Compare commits

...

213 Commits

Author SHA1 Message Date
ItzCrazyKns
639fbd7a15 feat(chat-window): lint & beautify 2024-08-02 19:37:20 +05:30
ItzCrazyKns
a88104434d feat(copilot): respect preferences 2024-08-02 19:36:50 +05:30
ItzCrazyKns
a1e0d368c6 feat(settings): add preferences 2024-08-02 19:36:39 +05:30
ItzCrazyKns
5779701b7d feat(sidebar): respect preferences 2024-08-02 19:35:57 +05:30
ItzCrazyKns
fdfe8d1f41 feat(app): add password auth for settings 2024-08-02 19:32:38 +05:30
ItzCrazyKns
c4932c659a feat(app): lint 2024-07-31 20:17:57 +05:30
ItzCrazyKns
96f67c7028 Merge pull request #290 from ItzCrazyKns/canary 2024-07-30 10:15:52 +05:30
ItzCrazyKns
61dfeb89b4 feat(package): bump version 2024-07-30 10:10:55 +05:30
ItzCrazyKns
8e4f0c6a6d feat(web-search): add URL & PDF searching capibilities 2024-07-30 10:09:05 +05:30
ItzCrazyKns
6f50e25bf3 feat(output-parsers): add line output parser 2024-07-30 10:08:29 +05:30
ItzCrazyKns
9abb4b654d feat(app): handle unhandled exception & rejection 2024-07-30 10:07:28 +05:30
ItzCrazyKns
0a29237732 feat(listLineOutputParser): handle invalid keys 2024-07-30 10:06:52 +05:30
ItzCrazyKns
c62e7f091e feat(package): bump version 2024-07-25 20:39:43 +05:30
ItzCrazyKns
08379fcad5 feat(ws-connector): fix undefined chat model 2024-07-25 20:36:26 +05:30
ItzCrazyKns
cbce39a5dd feat(settings): fix undefined model for custom OpenAI 2024-07-25 20:34:49 +05:30
ItzCrazyKns
27f8cfd212 feat(toast): fix theme colors 2024-07-25 20:33:56 +05:30
ItzCrazyKns
8a76f92e23 feat(groq): add Llama 3.1 2024-07-23 20:49:17 +05:30
ItzCrazyKns
00a52fc3b1 Delete .github/FUNDING.yml 2024-07-23 10:46:32 +05:30
ItzCrazyKns
8143eca2c1 feat(readme): remove patreon 2024-07-23 10:45:52 +05:30
ItzCrazyKns
9bb0b64044 Merge pull request #279 from zandko/perf/filter-first
perf: Optimize document filtering and sorting for performance
2024-07-23 10:08:54 +05:30
Zan
323f3c516c perf: Optimize document filtering and sorting for performance 2024-07-23 10:06:33 +08:00
ItzCrazyKns
c0b3a409dd feat(package): bump version 2024-07-20 09:27:34 +05:30
ItzCrazyKns
9195cbcce0 feat(openai): add GPT-4 Omni mini 2024-07-20 09:26:46 +05:30
ItzCrazyKns
f02393dbe9 feat(providers): add anthropic 2024-07-15 21:20:16 +05:30
ItzCrazyKns
e1732b9bf2 feat(chat-window): fix WS connection errors 2024-07-14 12:37:36 +05:30
sjiampojamarn
fac41d3812 add gemma2-9b-it 2024-07-13 20:20:23 -07:00
ItzCrazyKns
27e6f5b9e1 feat(chat-window): unselect unavailable model 2024-07-09 16:21:45 +05:30
ItzCrazyKns
8539ce82ad feat(providers): fix loading issues 2024-07-08 15:39:27 +05:30
ItzCrazyKns
3b4b8a8b02 feat(providers): add custom_openai 2024-07-08 15:24:45 +05:30
ItzCrazyKns
3ffb20b777 feat(backend): fix type errors 2024-07-08 01:31:11 +05:30
ItzCrazyKns
f4b58c7157 feat(dockerfile): revert base image back to slim 2024-07-06 15:13:05 +05:30
ItzCrazyKns
2678c36e44 feat(agents): fix grammar in prompt, closes 239 & 203 2024-07-06 15:12:51 +05:30
ItzCrazyKns
25b5dbd63e feat(providers): separate each provider 2024-07-06 14:19:33 +05:30
ItzCrazyKns
c63c9b5c8a feat(readme): update ollama guide 2024-07-03 21:02:21 +05:30
ItzCrazyKns
80818983d8 feat(package): bump version 2024-07-03 20:49:13 +05:30
ItzCrazyKns
5217d21366 feat(dockerfile): revert to node:slim 2024-07-03 20:47:31 +05:30
ItzCrazyKns
57ede99b83 Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2024-07-02 10:52:02 +05:30
ItzCrazyKns
c74e16e01c feat(chats): add delete functionality 2024-07-02 10:51:47 +05:30
ItzCrazyKns
ce593daab9 Update README.md 2024-06-30 12:39:37 +05:30
ItzCrazyKns
fcf9b644af Create FUNDING.yml 2024-06-30 12:34:32 +05:30
ItzCrazyKns
6ae825999a feat(readme): update manual install 2024-06-30 10:45:35 +05:30
ItzCrazyKns
b291265944 feat(package): add @langchain/community 2024-06-30 10:42:01 +05:30
ItzCrazyKns
c62684407d feat(chat-window): handle notFound errors 2024-06-29 12:11:34 +05:30
ItzCrazyKns
f4b01a29bb feat(docs): update docs 2024-06-29 11:39:23 +05:30
ItzCrazyKns
022cf55db7 feat(docs): add update docs 2024-06-29 11:38:43 +05:30
ItzCrazyKns
aeef03fbaf feat(readme): update todo 2024-06-29 11:17:43 +05:30
ItzCrazyKns
9588eed710 feat(package): bump version 2024-06-29 11:17:29 +05:30
ItzCrazyKns
7d2344dc85 feat(chats): remove comment 2024-06-29 11:11:10 +05:30
ItzCrazyKns
799f4d6aee feat(docker-compose): implement data volume 2024-06-29 11:10:26 +05:30
ItzCrazyKns
c51ec8ff0f feat(app): implement library feature 2024-06-29 11:09:51 +05:30
ItzCrazyKns
61044715e9 feat(msg-handler): update message types 2024-06-29 11:09:31 +05:30
ItzCrazyKns
d806c7e581 feat(app): add chats route 2024-06-29 11:09:13 +05:30
ItzCrazyKns
93b90dc1c4 feat(db): create schema & config files 2024-06-29 11:08:11 +05:30
ItzCrazyKns
7879167b13 feat(package): add better-sqlite3 2024-06-29 11:07:52 +05:30
ItzCrazyKns
f7d1364f30 feat(discover): remove unadded page 2024-06-28 09:34:40 +05:30
ItzCrazyKns
91bba8eaca feat(utils): accept string in time difference 2024-06-28 09:34:03 +05:30
ItzCrazyKns
4545ff1d7d feat(chat-window): adjust color & size 2024-06-25 16:11:39 +05:30
asifrahaman13
a152e58132 🎉 wip: implemented error state for backend socket connection and othe 2024-06-25 15:43:36 +05:30
ItzCrazyKns
9d827d4cc2 feat(package): update WS module 2024-06-24 21:34:14 +05:30
ItzCrazyKns
336ceefe2b feat(readme): update connection error docs 2024-06-23 14:36:15 +05:30
ItzCrazyKns
9a96fd4788 feat(message-input): focus on / key 2024-06-23 10:46:22 +05:30
ItzCrazyKns
87cc86d406 feat(package): bump version 2024-06-23 09:55:25 +05:30
ItzCrazyKns
5fd64ef6e6 Merge pull request #168 from WanQuanXie/fix-ui-compile-type-error
fix(ui): ui compile fail
2024-06-23 09:42:07 +05:30
WanQuanXie
594106aea3 update(ui): remove useless imports 2024-06-07 16:39:14 +08:00
WanQuanXie
2ae5846b3d fix(ui): ui compile fail
remove both of them, a new feature is coming soon -  mobile device support setting navbar
2024-06-03 18:54:12 +08:00
ItzCrazyKns
476303f52b feat(package): bump version 2024-06-02 14:20:23 +05:30
ItzCrazyKns
21b315d14b Merge pull request #135 from WanQuanXie/light-mode
Adapt light mode
2024-06-02 12:23:10 +05:30
ItzCrazyKns
7c676479d4 feat(theme-switcher): move to settings menu 2024-06-02 12:19:53 +05:30
ItzCrazyKns
8e18c32e23 Merge branch 'pr/137' 2024-06-01 10:52:34 +05:30
ItzCrazyKns
5f6e61d7a0 feat(docker-compose): remove extra hosts from frontend 2024-06-01 10:51:56 +05:30
ItzCrazyKns
32cc430b1b feat(chat-window): use light theme for spinner 2024-05-31 11:08:32 +05:30
ItzCrazyKns
cf0abbb9d2 feat(message-actions): move to separate components 2024-05-31 11:02:37 +05:30
ItzCrazyKns
dcbcab3122 feat(theme-components): use default exports 2024-05-31 11:02:00 +05:30
ItzCrazyKns
90f9edea95 feat(components): use arrow function 2024-05-30 21:38:37 +05:30
ItzCrazyKns
6fb0c5b362 Merge pull request #153 from aiyogg/master
feat(docker-compose): update docker-compose.yaml with restart policy
2024-05-30 16:02:09 +05:30
Chuck
f4628ae52d feat(docker-compose): update docker-compose.yaml with restart policy 2024-05-30 18:12:22 +08:00
WanQuanXie
9e7e1d76a2 update(ui): correct SearchVideo and SearchImages plus action button hover background color 2024-05-29 14:44:25 +08:00
WanQuanXie
9a36e48de5 fix(ui): correct the dom elements' position 2024-05-29 14:31:42 +08:00
WanQuanXie
cfab91ddbf update(ui): restore both message input field dark mode background color 2024-05-29 12:22:29 +08:00
WanQuanXie
2d9ca3835e update(SettingDialog): restore SettingDialog form input and select field dark mode background color 2024-05-29 12:10:24 +08:00
WanQuanXie
f061345c74 fix(MessageBox): multi line related item text will turn the plus icon small 2024-05-28 12:48:08 +08:00
WanQuanXie
5fe08b5ec8 update(MessageBox): parsed markdown message render style fix 2024-05-28 12:45:19 +08:00
WanQuanXie
6a2f4b8ebf update(EmptyChat): EmptyChat theme switcher hide on lg screen 2024-05-28 11:29:04 +08:00
WanQuanXie
4eadc0c797 feat(EmptyChat): EmptyChat page add theme switcher 2024-05-28 11:25:31 +08:00
WanQuanXie
743b67d0e9 update(MessageSources): tune the source panel and inner block background color and border color 2024-05-28 11:11:45 +08:00
WanQuanXie
c8a16a622e update(ui): remove light-300 color level 2024-05-28 10:55:52 +08:00
WanQuanXie
cae05bcf5e update(ui): input action panel background adapt to light mode 2024-05-28 10:50:54 +08:00
WanQuanXie
710b72d053 feat(ui): theme switcher show in responsive mode 2024-05-28 10:48:58 +08:00
WanQuanXie
af9862c019 update(ui): sidebar in mobile screen adapt light mode 2024-05-28 10:26:24 +08:00
WanQuanXie
984b80b5ec fix(ui): restore some hover style in dark mode 2024-05-28 10:15:42 +08:00
WanQuanXie
cb65f67140 update(MessageInput): weaken button border color and background color in light mode 2024-05-28 08:03:49 +08:00
WanQuanXie
62c7f535db update(MessageSources): source block's mark point adapt light mode
which is before the number in bottom-right corner
2024-05-28 07:57:59 +08:00
WanQuanXie
943458440c update(MessageSources): weaken sources Dialog panel and inner block border color 2024-05-28 07:50:35 +08:00
WanQuanXie
d28cfa3319 fix(MessageBox): <code/> type message text-color adapt light mode 2024-05-28 07:47:45 +08:00
WanQuanXie
b37a6e1560 fix(MessageInputActions): focus mode action hover style align before 2024-05-28 07:36:20 +08:00
WanQuanXie
0a2934935e update(ui): change light mode color 2024-05-28 07:30:28 +08:00
WanQuanXie
a5978d544c update(ui): re-manage theme config 2024-05-27 11:49:09 +08:00
WanQuanXie
d46a844df8 update(ui): realign dark mode style with before 2024-05-27 10:42:40 +08:00
WanQuanXie
c97a434723 fix(ui): hover style class uses 2024-05-25 07:26:51 +08:00
Devin Stokes
382fa295e5 fix: add extra_hosts to docker-compose.yaml to allow connection to ollama 2024-05-24 08:19:15 -07:00
WanQuanXie
90f68ab214 update(SearchVideos): video cover label style adapt light mode 2024-05-24 22:41:06 +08:00
WanQuanXie
89c30530bc update(Navbar): update Navbar light mode background 2024-05-24 22:08:47 +08:00
WanQuanXie
776d389c1e refactor(SettingDialog): extract reduplicate code to common component
DO NOT REPEAT YOURSELF!
2024-05-24 21:58:14 +08:00
WanQuanXie
996cc1b674 feat: adaptive light mode 2024-05-24 21:18:10 +08:00
WanQuanXie
f9664d48e7 feat: setup theme context config 2024-05-24 18:20:15 +08:00
WanQuanXie
79cfd0a722 chore(ui): add next-themes 2024-05-24 17:32:14 +08:00
ItzCrazyKns
d04ba91c85 feat(routes): use coalescing operator 2024-05-22 10:45:16 +05:30
ItzCrazyKns
7853c18b6f feat(docs): update port 2024-05-19 11:35:28 +05:30
ItzCrazyKns
64ea4b4289 feat(package): bump version 2024-05-18 13:11:24 +05:30
ItzCrazyKns
c61facef13 feat(message-box): display suggestions 2024-05-18 13:11:15 +05:30
ItzCrazyKns
fcff93a594 feat(message-actions): update rewrite button 2024-05-18 13:10:54 +05:30
ItzCrazyKns
3bfaf9be28 feat(app): add suggestion generation 2024-05-18 13:10:39 +05:30
ItzCrazyKns
68b595023e feat(suggestion-generator): update prompt 2024-05-18 13:10:09 +05:30
ItzCrazyKns
180e204c2d feat(providers): add GPT-4 omni 2024-05-14 19:33:54 +05:30
ItzCrazyKns
0e2f4514b4 feat(readme): update readme 2024-05-13 20:10:44 +05:30
ItzCrazyKns
0993c5a760 feat(app): revert port & network changes 2024-05-13 19:58:17 +05:30
ItzCrazyKns
100872f2d9 feat(docker-compose): revert network changes 2024-05-12 14:04:05 +05:30
ItzCrazyKns
22aee27cda feat(env): remove port 2024-05-12 12:48:01 +05:30
ItzCrazyKns
9d30224faa feat(readme): update readme 2024-05-12 12:24:36 +05:30
ItzCrazyKns
b622df5a9f feat(docker-compose): update ports, change network type 2024-05-12 12:16:08 +05:30
ItzCrazyKns
1b18715f8f feat(docs): update PORT 2024-05-12 12:15:53 +05:30
ItzCrazyKns
9816eb1d36 feat(server): add bind address 2024-05-12 12:15:25 +05:30
ItzCrazyKns
828eeb0c77 feat(app-dockerfile): add PORT arg 2024-05-12 12:14:52 +05:30
ItzCrazyKns
c852bee8ed feat(app): add suspense boundary 2024-05-11 21:19:38 +05:30
ItzCrazyKns
954b4bf89a feat(readme): add search engine guide 2024-05-11 12:14:49 +05:30
ItzCrazyKns
3ef39c69a7 feat(chat-window): add ability to use q query param 2024-05-11 12:09:39 +05:30
ItzCrazyKns
7a28be9e1a feat(readme): add installation docs 2024-05-11 12:09:08 +05:30
ItzCrazyKns
a60145137c feat(docs): add networking 2024-05-11 10:23:05 +05:30
ItzCrazyKns
7eace1e6bd feat(searxng-container): bind mount & add limiter 2024-05-10 20:55:08 +05:30
Chuck
baef45b456 Merge branch 'ItzCrazyKns:master' into master 2024-05-10 12:00:18 +08:00
ItzCrazyKns
9a7af945b0 lint 2024-05-09 20:43:04 +05:30
ItzCrazyKns
09463999c2 feat(routes): add suggestions route 2024-05-09 20:42:03 +05:30
ItzCrazyKns
0f6986fc9b feat(agents): add suggestion generator agent 2024-05-09 20:41:43 +05:30
ItzCrazyKns
5e940914a3 feat(output-parsers): add list line output parser 2024-05-09 20:39:38 +05:30
Chuck
ac4cba32c8 fix(SettingsDialog): baseURL storage key 2024-05-09 15:53:57 +08:00
ItzCrazyKns
4f5f6be85f feat(working): fix grammatical mistake 2024-05-08 20:05:29 +05:30
ItzCrazyKns
17fbc28172 Merge pull request #86 from WanQuanXie/list-map-key-fix
fix(Chat): list map element must specify a unique key
2024-05-08 12:56:00 +05:30
ItzCrazyKns
655fbec583 Merge pull request #87 from ItzCrazyKns/develop/1.4.0
Develop/1.4.0
2024-05-08 09:51:10 +05:30
WanQuanXie
0af66f8b72 fix(Chat): list map element must specify a unique key 2024-05-08 09:57:11 +08:00
ItzCrazyKns
8f9c709648 Merge branch 'develop/1.4.0' of https://github.com/ItzCrazyKns/Perplexica into develop/1.4.0 2024-05-07 19:40:36 +05:30
ItzCrazyKns
2a1d6e261d feat(backend-dockerfile): use Debian based image 2024-05-07 19:40:33 +05:30
ItzCrazyKns
74d1df7d25 feat(package): bump version 2024-05-07 19:40:14 +05:30
ItzCrazyKns
e042ff491b feat(compose): remove expose directive 2024-05-07 19:39:59 +05:30
ItzCrazyKns
fc1bfb3888 Merge pull request #83 from ItzCrazyKns/master
Merge `master` into `develop/14.0`
2024-05-07 18:46:24 +05:30
ItzCrazyKns
d9ba36794a feat(readme): add donations 2024-05-07 13:03:06 +05:30
ItzCrazyKns
321e60b993 feat(embedding-providers): load separately, add bert & bge 2024-05-07 12:33:44 +05:30
ItzCrazyKns
68837e06ee feat(embedding-providers): add local models 2024-05-07 11:52:53 +05:30
WanQuanXie
01fc683d32 fix(SettingDialog): use value instead of selected props in <select>
avoid the browser console warning in devServer mode
2024-05-07 06:35:39 +08:00
ItzCrazyKns
f88f179920 feat(package): bump version 2024-05-06 20:01:57 +05:30
ItzCrazyKns
4cb0aeeee3 feat(settings): conditionally pick selected models 2024-05-06 20:00:56 +05:30
ItzCrazyKns
e8fe74ae7c feat(ws-managers): implement better error handling 2024-05-06 19:59:13 +05:30
ItzCrazyKns
ed47191d9b feat(readme): update readme 2024-05-06 13:00:07 +05:30
ItzCrazyKns
b4d787d333 feat(readme): add troubleshooting 2024-05-06 12:58:40 +05:30
ItzCrazyKns
38b1995677 feat(package): bump version 2024-05-06 12:36:13 +05:30
ItzCrazyKns
f28257b480 feat(settings): fetch localStorage at state change 2024-05-06 12:34:59 +05:30
ItzCrazyKns
9b088cd161 feat(package): bump version 2024-05-05 16:35:06 +05:30
ItzCrazyKns
94ea6c372a feat(chat-window): clear storage after error 2024-05-05 16:29:40 +05:30
ItzCrazyKns
6e61c88c9e feat(error-object): add key 2024-05-05 16:28:46 +05:30
ItzCrazyKns
ba7b92ffde feat(providers): add Content-Type header 2024-05-05 10:53:27 +05:30
ItzCrazyKns
f8fd2a6fb0 feat(package): bump version 2024-05-04 15:04:43 +05:30
ItzCrazyKns
0440a810f5 feat(http-headers): add Content-Type 2024-05-04 15:01:53 +05:30
ItzCrazyKns
e3fef3a1be feat(chat-window): add error handling 2024-05-04 14:56:54 +05:30
ItzCrazyKns
4bf69dfdda feat(package): bump version 2024-05-04 10:59:32 +05:30
ItzCrazyKns
9f45ecb98d feat(providers): separate embedding providers, add custom-openai provider 2024-05-04 10:51:06 +05:30
ItzCrazyKns
c710f4f88c feat(message-box): fix bugs 2024-05-04 10:48:42 +05:30
ItzCrazyKns
79f6a52b5b feat(ui-packages): add react-text-to-speech, bump version 2024-05-03 21:16:48 +05:30
ItzCrazyKns
c87c2b27a9 feat(message-actions): add speak message, bump version 2024-05-03 18:25:22 +05:30
ItzCrazyKns
dafc835774 feat(docs): update URLs 2024-05-03 16:34:32 +05:30
ItzCrazyKns
205373d676 feat(docs): add architecture docs 2024-05-03 16:31:58 +05:30
ItzCrazyKns
408abd24ea feat(readme): add one click deployment buttons 2024-05-02 15:05:21 +05:30
ItzCrazyKns
1d344266aa feat(config): fix typo 2024-05-02 15:04:33 +05:30
ItzCrazyKns
1bcff03cfc chore(package): add nodemon, closes #39 2024-05-02 12:24:09 +05:30
ItzCrazyKns
f618b713af feat(chatModels): load model from localstorage 2024-05-02 12:14:26 +05:30
ItzCrazyKns
ed9ff3c20f feat(providers): use correct model name 2024-05-02 12:09:25 +05:30
ItzCrazyKns
f21f5c9611 feat(readme): correct spellings, closes #32 2024-05-01 20:12:58 +05:30
ItzCrazyKns
edc40d8fe6 feat(providers): add Groq provider 2024-05-01 19:43:06 +05:30
ItzCrazyKns
6e304e7051 feat(video-search): add video search 2024-04-30 14:31:32 +05:30
ItzCrazyKns
bb9a2f538d feat(image-search): fix bugs 2024-04-30 14:26:17 +05:30
ItzCrazyKns
ee053cf31e feat(search-image): add button animations 2024-04-30 12:39:04 +05:30
ItzCrazyKns
aae85cd767 feat(logging): add logger 2024-04-30 12:18:18 +05:30
ItzCrazyKns
7c84025f3c feat(readme): add manual installation steps 2024-04-29 21:22:33 +05:30
ItzCrazyKns
ab6cda690f Merge pull request #23 from Swiftyos/add-gpt-4-turbo
feat(providers): add gpt-4-turbo provider
2024-04-29 15:27:33 +05:30
SwiftyOS
639129848a feat(providers): add gpt-4-turbo provider 2024-04-29 10:49:15 +02:00
ItzCrazyKns
9b5548e9f8 feat(sample-settings): update Ollama URL placeholder 2024-04-28 19:52:31 +05:30
ItzCrazyKns
c053af534c feat(readme): make installation steps more concise 2024-04-28 19:49:48 +05:30
ItzCrazyKns
f2c51420da feat(searxng-settings): drop unsupported engines 2024-04-28 19:14:02 +05:30
ItzCrazyKns
a90e294c60 feat(agents): fix engine names 2024-04-28 18:34:56 +05:30
ItzCrazyKns
66c5fcb4fa feat(navbar): use correct padding 2024-04-28 18:21:59 +05:30
ItzCrazyKns
5df3c5ad8c feat(image-search): handle chat history 2024-04-28 11:15:28 +05:30
ItzCrazyKns
f14050840b feat(readme): add link to discord server 2024-04-25 20:22:53 +05:30
ItzCrazyKns
99ae8f6998 feat(agents): embed docs & query together
Embed documents and query together to reduce the time taken for retrieving the sources ~1 seconds.
2024-04-24 10:08:40 +05:30
ItzCrazyKns
3b66808e7d feat(message-input): prevent message when loading 2024-04-24 10:06:56 +05:30
ItzCrazyKns
571cdc1b4e feat(settings-dialog): remove excess padding 2024-04-23 17:54:08 +05:30
ItzCrazyKns
7f8c73782c feat(settings-dialog): remove overflow 2024-04-23 17:53:47 +05:30
ItzCrazyKns
8758fcbc13 feat(readme): update content 2024-04-23 17:15:07 +05:30
ItzCrazyKns
6fe70a70ff feat(settings-dialog): enhance UI 2024-04-23 17:06:44 +05:30
ItzCrazyKns
7653eaf146 feat(config): avoid updating blank fields 2024-04-23 16:54:39 +05:30
ItzCrazyKns
b2b1d724ee feat(ui): add settings page 2024-04-23 16:52:41 +05:30
ItzCrazyKns
3ffbddd237 feat(routes): add config route 2024-04-23 16:46:14 +05:30
ItzCrazyKns
a86378e726 feat(config): add updateConfig method 2024-04-23 16:45:14 +05:30
ItzCrazyKns
fd65af53c3 feat(providers): add error handling 2024-04-21 20:52:47 +05:30
ItzCrazyKns
ec91289c0c feat(messageSources): use arrow functions 2024-04-21 16:22:27 +05:30
ItzCrazyKns
0ea2bec85d feat(config): Remove preassigned values 2024-04-20 22:12:49 +05:30
ItzCrazyKns
5924690df2 feat(image-search): Use LLM from config 2024-04-20 22:12:07 +05:30
ItzCrazyKns
23b7feee0c feat(input-actions): fix popover mobile view 2024-04-20 20:46:16 +05:30
ItzCrazyKns
95461154d0 feat(sample-config): change ULR to URL 2024-04-20 18:26:54 +05:30
ItzCrazyKns
e964ffcea5 feat(readme): remove excess space 2024-04-20 11:22:39 +05:30
ItzCrazyKns
d37a1a8020 feat(agents): support local LLMs 2024-04-20 11:18:52 +05:30
ItzCrazyKns
28a7175afc feat(chat): Add loading for ws 2024-04-20 10:23:56 +05:30
ItzCrazyKns
c6a5790d33 feat(config): Use toml instead of env 2024-04-20 09:32:19 +05:30
ItzCrazyKns
dd1ce4e324 feat(agents): replace LLMs with chat LLMs 2024-04-18 18:15:17 +05:30
ItzCrazyKns
f9ab543bcf feat(navbar): Fix alignment 2024-04-18 17:47:51 +05:30
ItzCrazyKns
88304d29c1 feat(readme): use detached mode for docker compose 2024-04-17 21:00:43 +05:30
94 changed files with 6383 additions and 1068 deletions

View File

@@ -1,5 +0,0 @@
PORT=3001
OPENAI_API_KEY=
SIMILARITY_MEASURE=cosine # cosine or dot
SEARXNG_API_URL= # no need to fill this if using docker
MODEL_NAME=gpt-3.5-turbo

View File

@@ -4,7 +4,6 @@ about: Create an issue to help us fix bugs
title: ''
labels: bug
assignees: ''
---
**Describe the bug**
@@ -12,6 +11,7 @@ A clear and concise description of what the bug is.
**To Reproduce**
Steps to reproduce the behavior:
1. Go to '...'
2. Click on '....'
3. Scroll down to '....'

