mirror of
https://github.com/ItzCrazyKns/Perplexica.git
synced 2025-09-15 14:01:31 +00:00
Compare commits
28 Commits
feat/struc
...
0dc17286b9
Author | SHA1 | Date | |
---|---|---|---|
|
0dc17286b9 | ||
|
3edd7d44dd | ||
|
1132997108 | ||
|
eadbedb713 | ||
|
37cd6d3ab5 | ||
|
88be3a045b | ||
|
45b51ab156 | ||
|
3bee01cfa7 | ||
|
567c6a8758 | ||
|
81a91da743 | ||
|
70a61ee1eb | ||
|
9d89a4413b | ||
|
6ea17d54c6 | ||
|
11a828b073 | ||
|
37022fb11e | ||
|
dd50d4927b | ||
|
fdaf3af3af | ||
|
3f2a8f862c | ||
|
58c7be6e95 | ||
|
829b4e7134 | ||
|
77870b39cc | ||
|
8e0ae9b867 | ||
|
543f1df5ce | ||
|
341aae4587 | ||
|
7f62907385 | ||
|
7c4aa683a2 | ||
|
b48b0eeb0e | ||
|
cddc793915 |
@@ -19,6 +19,7 @@
|
|||||||
"@langchain/community": "^0.3.49",
|
"@langchain/community": "^0.3.49",
|
||||||
"@langchain/core": "^0.3.66",
|
"@langchain/core": "^0.3.66",
|
||||||
"@langchain/google-genai": "^0.2.15",
|
"@langchain/google-genai": "^0.2.15",
|
||||||
|
"@langchain/groq": "^0.2.3",
|
||||||
"@langchain/ollama": "^0.2.3",
|
"@langchain/ollama": "^0.2.3",
|
||||||
"@langchain/openai": "^0.6.2",
|
"@langchain/openai": "^0.6.2",
|
||||||
"@langchain/textsplitters": "^0.1.0",
|
"@langchain/textsplitters": "^0.1.0",
|
||||||
|
@@ -1,55 +1,72 @@
|
|||||||
import { searchSearxng } from '@/lib/searxng';
|
import { searchSearxng } from '@/lib/searxng';
|
||||||
|
|
||||||
const articleWebsites = [
|
const websitesForTopic = {
|
||||||
'yahoo.com',
|
tech: {
|
||||||
'www.exchangewire.com',
|
query: ['technology news', 'latest tech', 'AI', 'science and innovation'],
|
||||||
'businessinsider.com',
|
links: ['techcrunch.com', 'wired.com', 'theverge.com'],
|
||||||
/* 'wired.com',
|
},
|
||||||
'mashable.com',
|
finance: {
|
||||||
'theverge.com',
|
query: ['finance news', 'economy', 'stock market', 'investing'],
|
||||||
'gizmodo.com',
|
links: ['bloomberg.com', 'cnbc.com', 'marketwatch.com'],
|
||||||
'cnet.com',
|
},
|
||||||
'venturebeat.com', */
|
art: {
|
||||||
];
|
query: ['art news', 'culture', 'modern art', 'cultural events'],
|
||||||
|
links: ['artnews.com', 'hyperallergic.com', 'theartnewspaper.com'],
|
||||||
|
},
|
||||||
|
sports: {
|
||||||
|
query: ['sports news', 'latest sports', 'cricket football tennis'],
|
||||||
|
links: ['espn.com', 'bbc.com/sport', 'skysports.com'],
|
||||||
|
},
|
||||||
|
entertainment: {
|
||||||
|
query: ['entertainment news', 'movies', 'TV shows', 'celebrities'],
|
||||||
|
links: ['hollywoodreporter.com', 'variety.com', 'deadline.com'],
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
const topics = ['AI', 'tech']; /* TODO: Add UI to customize this */
|
type Topic = keyof typeof websitesForTopic;
|
||||||
|
|
||||||
export const GET = async (req: Request) => {
|
export const GET = async (req: Request) => {
|
||||||
try {
|
try {
|
||||||
const params = new URL(req.url).searchParams;
|
const params = new URL(req.url).searchParams;
|
||||||
|
|
||||||
const mode: 'normal' | 'preview' =
|
const mode: 'normal' | 'preview' =
|
||||||
(params.get('mode') as 'normal' | 'preview') || 'normal';
|
(params.get('mode') as 'normal' | 'preview') || 'normal';
|
||||||
|
const topic: Topic = (params.get('topic') as Topic) || 'tech';
|
||||||
|
|
||||||
|
const selectedTopic = websitesForTopic[topic];
|
||||||
|
|
||||||
let data = [];
|
let data = [];
|
||||||
|
|
||||||
if (mode === 'normal') {
|
if (mode === 'normal') {
|
||||||
|
const seenUrls = new Set();
|
||||||
|
|
||||||
data = (
|
data = (
|
||||||
await Promise.all([
|
await Promise.all(
|
||||||
...new Array(articleWebsites.length * topics.length)
|
selectedTopic.links.flatMap((link) =>
|
||||||
.fill(0)
|
selectedTopic.query.map(async (query) => {
|
||||||
.map(async (_, i) => {
|
|
||||||
return (
|
return (
|
||||||
await searchSearxng(
|
await searchSearxng(`site:${link} ${query}`, {
|
||||||
`site:${articleWebsites[i % articleWebsites.length]} ${
|
|
||||||
topics[i % topics.length]
|
|
||||||
}`,
|
|
||||||
{
|
|
||||||
engines: ['bing news'],
|
engines: ['bing news'],
|
||||||
pageno: 1,
|
pageno: 1,
|
||||||
language: 'en',
|
language: 'en',
|
||||||
},
|
})
|
||||||
)
|
|
||||||
).results;
|
).results;
|
||||||
}),
|
}),
|
||||||
])
|
),
|
||||||
|
)
|
||||||
)
|
)
|
||||||
.map((result) => result)
|
|
||||||
.flat()
|
.flat()
|
||||||
|
.filter((item) => {
|
||||||
|
const url = item.url?.toLowerCase().trim();
|
||||||
|
if (seenUrls.has(url)) return false;
|
||||||
|
seenUrls.add(url);
|
||||||
|
return true;
|
||||||
|
})
|
||||||
.sort(() => Math.random() - 0.5);
|
.sort(() => Math.random() - 0.5);
|
||||||
} else {
|
} else {
|
||||||
data = (
|
data = (
|
||||||
await searchSearxng(
|
await searchSearxng(
|
||||||
`site:${articleWebsites[Math.floor(Math.random() * articleWebsites.length)]} ${topics[Math.floor(Math.random() * topics.length)]}`,
|
`site:${selectedTopic.links[Math.floor(Math.random() * selectedTopic.links.length)]} ${selectedTopic.query[Math.floor(Math.random() * selectedTopic.query.length)]}`,
|
||||||
{
|
{
|
||||||
engines: ['bing news'],
|
engines: ['bing news'],
|
||||||
pageno: 1,
|
pageno: 1,
|
||||||
|
@@ -81,8 +81,7 @@ export const POST = async (req: Request) => {
|
|||||||
if (body.chatModel?.provider === 'custom_openai') {
|
if (body.chatModel?.provider === 'custom_openai') {
|
||||||
llm = new ChatOpenAI({
|
llm = new ChatOpenAI({
|
||||||
modelName: body.chatModel?.name || getCustomOpenaiModelName(),
|
modelName: body.chatModel?.name || getCustomOpenaiModelName(),
|
||||||
apiKey:
|
apiKey: body.chatModel?.customOpenAIKey || getCustomOpenaiApiKey(),
|
||||||
body.chatModel?.customOpenAIKey || getCustomOpenaiApiKey(),
|
|
||||||
temperature: 0.7,
|
temperature: 0.7,
|
||||||
configuration: {
|
configuration: {
|
||||||
baseURL:
|
baseURL:
|
||||||
|
@@ -1,7 +1,10 @@
|
|||||||
export const POST = async (req: Request) => {
|
export const POST = async (req: Request) => {
|
||||||
try {
|
try {
|
||||||
const body: { lat: number; lng: number; temperatureUnit: 'C' | 'F' } =
|
const body: {
|
||||||
await req.json();
|
lat: number;
|
||||||
|
lng: number;
|
||||||
|
measureUnit: 'Imperial' | 'Metric';
|
||||||
|
} = await req.json();
|
||||||
|
|
||||||
if (!body.lat || !body.lng) {
|
if (!body.lat || !body.lng) {
|
||||||
return Response.json(
|
