>'],
]

View File

@@ -0,0 +1,15 @@
export const suggestionGeneratorPrompt = `
You are an AI suggestion generator for an AI powered search engine. You will be given a conversation below. You need to generate 4-5 suggestions based on the conversation. The suggestion should be relevant to the conversation that can be used by the user to ask the chat model for more information.
You need to make sure the suggestions are relevant to the conversation and are helpful to the user. Keep a note that the user might use these suggestions to ask a chat model for more information.
Make sure the suggestions are medium in length and are informative and relevant to the conversation.
Provide these suggestions separated by newlines between the XML tags <suggestions> and </suggestions>. For example:
<suggestions>
Tell me more about SpaceX and their recent projects
What is the latest news on SpaceX?
Who is the CEO of SpaceX?
</suggestions>
Today's date is ${new Date().toISOString()}
`;

141
yarn.lock
View File

@@ -746,19 +746,19 @@
"@jridgewell/resolve-uri" "^3.1.0"
"@jridgewell/sourcemap-codec" "^1.4.14"
"@langchain/anthropic@^1.0.0":
version "1.0.0"
resolved "https://registry.yarnpkg.com/@langchain/anthropic/-/anthropic-1.0.0.tgz#48535c5682851bf8fddcf37aa7ca78d4d93da932"
integrity sha512-Lud/FrkFmXMYW5R9y0FC+RGdgjBBVQ2JAnG3A8E1I4+sqv5JgJttw3HKRpFkyBUSyacs6LMfSn5dbJ6TT9nMiQ==
"@langchain/anthropic@^1.0.1":
version "1.0.1"
resolved "https://registry.yarnpkg.com/@langchain/anthropic/-/anthropic-1.0.1.tgz#a9f836b11ecbce282fc2afb8d707c52fd37711c4"
integrity sha512-yVKePAT+nNHtybyyPlWqiq6lqcoDlIuMgL9B4WMEU5gbmzL170iodiqcgcZNFQLOC1V2wCOzywq6Zr0kB24AFg==
dependencies:
"@anthropic-ai/sdk" "^0.65.0"
"@langchain/classic@1.0.0":
version "1.0.0"
resolved "https://registry.yarnpkg.com/@langchain/classic/-/classic-1.0.0.tgz#acbc15eebba03499cf93e73d2c93703a3da0a46e"
integrity sha512-darZFvO5g5e3TqZ4rvZ938F94D4a34v2ZdWfyipmyu7WB4RXMshmYtWCp98o4ec3bfRD9S4+oHMmaPcnk5cs5A==
"@langchain/classic@1.0.3":
version "1.0.3"
resolved "https://registry.yarnpkg.com/@langchain/classic/-/classic-1.0.3.tgz#92482cb4cb8692407b4ecde0df312f035934472f"
integrity sha512-XyoaiJSi4y7SzrZMCb3DdDfC+M3gqIQpVH2cOCh9xQf4244jNrncpLXF/MwOJYWxzTsjfcCAHIbFJ0kSH5nqmg==
dependencies:
"@langchain/openai" "1.0.0-alpha.3"
"@langchain/openai" "1.1.1"
"@langchain/textsplitters" "1.0.0"
handlebars "^4.7.8"
js-yaml "^4.1.0"
@@ -771,24 +771,24 @@
optionalDependencies:
langsmith "^0.3.64"
"@langchain/community@^1.0.0":
version "1.0.0"
resolved "https://registry.yarnpkg.com/@langchain/community/-/community-1.0.0.tgz#8e587605b7c981882e20281aa9e644a166620145"
integrity sha512-CM4vUZHaFHq8HpWBMIWPO5bo/rmRPJ1/iaJk7s8CghkkQ0WLaZzDtoG/wJKJZMDJOUVCtZKTw+TytlGu00/9dg==
"@langchain/community@^1.0.3":
version "1.0.3"
resolved "https://registry.yarnpkg.com/@langchain/community/-/community-1.0.3.tgz#278c82eee22ff37b120e182b07b7c23ffc6786ab"