View File

@@ -4,7 +4,4 @@ about: Describe this issue template's purpose here.
title: ''
labels: ''
assignees: ''
---

View File

@@ -4,7 +4,6 @@ about: Suggest an idea for this project
title: ''
labels: enhancement
assignees: ''
---
**Is your feature request related to a problem? Please describe.**

9
.gitignore vendored
View File

@@ -6,6 +6,7 @@ yarn-error.log
# Build output
/.next/
/out/
/dist/
# IDE/Editor specific
.vscode/
@@ -19,6 +20,9 @@ yarn-error.log
.env.test.local
.env.production.local
# Config files
config.toml
# Log files
logs/
*.log
@@ -28,4 +32,7 @@ logs/
# Miscellaneous
.DS_Store
Thumbs.db
Thumbs.db
# Db
db.sqlite

38
.prettierignore Normal file
View File

@@ -0,0 +1,38 @@
# Ignore all files in the node_modules directory
node_modules
# Ignore all files in the .next directory (Next.js build output)
.next
# Ignore all files in the .out directory (TypeScript build output)
.out
# Ignore all files in the .cache directory (Prettier cache)
.cache
# Ignore all files in the .vscode directory (Visual Studio Code settings)
.vscode
# Ignore all files in the .idea directory (IntelliJ IDEA settings)
.idea
# Ignore all files in the dist directory (build output)
dist
# Ignore all files in the build directory (build output)
build
# Ignore all files in the coverage directory (test coverage reports)
coverage
# Ignore all files with the .log extension
*.log
# Ignore all files with the .tmp extension
*.tmp
# Ignore all files with the .swp extension
*.swp
# Ignore all files with the .DS_Store extension (macOS specific)
.DS_Store

View File

@@ -9,16 +9,14 @@ Perplexica's design consists of two main domains:
- **Frontend (`ui` directory)**: This is a Next.js application holding all user interface components. It's a self-contained environment that manages everything the user interacts with.
- **Backend (root and `src` directory)**: The backend logic is situated in the `src` folder, but the root directory holds the main `package.json` for backend dependency management.
Both the root directory (for backend configurations outside `src`) and the `ui` folder come with an `.env.example` file. These are templates for environment variables that you need to set up manually for the application to run correctly.
## Setting Up Your Environment
Before diving into coding, setting up your local environment is key. Here's what you need to do:
### Backend
1. In the root directory, locate the `.env.example` file.
2. Rename it to `.env` and fill in the necessary environment variables specific to the backend.
1. In the root directory, locate the `sample.config.toml` file.
2. Rename it to `config.toml` and fill in the necessary configuration fields specific to the backend.
3. Run `npm install` to install dependencies.
4. Use `npm run dev` to start the backend in development mode.

112
README.md
View File

@@ -10,34 +10,41 @@
- [Installation](#installation)
- [Getting Started with Docker (Recommended)](#getting-started-with-docker-recommended)
- [Non-Docker Installation](#non-docker-installation)
- [Ollama Connection Errors](#ollama-connection-errors)
- [Using as a Search Engine](#using-as-a-search-engine)
- [One-Click Deployment](#one-click-deployment)
- [Upcoming Features](#upcoming-features)
- [Support Us](#support-us)
- [Donations](#donations)
- [Contribution](#contribution)
- [Acknowledgements](#acknowledgements)
- [Help and Support](#help-and-support)
## Overview
Perplexica is an open-source AI-powered searching tool or an AI-powered search engine that goes deep into the internet to find answers. Inspired by Perplexity AI, it's an open-source option that not just searches the web but understands your questions. It uses advanced machine learning algorithms like similarity searching and embeddings to refine results and provides clear answers with sources cited.
Using SearxNG to stay current and fully open source, Perplexica ensures you always get the most up-to-date information without compromising your privacy.
Want to know more about its architecture and how it works? You can read it [here](https://github.com/ItzCrazyKns/Perplexica/tree/master/docs/architecture/README.md).
## Preview
![video-preview](.assets/perplexica-preview.gif)
## Features
- **Local LLMs**: You can make use local LLMs such as Llama3 and Mixtral using Ollama.
- **Two Main Modes:**
- **Copilot Mode:** (In development) Boosts search by generating different queries to find more relevant internet sources. Like normal search instead of just using the context by SearxNG, it visits the top matches and tries to find relevant sources to the user's query directly from the page.
- **Normal Mode:** Processes your query and performs a web search.
- **Focus Modes:** Special modes to better answer specific types of questions. Perplexica currently has 6 focus modes:
1. **All Mode:** Searches the entire web to find the best results.
2. **Writing Assistant Mode:** Helpful for writing tasks that does not require searching the web.
3. **Academic Search Mode:** Finds articles and papers, ideal for academic research.
4. **YouTube Search Mode:** Finds YouTube videos based on the search query.
5. **Wolfram Alpha Search Mode:** Answers queries that need calculations or data analysis using Wolfram Alpha.
6. **Reddit Search Mode:** Searches Reddit for discussions and opinions related to the query.
- **Current Information:** Some search tools might give you outdated info because they use data from crawling bots and convert them into embeddings and store them in a index (its like converting the web into embeddings which is quite expensive.). Unlike them, Perplexica uses SearxNG, a metasearch engine to get the results and rerank and get the most relevent source out of it, ensuring you always get the latest information without the overhead of daily data updates.
- **All Mode:** Searches the entire web to find the best results.
- **Writing Assistant Mode:** Helpful for writing tasks that does not require searching the web.
- **Academic Search Mode:** Finds articles and papers, ideal for academic research.
- **YouTube Search Mode:** Finds YouTube videos based on the search query.
- **Wolfram Alpha Search Mode:** Answers queries that need calculations or data analysis using Wolfram Alpha.
- **Reddit Search Mode:** Searches Reddit for discussions and opinions related to the query.
- **Current Information:** Some search tools might give you outdated info because they use data from crawling bots and convert them into embeddings and store them in a index. Unlike them, Perplexica uses SearxNG, a metasearch engine to get the results and rerank and get the most relevant source out of it, ensuring you always get the latest information without the overhead of daily data updates.
It has many more features like image and video search. Some of the planned features are mentioned in [upcoming features](#upcoming-features).
@@ -56,48 +63,99 @@ There are mainly 2 ways of installing Perplexica - With Docker, Without Docker.
3. After cloning, navigate to the directory containing the project files.
4. Rename the `.env.example` file to `.env`. For Docker setups, you need only fill in the following fields:
4. Rename the `sample.config.toml` file to `config.toml`. For Docker setups, you need only fill in the following fields:
- `OPENAI_API_KEY`
- `SIMILARITY_MEASURE` (This is filled by default; you can leave it as is if you are unsure about it.)
- `OPENAI`: Your OpenAI API key. **You only need to fill this if you wish to use OpenAI's models**.
- `OLLAMA`: Your Ollama API URL. You should enter it as `http://host.docker.internal:PORT_NUMBER`. If you installed Ollama on port 11434, use `http://host.docker.internal:11434`. For other ports, adjust accordingly. **You need to fill this if you wish to use Ollama's models instead of OpenAI's**.
- `GROQ`: Your Groq API key. **You only need to fill this if you wish to use Groq's hosted models**.
- `ANTHROPIC`: Your Anthropic API key. **You only need to fill this if you wish to use Anthropic models**.
**Note**: You can change these after starting Perplexica from the settings dialog.
- `SIMILARITY_MEASURE`: The similarity measure to use (This is filled by default; you can leave it as is if you are unsure about it.)
5. Ensure you are in the directory containing the `docker-compose.yaml` file and execute:
```bash
docker compose up
docker compose up -d
```
6. Wait a few minutes for the setup to complete. You can access Perplexica at http://localhost:3000 in your web browser.
**Note**: Once the terminal is stopped, Perplexica will also stop. To restart it, you will need to open Docker Desktop and run Perplexica again.
**Note**: After the containers are built, you can start Perplexica directly from Docker without having to open a terminal.
### Non-Docker Installation
For setups without Docker:
1. Follow the initial steps to clone the repository and rename the `.env.example` file to `.env` in the root directory. You will need to fill in all the fields in this file.
2. Additionally, rename the `.env.example` file to `.env` in the `ui` folder and complete all fields.
3. The non-Docker setup requires manual configuration of both the backend and frontend.
1. Install SearXNG and allow `JSON` format in the SearXNG settings.
2. Clone the repository and rename the `sample.config.toml` file to `config.toml` in the root directory. Ensure you complete all required fields in this file.
3. Rename the `.env.example` file to `.env` in the `ui` folder and fill in all necessary fields.
4. After populating the configuration and environment files, run `npm i` in both the `ui` folder and the root directory.
5. Install the dependencies and then execute `npm run build` in both the `ui` folder and the root directory.
6. Finally, start both the frontend and the backend by running `npm run start` in both the `ui` folder and the root directory.
**Note**: Using Docker is recommended as it simplifies the setup process, especially for managing environment variables and dependencies.
See the [installation documentation](https://github.com/ItzCrazyKns/Perplexica/tree/master/docs/installation) for more information like exposing it your network, etc.
### Ollama Connection Errors
If you're encountering an Ollama connection error, it is likely due to the backend being unable to connect to Ollama's API. To fix this issue you can:
1. **Check your Ollama API URL:** Ensure that the API URL is correctly set in the settings menu.
2. **Update API URL Based on OS:**
- **Windows:** Use `http://host.docker.internal:11434`
- **Mac:** Use `http://host.docker.internal:11434`
- **Linux:** Use `http://<private_ip_of_host>:11434`
Adjust the port number if you're using a different one.
3. **Linux Users - Expose Ollama to Network:**
- Inside `/etc/systemd/system/ollama.service`, you need to add `Environment="OLLAMA_HOST=0.0.0.0"`. Then restart Ollama by `systemctl restart ollama`. For more information see [Ollama docs](https://github.com/ollama/ollama/blob/main/docs/faq.md#setting-environment-variables-on-linux)
- Ensure that the port (default is 11434) is not blocked by your firewall.
## Using as a Search Engine
If you wish to use Perplexica as an alternative to traditional search engines like Google or Bing, or if you want to add a shortcut for quick access from your browser's search bar, follow these steps:
1. Open your browser's settings.
2. Navigate to the 'Search Engines' section.
3. Add a new site search with the following URL: `http://localhost:3000/?q=%s`. Replace `localhost` with your IP address or domain name, and `3000` with the port number if Perplexica is not hosted locally.
4. Click the add button. Now, you can use Perplexica directly from your browser's search bar.
## One-Click Deployment
[![Deploy to RepoCloud](https://d16t0pc4846x52.cloudfront.net/deploylobe.svg)](https://repocloud.io/details/?app_id=267)
## Upcoming Features
- [ ] Finalizing Copilot Mode
- [ ] Adding support for multiple local LLMs and LLM providers such as Anthropic, Google, etc.
- [ ] Adding Discover and History Saving features
- [x] Add settings page
- [x] Adding support for local LLMs
- [x] History Saving features
- [x] Introducing various Focus Modes
- [ ] Finalizing Copilot Mode
- [ ] Adding Discover
## Support Us
If you find Perplexica useful, consider giving us a star on GitHub. This helps more people discover Perplexica and supports the development of new features. Your support is appreciated.
If you find Perplexica useful, consider giving us a star on GitHub. This helps more people discover Perplexica and supports the development of new features. Your support is greatly appreciated.
### Donations
We also accept donations to help sustain our project. If you would like to contribute, you can use the following options to donate. Thank you for your support!
| Ethereum |
| ----------------------------------------------------- |
| Address: `0xB025a84b2F269570Eb8D4b05DEdaA41D8525B6DD` |
## Contribution
Perplexica is built on the idea that AI and large language models should be easy for everyone to use. If you find bugs or have ideas, please share them in via GitHub Issues. For more information on contributing to Perplexica you can read the [CONTRIBUTING.md](CONTRIBUTING.md) file to learn more about Perplexica and how you can contribute to it.
## Acknowledgements
## Help and Support
Inspired by Perplexity AI, Perplexica aims to provide a similar service but always up-to-date and fully open source, thanks to SearxNG.
If you have any questions or feedback, please feel free to reach out to us. You can create an issue on GitHub or join our Discord server. There, you can connect with other users, share your experiences and reviews, and receive more personalized help. [Click here](https://discord.gg/EFwsmQDgAu) to join the Discord server. To discuss matters outside of regular support, feel free to contact me on Discord at `itzcrazykns`.
If you have any queries you can reach me via my Discord - `itzcrazykns`. Thanks for checking out Perplexica.
Thank you for exploring Perplexica, the AI-powered search engine designed to enhance your search experience. We are constantly working to improve Perplexica and expand its capabilities. We value your feedback and contributions which help us make Perplexica even better. Don't forget to check back for updates and new features!

View File

@@ -1,17 +1,21 @@
FROM node:alpine
FROM node:slim
ARG SEARXNG_API_URL
ENV SEARXNG_API_URL=${SEARXNG_API_URL}
WORKDIR /home/perplexica
COPY src /home/perplexica/src
COPY tsconfig.json /home/perplexica/
COPY .env /home/perplexica/
COPY config.toml /home/perplexica/
COPY drizzle.config.ts /home/perplexica/
COPY package.json /home/perplexica/
COPY yarn.lock /home/perplexica/
RUN yarn install
RUN sed -i "s|SEARXNG = \".*\"|SEARXNG = \"${SEARXNG_API_URL}\"|g" /home/perplexica/config.toml
RUN mkdir /home/perplexica/data
RUN yarn install
RUN yarn build
CMD ["yarn", "start"]

2
data/.gitignore vendored Normal file
View File

@@ -0,0 +1,2 @@
*
!.gitignore

View File

@@ -1,14 +1,14 @@
services:
searxng:
build:
context: .
dockerfile: searxng.dockerfile
expose:
- 4000
image: docker.io/searxng/searxng:latest
volumes:
- ./searxng:/etc/searxng:rw
ports:
- 4000:8080
networks:
- perplexica-network
restart: unless-stopped
perplexica-backend:
build:
context: .
@@ -17,12 +17,15 @@ services:
- SEARXNG_API_URL=http://searxng:8080
depends_on:
- searxng
expose:
- 3001
ports:
- 3001:3001
volumes:
- backend-dbstore:/home/perplexica/data
extra_hosts:
- 'host.docker.internal:host-gateway'
networks:
- perplexica-network
restart: unless-stopped
perplexica-frontend:
build:
@@ -33,12 +36,14 @@ services:
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
depends_on:
- perplexica-backend
expose:
- 3000
ports:
- 3000:3000
networks:
- perplexica-network
restart: unless-stopped
networks:
perplexica-network:
volumes:
backend-dbstore:

View File

@@ -0,0 +1,11 @@
## Perplexica's Architecture
Perplexica's architecture consists of the following key components:
1. **User Interface**: A web-based interface that allows users to interact with Perplexica for searching images, videos, and much more.
2. **Agent/Chains**: These components predict Perplexica's next actions, understand user queries, and decide whether a web search is necessary.
3. **SearXNG**: A metadata search engine used by Perplexica to search the web for sources.
4. **LLMs (Large Language Models)**: Utilized by agents and chains for tasks like understanding content, writing responses, and citing sources. Examples include Claude, GPTs, etc.
5. **Embedding Models**: To improve the accuracy of search results, embedding models re-rank the results using similarity search algorithms such as cosine similarity and dot product distance.
For a more detailed explanation of how these components work together, see [WORKING.md](https://github.com/ItzCrazyKns/Perplexica/tree/master/docs/architecture/WORKING.md).

View File

@@ -0,0 +1,19 @@
## How does Perplexica work?
Curious about how Perplexica works? Don't worry, we'll cover it here. Before we begin, make sure you've read about the architecture of Perplexica to ensure you understand what it's made up of. Haven't read it? You can read it [here](https://github.com/ItzCrazyKns/Perplexica/tree/master/docs/architecture/README.md).
We'll understand how Perplexica works by taking an example of a scenario where a user asks: "How does an A.C. work?". We'll break down the process into steps to make it easier to understand. The steps are as follows:
1. The message is sent via WS to the backend server where it invokes the chain. The chain will depend on your focus mode. For this example, let's assume we use the "webSearch" focus mode.
2. The chain is now invoked; first, the message is passed to another chain where it first predicts (using the chat history and the question) whether there is a need for sources and searching the web. If there is, it will generate a query (in accordance with the chat history) for searching the web that we'll take up later. If not, the chain will end there, and then the answer generator chain, also known as the response generator, will be started.
3. The query returned by the first chain is passed to SearXNG to search the web for information.
4. After the information is retrieved, it is based on keyword-based search. We then convert the information into embeddings and the query as well, then we perform a similarity search to find the most relevant sources to answer the query.
5. After all this is done, the sources are passed to the response generator. This chain takes all the chat history, the query, and the sources. It generates a response that is streamed to the UI.
### How are the answers cited?
The LLMs are prompted to do so. We've prompted them so well that they cite the answers themselves, and using some UI magic, we display it to the user.
### Image and Video Search
Image and video searches are conducted in a similar manner. A query is always generated first, then we search the web for images and videos that match the query. These results are then returned to the user.

View File

@@ -0,0 +1,109 @@
# Expose Perplexica to a network
This guide will show you how to make Perplexica available over a network. Follow these steps to allow computers on the same network to interact with Perplexica. Choose the instructions that match the operating system you are using.
## Windows
1. Open PowerShell as Administrator
2. Navigate to the directory containing the `docker-compose.yaml` file
3. Stop and remove the existing Perplexica containers and images:
```
docker compose down --rmi all
```
4. Open the `docker-compose.yaml` file in a text editor like Notepad++
5. Replace `127.0.0.1` with the IP address of the server Perplexica is running on in these two lines:
```
args:
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
```
6. Save and close the `docker-compose.yaml` file
7. Rebuild and restart the Perplexica container:
```
docker compose up -d --build
```
## macOS
1. Open the Terminal application
2. Navigate to the directory with the `docker-compose.yaml` file:
```
cd /path/to/docker-compose.yaml
```
3. Stop and remove existing containers and images:
```
docker compose down --rmi all
```
4. Open `docker-compose.yaml` in a text editor like Sublime Text:
```
nano docker-compose.yaml
```
5. Replace `127.0.0.1` with the server IP in these lines:
```
args:
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
```
6. Save and exit the editor
7. Rebuild and restart Perplexica:
```
docker compose up -d --build
```
## Linux
1. Open the terminal
2. Navigate to the `docker-compose.yaml` directory:
```
cd /path/to/docker-compose.yaml
```
3. Stop and remove containers and images:
```
docker compose down --rmi all
```
4. Edit `docker-compose.yaml`:
```
nano docker-compose.yaml
```
5. Replace `127.0.0.1` with the server IP:
```
args:
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
```
6. Save and exit the editor
7. Rebuild and restart Perplexica:
```
docker compose up -d --build
```

View File

@@ -0,0 +1,34 @@
# Update Perplexica to the latest version
To update Perplexica to the latest version, follow these steps:
## For Docker users
1. Clone the latest version of Perplexica from GitHub:
```bash
git clone https://github.com/ItzCrazyKns/Perplexica.git
```
2. Navigate to the Project Directory
3. Update and Rebuild Docker Containers:
```bash
docker compose up -d --build
```
4. Once the command completes running go to http://localhost:3000 and verify the latest changes.
## For non Docker users
1. Clone the latest version of Perplexica from GitHub:
```bash
git clone https://github.com/ItzCrazyKns/Perplexica.git
```
2. Navigate to the Project Directory
3. Execute `npm i` in both the `ui` folder and the root directory.
4. Once packages are updated, execute `npm run build` in both the `ui` folder and the root directory.
5. Finally, start both the frontend and the backend by running `npm run start` in both the `ui` folder and the root directory.