return Response.json(
|
||||||
@@ -13,7 +16,9 @@ export const POST = async (req: Request) => {
|
|||||||
}
|
}
|
||||||
|
|
||||||
const res = await fetch(
|
const res = await fetch(
|
||||||
`https://api.open-meteo.com/v1/forecast?latitude=${body.lat}&longitude=${body.lng}¤t=weather_code,temperature_2m,is_day,relative_humidity_2m,wind_speed_10m&timezone=auto${body.temperatureUnit === 'C' ? '' : '&temperature_unit=fahrenheit'}`,
|
`https://api.open-meteo.com/v1/forecast?latitude=${body.lat}&longitude=${body.lng}¤t=weather_code,temperature_2m,is_day,relative_humidity_2m,wind_speed_10m&timezone=auto${
|
||||||
|
body.measureUnit === 'Metric' ? '' : '&temperature_unit=fahrenheit'
|
||||||
|
}${body.measureUnit === 'Metric' ? '' : '&wind_speed_unit=mph'}`,
|
||||||
);
|
);
|
||||||
|
|
||||||
const data = await res.json();
|
const data = await res.json();
|
||||||
@@ -35,13 +40,15 @@ export const POST = async (req: Request) => {
|
|||||||
windSpeed: number;
|
windSpeed: number;
|
||||||
icon: string;
|
icon: string;
|
||||||
temperatureUnit: 'C' | 'F';
|
temperatureUnit: 'C' | 'F';
|
||||||
|
windSpeedUnit: 'm/s' | 'mph';
|
||||||
} = {
|
} = {
|
||||||
temperature: data.current.temperature_2m,
|
temperature: data.current.temperature_2m,
|
||||||
condition: '',
|
condition: '',
|
||||||
humidity: data.current.relative_humidity_2m,
|
humidity: data.current.relative_humidity_2m,
|
||||||
windSpeed: data.current.wind_speed_10m,
|
windSpeed: data.current.wind_speed_10m,
|
||||||
icon: '',
|
icon: '',
|
||||||
temperatureUnit: body.temperatureUnit,
|
temperatureUnit: body.measureUnit === 'Metric' ? 'C' : 'F',
|
||||||
|
windSpeedUnit: body.measureUnit === 'Metric' ? 'm/s' : 'mph',
|
||||||
};
|
};
|
||||||
|
|
||||||
const code = data.current.weather_code;
|
const code = data.current.weather_code;
|
||||||
|
@@ -4,6 +4,7 @@ import { Search } from 'lucide-react';
|
|||||||
import { useEffect, useState } from 'react';
|
import { useEffect, useState } from 'react';
|
||||||
import Link from 'next/link';
|
import Link from 'next/link';
|
||||||
import { toast } from 'sonner';
|
import { toast } from 'sonner';
|
||||||
|
import { cn } from '@/lib/utils';
|
||||||
|
|
||||||
interface Discover {
|
interface Discover {
|
||||||
title: string;
|
title: string;
|
||||||
@@ -12,14 +13,38 @@ interface Discover {
|
|||||||
thumbnail: string;
|
thumbnail: string;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
const topics: { key: string; display: string }[] = [
|
||||||
|
{
|
||||||
|
display: 'Tech & Science',
|
||||||
|
key: 'tech',
|
||||||
|
},
|
||||||
|
{
|
||||||
|
display: 'Finance',
|
||||||
|
key: 'finance',
|
||||||
|
},
|
||||||
|
{
|
||||||
|
display: 'Art & Culture',
|
||||||
|
key: 'art',
|
||||||
|
},
|
||||||
|
{
|
||||||
|
display: 'Sports',
|
||||||
|
key: 'sports',
|
||||||
|
},
|
||||||
|
{
|
||||||
|
display: 'Entertainment',
|
||||||
|
key: 'entertainment',
|
||||||
|
},
|
||||||
|
];
|
||||||
|
|
||||||
const Page = () => {
|
const Page = () => {
|
||||||
const [discover, setDiscover] = useState<Discover[] | null>(null);
|
const [discover, setDiscover] = useState<Discover[] | null>(null);
|
||||||
const [loading, setLoading] = useState(true);
|
const [loading, setLoading] = useState(true);
|
||||||
|
const [activeTopic, setActiveTopic] = useState<string>(topics[0].key);
|
||||||
|
|
||||||
useEffect(() => {
|
const fetchArticles = async (topic: string) => {
|
||||||
const fetchData = async () => {
|
setLoading(true);
|
||||||
try {
|
try {
|
||||||
const res = await fetch(`/api/discover`, {
|
const res = await fetch(`/api/discover?topic=${topic}`, {
|
||||||
method: 'GET',
|
method: 'GET',
|
||||||
headers: {
|
headers: {
|
||||||
'Content-Type': 'application/json',
|
'Content-Type': 'application/json',
|
||||||
@@ -43,10 +68,39 @@ const Page = () => {
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
fetchData();
|
useEffect(() => {
|
||||||
}, []);
|
fetchArticles(activeTopic);
|
||||||
|
}, [activeTopic]);
|
||||||
|
|
||||||
return loading ? (
|
return (
|
||||||
|
<>
|
||||||
|
<div>
|
||||||
|
<div className="flex flex-col pt-4">
|
||||||
|
<div className="flex items-center">
|
||||||
|
<Search />
|
||||||
|
<h1 className="text-3xl font-medium p-2">Discover</h1>
|
||||||
|
</div>
|
||||||
|
<hr className="border-t border-[#2B2C2C] my-4 w-full" />
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<div className="flex flex-row items-center space-x-2 overflow-x-auto">
|
||||||
|
{topics.map((t, i) => (
|
||||||
|
<div
|
||||||
|
key={i}
|
||||||
|
className={cn(
|
||||||
|
'border-[0.1px] rounded-full text-sm px-3 py-1 text-nowrap transition duration-200 cursor-pointer',
|
||||||
|
activeTopic === t.key
|
||||||
|
? 'text-cyan-300 bg-cyan-300/30 border-cyan-300/60'
|
||||||
|
: 'border-white/30 text-white/70 hover:text-white hover:border-white/40 hover:bg-white/5',
|
||||||
|
)}
|
||||||
|
onClick={() => setActiveTopic(t.key)}
|
||||||
|
>
|
||||||
|
<span>{t.display}</span>
|
||||||
|
</div>
|
||||||
|
))}
|
||||||
|
</div>
|
||||||
|
|
||||||
|
{loading ? (
|
||||||
<div className="flex flex-row items-center justify-center min-h-screen">
|
<div className="flex flex-row items-center justify-center min-h-screen">
|
||||||
<svg
|
<svg
|
||||||
aria-hidden="true"
|
aria-hidden="true"
|
||||||
@@ -66,17 +120,7 @@ const Page = () => {
|
|||||||
</svg>
|
</svg>
|
||||||
</div>
|
</div>
|
||||||
) : (
|
) : (
|
||||||
<>
|
<div className="grid lg:grid-cols-3 sm:grid-cols-2 grid-cols-1 gap-4 pb-28 pt-5 lg:pb-8 w-full justify-items-center lg:justify-items-start">
|
||||||
<div>
|
|
||||||
<div className="flex flex-col pt-4">
|
|
||||||
<div className="flex items-center">
|
|
||||||
<Search />
|
|
||||||
<h1 className="text-3xl font-medium p-2">Discover</h1>
|
|
||||||
</div>
|
|
||||||
<hr className="border-t border-[#2B2C2C] my-4 w-full" />
|
|
||||||
</div>
|
|
||||||
|
|
||||||
<div className="grid lg:grid-cols-3 sm:grid-cols-2 grid-cols-1 gap-4 pb-28 lg:pb-8 w-full justify-items-center lg:justify-items-start">
|
|
||||||
{discover &&
|
{discover &&
|
||||||
discover?.map((item, i) => (
|
discover?.map((item, i) => (
|
||||||
<Link
|
<Link
|
||||||
@@ -105,6 +149,7 @@ const Page = () => {
|
|||||||
</Link>
|
</Link>
|
||||||
))}
|
))}
|
||||||
</div>
|