integrity sha512-86L7qooSY8Fh5Sf2Tu/X8PvDJqvEXohyZUGusuv0XtnWGivwtecBm0vEbVPkLF07I2ZMtyAGzHJOblbveq6Nmg==
dependencies:
"@langchain/classic" "1.0.0"
"@langchain/openai" "1.0.0"
"@langchain/classic" "1.0.3"
"@langchain/openai" "1.1.1"
binary-extensions "^2.2.0"
expr-eval "^2.0.2"
flat "^5.0.2"
js-yaml "^4.1.0"
math-expression-evaluator "^2.0.0"
uuid "^10.0.0"
zod "^3.25.76 || ^4"
"@langchain/core@^1.0.1":
version "1.0.1"
resolved "https://registry.yarnpkg.com/@langchain/core/-/core-1.0.1.tgz#c2bdbdff87649fe17b2c86bf535d749ac73a586c"
integrity sha512-hVM3EkojYOk4ISJQKjLuWYSH6kyyOFlZIrLFETDA1L0Z2/Iu0q32aJawZ0FDn6rlXE8QZjBt/9OaOL36rXc05w==
"@langchain/core@^1.0.5":
version "1.0.5"
resolved "https://registry.yarnpkg.com/@langchain/core/-/core-1.0.5.tgz#1e20ecce80fa4d0b979ea05b24b879b8357d8092"
integrity sha512-9Hy/b9+j+mm0Bhnm8xD9B0KpBYTidroLrDHdbrHoMC2DqXoY2umvi1M3M/9D744qsMSaIMP0ZwFcy5YbqI/dGw==
dependencies:
"@cfworker/json-schema" "^4.0.2"
ansi-styles "^5.0.0"
@@ -802,18 +802,18 @@
uuid "^10.0.0"
zod "^3.25.76 || ^4"
"@langchain/google-genai@^1.0.0":
version "1.0.0"
resolved "https://registry.yarnpkg.com/@langchain/google-genai/-/google-genai-1.0.0.tgz#2785fa163788cb6214dffc1dc29fcd5bbb751493"
integrity sha512-ICUBZl/46nG6+Yhe5v7kp/2TQBGOzqEkpfKPLDeNyJ4x9OOL46xsW3ZZrHJjhGMQuR6/JMmQMTU9kLoYgsd1Tg==
"@langchain/google-genai@^1.0.1":
version "1.0.1"
resolved "https://registry.yarnpkg.com/@langchain/google-genai/-/google-genai-1.0.1.tgz#3601645f652f24e3beb55acc61878070b49c24ed"
integrity sha512-a9Bzaswp1P+eA2V8hAWSBypqjxmH+/zhOY1TBdalQuPQBTRH35jBMVgX3CTTAheAzBUGQtlDD4/dR9tyemDbhw==
dependencies:
"@google/generative-ai" "^0.24.0"
uuid "^11.1.0"
"@langchain/groq@^1.0.0":
version "1.0.0"
resolved "https://registry.yarnpkg.com/@langchain/groq/-/groq-1.0.0.tgz#413b02158761ff406238467325cd4f9fe0990f3a"
integrity sha512-6fG9MEQHNXnxgObFHSPh+BPYyTGcoDnKd+GhI9l96cpHh+QNI+IvypicRCZVSsLdqzRCFHISvBQaH+SP5vgjIw==
"@langchain/groq@^1.0.1":
version "1.0.1"
resolved "https://registry.yarnpkg.com/@langchain/groq/-/groq-1.0.1.tgz#7ec8822cd2f29eef4ae0f9c20f67268d1924ab96"
integrity sha512-vDQzv6A3mjG0/W/7vL4Iq+dnmhSbMHln+b7Rna810trjZzfNPZhAP6omqZyzCKIqjsQYUH4ODLnSUCNiarfYsQ==
dependencies:
groq-sdk "^0.19.0"
@@ -842,30 +842,30 @@
"@langchain/langgraph-sdk" "~1.0.0"
uuid "^10.0.0"
"@langchain/ollama@^1.0.0":
version "1.0.0"
resolved "https://registry.yarnpkg.com/@langchain/ollama/-/ollama-1.0.0.tgz#803c353e9dfb1a9e7b20f1460a6a201fec29bb77"
integrity sha512-zqn6i7haMjvZW4FQWo0GrF4wYL5mLurdL0qoe+moYWYSCGaay4K7e/4dqM5C/MR16/HPFDzFbBRMkni2PDRBgA==
"@langchain/langgraph@^1.0.1":
version "1.0.1"
resolved "https://registry.yarnpkg.com/@langchain/langgraph/-/langgraph-1.0.1.tgz#d0be714653e8a27665f86ea795c5c34189455406"
integrity sha512-7y8OTDLrHrpJ55Y5x7c7zU2BbqNllXwxM106Xrd+NaQB5CpEb4hbUfIwe4XmhhscKPwvhXAq3tjeUxw9MCiurQ==
dependencies:
"@langchain/langgraph-checkpoint" "^1.0.0"