10
drizzle.config.ts Normal file
View File

@@ -0,0 +1,10 @@
import { defineConfig } from 'drizzle-kit';
export default defineConfig({
dialect: 'sqlite',
schema: './src/db/schema.ts',
out: './drizzle',
dbCredentials: {
url: './data/db.sqlite',
},
});

View File

@@ -1,33 +1,48 @@
{
"name": "perplexica-backend",
"version": "1.0.0",
"version": "1.9.0-rc1",
"license": "MIT",
"author": "ItzCrazyKns",
"scripts": {
"start": "node --env-file=.env dist/app.js",
"start": "npm run db:push && node dist/app.js",
"build": "tsc",
"dev": "nodemon -r dotenv/config src/app.ts",
"dev": "nodemon src/app.ts",
"db:push": "drizzle-kit push sqlite",
"format": "prettier . --check",
"format:write": "prettier . --write"
},
"devDependencies": {
"@types/better-sqlite3": "^7.6.10",
"@types/cors": "^2.8.17",
"@types/express": "^4.17.21",
"@types/html-to-text": "^9.0.4",
"@types/pdf-parse": "^1.1.4",
"@types/readable-stream": "^4.0.11",
"drizzle-kit": "^0.22.7",
"nodemon": "^3.1.0",
"prettier": "^3.2.5",
"ts-node": "^10.9.2",
"typescript": "^5.4.3"
},
"dependencies": {
"@iarna/toml": "^2.2.5",
"@langchain/anthropic": "^0.2.3",
"@langchain/community": "^0.2.16",
"@langchain/openai": "^0.0.25",
"@xenova/transformers": "^2.17.1",
"axios": "^1.6.8",
"better-sqlite3": "^11.0.0",
"compute-cosine-similarity": "^1.1.0",
"compute-dot": "^1.1.0",
"cors": "^2.8.5",
"dotenv": "^16.4.5",
"drizzle-orm": "^0.31.2",
"express": "^4.19.2",
"html-to-text": "^9.0.5",
"langchain": "^0.1.30",
"ws": "^8.16.0",
"pdf-parse": "^1.1.1",
"winston": "^3.13.0",
"ws": "^8.17.1",
"zod": "^3.22.4"
}
}

16
sample.config.toml Normal file
View File

@@ -0,0 +1,16 @@
[GENERAL]
PORT = 3001 # Port to run the server on
SIMILARITY_MEASURE = "cosine" # "cosine" or "dot"
CONFIG_PASSWORD = "lorem_ipsum" # Password to access config
DISCOVER_ENABLED = true
LIBRARY_ENABLED = true
COPILOT_ENABLED = true
[API_KEYS]
OPENAI = "" # OpenAI API key - sk-1234567890abcdef1234567890abcdef
GROQ = "" # Groq API key - gsk_1234567890abcdef1234567890abcdef
ANTHROPIC = "" # Anthropic API key - sk-ant-1234567890abcdef1234567890abcdef
[API_ENDPOINTS]
SEARXNG = "http://localhost:32768" # SearxNG API URL
OLLAMA = "" # Ollama API URL - http://host.docker.internal:11434

View File

@@ -1,3 +0,0 @@
FROM searxng/searxng
COPY searxng-settings.yml /etc/searxng/settings.yml

3
searxng/limiter.toml Normal file
View File

@@ -0,0 +1,3 @@
[botdetection.ip_limit]
# activate link_token method in the ip_limit method
link_token = true

View File

@@ -1071,25 +1071,6 @@ engines:
require_api_key: false
results: HTML
- name: azlyrics
shortcut: lyrics
engine: xpath
timeout: 4.0
disabled: true
categories: [music, lyrics]
paging: true
search_url: https://search.azlyrics.com/search.php?q={query}&w=lyrics&p={pageno}
url_xpath: //td[@class="text-left visitedlyr"]/a/@href
title_xpath: //span/b/text()
content_xpath: //td[@class="text-left visitedlyr"]/a/small
about:
website: https://azlyrics.com
wikidata_id: Q66372542
official_api_documentation:
use_official_api: false
require_api_key: false
results: HTML
- name: mastodon users
engine: mastodon
mastodon_type: accounts
@@ -1569,11 +1550,6 @@ engines:
shortcut: scc
disabled: true
- name: framalibre
engine: framalibre
shortcut: frl
disabled: true
# - name: searx
# engine: searx_engine
# shortcut: se

50
searxng/uwsgi.ini Normal file
View File

@@ -0,0 +1,50 @@
[uwsgi]
# Who will run the code
uid = searxng
gid = searxng
# Number of workers (usually CPU count)
# default value: %k (= number of CPU core, see Dockerfile)
workers = %k
# Number of threads per worker
# default value: 4 (see Dockerfile)
threads = 4
# The right granted on the created socket
chmod-socket = 666
# Plugin to use and interpreter config
single-interpreter = true
master = true
plugin = python3
lazy-apps = true
enable-threads = 4
# Module to import
module = searx.webapp
# Virtualenv and python path
pythonpath = /usr/local/searxng/
chdir = /usr/local/searxng/searx/
# automatically set processes name to something meaningful
auto-procname = true
# Disable request logging for privacy
disable-logging = true
log-5xx = true
# Set the max size of a request (request-body excluded)
buffer-size = 8192
# No keep alive
# See https://github.com/searx/searx-docker/issues/24
add-header = Connection: close
# uwsgi serves the static files
static-map = /static=/usr/local/searxng/searx/static
# expires set to one day
static-expires = /* 86400
static-gzip-all = True
offload-threads = 4

View File

@@ -9,28 +9,16 @@ import {
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { ChatOpenAI, OpenAI, OpenAIEmbeddings } from '@langchain/openai';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { Document } from '@langchain/core/documents';
import { searchSearxng } from '../core/searxng';
import { searchSearxng } from '../lib/searxng';
import type { StreamEvent } from '@langchain/core/tracers/log_stream';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import computeSimilarity from '../utils/computeSimilarity';
const chatLLM = new ChatOpenAI({
modelName: process.env.MODEL_NAME,
temperature: 0.7,
});
const llm = new OpenAI({
temperature: 0,
modelName: process.env.MODEL_NAME,
});
const embeddings = new OpenAIEmbeddings({
modelName: 'text-embedding-3-large',
});
import logger from '../utils/logger';
const basicAcademicSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
@@ -54,9 +42,9 @@ Rephrased question:
`;
const basicAcademicSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Acadedemic', this means you will be searching for academic papers and articles on the web.
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Academic', this means you will be searching for academic papers and articles on the web.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containg a brief description of the content of that page).
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
@@ -64,7 +52,7 @@ const basicAcademicSearchResponsePrompt = `
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Aything inside the following \`context\` HTML block provided below is for your knowledge returned by the search engine and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by the search engine and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
@@ -109,122 +97,139 @@ const handleStream = async (
}
};
const processDocs = async (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
const rerankDocs = async ({
query,
docs,
}: {
query: string;
docs: Document[];
}) => {
if (docs.length === 0) {
return docs;
}
const docsWithContent = docs.filter(
(doc) => doc.pageContent && doc.pageContent.length > 0,
);
const docEmbeddings = await embeddings.embedDocuments(
docsWithContent.map((doc) => doc.pageContent),
);
const queryEmbedding = await embeddings.embedQuery(query);
const similarity = docEmbeddings.map((docEmbedding, i) => {
const sim = computeSimilarity(queryEmbedding, docEmbedding);
return {
index: i,
similarity: sim,
};
});
const sortedDocs = similarity
.sort((a, b) => b.similarity - a.similarity)
.slice(0, 15)
.map((sim) => docsWithContent[sim.index]);
return sortedDocs;
};
type BasicChainInput = {
chat_history: BaseMessage[];
query: string;
};
const basicAcademicSearchRetrieverChain = RunnableSequence.from([
PromptTemplate.fromTemplate(basicAcademicSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
return { query: '', docs: [] };
const createBasicAcademicSearchRetrieverChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
PromptTemplate.fromTemplate(basicAcademicSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
return { query: '', docs: [] };
}
const res = await searchSearxng(input, {
language: 'en',
engines: [
'arxiv',
'google scholar',
'internetarchivescholar',
'pubmed',
],
});
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: input, docs: documents };
}),
]);
};
const createBasicAcademicSearchAnsweringChain = (
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const basicAcademicSearchRetrieverChain =
createBasicAcademicSearchRetrieverChain(llm);
const processDocs = async (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
const rerankDocs = async ({
query,
docs,
}: {
query: string;
docs: Document[];
}) => {
if (docs.length === 0) {
return docs;
}
const res = await searchSearxng(input, {
language: 'en',
engines: [
'arxiv',
'google_scholar',
'internet_archive_scholar',
'pubmed',
],
});
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
const docsWithContent = docs.filter(
(doc) => doc.pageContent && doc.pageContent.length > 0,
);
return { query: input, docs: documents };
}),
]);
const [docEmbeddings, queryEmbedding] = await Promise.all([
embeddings.embedDocuments(docsWithContent.map((doc) => doc.pageContent)),
embeddings.embedQuery(query),
]);
const basicAcademicSearchAnsweringChain = RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
basicAcademicSearchRetrieverChain
.pipe(rerankDocs)
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
const similarity = docEmbeddings.map((docEmbedding, i) => {
const sim = computeSimilarity(queryEmbedding, docEmbedding);
return {
index: i,
similarity: sim,
};
});
const sortedDocs = similarity
.sort((a, b) => b.similarity - a.similarity)
.slice(0, 15)
.map((sim) => docsWithContent[sim.index]);
return sortedDocs;
};
return RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
basicAcademicSearchRetrieverChain
.pipe(rerankDocs)
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicAcademicSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicAcademicSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
chatLLM,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
llm,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
};
const basicAcademicSearch = (query: string, history: BaseMessage[]) => {
const basicAcademicSearch = (
query: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = new eventEmitter();
try {
const basicAcademicSearchAnsweringChain =
createBasicAcademicSearchAnsweringChain(llm, embeddings);
const stream = basicAcademicSearchAnsweringChain.streamEvents(
{
chat_history: history,
@@ -241,14 +246,19 @@ const basicAcademicSearch = (query: string, history: BaseMessage[]) => {
'error',
JSON.stringify({ data: 'An error has occurred please try again later' }),
);
console.error(err);
logger.error(`Error in academic search: ${err}`);
}
return emitter;
};
const handleAcademicSearch = (message: string, history: BaseMessage[]) => {
const emitter = basicAcademicSearch(message, history);
const handleAcademicSearch = (
message: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = basicAcademicSearch(message, history, llm, embeddings);
return emitter;
};

View File

@@ -4,16 +4,11 @@ import {
RunnableLambda,
} from '@langchain/core/runnables';
import { PromptTemplate } from '@langchain/core/prompts';
import { OpenAI } from '@langchain/openai';
import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { searchSearxng } from '../core/searxng';
const llm = new OpenAI({
temperature: 0,
modelName: process.env.MODEL_NAME,
});
import { searchSearxng } from '../lib/searxng';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
const imageSearchChainPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search the web for images.
@@ -43,38 +38,47 @@ type ImageSearchChainInput = {
const strParser = new StringOutputParser();
const imageSearchChain = RunnableSequence.from([
RunnableMap.from({
chat_history: (input: ImageSearchChainInput) => {
return formatChatHistoryAsString(input.chat_history);
},
query: (input: ImageSearchChainInput) => {
return input.query;
},
}),
PromptTemplate.fromTemplate(imageSearchChainPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
const res = await searchSearxng(input, {
categories: ['images'],
engines: ['bing_images', 'google_images'],
});
const createImageSearchChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
RunnableMap.from({
chat_history: (input: ImageSearchChainInput) => {
return formatChatHistoryAsString(input.chat_history);
},
query: (input: ImageSearchChainInput) => {
return input.query;
},
}),
PromptTemplate.fromTemplate(imageSearchChainPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
const res = await searchSearxng(input, {
engines: ['bing images', 'google images'],
});
const images = [];
const images = [];
res.results.forEach((result) => {
if (result.img_src && result.url && result.title) {
images.push({
img_src: result.img_src,
url: result.url,
title: result.title,
});
}
});
res.results.forEach((result) => {
if (result.img_src && result.url && result.title) {
images.push({
img_src: result.img_src,
url: result.url,
title: result.title,
});
}
});
return images.slice(0, 10);
}),
]);
return images.slice(0, 10);
}),
]);
};
export default imageSearchChain;
const handleImageSearch = (
input: ImageSearchChainInput,
llm: BaseChatModel,
) => {
const imageSearchChain = createImageSearchChain(llm);
return imageSearchChain.invoke(input);
};
export default handleImageSearch;

View File

@@ -9,28 +9,16 @@ import {
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { ChatOpenAI, OpenAI, OpenAIEmbeddings } from '@langchain/openai';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { Document } from '@langchain/core/documents';
import { searchSearxng } from '../core/searxng';
import { searchSearxng } from '../lib/searxng';
import type { StreamEvent } from '@langchain/core/tracers/log_stream';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import computeSimilarity from '../utils/computeSimilarity';
const chatLLM = new ChatOpenAI({
modelName: process.env.MODEL_NAME,
temperature: 0.7,
});
const llm = new OpenAI({
temperature: 0,
modelName: process.env.MODEL_NAME,
});
const embeddings = new OpenAIEmbeddings({
modelName: 'text-embedding-3-large',
});
import logger from '../utils/logger';
const basicRedditSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
@@ -56,7 +44,7 @@ Rephrased question:
const basicRedditSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Reddit', this means you will be searching for information, opinions and discussions on the web using Reddit.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containg a brief description of the content of that page).
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
@@ -64,8 +52,8 @@ const basicRedditSearchResponsePrompt = `
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Aything inside the following \`context\` HTML block provided below is for your knowledge returned by Reddit and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by Reddit and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
{context}
@@ -109,118 +97,134 @@ const handleStream = async (
}
};
const processDocs = async (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
const rerankDocs = async ({
query,
docs,
}: {
query: string;
docs: Document[];
}) => {
if (docs.length === 0) {
return docs;
}
const docsWithContent = docs.filter(
(doc) => doc.pageContent && doc.pageContent.length > 0,
);
const docEmbeddings = await embeddings.embedDocuments(
docsWithContent.map((doc) => doc.pageContent),
);
const queryEmbedding = await embeddings.embedQuery(query);
const similarity = docEmbeddings.map((docEmbedding, i) => {
const sim = computeSimilarity(queryEmbedding, docEmbedding);
return {
index: i,
similarity: sim,
};
});
const sortedDocs = similarity
.sort((a, b) => b.similarity - a.similarity)
.slice(0, 15)
.filter((sim) => sim.similarity > 0.3)
.map((sim) => docsWithContent[sim.index]);
return sortedDocs;
};
type BasicChainInput = {
chat_history: BaseMessage[];
query: string;
};
const basicRedditSearchRetrieverChain = RunnableSequence.from([
PromptTemplate.fromTemplate(basicRedditSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
return { query: '', docs: [] };
const createBasicRedditSearchRetrieverChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
PromptTemplate.fromTemplate(basicRedditSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
return { query: '', docs: [] };
}
const res = await searchSearxng(input, {
language: 'en',
engines: ['reddit'],
});
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content ? result.content : result.title,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: input, docs: documents };
}),
]);
};
const createBasicRedditSearchAnsweringChain = (
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const basicRedditSearchRetrieverChain =
createBasicRedditSearchRetrieverChain(llm);
const processDocs = async (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
const rerankDocs = async ({
query,
docs,
}: {
query: string;
docs: Document[];
}) => {
if (docs.length === 0) {
return docs;
}
const res = await searchSearxng(input, {
language: 'en',
engines: ['reddit'],
});
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content ? result.content : result.title,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
const docsWithContent = docs.filter(
(doc) => doc.pageContent && doc.pageContent.length > 0,
);
return { query: input, docs: documents };
}),
]);
const [docEmbeddings, queryEmbedding] = await Promise.all([
embeddings.embedDocuments(docsWithContent.map((doc) => doc.pageContent)),
embeddings.embedQuery(query),
]);
const basicRedditSearchAnsweringChain = RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
basicRedditSearchRetrieverChain
.pipe(rerankDocs)
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
const similarity = docEmbeddings.map((docEmbedding, i) => {
const sim = computeSimilarity(queryEmbedding, docEmbedding);
return {
index: i,
similarity: sim,
};
});
const sortedDocs = similarity
.filter((sim) => sim.similarity > 0.3)
.sort((a, b) => b.similarity - a.similarity)
.slice(0, 15)
.map((sim) => docsWithContent[sim.index]);
return sortedDocs;
};
return RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
basicRedditSearchRetrieverChain
.pipe(rerankDocs)
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicRedditSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicRedditSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
chatLLM,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
llm,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
};
const basicRedditSearch = (query: string, history: BaseMessage[]) => {
const basicRedditSearch = (
query: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = new eventEmitter();
try {
const basicRedditSearchAnsweringChain =
createBasicRedditSearchAnsweringChain(llm, embeddings);
const stream = basicRedditSearchAnsweringChain.streamEvents(
{
chat_history: history,
@@ -237,14 +241,19 @@ const basicRedditSearch = (query: string, history: BaseMessage[]) => {
'error',
JSON.stringify({ data: 'An error has occurred please try again later' }),
);
console.error(err);
logger.error(`Error in RedditSearch: ${err}`);
}
return emitter;
};
const handleRedditSearch = (message: string, history: BaseMessage[]) => {
const emitter = basicRedditSearch(message, history);
const handleRedditSearch = (
message: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = basicRedditSearch(message, history, llm, embeddings);
return emitter;
};

View File

@@ -0,0 +1,55 @@
import { RunnableSequence, RunnableMap } from '@langchain/core/runnables';
import ListLineOutputParser from '../lib/outputParsers/listLineOutputParser';
import { PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { ChatOpenAI } from '@langchain/openai';
const suggestionGeneratorPrompt = `
You are an AI suggestion generator for an AI powered search engine. You will be given a conversation below. You need to generate 4-5 suggestions based on the conversation. The suggestion should be relevant to the conversation that can be used by the user to ask the chat model for more information.
You need to make sure the suggestions are relevant to the conversation and are helpful to the user. Keep a note that the user might use these suggestions to ask a chat model for more information.
Make sure the suggestions are medium in length and are informative and relevant to the conversation.
Provide these suggestions separated by newlines between the XML tags <suggestions> and </suggestions>. For example:
<suggestions>
Tell me more about SpaceX and their recent projects
What is the latest news on SpaceX?
Who is the CEO of SpaceX?
</suggestions>
Conversation:
{chat_history}
`;
type SuggestionGeneratorInput = {
chat_history: BaseMessage[];
};
const outputParser = new ListLineOutputParser({
key: 'suggestions',
});
const createSuggestionGeneratorChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
RunnableMap.from({
chat_history: (input: SuggestionGeneratorInput) =>
formatChatHistoryAsString(input.chat_history),
}),
PromptTemplate.fromTemplate(suggestionGeneratorPrompt),
llm,
outputParser,
]);
};
const generateSuggestions = (
input: SuggestionGeneratorInput,
llm: BaseChatModel,
) => {
(llm as unknown as ChatOpenAI).temperature = 0;
const suggestionGeneratorChain = createSuggestionGeneratorChain(llm);
return suggestionGeneratorChain.invoke(input);
};
export default generateSuggestions;

View File

@@ -0,0 +1,90 @@
import {
RunnableSequence,
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { searchSearxng } from '../lib/searxng';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
const VideoSearchChainPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search Youtube for videos.
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
Example:
1. Follow up question: How does a car work?
Rephrased: How does a car work?
2. Follow up question: What is the theory of relativity?
Rephrased: What is theory of relativity
3. Follow up question: How does an AC work?
Rephrased: How does an AC work
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
type VideoSearchChainInput = {
chat_history: BaseMessage[];
query: string;
};
const strParser = new StringOutputParser();
const createVideoSearchChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
RunnableMap.from({
chat_history: (input: VideoSearchChainInput) => {
return formatChatHistoryAsString(input.chat_history);
},
query: (input: VideoSearchChainInput) => {
return input.query;
},
}),
PromptTemplate.fromTemplate(VideoSearchChainPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
const res = await searchSearxng(input, {
engines: ['youtube'],
});
const videos = [];
res.results.forEach((result) => {
if (
result.thumbnail &&
result.url &&
result.title &&
result.iframe_src
) {
videos.push({
img_src: result.thumbnail,
url: result.url,
title: result.title,
iframe_src: result.iframe_src,
});
}
});
return videos.slice(0, 10);
}),
]);
};
const handleVideoSearch = (
input: VideoSearchChainInput,
llm: BaseChatModel,
) => {
const VideoSearchChain = createVideoSearchChain(llm);
return VideoSearchChain.invoke(input);
};
export default handleVideoSearch;

View File

@@ -9,42 +9,57 @@ import {
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { ChatOpenAI, OpenAI, OpenAIEmbeddings } from '@langchain/openai';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { Document } from '@langchain/core/documents';
import { searchSearxng } from '../core/searxng';
import { searchSearxng } from '../lib/searxng';
import type { StreamEvent } from '@langchain/core/tracers/log_stream';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import computeSimilarity from '../utils/computeSimilarity';
const chatLLM = new ChatOpenAI({
modelName: process.env.MODEL_NAME,
temperature: 0.7,
});
const llm = new OpenAI({
temperature: 0,
modelName: process.env.MODEL_NAME,
});
const embeddings = new OpenAIEmbeddings({
modelName: 'text-embedding-3-large',
});
import logger from '../utils/logger';
import LineListOutputParser from '../lib/outputParsers/listLineOutputParser';
import { getDocumentsFromLinks } from '../lib/linkDocument';
import LineOutputParser from '../lib/outputParsers/lineOutputParser';
const basicSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
If the question contains some links and asks to answer from those links or even if they don't you need to return the links inside 'links' XML block and the question inside 'question' XML block. If there are no links then you need to return the question without any XML block.
If the user asks to summarrize the content from some links you need to return \`Summarize\` as the question inside the 'question' XML block and the links inside the 'links' XML block.
Example:
1. Follow up question: What is the capital of France?
Rephrased: Capital of france
Rephrased question: \`Capital of france\`
2. Follow up question: What is the population of New York City?
Rephrased: Population of New York City
Rephrased question: \`Population of New York City\`
3. Follow up question: What is Docker?
Rephrased: What is Docker
Rephrased question: \`What is Docker\`
4. Follow up question: Can you tell me what is X from https://example.com
Rephrased question: \`
<question>
Can you tell me what is X?
</question>
<links>
https://example.com
</links>
\`
5. Follow up question: Summarize the content from https://example.com
Rephrased question: \`
<question>
Summarize
</question>
<links>
https://example.com
</links>
\`
Conversation:
{chat_history}
@@ -54,24 +69,26 @@ Rephrased question:
`;
const basicWebSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries.
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are also an expert at summarizing web pages or documents and searching for content in them.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containg a brief description of the content of that page).
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
If the query contains some links and the user asks to answer from those links you will be provided the entire content of the page inside the \`context\` XML block. You can then use this content to answer the user's query.
If the user asks to summarize content from some links, you will be provided the entire content of the page inside the \`context\` XML block. You can then use this content to summarize the text. The content provided inside the \`context\` block will be already summarized by another model so you just need to use that content to answer the user's query.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Aything inside the following \`context\` HTML block provided below is for your knowledge returned by the search engine and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by the search engine and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
{context}
</context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'.
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'. You do not need to do this for summarization tasks.
Anything between the \`context\` is retrieved from a search engine and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
`;
@@ -109,117 +126,225 @@ const handleStream = async (
}
};
const processDocs = async (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
const rerankDocs = async ({
query,
docs,
}: {
query: string;
docs: Document[];
}) => {
if (docs.length === 0) {
return docs;
}
const docsWithContent = docs.filter(
(doc) => doc.pageContent && doc.pageContent.length > 0,
);
const docEmbeddings = await embeddings.embedDocuments(
docsWithContent.map((doc) => doc.pageContent),
);
const queryEmbedding = await embeddings.embedQuery(query);
const similarity = docEmbeddings.map((docEmbedding, i) => {
const sim = computeSimilarity(queryEmbedding, docEmbedding);
return {
index: i,
similarity: sim,
};
});
const sortedDocs = similarity
.sort((a, b) => b.similarity - a.similarity)
.filter((sim) => sim.similarity > 0.5)
.slice(0, 15)
.map((sim) => docsWithContent[sim.index]);
return sortedDocs;
};
type BasicChainInput = {
chat_history: BaseMessage[];
query: string;
};
const basicWebSearchRetrieverChain = RunnableSequence.from([
PromptTemplate.fromTemplate(basicSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
return { query: '', docs: [] };
const createBasicWebSearchRetrieverChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
PromptTemplate.fromTemplate(basicSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
return { query: '', docs: [] };
}
const linksOutputParser = new LineListOutputParser({
key: 'links',
});
const questionOutputParser = new LineOutputParser({
key: 'question',
});
const links = await linksOutputParser.parse(input);
let question = await questionOutputParser.parse(input);
if (links.length > 0) {
if (question.length === 0) {
question = 'Summarize';
}
let docs = [];
const linkDocs = await getDocumentsFromLinks({ links });
const docGroups: Document[] = [];
linkDocs.map((doc) => {
const URLDocExists = docGroups.find(
(d) =>
d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10,
);
if (!URLDocExists) {
docGroups.push({
...doc,
metadata: {
...doc.metadata,
totalDocs: 1,
},
});
}
const docIndex = docGroups.findIndex(
(d) =>
d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10,
);
if (docIndex !== -1) {
docGroups[docIndex].pageContent =
docGroups[docIndex].pageContent + `\n\n` + doc.pageContent;
docGroups[docIndex].metadata.totalDocs += 1;
}
});
await Promise.all(
docGroups.map(async (doc) => {
const res = await llm.invoke(`
You are a text summarizer. You need to summarize the text provided inside the \`text\` XML block.
You need to summarize the text into 1 or 2 sentences capturing the main idea of the text.
You need to make sure that you don't miss any point while summarizing the text.
You will also be given a \`query\` XML block which will contain the query of the user. Try to answer the query in the summary from the text provided.
If the query says Summarize then you just need to summarize the text without answering the query.
Only return the summarized text without any other messages, text or XML block.
<query>
${question}
</query>
<text>
${doc.pageContent}
</text>
Make sure to answer the query in the summary.
`);
const document = new Document({
pageContent: res.content as string,
metadata: {
title: doc.metadata.title,
url: doc.metadata.url,
},
});
docs.push(document);
}),
);
return { query: question, docs: docs };
} else {
const res = await searchSearxng(input, {
language: 'en',
});
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: input, docs: documents };
}
}),
]);
};
const createBasicWebSearchAnsweringChain = (
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const basicWebSearchRetrieverChain = createBasicWebSearchRetrieverChain(llm);
const processDocs = async (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
const rerankDocs = async ({
query,
docs,
}: {
query: string;
docs: Document[];
}) => {
if (docs.length === 0) {
return docs;
}
const res = await searchSearxng(input, {
language: 'en',
});
if (query === 'Summarize') {
return docs;
}
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
const docsWithContent = docs.filter(
(doc) => doc.pageContent && doc.pageContent.length > 0,
);
return { query: input, docs: documents };
}),
]);
const [docEmbeddings, queryEmbedding] = await Promise.all([
embeddings.embedDocuments(docsWithContent.map((doc) => doc.pageContent)),
embeddings.embedQuery(query),
]);
const basicWebSearchAnsweringChain = RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
basicWebSearchRetrieverChain
.pipe(rerankDocs)
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
const similarity = docEmbeddings.map((docEmbedding, i) => {
const sim = computeSimilarity(queryEmbedding, docEmbedding);
return {
index: i,
similarity: sim,
};
});
const sortedDocs = similarity
.filter((sim) => sim.similarity > 0.5)
.sort((a, b) => b.similarity - a.similarity)
.slice(0, 15)
.map((sim) => docsWithContent[sim.index]);
return sortedDocs;
};
return RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
basicWebSearchRetrieverChain
.pipe(rerankDocs)
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicWebSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicWebSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
chatLLM,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
llm,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
};
const basicWebSearch = (query: string, history: BaseMessage[]) => {
const basicWebSearch = (
query: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = new eventEmitter();
try {
const basicWebSearchAnsweringChain = createBasicWebSearchAnsweringChain(
llm,
embeddings,
);
const stream = basicWebSearchAnsweringChain.streamEvents(
{
chat_history: history,
@@ -236,14 +361,19 @@ const basicWebSearch = (query: string, history: BaseMessage[]) => {
'error',
JSON.stringify({ data: 'An error has occurred please try again later' }),
);
console.error(err);
logger.error(`Error in websearch: ${err}`);
}
return emitter;
};
const handleWebSearch = (message: string, history: BaseMessage[]) => {
const emitter = basicWebSearch(message, history);
const handleWebSearch = (
message: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = basicWebSearch(message, history, llm, embeddings);
return emitter;
};