</div>
|
||||||
|
)}
|
||||||
</div>
|
</div>
|
||||||
</>
|
</>
|
||||||
);
|
);
|
||||||
|
@@ -148,7 +148,9 @@ const Page = () => {
|
|||||||
const [automaticImageSearch, setAutomaticImageSearch] = useState(false);
|
const [automaticImageSearch, setAutomaticImageSearch] = useState(false);
|
||||||
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
|
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
|
||||||
const [systemInstructions, setSystemInstructions] = useState<string>('');
|
const [systemInstructions, setSystemInstructions] = useState<string>('');
|
||||||
const [temperatureUnit, setTemperatureUnit] = useState<'C' | 'F'>('C');
|
const [measureUnit, setMeasureUnit] = useState<'Imperial' | 'Metric'>(
|
||||||
|
'Metric',
|
||||||
|
);
|
||||||
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
|
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
|
||||||
|
|
||||||
useEffect(() => {
|
useEffect(() => {
|
||||||
@@ -211,7 +213,9 @@ const Page = () => {
|
|||||||
|
|
||||||
setSystemInstructions(localStorage.getItem('systemInstructions')!);
|
setSystemInstructions(localStorage.getItem('systemInstructions')!);
|
||||||
|
|
||||||
setTemperatureUnit(localStorage.getItem('temperatureUnit')! as 'C' | 'F');
|
setMeasureUnit(
|
||||||
|
localStorage.getItem('measureUnit')! as 'Imperial' | 'Metric',
|
||||||
|
);
|
||||||
|
|
||||||
setIsLoading(false);
|
setIsLoading(false);
|
||||||
};
|
};
|
||||||
@@ -371,8 +375,8 @@ const Page = () => {
|
|||||||
localStorage.setItem('embeddingModel', value);
|
localStorage.setItem('embeddingModel', value);
|
||||||
} else if (key === 'systemInstructions') {
|
} else if (key === 'systemInstructions') {
|
||||||
localStorage.setItem('systemInstructions', value);
|
localStorage.setItem('systemInstructions', value);
|
||||||
} else if (key === 'temperatureUnit') {
|
} else if (key === 'measureUnit') {
|
||||||
localStorage.setItem('temperatureUnit', value.toString());
|
localStorage.setItem('measureUnit', value.toString());
|
||||||
}
|
}
|
||||||
} catch (err) {
|
} catch (err) {
|
||||||
console.error('Failed to save:', err);
|
console.error('Failed to save:', err);
|
||||||
@@ -430,22 +434,22 @@ const Page = () => {
|
|||||||
</div>
|
</div>
|
||||||
<div className="flex flex-col space-y-1">
|
<div className="flex flex-col space-y-1">
|
||||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||||
Temperature Unit
|
Measurement Units
|
||||||
</p>
|
</p>
|
||||||
<Select
|
<Select
|
||||||
value={temperatureUnit ?? undefined}
|
value={measureUnit ?? undefined}
|
||||||
onChange={(e) => {
|
onChange={(e) => {
|
||||||
setTemperatureUnit(e.target.value as 'C' | 'F');
|
setMeasureUnit(e.target.value as 'Imperial' | 'Metric');
|
||||||
saveConfig('temperatureUnit', e.target.value);
|
saveConfig('measureUnit', e.target.value);
|
||||||
}}
|
}}
|
||||||
options={[
|
options={[
|
||||||
{
|
{
|
||||||
label: 'Celsius',
|
label: 'Metric',
|
||||||
value: 'C',
|
value: 'Metric',
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
label: 'Fahrenheit',
|
label: 'Imperial',
|
||||||
value: 'F',
|
value: 'Imperial',
|
||||||
},
|
},
|
||||||
]}
|
]}
|
||||||
/>
|
/>
|
||||||
|
@@ -354,7 +354,11 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
|||||||
}
|
}
|
||||||
}, [isMessagesLoaded, isConfigReady]);
|
}, [isMessagesLoaded, isConfigReady]);
|
||||||
|
|
||||||
const sendMessage = async (message: string, messageId?: string) => {
|
const sendMessage = async (
|
||||||
|
message: string,
|
||||||
|
messageId?: string,
|
||||||
|
rewrite = false,
|
||||||
|
) => {
|
||||||
if (loading) return;
|
if (loading) return;
|
||||||
if (!isConfigReady) {
|
if (!isConfigReady) {
|
||||||
toast.error('Cannot send message before the configuration is ready');
|
toast.error('Cannot send message before the configuration is ready');
|
||||||
@@ -482,6 +486,8 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
const messageIndex = messages.findIndex((m) => m.messageId === messageId);
|
||||||
|
|
||||||
const res = await fetch('/api/chat', {
|
const res = await fetch('/api/chat', {
|
||||||
method: 'POST',
|
method: 'POST',
|
||||||
headers: {
|
headers: {
|
||||||
@@ -498,7 +504,9 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
|||||||
files: fileIds,
|
files: fileIds,
|
||||||
focusMode: focusMode,
|
focusMode: focusMode,
|
||||||
optimizationMode: optimizationMode,
|
optimizationMode: optimizationMode,
|
||||||
history: chatHistory,
|
history: rewrite
|
||||||
|
? chatHistory.slice(0, messageIndex === -1 ? undefined : messageIndex)
|
||||||
|
: chatHistory,
|
||||||
chatModel: {
|
chatModel: {
|
||||||
name: chatModelProvider.name,
|
name: chatModelProvider.name,
|
||||||
provider: chatModelProvider.provider,
|
provider: chatModelProvider.provider,
|
||||||
@@ -552,7 +560,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
|||||||
return [...prev.slice(0, messages.length > 2 ? index - 1 : 0)];
|
return [...prev.slice(0, messages.length > 2 ? index - 1 : 0)];
|
||||||
});
|
});
|
||||||
|
|
||||||
sendMessage(message.content, message.messageId);
|
sendMessage(message.content, message.messageId, true);
|
||||||
};
|
};
|
||||||
|
|
||||||
useEffect(() => {
|
useEffect(() => {
|
||||||
|
@@ -21,8 +21,16 @@ import SearchVideos from './SearchVideos';
|
|||||||
import { useSpeech } from 'react-text-to-speech';
|
import { useSpeech } from 'react-text-to-speech';
|
||||||
import ThinkBox from './ThinkBox';
|
import ThinkBox from './ThinkBox';
|
||||||
|
|
||||||
const ThinkTagProcessor = ({ children }: { children: React.ReactNode }) => {
|
const ThinkTagProcessor = ({
|
||||||
return <ThinkBox content={children as string} />;
|
children,
|
||||||
|
thinkingEnded,
|
||||||
|
}: {
|
||||||
|
children: React.ReactNode;
|
||||||
|
thinkingEnded: boolean;
|
||||||
|
}) => {
|
||||||
|
return (
|
||||||
|
<ThinkBox content={children as string} thinkingEnded={thinkingEnded} />
|
||||||
|
);
|
||||||
};
|
};
|
||||||
|
|
||||||
const MessageBox = ({
|
const MessageBox = ({
|
||||||
@@ -46,6 +54,7 @@ const MessageBox = ({
|
|||||||
}) => {
|
}) => {
|
||||||
const [parsedMessage, setParsedMessage] = useState(message.content);
|
const [parsedMessage, setParsedMessage] = useState(message.content);
|
||||||