"@langchain/langgraph-sdk" "~1.0.0"
uuid "^10.0.0"
"@langchain/ollama@^1.0.1":
version "1.0.1"
resolved "https://registry.yarnpkg.com/@langchain/ollama/-/ollama-1.0.1.tgz#c63ac6db65110beef4020a5e2b167ad0bc678d33"
integrity sha512-Pe32hhTpMvnRlNFJxkdu6r1QzsONGz5uvoLiMU1TpgAUu7EyKr2osymlgjBLqDe2vMKUmqHb+yWRH0IppDBUOg==
dependencies:
ollama "^0.5.12"
uuid "^10.0.0"
"@langchain/openai@1.0.0", "@langchain/openai@^1.0.0":
version "1.0.0"
resolved "https://registry.yarnpkg.com/@langchain/openai/-/openai-1.0.0.tgz#03b15312286b30ce0149f6052620c6c95b4387bc"
integrity sha512-olKEUIjb3HBOiD/NR056iGJz4wiN6HhQ/u65YmGWYadWWoKOcGwheBw/FE0x6SH4zDlI3QmP+vMhuQoaww19BQ==
"@langchain/openai@1.1.1", "@langchain/openai@^1.1.1":
version "1.1.1"
resolved "https://registry.yarnpkg.com/@langchain/openai/-/openai-1.1.1.tgz#67ddcf54ee7ac402f6b75b4b9e25447e78c56a93"
integrity sha512-0kUaXejo/sn6QAohWHDaAUapC4CJRkJIajGaWfJC+llSqpDBnmBE1oHg1M2fi1OCeP+ns9SxB6BTsq4Qbiqmig==
dependencies:
js-tiktoken "^1.0.12"
openai "^6.3.0"
zod "^3.25.76 || ^4"
"@langchain/openai@1.0.0-alpha.3":
version "1.0.0-alpha.3"
resolved "https://registry.yarnpkg.com/@langchain/openai/-/openai-1.0.0-alpha.3.tgz#35c4e770e3421b75a226087af54fbeff147e201a"
integrity sha512-re2NXLYeLatPzoB6YRoFgB1fW6i5ygcLGa7PlNOhi3f93uU1vSlWMgjkO9dcN9ALmr/bhoruqJEn7U0Eva+6/w==
dependencies:
js-tiktoken "^1.0.12"
openai "^6.3.0"
openai "^6.9.0"
zod "^3.25.76 || ^4"
"@langchain/textsplitters@1.0.0", "@langchain/textsplitters@^1.0.0":
@@ -2607,11 +2607,6 @@ expand-template@^2.0.3:
resolved "https://registry.yarnpkg.com/expand-template/-/expand-template-2.0.3.tgz#6e14b3fcee0f3a6340ecb57d2e8918692052a47c"
integrity sha512-XYfuKMvj4O35f/pOXLObndIRvyQ+/+6AhODh+OKWj9S9498pHHn/IMszH+gt0fBCRWMNfk1ZSp5x3AifmnI2vg==
expr-eval@^2.0.2:
version "2.0.2"
resolved "https://registry.yarnpkg.com/expr-eval/-/expr-eval-2.0.2.tgz#fa6f044a7b0c93fde830954eb9c5b0f7fbc7e201"
integrity sha512-4EMSHGOPSwAfBiibw3ndnP0AvjDWLsMvGOvWEZ2F96IGk0bIVdjQisOHxReSkE13mHcfbuCiXw+G4y0zv6N8Eg==
fast-deep-equal@^3.1.1, fast-deep-equal@^3.1.3:
version "3.1.3"
resolved "https://registry.yarnpkg.com/fast-deep-equal/-/fast-deep-equal-3.1.3.tgz#3a7d56b559d6cbc3eb512325244e619a65c6c525"
@@ -3514,17 +3509,16 @@ kuler@^2.0.0:
resolved "https://registry.yarnpkg.com/kuler/-/kuler-2.0.0.tgz#e2c570a3800388fb44407e851531c1d670b061b3"
integrity sha512-Xq9nH7KlWZmXAtodXDDRE7vs6DU1gTU8zYDHDiWLSip45Egwq3plLHzPn27NgvzL2r1LMPC1vdqh98sQxtqj4A==
langchain@^1.0.1:
version "1.0.1"
resolved "https://registry.yarnpkg.com/langchain/-/langchain-1.0.1.tgz#fb181176f4aa443ef02e9e5b563bcb4e170dfeb6"
integrity sha512-IT4JBVbKBh2AjaUFT9OsmOfeK3UbKy3SgdzZOuvet25sAaMpAR8IaM9XVddRs+OXQqVg6sOS01KUUVCJksVhHg==
langchain@^1.0.4:
version "1.0.4"
resolved "https://registry.yarnpkg.com/langchain/-/langchain-1.0.4.tgz#c4fa22d927f41d56c356ecfccea5c08ae7b682ef"
integrity sha512-g7z2kKvnXOecybbVGHfI2ZmdmP309mxC1FYlq6WC/7RsKgX5MwY9gBjwK16mpKOaozOD9QCo1Ia7o2UcUBRb9Q==