View File

@@ -9,23 +9,15 @@ import {
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { ChatOpenAI, OpenAI } from '@langchain/openai';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { Document } from '@langchain/core/documents';
import { searchSearxng } from '../core/searxng';
import { searchSearxng } from '../lib/searxng';
import type { StreamEvent } from '@langchain/core/tracers/log_stream';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
const chatLLM = new ChatOpenAI({
modelName: process.env.MODEL_NAME,
temperature: 0.7,
});
const llm = new OpenAI({
temperature: 0,
modelName: process.env.MODEL_NAME,
});
import logger from '../utils/logger';
const basicWolframAlphaSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
@@ -51,7 +43,7 @@ Rephrased question:
const basicWolframAlphaSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Wolfram Alpha', this means you will be searching for information on the web using Wolfram Alpha. It is a computational knowledge engine that can answer factual queries and perform computations.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containg a brief description of the content of that page).
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
@@ -59,7 +51,7 @@ const basicWolframAlphaSearchResponsePrompt = `
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Aything inside the following \`context\` HTML block provided below is for your knowledge returned by Wolfram Alpha and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by Wolfram Alpha and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
@@ -104,81 +96,94 @@ const handleStream = async (
}
};
const processDocs = async (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
type BasicChainInput = {
chat_history: BaseMessage[];
query: string;
};
const basicWolframAlphaSearchRetrieverChain = RunnableSequence.from([
PromptTemplate.fromTemplate(basicWolframAlphaSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
return { query: '', docs: [] };
}
const createBasicWolframAlphaSearchRetrieverChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
PromptTemplate.fromTemplate(basicWolframAlphaSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
return { query: '', docs: [] };
}
const res = await searchSearxng(input, {
language: 'en',
engines: ['wolframalpha'],
});
const res = await searchSearxng(input, {
language: 'en',
engines: ['wolframalpha'],
});
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: input, docs: documents };
}),
]);
};
const createBasicWolframAlphaSearchAnsweringChain = (llm: BaseChatModel) => {
const basicWolframAlphaSearchRetrieverChain =
createBasicWolframAlphaSearchRetrieverChain(llm);
const processDocs = (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
return RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
);
return { query: input, docs: documents };
}),
]);
const basicWolframAlphaSearchAnsweringChain = RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
basicWolframAlphaSearchRetrieverChain
.pipe(({ query, docs }) => {
return docs;
})
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
basicWolframAlphaSearchRetrieverChain
.pipe(({ query, docs }) => {
return docs;
})
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicWolframAlphaSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicWolframAlphaSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
chatLLM,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
llm,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
};
const basicWolframAlphaSearch = (query: string, history: BaseMessage[]) => {
const basicWolframAlphaSearch = (
query: string,
history: BaseMessage[],
llm: BaseChatModel,
) => {
const emitter = new eventEmitter();
try {
const basicWolframAlphaSearchAnsweringChain =
createBasicWolframAlphaSearchAnsweringChain(llm);
const stream = basicWolframAlphaSearchAnsweringChain.streamEvents(
{
chat_history: history,
@@ -195,14 +200,19 @@ const basicWolframAlphaSearch = (query: string, history: BaseMessage[]) => {
'error',
JSON.stringify({ data: 'An error has occurred please try again later' }),
);
console.error(err);
logger.error(`Error in WolframAlphaSearch: ${err}`);
}
return emitter;
};
const handleWolframAlphaSearch = (message: string, history: BaseMessage[]) => {
const emitter = basicWolframAlphaSearch(message, history);
const handleWolframAlphaSearch = (
message: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = basicWolframAlphaSearch(message, history, llm);
return emitter;
};

View File

@@ -4,15 +4,12 @@ import {
MessagesPlaceholder,
} from '@langchain/core/prompts';
import { RunnableSequence } from '@langchain/core/runnables';
import { ChatOpenAI } from '@langchain/openai';
import { StringOutputParser } from '@langchain/core/output_parsers';
import type { StreamEvent } from '@langchain/core/tracers/log_stream';
import eventEmitter from 'events';
const chatLLM = new ChatOpenAI({
modelName: process.env.MODEL_NAME,
temperature: 0.7,
});
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import logger from '../utils/logger';
const writingAssistantPrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are currently set on focus mode 'Writing Assistant', this means you will be helping the user write a response to a given query.
@@ -44,22 +41,30 @@ const handleStream = async (
}
};
const writingAssistantChain = RunnableSequence.from([
ChatPromptTemplate.fromMessages([
['system', writingAssistantPrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
chatLLM,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
const createWritingAssistantChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
ChatPromptTemplate.fromMessages([
['system', writingAssistantPrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
llm,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
};
const handleWritingAssistant = (query: string, history: BaseMessage[]) => {
const handleWritingAssistant = (
query: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = new eventEmitter();
try {
const writingAssistantChain = createWritingAssistantChain(llm);
const stream = writingAssistantChain.streamEvents(
{
chat_history: history,
@@ -76,7 +81,7 @@ const handleWritingAssistant = (query: string, history: BaseMessage[]) => {
'error',
JSON.stringify({ data: 'An error has occurred please try again later' }),
);
console.error(err);
logger.error(`Error in writing assistant: ${err}`);
}
return emitter;

View File

@@ -9,28 +9,16 @@ import {
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { ChatOpenAI, OpenAI, OpenAIEmbeddings } from '@langchain/openai';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { Document } from '@langchain/core/documents';
import { searchSearxng } from '../core/searxng';
import { searchSearxng } from '../lib/searxng';
import type { StreamEvent } from '@langchain/core/tracers/log_stream';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import computeSimilarity from '../utils/computeSimilarity';
const chatLLM = new ChatOpenAI({
modelName: process.env.MODEL_NAME,
temperature: 0.7,
});
const llm = new OpenAI({
temperature: 0,
modelName: process.env.MODEL_NAME,
});
const embeddings = new OpenAIEmbeddings({
modelName: 'text-embedding-3-large',
});
import logger from '../utils/logger';
const basicYoutubeSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
@@ -56,7 +44,7 @@ Rephrased question:
const basicYoutubeSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Youtube', this means you will be searching for videos on the web using Youtube and providing information based on the video's transcript.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containg a brief description of the content of that page).
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
@@ -64,8 +52,8 @@ const basicYoutubeSearchResponsePrompt = `
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Aything inside the following \`context\` HTML block provided below is for your knowledge returned by Youtube and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by Youtube and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
{context}
@@ -109,118 +97,135 @@ const handleStream = async (
}
};
const processDocs = async (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
const rerankDocs = async ({
query,
docs,
}: {
query: string;
docs: Document[];
}) => {
if (docs.length === 0) {
return docs;
}
const docsWithContent = docs.filter(
(doc) => doc.pageContent && doc.pageContent.length > 0,
);
const docEmbeddings = await embeddings.embedDocuments(
docsWithContent.map((doc) => doc.pageContent),
);
const queryEmbedding = await embeddings.embedQuery(query);
const similarity = docEmbeddings.map((docEmbedding, i) => {
const sim = computeSimilarity(queryEmbedding, docEmbedding);
return {
index: i,
similarity: sim,
};
});
const sortedDocs = similarity
.sort((a, b) => b.similarity - a.similarity)
.slice(0, 15)
.filter((sim) => sim.similarity > 0.3)
.map((sim) => docsWithContent[sim.index]);
return sortedDocs;
};
type BasicChainInput = {
chat_history: BaseMessage[];
query: string;
};
const basicYoutubeSearchRetrieverChain = RunnableSequence.from([
PromptTemplate.fromTemplate(basicYoutubeSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
return { query: '', docs: [] };
const createBasicYoutubeSearchRetrieverChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
PromptTemplate.fromTemplate(basicYoutubeSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
return { query: '', docs: [] };
}
const res = await searchSearxng(input, {
language: 'en',
engines: ['youtube'],
});
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content ? result.content : result.title,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: input, docs: documents };
}),
]);
};
const createBasicYoutubeSearchAnsweringChain = (
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const basicYoutubeSearchRetrieverChain =
createBasicYoutubeSearchRetrieverChain(llm);
const processDocs = async (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
const rerankDocs = async ({
query,
docs,
}: {
query: string;
docs: Document[];
}) => {
if (docs.length === 0) {
return docs;
}
const res = await searchSearxng(input, {
language: 'en',
engines: ['youtube'],
});
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content ? result.content : result.title,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
const docsWithContent = docs.filter(
(doc) => doc.pageContent && doc.pageContent.length > 0,
);
return { query: input, docs: documents };
}),
]);
const [docEmbeddings, queryEmbedding] = await Promise.all([
embeddings.embedDocuments(docsWithContent.map((doc) => doc.pageContent)),
embeddings.embedQuery(query),
]);
const basicYoutubeSearchAnsweringChain = RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
basicYoutubeSearchRetrieverChain
.pipe(rerankDocs)
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
const similarity = docEmbeddings.map((docEmbedding, i) => {
const sim = computeSimilarity(queryEmbedding, docEmbedding);
return {
index: i,
similarity: sim,
};
});
const sortedDocs = similarity
.filter((sim) => sim.similarity > 0.3)
.sort((a, b) => b.similarity - a.similarity)
.slice(0, 15)
.map((sim) => docsWithContent[sim.index]);
return sortedDocs;
};
return RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
basicYoutubeSearchRetrieverChain
.pipe(rerankDocs)
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicYoutubeSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicYoutubeSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
chatLLM,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
llm,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
};
const basicYoutubeSearch = (query: string, history: BaseMessage[]) => {
const basicYoutubeSearch = (
query: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = new eventEmitter();
try {
const basicYoutubeSearchAnsweringChain =
createBasicYoutubeSearchAnsweringChain(llm, embeddings);
const stream = basicYoutubeSearchAnsweringChain.streamEvents(
{
chat_history: history,
@@ -237,14 +242,19 @@ const basicYoutubeSearch = (query: string, history: BaseMessage[]) => {
'error',
JSON.stringify({ data: 'An error has occurred please try again later' }),
);
console.error(err);
logger.error(`Error in youtube search: ${err}`);
}
return emitter;
};
const handleYoutubeSearch = (message: string, history: BaseMessage[]) => {
const emitter = basicYoutubeSearch(message, history);
const handleYoutubeSearch = (
message: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = basicYoutubeSearch(message, history, llm, embeddings);
return emitter;
};

View File

@@ -3,6 +3,10 @@ import express from 'express';
import cors from 'cors';
import http from 'http';
import routes from './routes';
import { getPort } from './config';
import logger from './utils/logger';
const port = getPort();
const app = express();
const server = http.createServer(app);
@@ -19,8 +23,16 @@ app.get('/api', (_, res) => {
res.status(200).json({ status: 'ok' });
});
server.listen(process.env.PORT!, () => {
console.log(`API server started on port ${process.env.PORT}`);
server.listen(port, () => {
logger.info(`Server is running on port ${port}`);
});
startWebSocketServer(server);
process.on('uncaughtException', (err, origin) => {
logger.error(`Uncaught Exception at ${origin}: ${err}`);
});
process.on('unhandledRejection', (reason, promise) => {
logger.error(`Unhandled Rejection at: ${promise}, reason: ${reason}`);
});

85
src/config.ts Normal file
View File

@@ -0,0 +1,85 @@
import fs from 'fs';
import path from 'path';
import toml from '@iarna/toml';
const configFileName = 'config.toml';
interface Config {
GENERAL: {
PORT: number;
SIMILARITY_MEASURE: string;
CONFIG_PASSWORD: string;
DISCOVER_ENABLED: boolean;
LIBRARY_ENABLED: boolean;
COPILOT_ENABLED: boolean;
};
API_KEYS: {
OPENAI: string;
GROQ: string;
ANTHROPIC: string;
};
API_ENDPOINTS: {
SEARXNG: string;
OLLAMA: string;
};
}
type RecursivePartial<T> = {
[P in keyof T]?: RecursivePartial<T[P]>;
};
const loadConfig = () =>
toml.parse(
fs.readFileSync(path.join(__dirname, `../${configFileName}`), 'utf-8'),
) as any as Config;
export const getPort = () => loadConfig().GENERAL.PORT;
export const getSimilarityMeasure = () =>
loadConfig().GENERAL.SIMILARITY_MEASURE;
export const getConfigPassword = () => loadConfig().GENERAL.CONFIG_PASSWORD;
export const isDiscoverEnabled = () => loadConfig().GENERAL.DISCOVER_ENABLED;
export const isLibraryEnabled = () => loadConfig().GENERAL.LIBRARY_ENABLED;
export const isCopilotEnabled = () => loadConfig().GENERAL.COPILOT_ENABLED;
export const getOpenaiApiKey = () => loadConfig().API_KEYS.OPENAI;
export const getGroqApiKey = () => loadConfig().API_KEYS.GROQ;
export const getAnthropicApiKey = () => loadConfig().API_KEYS.ANTHROPIC;
export const getSearxngApiEndpoint = () => loadConfig().API_ENDPOINTS.SEARXNG;
export const getOllamaApiEndpoint = () => loadConfig().API_ENDPOINTS.OLLAMA;
export const updateConfig = (config: RecursivePartial<Config>) => {
const currentConfig = loadConfig();
for (const key in currentConfig) {
if (!config[key]) config[key] = {};
if (typeof currentConfig[key] === 'object' && currentConfig[key] !== null) {
for (const nestedKey in currentConfig[key]) {
if (
typeof config[key][nestedKey] !== 'boolean' &&
!config[key][nestedKey] &&
currentConfig[key][nestedKey] &&
config[key][nestedKey] !== ''
) {
config[key][nestedKey] = currentConfig[key][nestedKey];
}
}
} else if (currentConfig[key] && config[key] !== '') {
config[key] = currentConfig[key];
}
}
fs.writeFileSync(
path.join(__dirname, `../${configFileName}`),
toml.stringify(config),
);
};

View File

@@ -1,69 +0,0 @@
import { z } from 'zod';
import { OpenAI } from '@langchain/openai';
import { RunnableSequence } from '@langchain/core/runnables';
import { StructuredOutputParser } from 'langchain/output_parsers';
import { PromptTemplate } from '@langchain/core/prompts';
const availableAgents = [
{
name: 'webSearch',
description:
'It is expert is searching the web for information and answer user queries',
},
/* {
name: 'academicSearch',
description:
'It is expert is searching the academic databases for information and answer user queries. It is particularly good at finding research papers and articles on topics like science, engineering, and technology. Use this instead of wolframAlphaSearch if the user query is not mathematical or scientific in nature',
},
{
name: 'youtubeSearch',
description:
'This model is expert at finding videos on youtube based on user queries',
},
{
name: 'wolframAlphaSearch',
description:
'This model is expert at finding answers to mathematical and scientific questions based on user queries.',
},
{
name: 'redditSearch',
description:
'This model is expert at finding posts and discussions on reddit based on user queries',
},
{
name: 'writingAssistant',
description:
'If there is no need for searching, this model is expert at generating text based on user queries',
}, */
];
const parser = StructuredOutputParser.fromZodSchema(
z.object({
agent: z.string().describe('The name of the selected agent'),
}),
);
const prompt = `
You are an AI model who is expert at finding suitable agents for user queries. The available agents are:
${availableAgents.map((agent) => `- ${agent.name}: ${agent.description}`).join('\n')}
Your task is to find the most suitable agent for the following query: {query}
{format_instructions}
`;
const chain = RunnableSequence.from([
PromptTemplate.fromTemplate(prompt),
new OpenAI({ temperature: 0 }),
parser,
]);
const pickSuitableAgent = async (query: string) => {
const res = await chain.invoke({
query,
format_instructions: parser.getFormatInstructions(),
});
return res.agent;
};
export default pickSuitableAgent;

10
src/db/index.ts Normal file
View File

@@ -0,0 +1,10 @@
import { drizzle } from 'drizzle-orm/better-sqlite3';
import Database from 'better-sqlite3';
import * as schema from './schema';
const sqlite = new Database('data/db.sqlite');
const db = drizzle(sqlite, {
schema: schema,
});
export default db;

19
src/db/schema.ts Normal file
View File

@@ -0,0 +1,19 @@
import { text, integer, sqliteTable } from 'drizzle-orm/sqlite-core';
export const messages = sqliteTable('messages', {
id: integer('id').primaryKey(),
content: text('content').notNull(),
chatId: text('chatId').notNull(),
messageId: text('messageId').notNull(),
role: text('type', { enum: ['assistant', 'user'] }),
metadata: text('metadata', {
mode: 'json',
}),
});
export const chats = sqliteTable('chats', {
id: text('id').primaryKey(),
title: text('title').notNull(),
createdAt: text('createdAt').notNull(),
focusMode: text('focusMode').notNull(),
});

View File

@@ -0,0 +1,82 @@
import { Embeddings, type EmbeddingsParams } from '@langchain/core/embeddings';
import { chunkArray } from '@langchain/core/utils/chunk_array';
export interface HuggingFaceTransformersEmbeddingsParams
extends EmbeddingsParams {
modelName: string;
model: string;
timeout?: number;
batchSize?: number;
stripNewLines?: boolean;
}
export class HuggingFaceTransformersEmbeddings
extends Embeddings
implements HuggingFaceTransformersEmbeddingsParams
{
modelName = 'Xenova/all-MiniLM-L6-v2';
model = 'Xenova/all-MiniLM-L6-v2';
batchSize = 512;
stripNewLines = true;
timeout?: number;
private pipelinePromise: Promise<any>;
constructor(fields?: Partial<HuggingFaceTransformersEmbeddingsParams>) {
super(fields ?? {});
this.modelName = fields?.model ?? fields?.modelName ?? this.model;
this.model = this.modelName;
this.stripNewLines = fields?.stripNewLines ?? this.stripNewLines;
this.timeout = fields?.timeout;
}
async embedDocuments(texts: string[]): Promise<number[][]> {
const batches = chunkArray(
this.stripNewLines ? texts.map((t) => t.replace(/\n/g, ' ')) : texts,
this.batchSize,
);
const batchRequests = batches.map((batch) => this.runEmbedding(batch));
const batchResponses = await Promise.all(batchRequests);
const embeddings: number[][] = [];
for (let i = 0; i < batchResponses.length; i += 1) {
const batchResponse = batchResponses[i];
for (let j = 0; j < batchResponse.length; j += 1) {
embeddings.push(batchResponse[j]);
}
}
return embeddings;
}
async embedQuery(text: string): Promise<number[]> {
const data = await this.runEmbedding([
this.stripNewLines ? text.replace(/\n/g, ' ') : text,
]);
return data[0];
}
private async runEmbedding(texts: string[]) {
const { pipeline } = await import('@xenova/transformers');
const pipe = await (this.pipelinePromise ??= pipeline(
'feature-extraction',
this.model,
));
return this.caller.call(async () => {
const output = await pipe(texts, { pooling: 'mean', normalize: true });
return output.tolist();
});
}
}

83
src/lib/linkDocument.ts Normal file
View File

@@ -0,0 +1,83 @@
import axios from 'axios';
import { htmlToText } from 'html-to-text';
import { RecursiveCharacterTextSplitter } from 'langchain/text_splitter';
import { Document } from '@langchain/core/documents';
import pdfParse from 'pdf-parse';
export const getDocumentsFromLinks = async ({ links }: { links: string[] }) => {
const splitter = new RecursiveCharacterTextSplitter();
let docs: Document[] = [];
await Promise.all(
links.map(async (link) => {
link =
link.startsWith('http://') || link.startsWith('https://')
? link
: `https://${link}`;
const res = await axios.get(link, {
responseType: 'arraybuffer',
});
const isPdf = res.headers['content-type'] === 'application/pdf';
if (isPdf) {
const pdfText = await pdfParse(res.data);
const parsedText = pdfText.text
.replace(/(\r\n|\n|\r)/gm, ' ')
.replace(/\s+/g, ' ')
.trim();
const splittedText = await splitter.splitText(parsedText);
const title = 'PDF Document';
const linkDocs = splittedText.map((text) => {
return new Document({
pageContent: text,
metadata: {
title: title,
url: link,
},
});
});
docs.push(...linkDocs);
return;
}
const parsedText = htmlToText(res.data.toString('utf8'), {
selectors: [
{
selector: 'a',
options: {
ignoreHref: true,
},
},
],
})
.replace(/(\r\n|\n|\r)/gm, ' ')
.replace(/\s+/g, ' ')
.trim();
const splittedText = await splitter.splitText(parsedText);
const title = res.data
.toString('utf8')
.match(/<title>(.*?)<\/title>/)?.[1];
const linkDocs = splittedText.map((text) => {
return new Document({
pageContent: text,
metadata: {
title: title || link,
url: link,
},
});
});
docs.push(...linkDocs);
}),
);
return docs;
};

View File

@@ -0,0 +1,46 @@
import { BaseOutputParser } from '@langchain/core/output_parsers';
interface LineOutputParserArgs {
key?: string;
}
class LineOutputParser extends BaseOutputParser<string> {
private key = 'questions';
constructor(args?: LineOutputParserArgs) {
super();
this.key = args.key ?? this.key;
}
static lc_name() {
return 'LineOutputParser';
}
lc_namespace = ['langchain', 'output_parsers', 'line_output_parser'];
async parse(text: string): Promise<string> {
const regex = /^(\s*(-|\*|\d+\.\s|\d+\)\s|\u2022)\s*)+/;
const startKeyIndex = text.indexOf(`<${this.key}>`);
const endKeyIndex = text.indexOf(`</${this.key}>`);
if (startKeyIndex === -1 || endKeyIndex === -1) {
return '';
}
const questionsStartIndex =
startKeyIndex === -1 ? 0 : startKeyIndex + `<${this.key}>`.length;
const questionsEndIndex = endKeyIndex === -1 ? text.length : endKeyIndex;
const line = text
.slice(questionsStartIndex, questionsEndIndex)
.trim()
.replace(regex, '');
return line;
}
getFormatInstructions(): string {
throw new Error('Not implemented.');
}
}
export default LineOutputParser;

View File

@@ -0,0 +1,48 @@
import { BaseOutputParser } from '@langchain/core/output_parsers';
interface LineListOutputParserArgs {
key?: string;
}
class LineListOutputParser extends BaseOutputParser<string[]> {
private key = 'questions';
constructor(args?: LineListOutputParserArgs) {
super();
this.key = args.key ?? this.key;
}
static lc_name() {
return 'LineListOutputParser';
}
lc_namespace = ['langchain', 'output_parsers', 'line_list_output_parser'];
async parse(text: string): Promise<string[]> {
const regex = /^(\s*(-|\*|\d+\.\s|\d+\)\s|\u2022)\s*)+/;
const startKeyIndex = text.indexOf(`<${this.key}>`);
const endKeyIndex = text.indexOf(`</${this.key}>`);
if (startKeyIndex === -1 || endKeyIndex === -1) {
return [];
}
const questionsStartIndex =
startKeyIndex === -1 ? 0 : startKeyIndex + `<${this.key}>`.length;
const questionsEndIndex = endKeyIndex === -1 ? text.length : endKeyIndex;
const lines = text
.slice(questionsStartIndex, questionsEndIndex)
.trim()
.split('\n')
.filter((line) => line.trim() !== '')
.map((line) => line.replace(regex, ''));
return lines;
}
getFormatInstructions(): string {
throw new Error('Not implemented.');
}
}
export default LineListOutputParser;