const [speechMessage, setSpeechMessage] = useState(message.content);
|
const [speechMessage, setSpeechMessage] = useState(message.content);
|
||||||
|
const [thinkingEnded, setThinkingEnded] = useState(false);
|
||||||
|
|
||||||
useEffect(() => {
|
useEffect(() => {
|
||||||
const citationRegex = /\[([^\]]+)\]/g;
|
const citationRegex = /\[([^\]]+)\]/g;
|
||||||
@@ -61,6 +70,10 @@ const MessageBox = ({
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (message.role === 'assistant' && message.content.includes('</think>')) {
|
||||||
|
setThinkingEnded(true);
|
||||||
|
}
|
||||||
|
|
||||||
if (
|
if (
|
||||||
message.role === 'assistant' &&
|
message.role === 'assistant' &&
|
||||||
message?.sources &&
|
message?.sources &&
|
||||||
@@ -88,7 +101,7 @@ const MessageBox = ({
|
|||||||
if (url) {
|
if (url) {
|
||||||
return `<a href="${url}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${numStr}</a>`;
|
return `<a href="${url}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${numStr}</a>`;
|
||||||
} else {
|
} else {
|
||||||
return `[${numStr}]`;
|
return ``;
|
||||||
}
|
}
|
||||||
})
|
})
|
||||||
.join('');
|
.join('');
|
||||||
@@ -99,6 +112,14 @@ const MessageBox = ({
|
|||||||
);
|
);
|
||||||
setSpeechMessage(message.content.replace(regex, ''));
|
setSpeechMessage(message.content.replace(regex, ''));
|
||||||
return;
|
return;
|
||||||
|
} else if (
|
||||||
|
message.role === 'assistant' &&
|
||||||
|
message?.sources &&
|
||||||
|
message.sources.length === 0
|
||||||
|
) {
|
||||||
|
setParsedMessage(processedMessage.replace(regex, ''));
|
||||||
|
setSpeechMessage(message.content.replace(regex, ''));
|
||||||
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
setSpeechMessage(message.content.replace(regex, ''));
|
setSpeechMessage(message.content.replace(regex, ''));
|
||||||
@@ -111,6 +132,9 @@ const MessageBox = ({
|
|||||||
overrides: {
|
overrides: {
|
||||||
think: {
|
think: {
|
||||||
component: ThinkTagProcessor,
|
component: ThinkTagProcessor,
|
||||||
|
props: {
|
||||||
|
thinkingEnded: thinkingEnded,
|
||||||
|
},
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
};
|
};
|
||||||
|
@@ -1,15 +1,23 @@
|
|||||||
'use client';
|
'use client';
|
||||||
|
|
||||||
import { useState } from 'react';
|
import { useEffect, useState } from 'react';
|
||||||
import { cn } from '@/lib/utils';
|
|
||||||
import { ChevronDown, ChevronUp, BrainCircuit } from 'lucide-react';
|
import { ChevronDown, ChevronUp, BrainCircuit } from 'lucide-react';
|
||||||
|
|
||||||
interface ThinkBoxProps {
|
interface ThinkBoxProps {
|
||||||
content: string;
|
content: string;
|
||||||
|
thinkingEnded: boolean;
|
||||||
}
|
}
|
||||||
|
|
||||||
const ThinkBox = ({ content }: ThinkBoxProps) => {
|
const ThinkBox = ({ content, thinkingEnded }: ThinkBoxProps) => {
|
||||||
const [isExpanded, setIsExpanded] = useState(false);
|
const [isExpanded, setIsExpanded] = useState(true);
|
||||||
|
|
||||||
|
useEffect(() => {
|
||||||
|
if (thinkingEnded) {
|
||||||
|
setIsExpanded(false);
|
||||||
|
} else {
|
||||||
|
setIsExpanded(true);
|
||||||
|
}
|
||||||
|
}, [thinkingEnded]);
|
||||||
|
|
||||||
return (
|
return (
|
||||||
<div className="my-4 bg-light-secondary/50 dark:bg-dark-secondary/50 rounded-xl border border-light-200 dark:border-dark-200 overflow-hidden">
|
<div className="my-4 bg-light-secondary/50 dark:bg-dark-secondary/50 rounded-xl border border-light-200 dark:border-dark-200 overflow-hidden">
|
||||||
|
@@ -10,6 +10,7 @@ const WeatherWidget = () => {
|
|||||||
windSpeed: 0,
|
windSpeed: 0,
|
||||||
icon: '',
|
icon: '',
|
||||||
temperatureUnit: 'C',
|
temperatureUnit: 'C',
|
||||||
|
windSpeedUnit: 'm/s',
|
||||||
});
|
});
|
||||||
|
|
||||||
const [loading, setLoading] = useState(true);
|
const [loading, setLoading] = useState(true);
|
||||||
@@ -75,7 +76,7 @@ const WeatherWidget = () => {
|
|||||||
body: JSON.stringify({
|
body: JSON.stringify({
|
||||||
lat: location.latitude,
|
lat: location.latitude,
|
||||||
lng: location.longitude,
|
lng: location.longitude,
|
||||||
temperatureUnit: localStorage.getItem('temperatureUnit') ?? 'C',
|
measureUnit: localStorage.getItem('measureUnit') ?? 'Metric',
|
||||||
}),
|
}),
|
||||||
});
|
});
|
||||||
|
|
||||||
@@ -95,6 +96,7 @@ const WeatherWidget = () => {
|
|||||||
windSpeed: data.windSpeed,
|
windSpeed: data.windSpeed,
|
||||||
icon: data.icon,
|
icon: data.icon,
|
||||||
temperatureUnit: data.temperatureUnit,
|
temperatureUnit: data.temperatureUnit,
|
||||||
|
windSpeedUnit: data.windSpeedUnit,
|
||||||
});
|
});
|
||||||
setLoading(false);
|
setLoading(false);
|
||||||
});
|
});
|
||||||
@@ -139,7 +141,7 @@ const WeatherWidget = () => {
|
|||||||
</span>
|
</span>
|
||||||
<span className="flex items-center text-xs text-black/60 dark:text-white/60">
|
<span className="flex items-center text-xs text-black/60 dark:text-white/60">
|
||||||
<Wind className="w-3 h-3 mr-1" />
|
<Wind className="w-3 h-3 mr-1" />
|
||||||
{data.windSpeed} km/h
|
{data.windSpeed} {data.windSpeedUnit}
|
||||||
</span>
|
</span>
|
||||||
</div>
|
</div>
|
||||||
<span className="text-xs text-black/60 dark:text-white/60 mt-1">
|
<span className="text-xs text-black/60 dark:text-white/60 mt-1">
|
||||||
|
@@ -3,32 +3,18 @@ import {
|
|||||||
RunnableMap,
|
RunnableMap,
|
||||||
RunnableLambda,
|
RunnableLambda,
|
||||||
} from '@langchain/core/runnables';
|
} from '@langchain/core/runnables';
|
||||||
import { PromptTemplate } from '@langchain/core/prompts';
|
import { ChatPromptTemplate } from '@langchain/core/prompts';
|
||||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||||
import { BaseMessage } from '@langchain/core/messages';
|
import { BaseMessage } from '@langchain/core/messages';
|
||||||
import { StringOutputParser } from '@langchain/core/output_parsers';
|
import { StringOutputParser } from '@langchain/core/output_parsers';
|
||||||
import { searchSearxng } from '../searxng';
|
import { searchSearxng } from '../searxng';
|
||||||
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||||
|
import LineOutputParser from '../outputParsers/lineOutputParser';
|
||||||
|
|
||||||
const imageSearchChainPrompt = `
|
const imageSearchChainPrompt = `
|
||||||
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search the web for images.