dependencies:
"@langchain/langgraph" "^1.0.0"
"@langchain/langgraph-checkpoint" "^1.0.0"
langsmith "~0.3.74"
uuid "^10.0.0"
zod "^3.25.76 || ^4"
optionalDependencies:
langsmith "^0.3.64"
langsmith@^0.3.64:
version "0.3.74"
@@ -3539,6 +3533,19 @@ langsmith@^0.3.64:
semver "^7.6.3"
uuid "^10.0.0"
langsmith@~0.3.74:
version "0.3.79"
resolved "https://registry.yarnpkg.com/langsmith/-/langsmith-0.3.79.tgz#6c845644da26e7fdd8e9b80706091669fc43bda4"
integrity sha512-j5uiAsyy90zxlxaMuGjb7EdcL51Yx61SpKfDOI1nMPBbemGju+lf47he4e59Hp5K63CY8XWgFP42WeZ+zuIU4Q==
dependencies:
"@types/uuid" "^10.0.0"
chalk "^4.1.2"
console-table-printer "^2.12.1"
p-queue "^6.6.2"
p-retry "4"
semver "^7.6.3"
uuid "^10.0.0"
language-subtag-registry@^0.3.20:
version "0.3.22"
resolved "https://registry.yarnpkg.com/language-subtag-registry/-/language-subtag-registry-0.3.22.tgz#2e1500861b2e457eba7e7ae86877cbd08fa1fd1d"
@@ -3686,6 +3693,11 @@ matcher@^3.0.0:
dependencies:
escape-string-regexp "^4.0.0"
math-expression-evaluator@^2.0.0:
version "2.0.7"
resolved "https://registry.yarnpkg.com/math-expression-evaluator/-/math-expression-evaluator-2.0.7.tgz#dc99a80ce2bf7f9b7df878126feb5c506c1fdf5f"
integrity sha512-uwliJZ6BPHRq4eiqNWxZBDzKUiS5RIynFFcgchqhBOloVLVBpZpNG8jRYkedLcBvhph8TnRyWEuxPqiQcwIdog==
math-intrinsics@^1.1.0:
version "1.1.0"
resolved "https://registry.yarnpkg.com/math-intrinsics/-/math-intrinsics-1.1.0.tgz#a0dd74be81e2aa5c2f27e65ce283605ee4e2b7f9"
@@ -4025,10 +4037,10 @@ onnxruntime-web@1.22.0-dev.20250409-89f8206ba4:
platform "^1.3.6"
protobufjs "^7.2.4"
openai@^6.3.0:
version "6.5.0"
resolved "https://registry.yarnpkg.com/openai/-/openai-6.5.0.tgz#7dd9c4c0ca6e394c1d1e738b2000e084024685b2"
integrity sha512-bNqJ15Ijbs41KuJ2iYz/mGAruFHzQQt7zXo4EvjNLoB64aJdgn1jlMeDTsXjEg+idVYafg57QB/5Rd16oqvZ6A==
openai@^6.9.0:
version "6.9.0"
resolved "https://registry.yarnpkg.com/openai/-/openai-6.9.0.tgz#acd15b2233c42b165981f3de8f4cfce27f844fce"
integrity sha512-n2sJRYmM+xfJ0l3OfH8eNnIyv3nQY7L08gZQu3dw6wSdfPtKAk92L83M2NIP5SS8Cl/bsBBG3yKzEOjkx0O+7A==
openapi-types@^12.1.3:
version "12.1.3"
@@ -5491,12 +5503,7 @@ yocto-queue@^0.1.0:
resolved "https://registry.yarnpkg.com/yocto-queue/-/yocto-queue-0.1.0.tgz#0294eb3dee05028d31ee1a5fa2c556a6aaf10a1b"
integrity sha512-rVksvsnNCdJ/ohGc6xgPwyN8eheCxsiLM8mxuE/t/mOVqJewPuO1miLpTHQiRgTKCLexL4MeAFVagts7HmNZ2Q==
zod@^3.22.4:
version "3.22.4"
resolved "https://registry.yarnpkg.com/zod/-/zod-3.22.4.tgz#f31c3a9386f61b1f228af56faa9255e845cf3fff"
integrity sha512-iC+8Io04lddc+mVqQ9AZ7OQ2MrUKGN+oIQyq1vemgt46jwCwLfhq7/pwnBnNXXXZb8VTVLKwp9EDkx+ryxIWmg==
"zod@^3.25.76 || ^4":
"zod@^3.25.76 || ^4", zod@^4.1.12:
version "4.1.12"
resolved "https://registry.yarnpkg.com/zod/-/zod-4.1.12.tgz#64f1ea53d00eab91853195653b5af9eee68970f0"
integrity sha512-JInaHOamG8pt5+Ey8kGmdcAcg3OL9reK8ltczgHTAwNhMys/6ThXHityHxVV2p3fkw/c+MAvBHFVYHFZDmjMCQ==