View File

@@ -0,0 +1,39 @@
import { ChatAnthropic } from '@langchain/anthropic';
import { getAnthropicApiKey } from '../../config';
import logger from '../../utils/logger';
export const loadAnthropicChatModels = async () => {
const anthropicApiKey = getAnthropicApiKey();
if (!anthropicApiKey) return {};
try {
const chatModels = {
'Claude 3.5 Sonnet': new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-5-sonnet-20240620',
}),
'Claude 3 Opus': new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-opus-20240229',
}),
'Claude 3 Sonnet': new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-sonnet-20240229',
}),
'Claude 3 Haiku': new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-haiku-20240307',
}),
};
return chatModels;
} catch (err) {
logger.error(`Error loading Anthropic models: ${err}`);
return {};
}
};

89
src/lib/providers/groq.ts Normal file
View File

@@ -0,0 +1,89 @@
import { ChatOpenAI } from '@langchain/openai';
import { getGroqApiKey } from '../../config';
import logger from '../../utils/logger';
export const loadGroqChatModels = async () => {
const groqApiKey = getGroqApiKey();
if (!groqApiKey) return {};
try {
const chatModels = {
'Llama 3.1 70B': new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.1-70b-versatile',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
'Llama 3.1 8B': new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.1-8b-instant',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
'LLaMA3 8b': new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama3-8b-8192',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
'LLaMA3 70b': new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama3-70b-8192',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
'Mixtral 8x7b': new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'mixtral-8x7b-32768',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
'Gemma 7b': new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'gemma-7b-it',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
'Gemma2 9b': new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'gemma2-9b-it',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
};
return chatModels;
} catch (err) {
logger.error(`Error loading Groq models: ${err}`);
return {};
}
};

View File

@@ -0,0 +1,46 @@
import { loadGroqChatModels } from './groq';
import { loadOllamaChatModels, loadOllamaEmbeddingsModels } from './ollama';
import { loadOpenAIChatModels, loadOpenAIEmbeddingsModels } from './openai';
import { loadAnthropicChatModels } from './anthropic';
import { loadTransformersEmbeddingsModels } from './transformers';
const chatModelProviders = {
openai: loadOpenAIChatModels,
groq: loadGroqChatModels,
ollama: loadOllamaChatModels,
anthropic: loadAnthropicChatModels,
};
const embeddingModelProviders = {
openai: loadOpenAIEmbeddingsModels,
local: loadTransformersEmbeddingsModels,
ollama: loadOllamaEmbeddingsModels,
};
export const getAvailableChatModelProviders = async () => {
const models = {};
for (const provider in chatModelProviders) {
const providerModels = await chatModelProviders[provider]();
if (Object.keys(providerModels).length > 0) {
models[provider] = providerModels;
}
}
models['custom_openai'] = {};
return models;
};
export const getAvailableEmbeddingModelProviders = async () => {
const models = {};
for (const provider in embeddingModelProviders) {
const providerModels = await embeddingModelProviders[provider]();
if (Object.keys(providerModels).length > 0) {
models[provider] = providerModels;
}
}
return models;
};

View File

@@ -0,0 +1,63 @@
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
import { getOllamaApiEndpoint } from '../../config';
import logger from '../../utils/logger';
import { ChatOllama } from '@langchain/community/chat_models/ollama';
export const loadOllamaChatModels = async () => {
const ollamaEndpoint = getOllamaApiEndpoint();
if (!ollamaEndpoint) return {};
try {
const response = await fetch(`${ollamaEndpoint}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
const { models: ollamaModels } = (await response.json()) as any;
const chatModels = ollamaModels.reduce((acc, model) => {
acc[model.model] = new ChatOllama({
baseUrl: ollamaEndpoint,
model: model.model,
temperature: 0.7,
});
return acc;
}, {});
return chatModels;
} catch (err) {
logger.error(`Error loading Ollama models: ${err}`);
return {};
}
};
export const loadOllamaEmbeddingsModels = async () => {
const ollamaEndpoint = getOllamaApiEndpoint();
if (!ollamaEndpoint) return {};
try {
const response = await fetch(`${ollamaEndpoint}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
const { models: ollamaModels } = (await response.json()) as any;
const embeddingsModels = ollamaModels.reduce((acc, model) => {
acc[model.model] = new OllamaEmbeddings({
baseUrl: ollamaEndpoint,
model: model.model,
});
return acc;
}, {});
return embeddingsModels;
} catch (err) {
logger.error(`Error loading Ollama embeddings model: ${err}`);
return {};
}
};

View File

@@ -0,0 +1,68 @@
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
import { getOpenaiApiKey } from '../../config';
import logger from '../../utils/logger';
export const loadOpenAIChatModels = async () => {
const openAIApiKey = getOpenaiApiKey();
if (!openAIApiKey) return {};
try {
const chatModels = {
'GPT-3.5 turbo': new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-3.5-turbo',
temperature: 0.7,
}),
'GPT-4': new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4',
temperature: 0.7,
}),
'GPT-4 turbo': new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4-turbo',
temperature: 0.7,
}),
'GPT-4 omni': new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4o',
temperature: 0.7,
}),
'GPT-4 omni mini': new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4o-mini',
temperature: 0.7,
}),
};
return chatModels;
} catch (err) {
logger.error(`Error loading OpenAI models: ${err}`);
return {};
}
};
export const loadOpenAIEmbeddingsModels = async () => {
const openAIApiKey = getOpenaiApiKey();
if (!openAIApiKey) return {};
try {
const embeddingModels = {
'Text embedding 3 small': new OpenAIEmbeddings({
openAIApiKey,
modelName: 'text-embedding-3-small',
}),
'Text embedding 3 large': new OpenAIEmbeddings({
openAIApiKey,
modelName: 'text-embedding-3-large',
}),
};
return embeddingModels;
} catch (err) {
logger.error(`Error loading OpenAI embeddings model: ${err}`);
return {};
}
};

View File

@@ -0,0 +1,23 @@
import logger from '../../utils/logger';
import { HuggingFaceTransformersEmbeddings } from '../huggingfaceTransformer';
export const loadTransformersEmbeddingsModels = async () => {
try {
const embeddingModels = {
'BGE Small': new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/bge-small-en-v1.5',
}),
'GTE Small': new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/gte-small',
}),
'Bert Multilingual': new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/bert-base-multilingual-uncased',
}),
};
return embeddingModels;
} catch (err) {
logger.error(`Error loading Transformers embeddings model: ${err}`);
return {};
}
};

View File

@@ -1,4 +1,5 @@
import axios from 'axios';
import { getSearxngApiEndpoint } from '../config';
interface SearxngSearchOptions {
categories?: string[];
@@ -12,15 +13,19 @@ interface SearxngSearchResult {
url: string;
img_src?: string;
thumbnail_src?: string;
thumbnail?: string;
content?: string;
author?: string;
iframe_src?: string;
}
export const searchSearxng = async (
query: string,
opts?: SearxngSearchOptions,
) => {
const url = new URL(`${process.env.SEARXNG_API_URL}/search?format=json`);
const searxngURL = getSearxngApiEndpoint();
const url = new URL(`${searxngURL}/search?format=json`);
url.searchParams.append('q', query);
if (opts) {

66
src/routes/chats.ts Normal file
View File

@@ -0,0 +1,66 @@
import express from 'express';
import logger from '../utils/logger';
import db from '../db/index';
import { eq } from 'drizzle-orm';
import { chats, messages } from '../db/schema';
const router = express.Router();
router.get('/', async (_, res) => {
try {
let chats = await db.query.chats.findMany();
chats = chats.reverse();
return res.status(200).json({ chats: chats });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error in getting chats: ${err.message}`);
}
});
router.get('/:id', async (req, res) => {
try {
const chatExists = await db.query.chats.findFirst({
where: eq(chats.id, req.params.id),
});
if (!chatExists) {
return res.status(404).json({ message: 'Chat not found' });
}
const chatMessages = await db.query.messages.findMany({
where: eq(messages.chatId, req.params.id),
});
return res.status(200).json({ chat: chatExists, messages: chatMessages });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error in getting chat: ${err.message}`);
}
});
router.delete(`/:id`, async (req, res) => {
try {
const chatExists = await db.query.chats.findFirst({
where: eq(chats.id, req.params.id),
});
if (!chatExists) {
return res.status(404).json({ message: 'Chat not found' });
}
await db.delete(chats).where(eq(chats.id, req.params.id)).execute();
await db
.delete(messages)
.where(eq(messages.chatId, req.params.id))
.execute();
return res.status(200).json({ message: 'Chat deleted successfully' });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error in deleting chat: ${err.message}`);
}
});
export default router;

104
src/routes/config.ts Normal file
View File

@@ -0,0 +1,104 @@
import express from 'express';
import {
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '../lib/providers';
import {
getGroqApiKey,
getOllamaApiEndpoint,
getAnthropicApiKey,
getOpenaiApiKey,
updateConfig,
getConfigPassword,
isLibraryEnabled,
isCopilotEnabled,
isDiscoverEnabled,
} from '../config';
const router = express.Router();
router.get('/', async (req, res) => {
const authHeader = req.headers['authorization']?.split(' ')[1];
const password = getConfigPassword();
if (authHeader !== password) {
res.status(401).json({ message: 'Unauthorized' });
return;
}
const config = {};
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
config['chatModelProviders'] = {};
config['embeddingModelProviders'] = {};
for (const provider in chatModelProviders) {
config['chatModelProviders'][provider] = Object.keys(
chatModelProviders[provider],
);
}
for (const provider in embeddingModelProviders) {
config['embeddingModelProviders'][provider] = Object.keys(
embeddingModelProviders[provider],
);
}
config['openaiApiKey'] = getOpenaiApiKey();
config['ollamaApiUrl'] = getOllamaApiEndpoint();
config['anthropicApiKey'] = getAnthropicApiKey();
config['groqApiKey'] = getGroqApiKey();
config['isLibraryEnabled'] = isLibraryEnabled();
config['isCopilotEnabled'] = isCopilotEnabled();
config['isDiscoverEnabled'] = isDiscoverEnabled();
res.status(200).json(config);
});
router.post('/', async (req, res) => {
const authHeader = req.headers['authorization']?.split(' ')[1];
const password = getConfigPassword();
if (authHeader !== password) {
res.status(401).json({ message: 'Unauthorized' });
return;
}
const config = req.body;
const updatedConfig = {
GENERAL: {
DISCOVER_ENABLED: config.isDiscoverEnabled,
LIBRARY_ENABLED: config.isLibraryEnabled,
COPILOT_ENABLED: config.isCopilotEnabled,
},
API_KEYS: {
OPENAI: config.openaiApiKey,
GROQ: config.groqApiKey,
ANTHROPIC: config.anthropicApiKey,
},
API_ENDPOINTS: {
OLLAMA: config.ollamaApiUrl,
},
};
updateConfig(updatedConfig);
res.status(200).json({ message: 'Config updated' });
});
router.get('/preferences', (_, res) => {
const preferences = {
isLibraryEnabled: isLibraryEnabled(),
isCopilotEnabled: isCopilotEnabled(),
isDiscoverEnabled: isDiscoverEnabled(),
};
res.status(200).json(preferences);
});
export default router;

View File

@@ -1,21 +1,45 @@
import express from 'express';
import imageSearchChain from '../agents/imageSearchAgent';
import handleImageSearch from '../agents/imageSearchAgent';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { getAvailableChatModelProviders } from '../lib/providers';
import { HumanMessage, AIMessage } from '@langchain/core/messages';
import logger from '../utils/logger';
const router = express.Router();
router.post('/', async (req, res) => {
try {
const { query, chat_history } = req.body;
let { query, chat_history, chat_model_provider, chat_model } = req.body;
const images = await imageSearchChain.invoke({
query,
chat_history,
chat_history = chat_history.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
return new AIMessage(msg.content);
}
});
const chatModels = await getAvailableChatModelProviders();
const provider = chat_model_provider ?? Object.keys(chatModels)[0];
const chatModel = chat_model ?? Object.keys(chatModels[provider])[0];
let llm: BaseChatModel | undefined;
if (chatModels[provider] && chatModels[provider][chatModel]) {
llm = chatModels[provider][chatModel] as BaseChatModel | undefined;
}
if (!llm) {
res.status(500).json({ message: 'Invalid LLM model selected' });
return;
}
const images = await handleImageSearch({ query, chat_history }, llm);
res.status(200).json({ images });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
console.log(err.message);
logger.error(`Error in image search: ${err.message}`);
}
});

View File

@@ -1,8 +1,18 @@
import express from 'express';
import imagesRouter from './images';
import videosRouter from './videos';
import configRouter from './config';
import modelsRouter from './models';
import suggestionsRouter from './suggestions';
import chatsRouter from './chats';
const router = express.Router();
router.use('/images', imagesRouter);
router.use('/videos', videosRouter);
router.use('/config', configRouter);
router.use('/models', modelsRouter);
router.use('/suggestions', suggestionsRouter);
router.use('/chats', chatsRouter);
export default router;

47
src/routes/models.ts Normal file
View File

@@ -0,0 +1,47 @@
import express from 'express';
import logger from '../utils/logger';
import {
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '../lib/providers';
const router = express.Router();
router.get('/', async (req, res) => {
try {
const [chatModelProvidersRaw, embeddingModelProvidersRaw] =
await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
const chatModelProviders = {};
const chatModelProvidersKeys = Object.keys(chatModelProvidersRaw);
chatModelProvidersKeys.forEach((provider) => {
chatModelProviders[provider] = {};
const models = Object.keys(chatModelProvidersRaw[provider]);
models.forEach((model) => {
chatModelProviders[provider][model] = {};
});
});
const embeddingModelProviders = {};
const embeddingModelProvidersKeys = Object.keys(embeddingModelProvidersRaw);
embeddingModelProvidersKeys.forEach((provider) => {
embeddingModelProviders[provider] = {};
const models = Object.keys(embeddingModelProvidersRaw[provider]);
models.forEach((model) => {
embeddingModelProviders[provider][model] = {};
});
});
res.status(200).json({ chatModelProviders, embeddingModelProviders });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(err.message);
}
});
export default router;

46
src/routes/suggestions.ts Normal file
View File

@@ -0,0 +1,46 @@
import express from 'express';
import generateSuggestions from '../agents/suggestionGeneratorAgent';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { getAvailableChatModelProviders } from '../lib/providers';
import { HumanMessage, AIMessage } from '@langchain/core/messages';
import logger from '../utils/logger';
const router = express.Router();
router.post('/', async (req, res) => {
try {
let { chat_history, chat_model, chat_model_provider } = req.body;
chat_history = chat_history.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
return new AIMessage(msg.content);
}
});
const chatModels = await getAvailableChatModelProviders();
const provider = chat_model_provider ?? Object.keys(chatModels)[0];
const chatModel = chat_model ?? Object.keys(chatModels[provider])[0];
let llm: BaseChatModel | undefined;
if (chatModels[provider] && chatModels[provider][chatModel]) {
llm = chatModels[provider][chatModel] as BaseChatModel | undefined;
}
if (!llm) {
res.status(500).json({ message: 'Invalid LLM model selected' });
return;
}
const suggestions = await generateSuggestions({ chat_history }, llm);
res.status(200).json({ suggestions: suggestions });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error in generating suggestions: ${err.message}`);
}
});
export default router;

46
src/routes/videos.ts Normal file
View File

@@ -0,0 +1,46 @@
import express from 'express';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { getAvailableChatModelProviders } from '../lib/providers';
import { HumanMessage, AIMessage } from '@langchain/core/messages';
import logger from '../utils/logger';
import handleVideoSearch from '../agents/videoSearchAgent';
const router = express.Router();
router.post('/', async (req, res) => {
try {
let { query, chat_history, chat_model_provider, chat_model } = req.body;
chat_history = chat_history.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
return new AIMessage(msg.content);
}
});
const chatModels = await getAvailableChatModelProviders();
const provider = chat_model_provider ?? Object.keys(chatModels)[0];
const chatModel = chat_model ?? Object.keys(chatModels[provider])[0];
let llm: BaseChatModel | undefined;
if (chatModels[provider] && chatModels[provider][chatModel]) {
llm = chatModels[provider][chatModel] as BaseChatModel | undefined;
}
if (!llm) {
res.status(500).json({ message: 'Invalid LLM model selected' });
return;
}
const videos = await handleVideoSearch({ chat_history, query }, llm);
res.status(200).json({ videos });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error in video search: ${err.message}`);
}
});
export default router;

View File

@@ -1,10 +1,13 @@
import dot from 'compute-dot';
import cosineSimilarity from 'compute-cosine-similarity';
import { getSimilarityMeasure } from '../config';
const computeSimilarity = (x: number[], y: number[]): number => {
if (process.env.SIMILARITY_MEASURE === 'cosine') {
const similarityMeasure = getSimilarityMeasure();
if (similarityMeasure === 'cosine') {
return cosineSimilarity(x, y);
} else if (process.env.SIMILARITY_MEASURE === 'dot') {
} else if (similarityMeasure === 'dot') {
return dot(x, y);
}

22
src/utils/logger.ts Normal file
View File

@@ -0,0 +1,22 @@
import winston from 'winston';
const logger = winston.createLogger({
level: 'info',
transports: [
new winston.transports.Console({
format: winston.format.combine(
winston.format.colorize(),
winston.format.simple(),
),
}),
new winston.transports.File({
filename: 'app.log',
format: winston.format.combine(
winston.format.timestamp(),
winston.format.json(),
),
}),
],
});
export default logger;

View File

@@ -1,11 +1,100 @@
import { WebSocket } from 'ws';
import { handleMessage } from './messageHandler';
import {
getAvailableEmbeddingModelProviders,
getAvailableChatModelProviders,
} from '../lib/providers';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import type { IncomingMessage } from 'http';
import logger from '../utils/logger';
import { ChatOpenAI } from '@langchain/openai';
export const handleConnection = (ws: WebSocket) => {
ws.on(
'message',
async (message) => await handleMessage(message.toString(), ws),
);
export const handleConnection = async (
ws: WebSocket,
request: IncomingMessage,
) => {
try {
const searchParams = new URL(request.url, `http://${request.headers.host}`)
.searchParams;
ws.on('close', () => console.log('Connection closed'));
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
const chatModelProvider =
searchParams.get('chatModelProvider') ||
Object.keys(chatModelProviders)[0];
const chatModel =
searchParams.get('chatModel') ||
Object.keys(chatModelProviders[chatModelProvider])[0];
const embeddingModelProvider =
searchParams.get('embeddingModelProvider') ||
Object.keys(embeddingModelProviders)[0];
const embeddingModel =
searchParams.get('embeddingModel') ||
Object.keys(embeddingModelProviders[embeddingModelProvider])[0];
let llm: BaseChatModel | undefined;
let embeddings: Embeddings | undefined;
if (
chatModelProviders[chatModelProvider] &&
chatModelProviders[chatModelProvider][chatModel] &&
chatModelProvider != 'custom_openai'
) {
llm = chatModelProviders[chatModelProvider][chatModel] as unknown as
| BaseChatModel
| undefined;
} else if (chatModelProvider == 'custom_openai') {
llm = new ChatOpenAI({
modelName: chatModel,
openAIApiKey: searchParams.get('openAIApiKey'),
temperature: 0.7,
configuration: {
baseURL: searchParams.get('openAIBaseURL'),
},
}) as unknown as BaseChatModel;
}
if (
embeddingModelProviders[embeddingModelProvider] &&
embeddingModelProviders[embeddingModelProvider][embeddingModel]
) {
embeddings = embeddingModelProviders[embeddingModelProvider][
embeddingModel
] as Embeddings | undefined;
}
if (!llm || !embeddings) {
ws.send(
JSON.stringify({
type: 'error',
data: 'Invalid LLM or embeddings model selected, please refresh the page and try again.',
key: 'INVALID_MODEL_SELECTED',
}),
);
ws.close();
}
ws.on(
'message',
async (message) =>
await handleMessage(message.toString(), ws, llm, embeddings),
);
ws.on('close', () => logger.debug('Connection closed'));
} catch (err) {
ws.send(
JSON.stringify({
type: 'error',
data: 'Internal server error.',
key: 'INTERNAL_SERVER_ERROR',
}),
);
ws.close();
logger.error(err);
}
};

View File

@@ -6,11 +6,25 @@ import handleWritingAssistant from '../agents/writingAssistant';
import handleWolframAlphaSearch from '../agents/wolframAlphaSearchAgent';
import handleYoutubeSearch from '../agents/youtubeSearchAgent';
import handleRedditSearch from '../agents/redditSearchAgent';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import logger from '../utils/logger';
import db from '../db';
import { chats, messages } from '../db/schema';
import { eq } from 'drizzle-orm';
import crypto from 'crypto';
import { isLibraryEnabled } from '../config';
type Message = {
type: string;
messageId: string;
chatId: string;
content: string;
};
type WSMessage = {
message: Message;
copilot: boolean;
type: string;
focusMode: string;
history: Array<[string, string]>;
};
@@ -27,8 +41,14 @@ const searchHandlers = {
const handleEmitterEvents = (
emitter: EventEmitter,
ws: WebSocket,
id: string,
messageId: string,
chatId: string,
) => {
let recievedMessage = '';
let sources = [];
const libraryEnabled = isLibraryEnabled();
emitter.on('data', (data) => {
const parsedData = JSON.parse(data);
if (parsedData.type === 'response') {
@@ -36,39 +56,73 @@ const handleEmitterEvents = (
JSON.stringify({
type: 'message',
data: parsedData.data,
messageId: id,
messageId: messageId,
}),
);
recievedMessage += parsedData.data;
} else if (parsedData.type === 'sources') {
ws.send(
JSON.stringify({
type: 'sources',
data: parsedData.data,
messageId: id,
messageId: messageId,
}),
);
sources = parsedData.data;
}
});
emitter.on('end', () => {
ws.send(JSON.stringify({ type: 'messageEnd', messageId: id }));
ws.send(JSON.stringify({ type: 'messageEnd', messageId: messageId }));
if (libraryEnabled) {
db.insert(messages)
.values({
content: recievedMessage,
chatId: chatId,
messageId: messageId,
role: 'assistant',
metadata: JSON.stringify({
createdAt: new Date(),
...(sources && sources.length > 0 && { sources }),
}),
})
.execute();
}
});
emitter.on('error', (data) => {
const parsedData = JSON.parse(data);
ws.send(JSON.stringify({ type: 'error', data: parsedData.data }));
ws.send(
JSON.stringify({
type: 'error',
data: parsedData.data,
key: 'CHAIN_ERROR',
}),
);
});
};
export const handleMessage = async (message: string, ws: WebSocket) => {
export const handleMessage = async (
message: string,
ws: WebSocket,
llm: BaseChatModel,
embeddings: Embeddings,
) => {
try {
const parsedMessage = JSON.parse(message) as Message;
const id = Math.random().toString(36).substring(7);
const parsedWSMessage = JSON.parse(message) as WSMessage;
const parsedMessage = parsedWSMessage.message;
const id = crypto.randomBytes(7).toString('hex');
if (!parsedMessage.content)
return ws.send(
JSON.stringify({ type: 'error', data: 'Invalid message format' }),
JSON.stringify({
type: 'error',
data: 'Invalid message format',
key: 'INVALID_FORMAT',
}),
);
const history: BaseMessage[] = parsedMessage.history.map((msg) => {
const history: BaseMessage[] = parsedWSMessage.history.map((msg) => {
if (msg[0] === 'human') {
return new HumanMessage({
content: msg[1],
@@ -80,17 +134,69 @@ export const handleMessage = async (message: string, ws: WebSocket) => {
}
});
if (parsedMessage.type === 'message') {
const handler = searchHandlers[parsedMessage.focusMode];
if (parsedWSMessage.type === 'message') {
const handler = searchHandlers[parsedWSMessage.focusMode];
const libraryEnabled = isLibraryEnabled();
if (handler) {
const emitter = handler(parsedMessage.content, history);
handleEmitterEvents(emitter, ws, id);
const emitter = handler(
parsedMessage.content,
history,
llm,
embeddings,
);
handleEmitterEvents(emitter, ws, id, parsedMessage.chatId);
if (libraryEnabled) {
const chat = await db.query.chats.findFirst({
where: eq(chats.id, parsedMessage.chatId),
});
if (!chat) {
await db
.insert(chats)
.values({
id: parsedMessage.chatId,
title: parsedMessage.content,
createdAt: new Date().toString(),
focusMode: parsedWSMessage.focusMode,
})
.execute();
}
await db
.insert(messages)
.values({
content: parsedMessage.content,
chatId: parsedMessage.chatId,
messageId: id,
role: 'user',
metadata: JSON.stringify({
createdAt: new Date(),
}),
})
.execute();
}
} else {
ws.send(JSON.stringify({ type: 'error', data: 'Invalid focus mode' }));
ws.send(
JSON.stringify({
type: 'error',
data: 'Invalid focus mode',
key: 'INVALID_FOCUS_MODE',
}),
);
}
}
} catch (error) {
console.error('Failed to handle message', error);
ws.send(JSON.stringify({ type: 'error', data: 'Invalid message format' }));
} catch (err) {
ws.send(
JSON.stringify({
type: 'error',
data: 'Invalid message format',
key: 'INVALID_FORMAT',
}),
);
logger.error(`Failed to handle message: ${err}`);
}
};