|
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search the web for images.
|
||||||
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
|
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
|
||||||
|
Output only the rephrased query wrapped in an XML <query> element. Do not include any explanation or additional text.
|
||||||
Example:
|
|
||||||
1. Follow up question: What is a cat?
|
|
||||||
Rephrased: A cat
|
|
||||||
|
|
||||||
2. Follow up question: What is a car? How does it works?
|
|
||||||
Rephrased: Car working
|
|
||||||
|
|
||||||
3. Follow up question: How does an AC work?
|
|
||||||
Rephrased: AC working
|
|
||||||
|
|
||||||
Conversation:
|
|
||||||
{chat_history}
|
|
||||||
|
|
||||||
Follow up question: {query}
|
|
||||||
Rephrased question:
|
|
||||||
`;
|
`;
|
||||||
|
|
||||||
type ImageSearchChainInput = {
|
type ImageSearchChainInput = {
|
||||||
@@ -54,12 +40,39 @@ const createImageSearchChain = (llm: BaseChatModel) => {
|
|||||||
return input.query;
|
return input.query;
|
||||||
},
|
},
|
||||||
}),
|
}),
|
||||||
PromptTemplate.fromTemplate(imageSearchChainPrompt),
|
ChatPromptTemplate.fromMessages([
|
||||||
|
['system', imageSearchChainPrompt],
|
||||||
|
[
|
||||||
|
'user',
|
||||||
|
'<conversation>\n</conversation>\n<follow_up>\nWhat is a cat?\n</follow_up>',
|
||||||
|
],
|
||||||
|
['assistant', '<query>A cat</query>'],
|
||||||
|
|
||||||
|
[
|
||||||
|
'user',
|
||||||
|
'<conversation>\n</conversation>\n<follow_up>\nWhat is a car? How does it work?\n</follow_up>',
|
||||||
|
],
|
||||||
|
['assistant', '<query>Car working</query>'],
|
||||||
|
[
|
||||||
|
'user',
|
||||||
|
'<conversation>\n</conversation>\n<follow_up>\nHow does an AC work?\n</follow_up>',
|
||||||
|
],
|
||||||
|
['assistant', '<query>AC working</query>'],
|
||||||
|
[
|
||||||
|
'user',
|
||||||
|
'<conversation>{chat_history}</conversation>\n<follow_up>\n{query}\n</follow_up>',
|
||||||
|
],
|
||||||
|
]),
|
||||||
llm,
|
llm,
|
||||||
strParser,
|
strParser,
|
||||||
RunnableLambda.from(async (input: string) => {
|
RunnableLambda.from(async (input: string) => {
|
||||||
input = input.replace(/<think>.*?<\/think>/g, '');
|
const queryParser = new LineOutputParser({
|
||||||
|
key: 'query',
|
||||||
|
});
|
||||||
|
|
||||||
|
return await queryParser.parse(input);
|
||||||
|
}),
|
||||||
|
RunnableLambda.from(async (input: string) => {
|
||||||
const res = await searchSearxng(input, {
|
const res = await searchSearxng(input, {
|
||||||
engines: ['bing images', 'google images'],
|
engines: ['bing images', 'google images'],
|
||||||
});
|
});
|
||||||
|
@@ -3,32 +3,18 @@ import {
|
|||||||
RunnableMap,
|
RunnableMap,
|
||||||
RunnableLambda,
|
RunnableLambda,
|
||||||
} from '@langchain/core/runnables';
|
} from '@langchain/core/runnables';
|
||||||
import { PromptTemplate } from '@langchain/core/prompts';
|
import { ChatPromptTemplate } from '@langchain/core/prompts';
|
||||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||||
import { BaseMessage } from '@langchain/core/messages';
|
import { BaseMessage } from '@langchain/core/messages';
|
||||||
import { StringOutputParser } from '@langchain/core/output_parsers';
|
import { StringOutputParser } from '@langchain/core/output_parsers';
|
||||||
import { searchSearxng } from '../searxng';
|
import { searchSearxng } from '../searxng';
|
||||||
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||||
|
import LineOutputParser from '../outputParsers/lineOutputParser';
|
||||||
|
|
||||||
const VideoSearchChainPrompt = `
|
const videoSearchChainPrompt = `
|
||||||
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search Youtube for videos.
|
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search Youtube for videos.
|
||||||
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
|
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
|
||||||
|
Output only the rephrased query wrapped in an XML <query> element. Do not include any explanation or additional text.
|
||||||
Example:
|
|
||||||
1. Follow up question: How does a car work?
|
|
||||||
Rephrased: How does a car work?
