Compare commits

..

5 Commits

Author SHA1 Message Date
Naman Bansal
bdba92f452 Merge 7288c97326 into 09661ae11d 2025-04-02 17:06:29 +05:30
ItzCrazyKns
09661ae11d feat(prompts): fix typo, closes #715 2025-04-02 13:02:28 +05:30
namanb
7288c97326 feat(providers): changed readme as well 2025-04-02 12:26:38 +05:30
namanb
3545137bc0 feat(providers): added openrouter support 2025-04-02 12:24:27 +05:30
ItzCrazyKns
a8d410bc2f Merge pull request #716 from ItzCrazyKns/feat/system-instructions
Feat/system instructions
2025-04-01 15:59:18 +05:30
9 changed files with 99 additions and 2 deletions

View File

@@ -89,6 +89,7 @@ There are mainly 2 ways of installing Perplexica - With Docker, Without Docker.
- `OPENAI`: Your OpenAI API key. **You only need to fill this if you wish to use OpenAI's models**.
- `OLLAMA`: Your Ollama API URL. You should enter it as `http://host.docker.internal:PORT_NUMBER`. If you installed Ollama on port 11434, use `http://host.docker.internal:11434`. For other ports, adjust accordingly. **You need to fill this if you wish to use Ollama's models instead of OpenAI's**.
- `GROQ`: Your Groq API key. **You only need to fill this if you wish to use Groq's hosted models**.
- `OPENROUTER`: Your OpenRouter API key. **You only need to fill this if you wish to use models via OpenRouter**.
- `ANTHROPIC`: Your Anthropic API key. **You only need to fill this if you wish to use Anthropic models**.
**Note**: You can change these after starting Perplexica from the settings dialog.

View File

@@ -11,6 +11,9 @@ API_KEY = ""
[MODELS.ANTHROPIC]
API_KEY = ""
[MODELS.OPENROUTER]
API_KEY = ""
[MODELS.GEMINI]
API_KEY = ""

View File

@@ -5,6 +5,7 @@ import {
getCustomOpenaiModelName,
getGeminiApiKey,
getGroqApiKey,
getOpenrouterApiKey,
getOllamaApiEndpoint,
getOpenaiApiKey,
updateConfig,
@@ -52,6 +53,7 @@ export const GET = async (req: Request) => {
config['ollamaApiUrl'] = getOllamaApiEndpoint();
config['anthropicApiKey'] = getAnthropicApiKey();
config['groqApiKey'] = getGroqApiKey();
config['openrouterApiKey'] = getOpenrouterApiKey();
config['geminiApiKey'] = getGeminiApiKey();
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
@@ -79,6 +81,9 @@ export const POST = async (req: Request) => {
GROQ: {
API_KEY: config.groqApiKey,
},
OPENROUTER: {
API_KEY: config.openrouterApiKey,
},
ANTHROPIC: {
API_KEY: config.anthropicApiKey,
},

View File

@@ -125,7 +125,7 @@ export const POST = async (req: Request) => {
embeddings,
body.optimizationMode,
[],
"",
'',
);
if (!body.stream) {

View File

@@ -17,6 +17,7 @@ interface SettingsType {
};
openaiApiKey: string;
groqApiKey: string;
openrouterApiKey: string;
anthropicApiKey: string;
geminiApiKey: string;
ollamaApiUrl: string;
@@ -801,6 +802,25 @@ const Page = () => {
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
OpenRouter API Key
</p>
<Input
type="text"
placeholder="OpenRouter API Key"
value={config.openrouterApiKey}
isSaving={savingStates['openrouterApiKey']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
openrouterApiKey: e.target.value,
}));
}}
onSave={(value) => saveConfig('openrouterApiKey', value)}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Anthropic API Key

View File

@@ -25,6 +25,9 @@ interface Config {
OLLAMA: {
API_URL: string;
};
OPENROUTER: {
API_KEY: string;
};
CUSTOM_OPENAI: {
API_URL: string;
API_KEY: string;
@@ -54,6 +57,8 @@ export const getOpenaiApiKey = () => loadConfig().MODELS.OPENAI.API_KEY;
export const getGroqApiKey = () => loadConfig().MODELS.GROQ.API_KEY;
export const getOpenrouterApiKey = () => loadConfig().MODELS.OPENROUTER.API_KEY;
export const getAnthropicApiKey = () => loadConfig().MODELS.ANTHROPIC.API_KEY;
export const getGeminiApiKey = () => loadConfig().MODELS.GEMINI.API_KEY;

View File

@@ -1,6 +1,6 @@
export const webSearchRetrieverPrompt = `
You are an AI question rephraser. You will be given a conversation and a follow-up question, you will have to rephrase the follow up question so it is a standalone question and can be used by another LLM to search the web for information to answer it.
If it is a smple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
If it is a simple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block.
You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response.

View File

@@ -12,6 +12,7 @@ import { loadGroqChatModels } from './groq';
import { loadAnthropicChatModels } from './anthropic';
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini';
import { loadTransformersEmbeddingsModels } from './transformers';
import { loadOpenrouterChatModels } from '@/lib/providers/openrouter';
export interface ChatModel {
displayName: string;
@@ -32,6 +33,7 @@ export const chatModelProviders: Record<
groq: loadGroqChatModels,
anthropic: loadAnthropicChatModels,
gemini: loadGeminiChatModels,
openrouter: loadOpenrouterChatModels,
};
export const embeddingModelProviders: Record<

View File

@@ -0,0 +1,61 @@
import { ChatOpenAI } from '@langchain/openai';
import { getOpenrouterApiKey } from '../config';
import { ChatModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
let openrouterChatModels: Record<string, string>[] = [];
async function fetchModelList(): Promise<void> {
try {
const response = await fetch('https://openrouter.ai/api/v1/models', {
method: 'GET',
headers: {
'Content-Type': 'application/json',
},
});
if (!response.ok) {
throw new Error(`API request failed with status: ${response.status}`);
}
const data = await response.json();
openrouterChatModels = data.data.map((model: any) => ({
displayName: model.name,
key: model.id,
}));
} catch (error) {
console.error('Error fetching models:', error);
}
}
export const loadOpenrouterChatModels = async () => {
await fetchModelList();
const openrouterApikey = getOpenrouterApiKey();
if (!openrouterApikey) return {};
try {
const chatModels: Record<string, ChatModel> = {};
openrouterChatModels.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatOpenAI({
openAIApiKey: openrouterApikey,
modelName: model.key,
temperature: 0.7,
configuration: {
baseURL: 'https://openrouter.ai/api/v1',
},
}) as unknown as BaseChatModel,
};
});
return chatModels;
} catch (err) {
console.error(`Error loading Openrouter models: ${err}`);
return {};
}
};