View File

@@ -1,15 +1,16 @@
import { WebSocketServer } from 'ws';
import { handleConnection } from './connectionManager';
import http from 'http';
import { getPort } from '../config';
import logger from '../utils/logger';
export const initServer = (
server: http.Server<typeof http.IncomingMessage, typeof http.ServerResponse>,
) => {
const port = getPort();
const wss = new WebSocketServer({ server });
wss.on('connection', (ws) => {
handleConnection(ws);
});
wss.on('connection', handleConnection);
console.log(`WebSocket server started on port ${process.env.PORT}`);
logger.info(`WebSocket server started on port ${port}`);
};

View File

@@ -1,7 +1,8 @@
{
"compilerOptions": {
"lib": ["ESNext"],
"module": "commonjs",
"module": "Node16",
"moduleResolution": "Node16",
"target": "ESNext",
"outDir": "dist",
"sourceMap": false,

View File

@@ -0,0 +1,7 @@
import ChatWindow from '@/components/ChatWindow';
const Page = ({ params }: { params: { chatId: string } }) => {
return <ChatWindow id={params.chatId} />;
};
export default Page;

View File

@@ -1,5 +0,0 @@
const Page = () => {
return <div>page</div>;
};
export default Page;

View File

@@ -3,6 +3,8 @@ import { Montserrat } from 'next/font/google';
import './globals.css';
import { cn } from '@/lib/utils';
import Sidebar from '@/components/Sidebar';
import { Toaster } from 'sonner';
import ThemeProvider from '@/components/theme/Provider';
const montserrat = Montserrat({
weight: ['300', '400', '500', '700'],
@@ -23,9 +25,20 @@ export default function RootLayout({
children: React.ReactNode;
}>) {
return (
<html className="h-full" lang="en">
<html className="h-full" lang="en" suppressHydrationWarning>
<body className={cn('h-full', montserrat.className)}>
<Sidebar>{children}</Sidebar>
<ThemeProvider>
<Sidebar>{children}</Sidebar>
<Toaster
toastOptions={{
unstyled: true,
classNames: {
toast:
'bg-light-primary dark:bg-dark-secondary dark:text-white/70 text-black-70 rounded-lg p-4 flex flex-row items-center space-x-2',
},
}}
/>
</ThemeProvider>
</body>
</html>
);

36
ui/app/library/layout.tsx Normal file
View File

@@ -0,0 +1,36 @@
import { Metadata } from 'next';
import React from 'react';
export const metadata: Metadata = {
title: 'Library - Perplexica',
};
const Layout = async ({ children }: { children: React.ReactNode }) => {
const res = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/config/preferences`,
{
method: 'GET',
headers: {
'Content-Type': 'application/json',
},
},
);
const data = await res.json();
const { isLibraryEnabled } = data;
if (!isLibraryEnabled) {
return (
<div className="flex flex-row items-center justify-center min-h-screen w-full">
<p className="text-lg dark:text-white/70 text-black/70">
Library is disabled
</p>
</div>
);
}
return <div>{children}</div>;
};
export default Layout;

110
ui/app/library/page.tsx Normal file
View File

@@ -0,0 +1,110 @@
'use client';
import DeleteChat from '@/components/DeleteChat';
import { formatTimeDifference } from '@/lib/utils';
import { BookOpenText, ClockIcon } from 'lucide-react';
import Link from 'next/link';
import { useEffect, useState } from 'react';
export interface Chat {
id: string;
title: string;
createdAt: string;
focusMode: string;
}
const Page = () => {
const [chats, setChats] = useState<Chat[]>([]);
const [loading, setLoading] = useState(true);
useEffect(() => {
const fetchChats = async () => {
setLoading(true);
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/chats`, {
method: 'GET',
headers: {
'Content-Type': 'application/json',
},
});
const data = await res.json();
setChats(data.chats);
setLoading(false);
};
fetchChats();
}, []);
return loading ? (
<div className="flex flex-row items-center justify-center min-h-screen">
<svg
aria-hidden="true"
className="w-8 h-8 text-light-200 fill-light-secondary dark:text-[#202020] animate-spin dark:fill-[#ffffff3b]"
viewBox="0 0 100 101"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<path
d="M100 50.5908C100.003 78.2051 78.1951 100.003 50.5908 100C22.9765 99.9972 0.997224 78.018 1 50.4037C1.00281 22.7993 22.8108 0.997224 50.4251 1C78.0395 1.00281 100.018 22.8108 100 50.4251ZM9.08164 50.594C9.06312 73.3997 27.7909 92.1272 50.5966 92.1457C73.4023 92.1642 92.1298 73.4365 92.1483 50.6308C92.1669 27.8251 73.4392 9.0973 50.6335 9.07878C27.8278 9.06026 9.10003 27.787 9.08164 50.594Z"
fill="currentColor"
/>
<path
d="M93.9676 39.0409C96.393 38.4037 97.8624 35.9116 96.9801 33.5533C95.1945 28.8227 92.871 24.3692 90.0681 20.348C85.6237 14.1775 79.4473 9.36872 72.0454 6.45794C64.6435 3.54717 56.3134 2.65431 48.3133 3.89319C45.869 4.27179 44.3768 6.77534 45.014 9.20079C45.6512 11.6262 48.1343 13.0956 50.5786 12.717C56.5073 11.8281 62.5542 12.5399 68.0406 14.7911C73.527 17.0422 78.2187 20.7487 81.5841 25.4923C83.7976 28.5886 85.4467 32.059 86.4416 35.7474C87.1273 38.1189 89.5423 39.6781 91.9676 39.0409Z"
fill="currentFill"
/>
</svg>
</div>
) : (
<div>
<div className="fixed z-40 top-0 left-0 right-0 lg:pl-[104px] lg:pr-6 lg:px-8 px-4 py-4 lg:py-6 border-b border-light-200 dark:border-dark-200">
<div className="flex flex-row items-center space-x-2 max-w-screen-lg lg:mx-auto">
<BookOpenText />
<h2 className="text-black dark:text-white lg:text-3xl lg:font-medium">
Library
</h2>
</div>
</div>
{chats.length === 0 && (
<div className="flex flex-row items-center justify-center min-h-screen">
<p className="text-black/70 dark:text-white/70 text-sm">
No chats found.
</p>
</div>
)}
{chats.length > 0 && (
<div className="flex flex-col pt-16 lg:pt-24">
{chats.map((chat, i) => (
<div
className="flex flex-col space-y-4 border-b border-white-200 dark:border-dark-200 py-6 lg:mx-4"
key={i}
>
<Link
href={`/c/${chat.id}`}
className="text-black dark:text-white lg:text-xl font-medium truncate transition duration-200 hover:text-[#24A0ED] dark:hover:text-[#24A0ED] cursor-pointer"
>
{chat.title}
</Link>
<div className="flex flex-row items-center justify-between w-full">
<div className="flex flex-row items-center space-x-1 lg:space-x-1.5 text-black/70 dark:text-white/70">
<ClockIcon size={15} />
<p className="text-xs">
{formatTimeDifference(new Date(), chat.createdAt)} Ago
</p>
</div>
<DeleteChat
chatId={chat.id}
chats={chats}
setChats={setChats}
/>
</div>
</div>
))}
</div>
)}
</div>
);
};
export default Page;

View File

@@ -1,5 +1,6 @@
import ChatWindow from '@/components/ChatWindow';
import { Metadata } from 'next';
import { Suspense } from 'react';
export const metadata: Metadata = {
title: 'Chat - Perplexica',
@@ -9,7 +10,9 @@ export const metadata: Metadata = {
const Home = () => {
return (
<div>
<ChatWindow />
<Suspense>
<ChatWindow />
</Suspense>
</div>
);
};

View File

@@ -1,6 +1,6 @@
'use client';
import { useEffect, useRef, useState } from 'react';
import { Fragment, useEffect, useRef, useState } from 'react';
import MessageInput from './MessageInput';
import { Message } from './ChatWindow';
import MessageBox from './MessageBox';
@@ -53,7 +53,7 @@ const Chat = ({
const isLast = i === messages.length - 1;
return (
<>
<Fragment key={msg.messageId}>
<MessageBox
key={i}
message={msg}
@@ -63,11 +63,12 @@ const Chat = ({
dividerRef={isLast ? dividerRef : undefined}
isLast={isLast}
rewrite={rewrite}
sendMessage={sendMessage}
/>
{!isLast && msg.role === 'assistant' && (
<div className="h-px w-full bg-[#1C1C1C]" />
<div className="h-px w-full bg-light-secondary dark:bg-dark-secondary" />
)}
</>
</Fragment>
);
})}
{loading && !messageAppeared && <MessageBoxLoading />}
@@ -77,7 +78,7 @@ const Chat = ({
className="bottom-24 lg:bottom-10 fixed z-40"
style={{ width: dividerWidth }}
>
<MessageInput sendMessage={sendMessage} />
<MessageInput loading={loading} sendMessage={sendMessage} />
</div>
)}
</div>

View File

@@ -1,48 +1,328 @@
'use client';
import { useEffect, useState } from 'react';
import { useEffect, useRef, useState } from 'react';
import { Document } from '@langchain/core/documents';
import Navbar from './Navbar';
import Chat from './Chat';
import EmptyChat from './EmptyChat';
import crypto from 'crypto';
import { toast } from 'sonner';
import { useSearchParams } from 'next/navigation';
import { getSuggestions } from '@/lib/actions';
import Error from 'next/error';
export type Message = {
id: string;
messageId: string;
chatId: string;
createdAt: Date;
content: string;
role: 'user' | 'assistant';
suggestions?: string[];
sources?: Document[];
};
const useSocket = (url: string) => {
const useSocket = (
url: string,
setIsWSReady: (ready: boolean) => void,
setError: (error: boolean) => void,
) => {
const [ws, setWs] = useState<WebSocket | null>(null);
useEffect(() => {
if (!ws) {
const ws = new WebSocket(url);
ws.onopen = () => {
console.log('[DEBUG] open');
const connectWs = async () => {
let chatModel = localStorage.getItem('chatModel');
let chatModelProvider = localStorage.getItem('chatModelProvider');
let embeddingModel = localStorage.getItem('embeddingModel');
let embeddingModelProvider = localStorage.getItem(
'embeddingModelProvider',
);
const providers = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/models`,
{
headers: {
'Content-Type': 'application/json',
},
},
).then(async (res) => await res.json());
if (
!chatModel ||
!chatModelProvider ||
!embeddingModel ||
!embeddingModelProvider
) {
if (!chatModel || !chatModelProvider) {
const chatModelProviders = providers.chatModelProviders;
chatModelProvider = Object.keys(chatModelProviders)[0];
if (chatModelProvider === 'custom_openai') {
toast.error('Seems like you are using the custom OpenAI provider, please open the settings and configure the API key and base URL');
setError(true);
return;
} else {
chatModel = Object.keys(chatModelProviders[chatModelProvider])[0];
if (
!chatModelProviders ||
Object.keys(chatModelProviders).length === 0
)
return toast.error('No chat models available');
}
}
if (!embeddingModel || !embeddingModelProvider) {
const embeddingModelProviders = providers.embeddingModelProviders;
if (
!embeddingModelProviders ||
Object.keys(embeddingModelProviders).length === 0
)
return toast.error('No embedding models available');
embeddingModelProvider = Object.keys(embeddingModelProviders)[0];
embeddingModel = Object.keys(
embeddingModelProviders[embeddingModelProvider],
)[0];
}
localStorage.setItem('chatModel', chatModel!);
localStorage.setItem('chatModelProvider', chatModelProvider);
localStorage.setItem('embeddingModel', embeddingModel!);
localStorage.setItem(
'embeddingModelProvider',
embeddingModelProvider,
);
} else {
const chatModelProviders = providers.chatModelProviders;
const embeddingModelProviders = providers.embeddingModelProviders;
if (
Object.keys(chatModelProviders).length > 0 &&
!chatModelProviders[chatModelProvider]
) {
chatModelProvider = Object.keys(chatModelProviders)[0];
localStorage.setItem('chatModelProvider', chatModelProvider);
}
if (
chatModelProvider &&
chatModelProvider != 'custom_openai' &&
!chatModelProviders[chatModelProvider][chatModel]
) {
chatModel = Object.keys(chatModelProviders[chatModelProvider])[0];
localStorage.setItem('chatModel', chatModel);
}
if (
Object.keys(embeddingModelProviders).length > 0 &&
!embeddingModelProviders[embeddingModelProvider]
) {
embeddingModelProvider = Object.keys(embeddingModelProviders)[0];
localStorage.setItem(
'embeddingModelProvider',
embeddingModelProvider,
);
}
if (
embeddingModelProvider &&
!embeddingModelProviders[embeddingModelProvider][embeddingModel]
) {
embeddingModel = Object.keys(
embeddingModelProviders[embeddingModelProvider],
)[0];
localStorage.setItem('embeddingModel', embeddingModel);
}
}
const wsURL = new URL(url);
const searchParams = new URLSearchParams({});
searchParams.append('chatModel', chatModel!);
searchParams.append('chatModelProvider', chatModelProvider);
if (chatModelProvider === 'custom_openai') {
searchParams.append(
'openAIApiKey',
localStorage.getItem('openAIApiKey')!,
);
searchParams.append(
'openAIBaseURL',
localStorage.getItem('openAIBaseURL')!,
);
}
searchParams.append('embeddingModel', embeddingModel!);
searchParams.append('embeddingModelProvider', embeddingModelProvider);
wsURL.search = searchParams.toString();
const ws = new WebSocket(wsURL.toString());
const timeoutId = setTimeout(() => {
if (ws.readyState !== 1) {
toast.error(
'Failed to connect to the server. Please try again later.',
);
}
}, 10000);
ws.onopen = () => {
console.log('[DEBUG] open');
clearTimeout(timeoutId);
setIsWSReady(true);
};
ws.onerror = () => {
clearTimeout(timeoutId);
setError(true);
toast.error('WebSocket connection error.');
};
ws.onclose = () => {
clearTimeout(timeoutId);
setError(true);
console.log('[DEBUG] closed');
};
ws.addEventListener('message', (e) => {
const data = JSON.parse(e.data);
if (data.type === 'error') {
toast.error(data.data);
}
})
setWs(ws);
};
connectWs();
}
return () => {
ws?.close();
console.log('[DEBUG] closed');
if (ws?.readyState === 1) {
ws?.close();
console.log('[DEBUG] closed');
}
};
}, [ws, url]);
}, [ws, url, setIsWSReady, setError]);
return ws;
};
const ChatWindow = () => {
const ws = useSocket(process.env.NEXT_PUBLIC_WS_URL!);
const [chatHistory, setChatHistory] = useState<[string, string][]>([]);
const [messages, setMessages] = useState<Message[]>([]);
const loadMessages = async (
chatId: string,
setMessages: (messages: Message[]) => void,
setIsMessagesLoaded: (loaded: boolean) => void,
setChatHistory: (history: [string, string][]) => void,
setFocusMode: (mode: string) => void,
setNotFound: (notFound: boolean) => void,
) => {
const res = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/chats/${chatId}`,
{
method: 'GET',
headers: {
'Content-Type': 'application/json',
},
},
);
if (res.status === 404) {
setNotFound(true);
setIsMessagesLoaded(true);
return;
}
const data = await res.json();
const messages = data.messages.map((msg: any) => {
return {
...msg,
...JSON.parse(msg.metadata),
};
}) as Message[];
setMessages(messages);
const history = messages.map((msg) => {
return [msg.role, msg.content];
}) as [string, string][];
console.log('[DEBUG] messages loaded');
document.title = messages[0].content;
setChatHistory(history);
setFocusMode(data.chat.focusMode);
setIsMessagesLoaded(true);
};
const ChatWindow = ({ id }: { id?: string }) => {
const searchParams = useSearchParams();
const initialMessage = searchParams.get('q');
const [chatId, setChatId] = useState<string | undefined>(id);
const [newChatCreated, setNewChatCreated] = useState(false);
const [hasError, setHasError] = useState(false);
const [isReady, setIsReady] = useState(false);
const [isWSReady, setIsWSReady] = useState(false);
const ws = useSocket(
process.env.NEXT_PUBLIC_WS_URL!,
setIsWSReady,
setHasError,
);
const [loading, setLoading] = useState(false);
const [messageAppeared, setMessageAppeared] = useState(false);
const [chatHistory, setChatHistory] = useState<[string, string][]>([]);
const [messages, setMessages] = useState<Message[]>([]);
const [focusMode, setFocusMode] = useState('webSearch');
const [isMessagesLoaded, setIsMessagesLoaded] = useState(false);
const [notFound, setNotFound] = useState(false);
useEffect(() => {
if (
chatId &&
!newChatCreated &&
!isMessagesLoaded &&
messages.length === 0
) {
loadMessages(
chatId,
setMessages,
setIsMessagesLoaded,
setChatHistory,
setFocusMode,
setNotFound,
);
} else if (!chatId) {
setNewChatCreated(true);
setIsMessagesLoaded(true);
setChatId(crypto.randomBytes(20).toString('hex'));
}
// eslint-disable-next-line react-hooks/exhaustive-deps
}, []);
const messagesRef = useRef<Message[]>([]);
useEffect(() => {
messagesRef.current = messages;
}, [messages]);
useEffect(() => {
if (isMessagesLoaded && isWSReady) {
setIsReady(true);
}
}, [isMessagesLoaded, isWSReady]);
const sendMessage = async (message: string) => {
if (loading) return;
setLoading(true);
@@ -52,10 +332,15 @@ const ChatWindow = () => {
let recievedMessage = '';
let added = false;
const messageId = crypto.randomBytes(7).toString('hex');
ws?.send(
JSON.stringify({
type: 'message',
content: message,
message: {
chatId: chatId!,
content: message,
},
focusMode: focusMode,
history: [...chatHistory, ['human', message]],
}),
@@ -65,15 +350,22 @@ const ChatWindow = () => {
...prevMessages,
{
content: message,
id: Math.random().toString(36).substring(7),
messageId: messageId,
chatId: chatId!,
role: 'user',
createdAt: new Date(),
},
]);
const messageHandler = (e: MessageEvent) => {
const messageHandler = async (e: MessageEvent) => {
const data = JSON.parse(e.data);
if (data.type === 'error') {
toast.error(data.data);
setLoading(false);
return;
}
if (data.type === 'sources') {
sources = data.data;
if (!added) {
@@ -81,7 +373,8 @@ const ChatWindow = () => {
...prevMessages,
{
content: '',
id: data.messageId,
messageId: data.messageId,
chatId: chatId!,
role: 'assistant',
sources: sources,
createdAt: new Date(),
@@ -98,7 +391,8 @@ const ChatWindow = () => {
...prevMessages,
{
content: data.data,
id: data.messageId,
messageId: data.messageId,
chatId: chatId!,
role: 'assistant',
sources: sources,
createdAt: new Date(),
@@ -109,7 +403,7 @@ const ChatWindow = () => {
setMessages((prev) =>
prev.map((message) => {
if (message.id === data.messageId) {
if (message.messageId === data.messageId) {
return { ...message, content: message.content + data.data };
}
@@ -127,8 +421,28 @@ const ChatWindow = () => {
['human', message],
['assistant', recievedMessage],
]);
ws?.removeEventListener('message', messageHandler);
setLoading(false);
const lastMsg = messagesRef.current[messagesRef.current.length - 1];
if (
lastMsg.role === 'assistant' &&
lastMsg.sources &&
lastMsg.sources.length > 0 &&
!lastMsg.suggestions
) {
const suggestions = await getSuggestions(messagesRef.current);
setMessages((prev) =>
prev.map((msg) => {
if (msg.messageId === lastMsg.messageId) {
return { ...msg, suggestions: suggestions };
}
return msg;
}),
);
}
}
};
@@ -136,7 +450,7 @@ const ChatWindow = () => {
};
const rewrite = (messageId: string) => {
const index = messages.findIndex((msg) => msg.id === messageId);
const index = messages.findIndex((msg) => msg.messageId === messageId);
if (index === -1) return;
@@ -152,26 +466,66 @@ const ChatWindow = () => {
sendMessage(message.content);
};
return (
<div>
{messages.length > 0 ? (
<>
<Navbar messages={messages} />
<Chat
loading={loading}
messages={messages}
useEffect(() => {
if (isReady && initialMessage) {
sendMessage(initialMessage);
}
// eslint-disable-next-line react-hooks/exhaustive-deps
}, [isReady, initialMessage]);
if (hasError) {
return (
<div className="flex flex-col items-center justify-center min-h-screen">
<p className="dark:text-white/70 text-black/70 text-sm">
Failed to connect to the server. Please try again later.
</p>
</div>
);
}
return isReady ? (
notFound ? (
<Error statusCode={404} />
) : (
<div>
{messages.length > 0 ? (
<>
<Navbar messages={messages} />
<Chat
loading={loading}
messages={messages}
sendMessage={sendMessage}
messageAppeared={messageAppeared}
rewrite={rewrite}
/>
</>
) : (
<EmptyChat
sendMessage={sendMessage}
messageAppeared={messageAppeared}
rewrite={rewrite}
focusMode={focusMode}
setFocusMode={setFocusMode}
/>
</>
) : (
<EmptyChat
sendMessage={sendMessage}
focusMode={focusMode}
setFocusMode={setFocusMode}
)}
</div>
)
) : (
<div className="flex flex-row items-center justify-center min-h-screen">
<svg
aria-hidden="true"
className="w-8 h-8 text-light-200 fill-light-secondary dark:text-[#202020] animate-spin dark:fill-[#ffffff3b]"
viewBox="0 0 100 101"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<path
d="M100 50.5908C100.003 78.2051 78.1951 100.003 50.5908 100C22.9765 99.9972 0.997224 78.018 1 50.4037C1.00281 22.7993 22.8108 0.997224 50.4251 1C78.0395 1.00281 100.018 22.8108 100 50.4251ZM9.08164 50.594C9.06312 73.3997 27.7909 92.1272 50.5966 92.1457C73.4023 92.1642 92.1298 73.4365 92.1483 50.6308C92.1669 27.8251 73.4392 9.0973 50.6335 9.07878C27.8278 9.06026 9.10003 27.787 9.08164 50.594Z"
fill="currentColor"
/>
)}
<path
d="M93.9676 39.0409C96.393 38.4037 97.8624 35.9116 96.9801 33.5533C95.1945 28.8227 92.871 24.3692 90.0681 20.348C85.6237 14.1775 79.4473 9.36872 72.0454 6.45794C64.6435 3.54717 56.3134 2.65431 48.3133 3.89319C45.869 4.27179 44.3768 6.77534 45.014 9.20079C45.6512 11.6262 48.1343 13.0956 50.5786 12.717C56.5073 11.8281 62.5542 12.5399 68.0406 14.7911C73.527 17.0422 78.2187 20.7487 81.5841 25.4923C83.7976 28.5886 85.4467 32.059 86.4416 35.7474C87.1273 38.1189 89.5423 39.6781 91.9676 39.0409Z"
fill="currentFill"
/>
</svg>
</div>
);
};