|
|
||||||
|
|
||||||
2. Follow up question: What is the theory of relativity?
|
|
||||||
Rephrased: What is theory of relativity
|
|
||||||
|
|
||||||
3. Follow up question: How does an AC work?
|
|
||||||
Rephrased: How does an AC work
|
|
||||||
|
|
||||||
Conversation:
|
|
||||||
{chat_history}
|
|
||||||
|
|
||||||
Follow up question: {query}
|
|
||||||
Rephrased question:
|
|
||||||
`;
|
`;
|
||||||
|
|
||||||
type VideoSearchChainInput = {
|
type VideoSearchChainInput = {
|
||||||
@@ -55,12 +41,37 @@ const createVideoSearchChain = (llm: BaseChatModel) => {
|
|||||||
return input.query;
|
return input.query;
|
||||||
},
|
},
|
||||||
}),
|
}),
|
||||||
PromptTemplate.fromTemplate(VideoSearchChainPrompt),
|
ChatPromptTemplate.fromMessages([
|
||||||
|
['system', videoSearchChainPrompt],
|
||||||
|
[
|
||||||
|
'user',
|
||||||
|
'<conversation>\n</conversation>\n<follow_up>\nHow does a car work?\n</follow_up>',
|
||||||
|
],
|
||||||
|
['assistant', '<query>How does a car work?</query>'],
|
||||||
|
[
|
||||||
|
'user',
|
||||||
|
'<conversation>\n</conversation>\n<follow_up>\nWhat is the theory of relativity?\n</follow_up>',
|
||||||
|
],
|
||||||
|
['assistant', '<query>Theory of relativity</query>'],
|
||||||
|
[
|
||||||
|
'user',
|
||||||
|
'<conversation>\n</conversation>\n<follow_up>\nHow does an AC work?\n</follow_up>',
|
||||||
|
],
|
||||||
|
['assistant', '<query>AC working</query>'],
|
||||||
|
[
|
||||||
|
'user',
|
||||||
|
'<conversation>{chat_history}</conversation>\n<follow_up>\n{query}\n</follow_up>',
|
||||||
|
],
|
||||||
|
]),
|
||||||
llm,
|
llm,
|
||||||
strParser,
|
strParser,
|
||||||
RunnableLambda.from(async (input: string) => {
|
RunnableLambda.from(async (input: string) => {
|
||||||
input = input.replace(/<think>.*?<\/think>/g, '');
|
const queryParser = new LineOutputParser({
|
||||||
|
key: 'query',
|
||||||
|
});
|
||||||
|
return await queryParser.parse(input);
|
||||||
|
}),
|
||||||
|
RunnableLambda.from(async (input: string) => {
|
||||||
const res = await searchSearxng(input, {
|
const res = await searchSearxng(input, {
|
||||||
engines: ['youtube'],
|
engines: ['youtube'],
|
||||||
});
|
});
|
||||||
@@ -92,8 +103,8 @@ const handleVideoSearch = (
|
|||||||
input: VideoSearchChainInput,
|
input: VideoSearchChainInput,
|
||||||
llm: BaseChatModel,
|
llm: BaseChatModel,
|
||||||
) => {
|
) => {
|
||||||
const VideoSearchChain = createVideoSearchChain(llm);
|
const videoSearchChain = createVideoSearchChain(llm);
|
||||||
return VideoSearchChain.invoke(input);
|
return videoSearchChain.invoke(input);
|
||||||
};
|
};
|
||||||
|
|
||||||
export default handleVideoSearch;
|
export default handleVideoSearch;
|
||||||
|
@@ -1,41 +1,63 @@
|
|||||||
export const webSearchRetrieverPrompt = `
|
export const webSearchRetrieverPrompt = `
|
||||||
You are an AI question rephraser. You will be given a conversation and a follow-up question; rephrase it into a standalone question that another LLM can use to search the web.
|
You are an AI question rephraser. You will be given a conversation and a follow-up question, you will have to rephrase the follow up question so it is a standalone question and can be used by another LLM to search the web for information to answer it.
|
||||||
|
If it is a simple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
|
||||||
|
If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block.
|
||||||
|
You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response.
|
||||||
|
|
||||||
Return ONLY a JSON object that matches this schema:
|
There are several examples attached for your reference inside the below \`examples\` XML block
|
||||||
query: string // the standalone question (or "summarize")
|
|
||||||
links: string[] // URLs extracted from the user query (empty if none)
|
|
||||||
searchRequired: boolean // true if web search is needed, false for greetings/simple writing tasks
|
|
||||||
searchMode: "" | "normal" | "news" // "" when searchRequired is false; "news" if the user asks for news/articles, otherwise "normal"
|
|
||||||
|
|
||||||
Rules
|
<examples>
|
||||||
- Greetings / simple writing tasks → query:"", links:[], searchRequired:false, searchMode:""
|
1. Follow up question: What is the capital of France
|
||||||
- Summarizing a URL → query:"summarize", links:[url...], searchRequired:true, searchMode:"normal"
|
Rephrased question:\`
|
||||||
- Asking for news/articles → searchMode:"news"
|
<question>
|
||||||
|
Capital of france
|
||||||
Examples
|
</question>
|
||||||
1. Follow-up: What is the capital of France?
|
\`
|
||||||
"query":"capital of France","links":[],"searchRequired":true,"searchMode":"normal"
|
|
||||||
|
|
||||||
2. Hi, how are you?
|
2. Hi, how are you?
|
||||||
"query":"","links":[],"searchRequired":false,"searchMode":""
|
Rephrased question\`
|
||||||
|
<question>
|
||||||
|
not_needed
|
||||||
|
</question>
|
||||||
|
\`
|
||||||
|
|
||||||
3. Follow-up: What is Docker?
|
3. Follow up question: What is Docker?
|
||||||
"query":"what is Docker","links":[],"searchRequired":true,"searchMode":"normal"
|
Rephrased question: \`
|
||||||
|
<question>
|
||||||
|
What is Docker
|
||||||
|
</question>
|
||||||
|
\`
|
||||||
|
|
||||||
4. Follow-up: Can you tell me what is X from https://example.com?
|
4. Follow up question: Can you tell me what is X from https://example.com
|
||||||
"query":"what is X","links":["https://example.com"],"searchRequired":true,"searchMode":"normal"
|
Rephrased question: \`
|
||||||
|
<question>
|
||||||
|
Can you tell me what is X?
|
||||||
|
</question>
|
||||||
|
|
||||||
5. Follow-up: Summarize the content from https://example.com
|
<links>
|
||||||
"query":"summarize","links":["https://example.com"],"searchRequired":true,"searchMode":"normal"
|
https://example.com
|
||||||
|
</links>
|
||||||
|
\`
|
||||||
|
|
||||||
6. Follow-up: Latest news about AI
|
5. Follow up question: Summarize the content from https://example.com
|
||||||
"query":"latest news about AI","links":[],"searchRequired":true,"searchMode":"news"
|
Rephrased question: \`
|
||||||
|
<question>
|
||||||
|
summarize
|
||||||
|
</question>
|
||||||
|
|
||||||
|
<links>
|
||||||
|
https://example.com
|
||||||
|
</links>
|
||||||
|
\`
|
||||||
|
</examples>
|
||||||
|
|
||||||
|
Anything below is the part of the actual conversation and you need to use conversation and the follow-up question to rephrase the follow-up question as a standalone question based on the guidelines shared above.