View File

@@ -0,0 +1,114 @@
import { Delete, Trash } from 'lucide-react';
import { Dialog, Transition } from '@headlessui/react';
import { Fragment, useState } from 'react';
import { toast } from 'sonner';
import { Chat } from '@/app/library/page';
const DeleteChat = ({
chatId,
chats,
setChats,
}: {
chatId: string;
chats: Chat[];
setChats: (chats: Chat[]) => void;
}) => {
const [confirmationDialogOpen, setConfirmationDialogOpen] = useState(false);
const [loading, setLoading] = useState(false);
const handleDelete = async () => {
setLoading(true);
try {
const res = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/chats/${chatId}`,
{
method: 'DELETE',
headers: {
'Content-Type': 'application/json',
},
},
);
if (res.status != 200) {
throw new Error('Failed to delete chat');
}
const newChats = chats.filter((chat) => chat.id !== chatId);
setChats(newChats);
} catch (err: any) {
toast.error(err.message);
} finally {
setConfirmationDialogOpen(false);
setLoading(false);
}
};
return (
<>
<button
onClick={() => {
setConfirmationDialogOpen(true);
}}
className="bg-transparent text-red-400 hover:scale-105 transition duration-200"
>
<Trash size={17} />
</button>
<Transition appear show={confirmationDialogOpen} as={Fragment}>
<Dialog
as="div"
className="relative z-50"
onClose={() => {
if (!loading) {
setConfirmationDialogOpen(false);
}
}}
>
<Dialog.Backdrop className="fixed inset-0 bg-black/30" />
<div className="fixed inset-0 overflow-y-auto">
<div className="flex min-h-full items-center justify-center p-4 text-center">
<Transition.Child
as={Fragment}
enter="ease-out duration-200"
enterFrom="opacity-0 scale-95"
enterTo="opacity-100 scale-100"
leave="ease-in duration-100"
leaveFrom="opacity-100 scale-200"
leaveTo="opacity-0 scale-95"
>
<Dialog.Panel className="w-full max-w-md transform rounded-2xl bg-light-secondary dark:bg-dark-secondary border border-light-200 dark:border-dark-200 p-6 text-left align-middle shadow-xl transition-all">
<Dialog.Title className="text-lg font-medium leading-6 dark:text-white">
Delete Confirmation
</Dialog.Title>
<Dialog.Description className="text-sm dark:text-white/70 text-black/70">
Are you sure you want to delete this chat?
</Dialog.Description>
<div className="flex flex-row items-end justify-end space-x-4 mt-6">
<button
onClick={() => {
if (!loading) {
setConfirmationDialogOpen(false);
}
}}
className="text-black/50 dark:text-white/50 text-sm hover:text-black/70 hover:dark:text-white/70 transition duration-200"
>
Cancel
</button>
<button
onClick={handleDelete}
className="text-red-400 text-sm hover:text-red-500 transition duration200"
>
Delete
</button>
</div>
</Dialog.Panel>
</Transition.Child>
</div>
</div>
</Dialog>
</Transition>
</>
);
};
export default DeleteChat;

View File

@@ -10,15 +10,17 @@ const EmptyChat = ({
setFocusMode: (mode: string) => void;
}) => {
return (
<div className="flex flex-col items-center justify-center min-h-screen max-w-screen-sm mx-auto p-2 space-y-8">
<h2 className="text-white/70 text-3xl font-medium -mt-8">
Research begins here.
</h2>
<EmptyChatMessageInput
sendMessage={sendMessage}
focusMode={focusMode}
setFocusMode={setFocusMode}
/>
<div className="relative">
<div className="flex flex-col items-center justify-center min-h-screen max-w-screen-sm mx-auto p-2 space-y-8">
<h2 className="text-black/70 dark:text-white/70 text-3xl font-medium -mt-8">
Research begins here.
</h2>
<EmptyChatMessageInput
sendMessage={sendMessage}
focusMode={focusMode}
setFocusMode={setFocusMode}
/>
</div>
</div>
);
};

View File

@@ -1,7 +1,8 @@
import { ArrowRight } from 'lucide-react';
import { useState } from 'react';
import { useEffect, useRef, useState } from 'react';
import TextareaAutosize from 'react-textarea-autosize';
import { Attach, CopilotToggle, Focus } from './MessageInputActions';
import CopilotToggle from './MessageInputActions/Copilot';
import Focus from './MessageInputActions/Focus';
const EmptyChatMessageInput = ({
sendMessage,
@@ -15,6 +16,23 @@ const EmptyChatMessageInput = ({
const [copilotEnabled, setCopilotEnabled] = useState(false);
const [message, setMessage] = useState('');
const inputRef = useRef<HTMLTextAreaElement | null>(null);
const handleKeyDown = (e: KeyboardEvent) => {
if (e.key === '/') {
e.preventDefault();
inputRef.current?.focus();
}
};
useEffect(() => {
document.addEventListener('keydown', handleKeyDown);
return () => {
document.removeEventListener('keydown', handleKeyDown);
};
}, []);
return (
<form
onSubmit={(e) => {
@@ -31,12 +49,13 @@ const EmptyChatMessageInput = ({
}}
className="w-full"
>
<div className="flex flex-col bg-[#111111] px-5 pt-5 pb-2 rounded-lg w-full border border-[#1C1C1C]">
<div className="flex flex-col bg-light-secondary dark:bg-dark-secondary px-5 pt-5 pb-2 rounded-lg w-full border border-light-200 dark:border-dark-200">
<TextareaAutosize
ref={inputRef}
value={message}
onChange={(e) => setMessage(e.target.value)}
minRows={2}
className="bg-transparent placeholder:text-white/50 text-sm text-white resize-none focus:outline-none w-full max-h-24 lg:max-h-36 xl:max-h-48"
className="bg-transparent placeholder:text-black/50 dark:placeholder:text-white/50 text-sm text-black dark:text-white resize-none focus:outline-none w-full max-h-24 lg:max-h-36 xl:max-h-48"
placeholder="Ask anything..."
/>
<div className="flex flex-row items-center justify-between mt-4">
@@ -51,7 +70,7 @@ const EmptyChatMessageInput = ({
/>
<button
disabled={message.trim().length === 0}
className="bg-[#24A0ED] text-white disabled:text-white/50 hover:bg-opacity-85 transition duration-100 disabled:bg-[#ececec21] rounded-full p-2"
className="bg-[#24A0ED] text-white disabled:text-black/50 dark:disabled:text-white/50 disabled:bg-[#e0e0dc] dark:disabled:bg-[#ececec21] hover:bg-opacity-85 transition duration-100 rounded-full p-2"
>
<ArrowRight className="bg-background" size={17} />
</button>

View File

@@ -1,6 +1,6 @@
const Layout = ({ children }: { children: React.ReactNode }) => {
return (
<main className="lg:pl-20 bg-[#0A0A0A] min-h-screen">
<main className="lg:pl-20 bg-light-primary dark:bg-dark-primary min-h-screen">
<div className="max-w-screen-lg lg:mx-auto mx-4">{children}</div>
</main>
);

View File

@@ -19,7 +19,7 @@ const Copy = ({
setCopied(true);
setTimeout(() => setCopied(false), 1000);
}}
className="p-2 text-white/70 rounded-xl hover:bg-[#1c1c1c] transition duration-200 hover:text-white"
className="p-2 text-black/70 dark:text-white/70 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary transition duration-200 hover:text-black dark:hover:text-white"
>
{copied ? <Check size={18} /> : <ClipboardList size={18} />}
</button>

View File

@@ -10,9 +10,10 @@ const Rewrite = ({
return (
<button
onClick={() => rewrite(messageId)}
className="p-2 text-white/70 rounded-xl hover:bg-[#1c1c1c] transition duration-200 hover:text-white"
className="py-2 px-3 text-black/70 dark:text-white/70 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary transition duration-200 hover:text-black dark:hover:text-white flex flex-row items-center space-x-1"
>
<ArrowLeftRight size={18} />
<p className="text-xs font-medium">Rewrite</p>
</button>
);
};

View File

@@ -1,3 +1,5 @@
'use client';
/* eslint-disable @next/next/no-img-element */
import React, { MutableRefObject, useEffect, useState } from 'react';
import { Message } from './ChatWindow';
@@ -5,17 +7,18 @@ import { cn } from '@/lib/utils';
import {
BookCopy,
Disc3,
FilePen,
PlusIcon,
Share,
ThumbsDown,
VideoIcon,
Volume2,
StopCircle,
Layers3,
Plus,
} from 'lucide-react';
import Markdown from 'markdown-to-jsx';
import Copy from './MessageActions/Copy';
import Rewrite from './MessageActions/Rewrite';
import MessageSources from './MessageSources';
import SearchImages from './SearchImages';
import SearchVideos from './SearchVideos';
import { useSpeech } from 'react-text-to-speech';
const MessageBox = ({
message,
@@ -25,6 +28,7 @@ const MessageBox = ({
dividerRef,
isLast,
rewrite,
sendMessage,
}: {
message: Message;
messageIndex: number;
@@ -33,33 +37,39 @@ const MessageBox = ({
dividerRef?: MutableRefObject<HTMLDivElement | null>;
isLast: boolean;
rewrite: (messageId: string) => void;
sendMessage: (message: string) => void;
}) => {
const [parsedMessage, setParsedMessage] = useState(message.content);
const [speechMessage, setSpeechMessage] = useState(message.content);
useEffect(() => {
const regex = /\[(\d+)\]/g;
if (
message.role === 'assistant' &&
message?.sources &&
message.sources.length > 0
) {
const regex = /\[(\d+)\]/g;
return setParsedMessage(
message.content.replace(
regex,
(_, number) =>
`<a href="${message.sources?.[number - 1]?.metadata?.url}" target="_blank" className="bg-[#1C1C1C] px-1 rounded ml-1 no-underline text-xs text-white/70 relative">${number}</a>`,
`<a href="${message.sources?.[number - 1]?.metadata?.url}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${number}</a>`,
),
);
}
setSpeechMessage(message.content.replace(regex, ''));
setParsedMessage(message.content);
}, [message.content, message.sources, message.role]);
const { speechStatus, start, stop } = useSpeech({ text: speechMessage });
return (
<div>
{message.role === 'user' && (
<div className={cn('w-full', messageIndex === 0 ? 'pt-16' : 'pt-8')}>
<h2 className="text-white font-medium text-3xl lg:w-9/12">
<h2 className="text-black dark:text-white font-medium text-3xl lg:w-9/12">
{message.content}
</h2>
</div>
@@ -74,8 +84,10 @@ const MessageBox = ({
{message.sources && message.sources.length > 0 && (
<div className="flex flex-col space-y-2">
<div className="flex flex-row items-center space-x-2">
<BookCopy className="text-white" size={20} />
<h3 className="text-white font-medium text-xl">Sources</h3>
<BookCopy className="text-black dark:text-white" size={20} />
<h3 className="text-black dark:text-white font-medium text-xl">
Sources
</h3>
</div>
<MessageSources sources={message.sources} />
</div>
@@ -84,46 +96,102 @@ const MessageBox = ({
<div className="flex flex-row items-center space-x-2">
<Disc3
className={cn(
'text-white',
'text-black dark:text-white',
isLast && loading ? 'animate-spin' : 'animate-none',
)}
size={20}
/>
<h3 className="text-white font-medium text-xl">Answer</h3>
<h3 className="text-black dark:text-white font-medium text-xl">
Answer
</h3>
</div>
<Markdown className="prose max-w-none break-words prose-invert prose-p:leading-relaxed prose-pre:p-0 text-white text-sm md:text-base font-medium">
<Markdown
className={cn(
'prose dark:prose-invert prose-p:leading-relaxed prose-pre:p-0',
'max-w-none break-words text-black dark:text-white text-sm md:text-base font-medium',
)}
>
{parsedMessage}
</Markdown>
{!loading && (
<div className="flex flex-row items-center justify-between w-full text-white py-4 -mx-2">
{loading && isLast ? null : (
<div className="flex flex-row items-center justify-between w-full text-black dark:text-white py-4 -mx-2">
<div className="flex flex-row items-center space-x-1">
<button className="p-2 text-white/70 rounded-xl hover:bg-[#1c1c1c] transition duration-200 hover:text-white">
{/* <button className="p-2 text-black/70 dark:text-white/70 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary transition duration-200 hover:text-black text-black dark:hover:text-white">
<Share size={18} />
</button>
<Rewrite rewrite={rewrite} messageId={message.id} />
</button> */}
<Rewrite rewrite={rewrite} messageId={message.messageId} />
</div>
<div className="flex flex-row items-center space-x-1">
<Copy initialMessage={message.content} message={message} />
<button className="p-2 text-white/70 rounded-xl hover:bg-[#1c1c1c] transition duration-200 hover:text-white">
<FilePen size={18} />
</button>
<button className="p-2 text-white/70 rounded-xl hover:bg-[#1c1c1c] transition duration-200 hover:text-white">
<ThumbsDown size={18} />
<button
onClick={() => {
if (speechStatus === 'started') {
stop();
} else {
start();
}
}}
className="p-2 text-black/70 dark:text-white/70 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary transition duration-200 hover:text-black dark:hover:text-white"
>
{speechStatus === 'started' ? (
<StopCircle size={18} />
) : (
<Volume2 size={18} />
)}
</button>
</div>
</div>
)}
{isLast &&
message.suggestions &&
message.suggestions.length > 0 &&
message.role === 'assistant' &&
!loading && (
<>
<div className="h-px w-full bg-light-secondary dark:bg-dark-secondary" />
<div className="flex flex-col space-y-3 text-black dark:text-white">
<div className="flex flex-row items-center space-x-2 mt-4">
<Layers3 />
<h3 className="text-xl font-medium">Related</h3>
</div>
<div className="flex flex-col space-y-3">
{message.suggestions.map((suggestion, i) => (
<div
className="flex flex-col space-y-3 text-sm"
key={i}
>
<div className="h-px w-full bg-light-secondary dark:bg-dark-secondary" />
<div
onClick={() => {
sendMessage(suggestion);
}}
className="cursor-pointer flex flex-row justify-between font-medium space-x-2 items-center"
>
<p className="transition duration-200 hover:text-[#24A0ED]">
{suggestion}
</p>
<Plus
size={20}
className="text-[#24A0ED] flex-shrink-0"
/>
</div>
</div>
))}
</div>
</div>
</>
)}
</div>
</div>
<div className="lg:sticky lg:top-20 flex flex-col items-center space-y-3 w-full lg:w-3/12 z-30 h-full pb-4">
<SearchImages query={history[messageIndex - 1].content} />
<div className="border border-dashed border-[#1C1C1C] px-4 py-2 flex flex-row items-center justify-between rounded-lg text-white text-sm w-full">
<div className="flex flex-row items-center space-x-2">
<VideoIcon size={17} />
<p>Search videos</p>
</div>
<PlusIcon className="text-[#24A0ED]" size={17} />
</div>
<SearchImages
query={history[messageIndex - 1].content}
chat_history={history.slice(0, messageIndex - 1)}
/>
<SearchVideos
chat_history={history.slice(0, messageIndex - 1)}
query={history[messageIndex - 1].content}
/>
</div>
</div>
)}

View File

@@ -1,9 +1,9 @@
const MessageBoxLoading = () => {
return (
<div className="flex flex-col space-y-2 w-full lg:w-9/12 bg-[#111111] animate-pulse rounded-lg p-3">
<div className="h-2 rounded-full w-full bg-[#1c1c1c]" />
<div className="h-2 rounded-full w-9/12 bg-[#1c1c1c]" />
<div className="h-2 rounded-full w-10/12 bg-[#1c1c1c]" />
<div className="flex flex-col space-y-2 w-full lg:w-9/12 bg-light-primary dark:bg-dark-primary animate-pulse rounded-lg py-3">
<div className="h-2 rounded-full w-full bg-light-secondary dark:bg-dark-secondary" />
<div className="h-2 rounded-full w-9/12 bg-light-secondary dark:bg-dark-secondary" />
<div className="h-2 rounded-full w-10/12 bg-light-secondary dark:bg-dark-secondary" />
</div>
);
};

View File

@@ -1,13 +1,16 @@
import { cn } from '@/lib/utils';
import { ArrowUp } from 'lucide-react';
import { useEffect, useState } from 'react';
import { useEffect, useRef, useState } from 'react';
import TextareaAutosize from 'react-textarea-autosize';
import { Attach, CopilotToggle } from './MessageInputActions';
import Attach from './MessageInputActions/Attach';
import CopilotToggle from './MessageInputActions/Copilot';
const MessageInput = ({
sendMessage,
loading,
}: {
sendMessage: (message: string) => void;
loading: boolean;
}) => {
const [copilotEnabled, setCopilotEnabled] = useState(false);
const [message, setMessage] = useState('');
@@ -22,33 +25,52 @@ const MessageInput = ({
}
}, [textareaRows, mode, message]);
const inputRef = useRef<HTMLTextAreaElement | null>(null);
const handleKeyDown = (e: KeyboardEvent) => {
if (e.key === '/') {
e.preventDefault();
inputRef.current?.focus();
}
};
useEffect(() => {
document.addEventListener('keydown', handleKeyDown);
return () => {
document.removeEventListener('keydown', handleKeyDown);
};
}, []);
return (
<form
onSubmit={(e) => {
if (loading) return;
e.preventDefault();
sendMessage(message);
setMessage('');
}}
onKeyDown={(e) => {
if (e.key === 'Enter' && !e.shiftKey) {
if (e.key === 'Enter' && !e.shiftKey && !loading) {
e.preventDefault();
sendMessage(message);
setMessage('');
}
}}
className={cn(
'bg-[#111111] p-4 flex items-center overflow-hidden border border-[#1C1C1C]',
'bg-light-secondary dark:bg-dark-secondary p-4 flex items-center overflow-hidden border border-light-200 dark:border-dark-200',
mode === 'multi' ? 'flex-col rounded-lg' : 'flex-row rounded-full',
)}
>
{mode === 'single' && <Attach />}
<TextareaAutosize
ref={inputRef}
value={message}
onChange={(e) => setMessage(e.target.value)}
onHeightChange={(height, props) => {
setTextareaRows(Math.ceil(height / props.rowHeight));
}}
className="transition bg-transparent placeholder:text-white/50 placeholder:text-sm text-sm text-white resize-none focus:outline-none w-full px-2 max-h-24 lg:max-h-36 xl:max-h-48 flex-grow flex-shrink"
className="transition bg-transparent dark:placeholder:text-white/50 placeholder:text-sm text-sm dark:text-white resize-none focus:outline-none w-full px-2 max-h-24 lg:max-h-36 xl:max-h-48 flex-grow flex-shrink"
placeholder="Ask a follow-up"
/>
{mode === 'single' && (
@@ -58,8 +80,8 @@ const MessageInput = ({
setCopilotEnabled={setCopilotEnabled}
/>
<button
disabled={message.trim().length === 0}
className="bg-[#24A0ED] text-white disabled:text-white/50 hover:bg-opacity-85 transition duration-100 disabled:bg-[#ececec21] rounded-full p-2"
disabled={message.trim().length === 0 || loading}
className="bg-[#24A0ED] text-white disabled:text-black/50 dark:disabled:text-white/50 hover:bg-opacity-85 transition duration-100 disabled:bg-[#e0e0dc79] dark:disabled:bg-[#ececec21] rounded-full p-2"
>
<ArrowUp className="bg-background" size={17} />
</button>
@@ -74,8 +96,8 @@ const MessageInput = ({
setCopilotEnabled={setCopilotEnabled}
/>
<button
disabled={message.trim().length === 0}
className="bg-[#24A0ED] text-white disabled:text-white/50 hover:bg-opacity-85 transition duration-100 disabled:bg-[#ececec21] rounded-full p-2"
disabled={message.trim().length === 0 || loading}
className="bg-[#24A0ED] text-white text-black/50 dark:disabled:text-white/50 hover:bg-opacity-85 transition duration-100 disabled:bg-[#e0e0dc79] dark:disabled:bg-[#ececec21] rounded-full p-2"
>
<ArrowUp className="bg-background" size={17} />
</button>

View File

@@ -0,0 +1,14 @@
import { CopyPlus } from 'lucide-react';
const Attach = () => {
return (
<button
type="button"
className="p-2 text-black/50 dark:text-white/50 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary transition duration-200 hover:text-black dark:hover:text-white"
>
<CopyPlus />
</button>
);
};
export default Attach;

View File

@@ -0,0 +1,66 @@
import { cn } from '@/lib/utils';
import { Switch } from '@headlessui/react';
import { useEffect } from 'react';
const CopilotToggle = ({
copilotEnabled,
setCopilotEnabled,
}: {
copilotEnabled: boolean;
setCopilotEnabled: (enabled: boolean) => void;
}) => {
const fetchAndSetCopilotEnabled = async () => {
const res = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/config/preferences`,
{
method: 'GET',
headers: {
'Content-Type': 'application/json',
},
},
);
const preferences = await res.json();
setCopilotEnabled(preferences.isCopilotEnabled);
};
useEffect(() => {
fetchAndSetCopilotEnabled();
// eslint-disable-next-line react-hooks/exhaustive-deps
}, []);
return (
<div className="group flex flex-row items-center space-x-1 active:scale-95 duration-200 transition cursor-pointer">
<Switch
checked={copilotEnabled}
onChange={setCopilotEnabled}
disabled={true}
className="bg-light-secondary dark:bg-dark-secondary border border-light-200/70 dark:border-dark-200 relative inline-flex h-5 w-10 sm:h-6 sm:w-11 items-center rounded-full"
>
<span className="sr-only">Copilot</span>
<span
className={cn(
copilotEnabled
? 'translate-x-6 bg-[#24A0ED]'
: 'translate-x-1 bg-black/50 dark:bg-white/50',
'inline-block h-3 w-3 sm:h-4 sm:w-4 transform rounded-full transition-all duration-200',
)}
/>
</Switch>
<p
onClick={() => setCopilotEnabled(!copilotEnabled)}
className={cn(
'text-xs font-medium transition-colors duration-150 ease-in-out',
copilotEnabled
? 'text-[#24A0ED]'
: 'text-black/50 dark:text-white/50 group-hover:text-black dark:group-hover:text-white',
)}
>
Copilot
</p>
</div>
);
};
export default CopilotToggle;

View File

@@ -1,28 +1,16 @@
import {
BadgePercent,
ChevronDown,
CopyPlus,
Globe,
Pencil,
ScanEye,
SwatchBook,
} from 'lucide-react';
import { cn } from '@/lib/utils';
import { Popover, Switch, Transition } from '@headlessui/react';
import { Popover, Transition } from '@headlessui/react';
import { SiReddit, SiYoutube } from '@icons-pack/react-simple-icons';
import { Fragment } from 'react';
export const Attach = () => {
return (
<button
type="button"
className="p-2 text-white/50 rounded-xl hover:bg-[#1c1c1c] transition duration-200 hover:text-white"
>
<CopyPlus />
</button>
);
};
const focusModes = [
{
key: 'webSearch',
@@ -74,7 +62,7 @@ const focusModes = [
},
];
export const Focus = ({
const Focus = ({
focusMode,
setFocusMode,
}: {
@@ -85,7 +73,7 @@ export const Focus = ({
<Popover className="fixed w-full max-w-[15rem] md:max-w-md lg:max-w-lg">
<Popover.Button
type="button"
className="p-2 text-white/50 rounded-xl hover:bg-[#1c1c1c] active:scale-95 transition duration-200 hover:text-white"
className="p-2 text-black/50 dark:text-white/50 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary active:scale-95 transition duration-200 hover:text-black dark:hover:text-white"
>
{focusMode !== 'webSearch' ? (
<div className="flex flex-row items-center space-x-1">
@@ -109,7 +97,7 @@ export const Focus = ({
leaveTo="opacity-0 translate-y-1"
>
<Popover.Panel className="absolute z-10 w-full">
<div className="grid grid-cols-1 md:grid-cols-2 lg:grid-cols-3 gap-1 bg-[#0A0A0A] border rounded-lg border-[#1c1c1c] w-full p-2">
<div className="grid grid-cols-1 md:grid-cols-2 lg:grid-cols-3 gap-1 bg-light-primary dark:bg-dark-primary border rounded-lg border-light-200 dark:border-dark-200 w-full p-2 max-h-[200px] md:max-h-none overflow-y-auto">
{focusModes.map((mode, i) => (
<Popover.Button
onClick={() => setFocusMode(mode.key)}
@@ -117,20 +105,24 @@ export const Focus = ({
className={cn(
'p-2 rounded-lg flex flex-col items-start justify-start text-start space-y-2 duration-200 cursor-pointer transition',
focusMode === mode.key
? 'bg-[#111111]'
: 'hover:bg-[#111111]',
? 'bg-light-secondary dark:bg-dark-secondary'
: 'hover:bg-light-secondary dark:hover:bg-dark-secondary',
)}
>
<div
className={cn(
'flex flex-row items-center space-x-1',
focusMode === mode.key ? 'text-[#24A0ED]' : 'text-white',
focusMode === mode.key
? 'text-[#24A0ED]'
: 'text-black dark:text-white',
)}
>
{mode.icon}
<p className="text-sm font-medium">{mode.title}</p>
</div>
<p className="text-white/70 text-xs">{mode.description}</p>
<p className="text-black/70 dark:text-white/70 text-xs">
{mode.description}
</p>
</Popover.Button>
))}
</div>
@@ -140,41 +132,4 @@ export const Focus = ({
);
};
export const CopilotToggle = ({
copilotEnabled,
setCopilotEnabled,
}: {
copilotEnabled: boolean;
setCopilotEnabled: (enabled: boolean) => void;
}) => {
return (
<div className="group flex flex-row items-center space-x-1 active:scale-95 duration-200 transition cursor-pointer">
<Switch
checked={copilotEnabled}
onChange={setCopilotEnabled}
className="bg-[#111111] border border-[#1C1C1C] relative inline-flex h-5 w-10 sm:h-6 sm:w-11 items-center rounded-full"
>
<span className="sr-only">Copilot</span>
<span
className={cn(
copilotEnabled
? 'translate-x-6 bg-[#24A0ED]'
: 'translate-x-1 bg-white/50',
'inline-block h-3 w-3 sm:h-4 sm:w-4 transform rounded-full transition-all duration-200',
)}
/>
</Switch>
<p
onClick={() => setCopilotEnabled(!copilotEnabled)}
className={cn(
'text-xs font-medium transition-colors duration-150 ease-in-out',
copilotEnabled
? 'text-[#24A0ED]'
: 'text-white/50 group-hover:text-white',
)}
>
Copilot
</p>
</div>
);
};
export default Focus;