|
||||||
|
|
||||||
<conversation>
|
<conversation>
|
||||||
{chat_history}
|
{chat_history}
|
||||||
</conversation>
|
</conversation>
|
||||||
|
|
||||||
Follow-up question: {query}
|
Follow up question: {query}
|
||||||
Rephrased question:
|
Rephrased question:
|
||||||
`;
|
`;
|
||||||
|
|
||||||
|
@@ -9,6 +9,18 @@ export const PROVIDER_INFO = {
|
|||||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||||
|
|
||||||
const anthropicChatModels: Record<string, string>[] = [
|
const anthropicChatModels: Record<string, string>[] = [
|
||||||
|
{
|
||||||
|
displayName: 'Claude 4.1 Opus',
|
||||||
|
key: 'claude-opus-4-1-20250805',
|
||||||
|
},
|
||||||
|
{
|
||||||
|
displayName: 'Claude 4 Opus',
|
||||||
|
key: 'claude-opus-4-20250514',
|
||||||
|
},
|
||||||
|
{
|
||||||
|
displayName: 'Claude 4 Sonnet',
|
||||||
|
key: 'claude-sonnet-4-20250514',
|
||||||
|
},
|
||||||
{
|
{
|
||||||
displayName: 'Claude 3.7 Sonnet',
|
displayName: 'Claude 3.7 Sonnet',
|
||||||
key: 'claude-3-7-sonnet-20250219',
|
key: 'claude-3-7-sonnet-20250219',
|
||||||
|
@@ -14,16 +14,16 @@ import { Embeddings } from '@langchain/core/embeddings';
|
|||||||
|
|
||||||
const geminiChatModels: Record<string, string>[] = [
|
const geminiChatModels: Record<string, string>[] = [
|
||||||
{
|
{
|
||||||
displayName: 'Gemini 2.5 Flash Preview 05-20',
|
displayName: 'Gemini 2.5 Flash',
|
||||||
key: 'gemini-2.5-flash-preview-05-20',
|
key: 'gemini-2.5-flash',
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
displayName: 'Gemini 2.5 Pro Preview',
|
displayName: 'Gemini 2.5 Flash-Lite',
|
||||||
key: 'gemini-2.5-pro-preview-05-06',
|
key: 'gemini-2.5-flash-lite',
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
displayName: 'Gemini 2.5 Pro Experimental',
|
displayName: 'Gemini 2.5 Pro',
|
||||||
key: 'gemini-2.5-pro-preview-05-06',
|
key: 'gemini-2.5-pro',
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
displayName: 'Gemini 2.0 Flash',
|
displayName: 'Gemini 2.0 Flash',
|
||||||
@@ -75,7 +75,7 @@ export const loadGeminiChatModels = async () => {
|
|||||||
displayName: model.displayName,
|
displayName: model.displayName,
|
||||||
model: new ChatGoogleGenerativeAI({
|
model: new ChatGoogleGenerativeAI({
|
||||||
apiKey: geminiApiKey,
|
apiKey: geminiApiKey,
|
||||||
modelName: model.key,
|
model: model.key,
|
||||||
temperature: 0.7,
|
temperature: 0.7,
|
||||||
}) as unknown as BaseChatModel,
|
}) as unknown as BaseChatModel,
|
||||||
};
|
};
|
||||||
@@ -108,7 +108,7 @@ export const loadGeminiEmbeddingModels = async () => {
|
|||||||
|
|
||||||
return embeddingModels;
|
return embeddingModels;
|
||||||
} catch (err) {
|
} catch (err) {
|
||||||
console.error(`Error loading OpenAI embeddings models: ${err}`);
|
console.error(`Error loading Gemini embeddings models: ${err}`);
|
||||||
return {};
|
return {};
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
@@ -1,4 +1,4 @@
|
|||||||
import { ChatOpenAI } from '@langchain/openai';
|
import { ChatGroq } from '@langchain/groq';
|
||||||
import { getGroqApiKey } from '../config';
|
import { getGroqApiKey } from '../config';
|
||||||
import { ChatModel } from '.';
|
import { ChatModel } from '.';
|
||||||
|
|
||||||
@@ -28,16 +28,10 @@ export const loadGroqChatModels = async () => {
|
|||||||
groqChatModels.forEach((model: any) => {
|
groqChatModels.forEach((model: any) => {
|
||||||
chatModels[model.id] = {
|
chatModels[model.id] = {
|
||||||
displayName: model.id,
|
displayName: model.id,
|
||||||
model: new ChatOpenAI({
|
model: new ChatGroq({
|
||||||
apiKey: groqApiKey,
|
apiKey: groqApiKey,
|
||||||
modelName: model.id,
|
model: model.id,
|
||||||
temperature: 0.7,
|
temperature: 0.7,
|
||||||
configuration: {
|
|
||||||
baseURL: 'https://api.groq.com/openai/v1',
|
|
||||||
},
|
|
||||||
metadata: {
|
|
||||||
'model-type': 'groq',
|
|
||||||
},
|
|
||||||
}) as unknown as BaseChatModel,
|
}) as unknown as BaseChatModel,
|
||||||
};
|
};
|
||||||
});
|
});
|
||||||
|
@@ -42,6 +42,18 @@ const openaiChatModels: Record<string, string>[] = [
|
|||||||
displayName: 'GPT 4.1',
|
displayName: 'GPT 4.1',
|
||||||
key: 'gpt-4.1',
|
key: 'gpt-4.1',
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
displayName: 'GPT 5 nano',
|
||||||
|
key: 'gpt-5-nano',
|
||||||
|
},
|
||||||
|
{
|
||||||
|
displayName: 'GPT 5 mini',
|
||||||
|
key: 'gpt-5-mini',
|
||||||
|
},
|
||||||
|
{
|
||||||
|
displayName: 'GPT 5',
|
||||||
|
key: 'gpt-5',
|
||||||
|
},
|
||||||
];
|
];
|
||||||
|
|
||||||
const openaiEmbeddingModels: Record<string, string>[] = [
|
const openaiEmbeddingModels: Record<string, string>[] = [
|
||||||
@@ -69,7 +81,7 @@ export const loadOpenAIChatModels = async () => {
|
|||||||
model: new ChatOpenAI({
|
model: new ChatOpenAI({
|
||||||
apiKey: openaiApiKey,
|
apiKey: openaiApiKey,
|
||||||
modelName: model.key,
|
modelName: model.key,
|
||||||
temperature: 0.7,
|
temperature: model.key.includes('gpt-5') ? 1 : 0.7,
|
||||||
}) as unknown as BaseChatModel,
|
}) as unknown as BaseChatModel,
|
||||||
};
|
};
|
||||||
});
|
});
|
||||||
|
@@ -24,7 +24,6 @@ import computeSimilarity from '../utils/computeSimilarity';
|
|||||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||||
import eventEmitter from 'events';
|
import eventEmitter from 'events';
|
||||||
import { StreamEvent } from '@langchain/core/tracers/log_stream';
|
import { StreamEvent } from '@langchain/core/tracers/log_stream';
|
||||||
import { z } from 'zod';
|
|
||||||
|
|
||||||
export interface MetaSearchAgentType {
|
export interface MetaSearchAgentType {
|
||||||
searchAndAnswer: (
|
searchAndAnswer: (
|
||||||
@@ -53,17 +52,6 @@ type BasicChainInput = {
|
|||||||
query: string;
|
query: string;
|
||||||
};
|
};
|
||||||
|
|
||||||
const retrieverLLMOutputSchema = z.object({
|
|
||||||
query: z.string().describe('The query to search the web for.'),
|
|
||||||
links: z
|
|
||||||
.array(z.string())
|
|
||||||
.describe('The links to search/summarize if present'),
|
|
||||||
searchRequired: z
|
|
||||||
.boolean()
|
|
||||||
.describe('Wether there is a need to search the web'),
|
|
||||||
searchMode: z.enum(['', 'normal', 'news']).describe('The search mode.'),
|
|
||||||
});
|
|
||||||
|
|
||||||
class MetaSearchAgent implements MetaSearchAgentType {
|
class MetaSearchAgent implements MetaSearchAgentType {
|
||||||
private config: Config;
|
private config: Config;
|
||||||
private strParser = new StringOutputParser();
|
private strParser = new StringOutputParser();
|
||||||
@@ -74,24 +62,26 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||||||
|
|
||||||
private async createSearchRetrieverChain(llm: BaseChatModel) {
|
private async createSearchRetrieverChain(llm: BaseChatModel) {
|
||||||
(llm as unknown as ChatOpenAI).temperature = 0;
|
(llm as unknown as ChatOpenAI).temperature = 0;
|
||||||
|
|
||||||
return RunnableSequence.from([
|
return RunnableSequence.from([
|
||||||
PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt),
|
PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt),
|
||||||
Object.assign(
|
|
||||||
Object.create(Object.getPrototypeOf(llm)),
|
|
||||||
llm,
|
llm,
|
||||||
).withStructuredOutput(retrieverLLMOutputSchema, {
|
this.strParser,
|
||||||
...(llm.metadata?.['model-type'] === 'groq'
|
RunnableLambda.from(async (input: string) => {
|
||||||
? {
|
const linksOutputParser = new LineListOutputParser({
|
||||||
method: 'json-object',
|
key: 'links',
|
||||||
}
|
});
|
||||||
: {}),
|
|
||||||
}),
|
|
||||||
RunnableLambda.from(
|
|
||||||
async (input: z.infer<typeof retrieverLLMOutputSchema>) => {
|
|
||||||
let question = input.query;
|
|
||||||
const links = input.links;
|
|
||||||
|
|
||||||
if (!input.searchRequired) {
|
const questionOutputParser = new LineOutputParser({
|
||||||
|
key: 'question',
|
||||||
|
});
|
||||||
|
|
||||||
|
const links = await linksOutputParser.parse(input);
|
||||||
|
let question = this.config.summarizer
|
||||||
|
? await questionOutputParser.parse(input)
|
||||||
|
: input;
|
||||||
|
|
||||||
|
if (question === 'not_needed') {
|
||||||
return { query: '', docs: [] };
|
return { query: '', docs: [] };
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -217,10 +207,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||||||
|
|
||||||
const res = await searchSearxng(question, {
|
const res = await searchSearxng(question, {
|
||||||
language: 'en',
|
language: 'en',
|
||||||
engines:
|
engines: this.config.activeEngines,
|
||||||
input.searchMode === 'normal'
|
|
||||||
? this.config.activeEngines
|
|
||||||
: ['bing news'],
|
|
||||||
});
|
});
|
||||||
|
|
||||||
const documents = res.results.map(
|
const documents = res.results.map(
|
||||||
@@ -241,8 +228,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||||||
|
|
||||||
return { query: question, docs: documents };
|
return { query: question, docs: documents };
|
||||||
}
|
}
|
||||||
},
|
}),
|
||||||
),
|
|
||||||
]);
|
]);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@@ -1,8 +1,11 @@
|
|||||||
import { BaseMessage } from '@langchain/core/messages';
|
import { BaseMessage, isAIMessage } from '@langchain/core/messages';
|
||||||
|
|
||||||
const formatChatHistoryAsString = (history: BaseMessage[]) => {
|
const formatChatHistoryAsString = (history: BaseMessage[]) => {
|
||||||
return history
|
return history
|
||||||
.map((message) => `${message._getType()}: ${message.content}`)
|
.map(
|
||||||
|
(message) =>
|
||||||
|
`${isAIMessage(message) ? 'AI' : 'User'}: ${message.content}`,
|
||||||
|
)
|
||||||
.join('\n');
|
.join('\n');
|
||||||
};
|
};
|
||||||
|
|
||||||
|
21
yarn.lock
21
yarn.lock
@@ -653,6 +653,14 @@
|
|||||||
"@google/generative-ai" "^0.24.0"
|
"@google/generative-ai" "^0.24.0"
|
||||||
uuid "^11.1.0"
|
uuid "^11.1.0"
|
||||||
|
|
||||||
|
"@langchain/groq@^0.2.3":
|
||||||
|
version "0.2.3"
|
||||||
|
resolved "https://registry.yarnpkg.com/@langchain/groq/-/groq-0.2.3.tgz#3bfcbfc827cf469df3a1b5bb9799f4b0212b4625"
|
||||||
|
integrity sha512-r+yjysG36a0IZxTlCMr655Feumfb4IrOyA0jLLq4l7gEhVyMpYXMwyE6evseyU2LRP+7qOPbGRVpGqAIK0MsUA==
|
||||||
|
dependencies:
|
||||||
|
groq-sdk "^0.19.0"
|
||||||
|
zod "^3.22.4"
|
||||||
|
|
||||||
"@langchain/ollama@^0.2.3":
|
"@langchain/ollama@^0.2.3":
|
||||||
version "0.2.3"
|
version "0.2.3"
|
||||||
resolved "https://registry.yarnpkg.com/@langchain/ollama/-/ollama-0.2.3.tgz#4868e66db4fc480f08c42fc652274abbab0416f0"
|
resolved "https://registry.yarnpkg.com/@langchain/ollama/-/ollama-0.2.3.tgz#4868e66db4fc480f08c42fc652274abbab0416f0"
|
||||||
@@ -2732,6 +2740,19 @@ graphql@^16.11.0:
|
|||||||
resolved "https://registry.yarnpkg.com/graphql/-/graphql-16.11.0.tgz#96d17f66370678027fdf59b2d4c20b4efaa8a633"
|
resolved "https://registry.yarnpkg.com/graphql/-/graphql-16.11.0.tgz#96d17f66370678027fdf59b2d4c20b4efaa8a633"
|
||||||
integrity sha512-mS1lbMsxgQj6hge1XZ6p7GPhbrtFwUFYi3wRzXAC/FmYnyXMTvvI3td3rjmQ2u8ewXueaSvRPWaEcgVVOT9Jnw==
|
integrity sha512-mS1lbMsxgQj6hge1XZ6p7GPhbrtFwUFYi3wRzXAC/FmYnyXMTvvI3td3rjmQ2u8ewXueaSvRPWaEcgVVOT9Jnw==
|
||||||
|
|
||||||
|
groq-sdk@^0.19.0:
|
||||||
|
version "0.19.0"
|
||||||
|
resolved "https://registry.yarnpkg.com/groq-sdk/-/groq-sdk-0.19.0.tgz#564ce018172dc3e2e2793398e0227a035a357d09"
|
||||||
|
integrity sha512-vdh5h7ORvwvOvutA80dKF81b0gPWHxu6K/GOJBOM0n6p6CSqAVLhFfeS79Ef0j/yCycDR09jqY7jkYz9dLiS6w==
|
||||||
|
dependencies:
|
||||||
|
"@types/node" "^18.11.18"
|
||||||
|
"@types/node-fetch" "^2.6.4"
|
||||||
|
abort-controller "^3.0.0"
|
||||||
|
agentkeepalive "^4.2.1"
|
||||||
|
form-data-encoder "1.7.2"
|
||||||
|
formdata-node "^4.3.2"
|
||||||
|
node-fetch "^2.6.7"
|
||||||
|
|
||||||
guid-typescript@^1.0.9:
|
guid-typescript@^1.0.9:
|
||||||
version "1.0.9"
|
version "1.0.9"
|
||||||
resolved "https://registry.yarnpkg.com/guid-typescript/-/guid-typescript-1.0.9.tgz#e35f77003535b0297ea08548f5ace6adb1480ddc"
|
resolved "https://registry.yarnpkg.com/guid-typescript/-/guid-typescript-1.0.9.tgz#e35f77003535b0297ea08548f5ace6adb1480ddc"
|
||||||
|
Reference in New Issue
Block a user