View File

@@ -1,32 +1,31 @@
/* eslint-disable @next/next/no-img-element */
import { cn } from '@/lib/utils';
import { Dialog, Transition } from '@headlessui/react';
import { Document } from '@langchain/core/documents';
import Link from 'next/link';
import { Fragment, useState } from 'react';
const MessageSources = ({ sources }: { sources: Document[] }) => {
const [isDialogOpen, setIsDialogOpen] = useState(false);
function closeModal() {
const closeModal = () => {
setIsDialogOpen(false);
document.body.classList.remove('overflow-hidden-scrollable');
}
};
function openModal() {
const openModal = () => {
setIsDialogOpen(true);
document.body.classList.add('overflow-hidden-scrollable');
}
};
return (
<div className="grid grid-cols-2 lg:grid-cols-4 gap-2">
{sources.slice(0, 3).map((source, i) => (
<a
className="bg-[#111111] hover:bg-[#1c1c1c] transition duration-200 rounded-lg p-3 flex flex-col space-y-2 font-medium"
className="bg-light-100 hover:bg-light-200 dark:bg-dark-100 dark:hover:bg-dark-200 transition duration-200 rounded-lg p-3 flex flex-col space-y-2 font-medium"
key={i}
href={source.metadata.url}
target="_blank"
>
<p className="text-white text-xs overflow-hidden whitespace-nowrap text-ellipsis">
<p className="dark:text-white text-xs overflow-hidden whitespace-nowrap text-ellipsis">
{source.metadata.title}
</p>
<div className="flex flex-row items-center justify-between">
@@ -38,12 +37,12 @@ const MessageSources = ({ sources }: { sources: Document[] }) => {
alt="favicon"
className="rounded-lg h-4 w-4"
/>
<p className="text-xs text-white/50 overflow-hidden whitespace-nowrap text-ellipsis">
<p className="text-xs text-black/50 dark:text-white/50 overflow-hidden whitespace-nowrap text-ellipsis">
{source.metadata.url.replace(/.+\/\/|www.|\..+/g, '')}
</p>
</div>
<div className="flex flex-row items-center space-x-1 text-white/50 text-xs">
<div className="bg-white/50 h-[4px] w-[4px] rounded-full" />
<div className="flex flex-row items-center space-x-1 text-black/50 dark:text-white/50 text-xs">
<div className="bg-black/50 dark:bg-white/50 h-[4px] w-[4px] rounded-full" />
<span>{i + 1}</span>
</div>
</div>
@@ -52,7 +51,7 @@ const MessageSources = ({ sources }: { sources: Document[] }) => {
{sources.length > 3 && (
<button
onClick={openModal}
className="bg-[#111111] hover:bg-[#1c1c1c] transition duration-200 rounded-lg px-4 py-2 flex flex-col justify-between space-y-2"
className="bg-light-100 hover:bg-light-200 dark:bg-dark-100 dark:hover:bg-dark-200 transition duration-200 rounded-lg p-3 flex flex-col space-y-2 font-medium"
>
<div className="flex flex-row items-center space-x-1">
{sources.slice(3, 6).map((source, i) => (
@@ -66,7 +65,7 @@ const MessageSources = ({ sources }: { sources: Document[] }) => {
/>
))}
</div>
<p className="text-xs text-white/50">
<p className="text-xs text-black/50 dark:text-white/50">
View {sources.length - 3} more
</p>
</button>
@@ -84,19 +83,19 @@ const MessageSources = ({ sources }: { sources: Document[] }) => {
leaveFrom="opacity-100 scale-200"
leaveTo="opacity-0 scale-95"
>
<Dialog.Panel className="w-full max-w-md transform rounded-2xl bg-[#111111] border border-[#1c1c1c] p-6 text-left align-middle shadow-xl transition-all">
<Dialog.Title className="text-lg font-medium leading-6 text-white">
<Dialog.Panel className="w-full max-w-md transform rounded-2xl bg-light-secondary dark:bg-dark-secondary border border-light-200 dark:border-dark-200 p-6 text-left align-middle shadow-xl transition-all">
<Dialog.Title className="text-lg font-medium leading-6 dark:text-white">
Sources
</Dialog.Title>
<div className="grid grid-cols-2 gap-2 overflow-auto max-h-[300px] mt-2 pr-2">
{sources.map((source, i) => (
<a
className="bg-[#111111] hover:bg-[#1c1c1c] border border-[#1c1c1c] transition duration-200 rounded-lg p-3 flex flex-col space-y-2 font-medium"
className="bg-light-secondary hover:bg-light-200 dark:bg-dark-secondary dark:hover:bg-dark-200 border border-light-200 dark:border-dark-200 transition duration-200 rounded-lg p-3 flex flex-col space-y-2 font-medium"
key={i}
href={source.metadata.url}
target="_blank"
>
<p className="text-white text-xs overflow-hidden whitespace-nowrap text-ellipsis">
<p className="dark:text-white text-xs overflow-hidden whitespace-nowrap text-ellipsis">
{source.metadata.title}
</p>
<div className="flex flex-row items-center justify-between">
@@ -108,15 +107,15 @@ const MessageSources = ({ sources }: { sources: Document[] }) => {
alt="favicon"
className="rounded-lg h-4 w-4"
/>
<p className="text-xs text-white/50 overflow-hidden whitespace-nowrap text-ellipsis">
<p className="text-xs text-black/50 dark:text-white/50 overflow-hidden whitespace-nowrap text-ellipsis">
{source.metadata.url.replace(
/.+\/\/|www.|\..+/g,
'',
)}
</p>
</div>
<div className="flex flex-row items-center space-x-1 text-white/50 text-xs">
<div className="bg-white/50 h-[4px] w-[4px] rounded-full" />
<div className="flex flex-row items-center space-x-1 text-black/50 dark:text-white/50 text-xs">
<div className="bg-black/50 dark:bg-white/50 h-[4px] w-[4px] rounded-full" />
<span>{i + 1}</span>
</div>
</div>

View File

@@ -38,16 +38,17 @@ const Navbar = ({ messages }: { messages: Message[] }) => {
}, []);
return (
<div className="fixed z-40 top-0 left-0 right-0 px-4 lg:pl-32 lg:pr-4 lg:px-8 flex flex-row items-center justify-between w-full py-4 text-sm text-white/70 border-b bg-[#0A0A0A] border-[#1C1C1C]">
<div className="fixed z-40 top-0 left-0 right-0 px-4 lg:pl-[104px] lg:pr-6 lg:px-8 flex flex-row items-center justify-between w-full py-4 text-sm text-black dark:text-white/70 border-b bg-light-primary dark:bg-dark-primary border-light-100 dark:border-dark-200">
<Edit
size={17}
className="active:scale-95 transition duration-100 cursor-pointer lg:hidden"
/>
<div className="hidden lg:flex flex-row items-center space-x-2">
<div className="hidden lg:flex flex-row items-center justify-center space-x-2">
<Clock size={17} />
<p className="text-xs">{timeAgo} ago</p>
</div>
<p className="hidden lg:flex">{title}</p>
<div className="flex flex-row items-center space-x-4">
<Share
size={17}

View File

@@ -3,6 +3,7 @@ import { ImagesIcon, PlusIcon } from 'lucide-react';
import { useState } from 'react';
import Lightbox from 'yet-another-react-lightbox';
import 'yet-another-react-lightbox/styles.css';
import { Message } from './ChatWindow';
type Image = {
url: string;
@@ -10,7 +11,13 @@ type Image = {
title: string;
};
const SearchImages = ({ query }: { query: string }) => {
const SearchImages = ({
query,
chat_history,
}: {
query: string;
chat_history: Message[];
}) => {
const [images, setImages] = useState<Image[] | null>(null);
const [loading, setLoading] = useState(false);
const [open, setOpen] = useState(false);
@@ -22,6 +29,10 @@ const SearchImages = ({ query }: { query: string }) => {
<button
onClick={async () => {
setLoading(true);
const chatModelProvider = localStorage.getItem('chatModelProvider');
const chatModel = localStorage.getItem('chatModel');
const res = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/images`,
{
@@ -31,7 +42,9 @@ const SearchImages = ({ query }: { query: string }) => {
},
body: JSON.stringify({
query: query,
chat_history: [],
chat_history: chat_history,
chat_model_provider: chatModelProvider,
chat_model: chatModel,
}),
},
);
@@ -49,7 +62,7 @@ const SearchImages = ({ query }: { query: string }) => {
);
setLoading(false);
}}
className="border border-dashed border-[#1C1C1C] hover:bg-[#1c1c1c] active:scale-95 duration-200 transition px-4 py-2 flex flex-row items-center justify-between rounded-lg text-white text-sm w-full"
className="border border-dashed border-light-200 dark:border-dark-200 hover:bg-light-200 dark:hover:bg-dark-200 active:scale-95 duration-200 transition px-4 py-2 flex flex-row items-center justify-between rounded-lg dark:text-white text-sm w-full"
>
<div className="flex flex-row items-center space-x-2">
<ImagesIcon size={17} />
@@ -59,11 +72,11 @@ const SearchImages = ({ query }: { query: string }) => {
</button>
)}
{loading && (
<div className="grid grid-cols-1 lg:grid-cols-2 gap-2">
<div className="grid grid-cols-2 gap-2">
{[...Array(4)].map((_, i) => (
<div
key={i}
className="bg-[#1C1C1C] h-32 w-full rounded-lg animate-pulse aspect-video object-cover"
className="bg-light-secondary dark:bg-dark-secondary h-32 w-full rounded-lg animate-pulse aspect-video object-cover"
/>
))}
</div>
@@ -85,7 +98,7 @@ const SearchImages = ({ query }: { query: string }) => {
key={i}
src={image.img_src}
alt={image.title}
className="h-full w-full aspect-video object-cover rounded-lg transition duration-200 active:scale-95 cursor-pointer"
className="h-full w-full aspect-video object-cover rounded-lg transition duration-200 active:scale-95 hover:scale-[1.02] cursor-zoom-in"
/>
))
: images.map((image, i) => (
@@ -101,13 +114,13 @@ const SearchImages = ({ query }: { query: string }) => {
key={i}
src={image.img_src}
alt={image.title}
className="h-full w-full aspect-video object-cover rounded-lg transition duration-200 active:scale-95 cursor-pointer"
className="h-full w-full aspect-video object-cover rounded-lg transition duration-200 active:scale-95 hover:scale-[1.02] cursor-zoom-in"
/>
))}
{images.length > 4 && (
<button
onClick={() => setOpen(true)}
className="bg-[#111111] hover:bg-[#1c1c1c] transition duration-200 active:scale-95 h-auto w-full rounded-lg flex flex-col justify-between text-white p-2"
className="bg-light-100 hover:bg-light-200 dark:bg-dark-100 dark:hover:bg-dark-200 transition duration-200 active:scale-95 hover:scale-[1.02] h-auto w-full rounded-lg flex flex-col justify-between text-white p-2"
>
<div className="flex flex-row items-center space-x-1">
{images.slice(3, 6).map((image, i) => (
@@ -119,8 +132,8 @@ const SearchImages = ({ query }: { query: string }) => {
/>
))}
</div>
<p className="text-white/70 text-xs">
View {images.slice(0, 2).length} more
<p className="text-black/70 dark:text-white/70 text-xs">
View {images.length - 3} more
</p>
</button>
)}

View File

@@ -0,0 +1,196 @@
/* eslint-disable @next/next/no-img-element */
import { PlayCircle, PlayIcon, PlusIcon, VideoIcon } from 'lucide-react';
import { useState } from 'react';
import Lightbox, { GenericSlide, VideoSlide } from 'yet-another-react-lightbox';
import 'yet-another-react-lightbox/styles.css';
import { Message } from './ChatWindow';
type Video = {
url: string;
img_src: string;
title: string;
iframe_src: string;
};
declare module 'yet-another-react-lightbox' {
export interface VideoSlide extends GenericSlide {
type: 'video-slide';
src: string;
iframe_src: string;
}
interface SlideTypes {
'video-slide': VideoSlide;
}
}
const Searchvideos = ({
query,
chat_history,
}: {
query: string;
chat_history: Message[];
}) => {
const [videos, setVideos] = useState<Video[] | null>(null);
const [loading, setLoading] = useState(false);
const [open, setOpen] = useState(false);
const [slides, setSlides] = useState<VideoSlide[]>([]);
return (
<>
{!loading && videos === null && (
<button
onClick={async () => {
setLoading(true);
const chatModelProvider = localStorage.getItem('chatModelProvider');
const chatModel = localStorage.getItem('chatModel');
const res = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/videos`,
{
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
query: query,
chat_history: chat_history,
chat_model_provider: chatModelProvider,
chat_model: chatModel,
}),
},
);
const data = await res.json();
const videos = data.videos;
setVideos(videos);
setSlides(
videos.map((video: Video) => {
return {
type: 'video-slide',
iframe_src: video.iframe_src,
src: video.img_src,
};
}),
);
setLoading(false);
}}
className="border border-dashed border-light-200 dark:border-dark-200 hover:bg-light-200 dark:hover:bg-dark-200 active:scale-95 duration-200 transition px-4 py-2 flex flex-row items-center justify-between rounded-lg dark:text-white text-sm w-full"
>
<div className="flex flex-row items-center space-x-2">
<VideoIcon size={17} />
<p>Search videos</p>
</div>
<PlusIcon className="text-[#24A0ED]" size={17} />
</button>
)}
{loading && (
<div className="grid grid-cols-2 gap-2">
{[...Array(4)].map((_, i) => (
<div
key={i}
className="bg-light-secondary dark:bg-dark-secondary h-32 w-full rounded-lg animate-pulse aspect-video object-cover"
/>
))}
</div>
)}
{videos !== null && videos.length > 0 && (
<>
<div className="grid grid-cols-2 gap-2">
{videos.length > 4
? videos.slice(0, 3).map((video, i) => (
<div
onClick={() => {
setOpen(true);
setSlides([
slides[i],
...slides.slice(0, i),
...slides.slice(i + 1),
]);
}}
className="relative transition duration-200 active:scale-95 hover:scale-[1.02] cursor-pointer"
key={i}
>
<img
src={video.img_src}
alt={video.title}
className="relative h-full w-full aspect-video object-cover rounded-lg"
/>
<div className="absolute bg-white/70 dark:bg-black/70 text-black/70 dark:text-white/70 px-2 py-1 flex flex-row items-center space-x-1 bottom-1 right-1 rounded-md">
<PlayCircle size={15} />
<p className="text-xs">Video</p>
</div>
</div>
))
: videos.map((video, i) => (
<div
onClick={() => {
setOpen(true);
setSlides([
slides[i],
...slides.slice(0, i),
...slides.slice(i + 1),
]);
}}
className="relative transition duration-200 active:scale-95 hover:scale-[1.02] cursor-pointer"
key={i}
>
<img
src={video.img_src}
alt={video.title}
className="relative h-full w-full aspect-video object-cover rounded-lg"
/>
<div className="absolute bg-white/70 dark:bg-black/70 text-black/70 dark:text-white/70 px-2 py-1 flex flex-row items-center space-x-1 bottom-1 right-1 rounded-md">
<PlayCircle size={15} />
<p className="text-xs">Video</p>
</div>
</div>
))}
{videos.length > 4 && (
<button
onClick={() => setOpen(true)}
className="bg-light-100 hover:bg-light-200 dark:bg-dark-100 dark:hover:bg-dark-200 transition duration-200 active:scale-95 hover:scale-[1.02] h-auto w-full rounded-lg flex flex-col justify-between text-white p-2"
>
<div className="flex flex-row items-center space-x-1">
{videos.slice(3, 6).map((video, i) => (
<img
key={i}
src={video.img_src}
alt={video.title}
className="h-6 w-12 rounded-md lg:h-3 lg:w-6 lg:rounded-sm aspect-video object-cover"
/>
))}
</div>
<p className="text-black/70 dark:text-white/70 text-xs">
View {videos.length - 3} more
</p>
</button>
)}
</div>
<Lightbox
open={open}
close={() => setOpen(false)}
slides={slides}
render={{
slide: ({ slide }) =>
slide.type === 'video-slide' ? (
<div className="h-full w-full flex flex-row items-center justify-center">
<iframe
src={slide.iframe_src}
className="aspect-video max-h-[95vh] w-[95vw] rounded-2xl md:w-[80vw]"
allowFullScreen
allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture"
/>
</div>
) : null,
}}
/>
</>
)}
</>
);
};
export default Searchvideos;

View File

@@ -0,0 +1,628 @@
import { cn } from '@/lib/utils';
import { Dialog, Switch, Transition } from '@headlessui/react';
import { CloudUpload, RefreshCcw, RefreshCw } from 'lucide-react';
import React, {
Fragment,
useEffect,
useState,
type SelectHTMLAttributes,
} from 'react';
import ThemeSwitcher from './theme/Switcher';
import { toast } from 'sonner';
interface InputProps extends React.InputHTMLAttributes<HTMLInputElement> {}
const Input = ({ className, ...restProps }: InputProps) => {
return (
<input
{...restProps}
className={cn(
'bg-light-secondary dark:bg-dark-secondary px-3 py-2 flex items-center overflow-hidden border border-light-200 dark:border-dark-200 dark:text-white rounded-lg text-sm',
className,
)}
/>
);
};
interface SelectProps extends SelectHTMLAttributes<HTMLSelectElement> {
options: { value: string; label: string; disabled?: boolean }[];
}
export const Select = ({ className, options, ...restProps }: SelectProps) => {
return (
<select
{...restProps}
className={cn(
'bg-light-secondary dark:bg-dark-secondary px-3 py-2 flex items-center overflow-hidden border border-light-200 dark:border-dark-200 dark:text-white rounded-lg text-sm',
className,
)}
>
{options.map(({ label, value, disabled }) => {
return (
<option key={value} value={value} disabled={disabled}>
{label}
</option>
);
})}
</select>
);
};
interface SettingsType {
chatModelProviders: {
[key: string]: string[];
};
embeddingModelProviders: {
[key: string]: string[];
};
openaiApiKey: string;
groqApiKey: string;
anthropicApiKey: string;
ollamaApiUrl: string;
isCopilotEnabled: boolean;
isDiscoverEnabled: boolean;
isLibraryEnabled: boolean;
}
const SettingsDialog = ({
isOpen,
setIsOpen,
}: {
isOpen: boolean;
setIsOpen: (isOpen: boolean) => void;
}) => {
const [config, setConfig] = useState<SettingsType | null>(null);
const [selectedChatModelProvider, setSelectedChatModelProvider] = useState<
string | null
>(null);
const [selectedChatModel, setSelectedChatModel] = useState<string | null>(
null,
);
const [selectedEmbeddingModelProvider, setSelectedEmbeddingModelProvider] =
useState<string | null>(null);
const [selectedEmbeddingModel, setSelectedEmbeddingModel] = useState<
string | null
>(null);
const [customOpenAIApiKey, setCustomOpenAIApiKey] = useState<string>('');
const [customOpenAIBaseURL, setCustomOpenAIBaseURL] = useState<string>('');
const [isLoading, setIsLoading] = useState(false);
const [isUpdating, setIsUpdating] = useState(false);
const [password, setPassword] = useState('');
const [passwordSubmitted, setPasswordSubmitted] = useState(false);
const [isPasswordValid, setIsPasswordValid] = useState(true);
const handlePasswordSubmit = async () => {
setIsLoading(true);
setPasswordSubmitted(true);
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/config`, {
headers: {
'Content-Type': 'application/json',
Authorization: `Bearer ${password}`,
},
});
if (res.status === 401) {
setIsPasswordValid(false);
setPasswordSubmitted(false);
setIsLoading(false);
return;
} else {
setIsPasswordValid(true);
}
const data = (await res.json()) as SettingsType;
setConfig(data);
const chatModelProvidersKeys = Object.keys(data.chatModelProviders || {});
const embeddingModelProvidersKeys = Object.keys(
data.embeddingModelProviders || {},
);
const defaultChatModelProvider =
chatModelProvidersKeys.length > 0 ? chatModelProvidersKeys[0] : '';
const defaultEmbeddingModelProvider =
embeddingModelProvidersKeys.length > 0
? embeddingModelProvidersKeys[0]
: '';
const chatModelProvider =
localStorage.getItem('chatModelProvider') ||
defaultChatModelProvider ||
'';
const chatModel =
localStorage.getItem('chatModel') ||
(data.chatModelProviders &&
data.chatModelProviders[chatModelProvider]?.[0]) ||
'';
const embeddingModelProvider =
localStorage.getItem('embeddingModelProvider') ||
defaultEmbeddingModelProvider ||
'';
const embeddingModel =
localStorage.getItem('embeddingModel') ||
(data.embeddingModelProviders &&
data.embeddingModelProviders[embeddingModelProvider]?.[0]) ||
'';
setSelectedChatModelProvider(chatModelProvider);
setSelectedChatModel(chatModel);
setSelectedEmbeddingModelProvider(embeddingModelProvider);
setSelectedEmbeddingModel(embeddingModel);
setCustomOpenAIApiKey(localStorage.getItem('openAIApiKey') || '');
setCustomOpenAIBaseURL(localStorage.getItem('openAIBaseURL') || '');
setIsLoading(false);
};
const handleSubmit = async () => {
setIsUpdating(true);
try {
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/config`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
Authorization: `Bearer ${password}`,
},
body: JSON.stringify(config),
});
if (res.status === 401) {
toast.error('Unauthorized');
return;
}
localStorage.setItem('chatModelProvider', selectedChatModelProvider!);
localStorage.setItem('chatModel', selectedChatModel!);
localStorage.setItem(
'embeddingModelProvider',
selectedEmbeddingModelProvider!,
);
localStorage.setItem('embeddingModel', selectedEmbeddingModel!);
localStorage.setItem('openAIApiKey', customOpenAIApiKey!);
localStorage.setItem('openAIBaseURL', customOpenAIBaseURL!);
} catch (err) {
console.log(err);
} finally {
setIsUpdating(false);
setIsOpen(false);
window.location.reload();
}
};
return (
<Transition appear show={isOpen} as={Fragment}>
<Dialog
as="div"
className="relative z-50"
onClose={() => setIsOpen(false)}
>
<Transition.Child
as={Fragment}
enter="ease-out duration-300"
enterFrom="opacity-0"
enterTo="opacity-100"
leave="ease-in duration-200"
leaveFrom="opacity-100"
leaveTo="opacity-0"
>
<div className="fixed inset-0 bg-white/50 dark:bg-black/50" />
</Transition.Child>
<div className="fixed inset-0 overflow-y-auto">
<div className="flex min-h-full items-center justify-center p-4 text-center">
<Transition.Child
as={Fragment}
enter="ease-out duration-200"
enterFrom="opacity-0 scale-95"
enterTo="opacity-100 scale-100"
leave="ease-in duration-100"
leaveFrom="opacity-100 scale-200"
leaveTo="opacity-0 scale-95"
>
<Dialog.Panel className="w-full max-w-md transform rounded-2xl bg-light-secondary dark:bg-dark-secondary border border-light-200 dark:border-dark-200 p-6 text-left align-middle shadow-xl transition-all">
{isPasswordValid && passwordSubmitted && (
<>
<Dialog.Title className="text-xl font-medium leading-6 dark:text-white">
Settings
</Dialog.Title>
{config && !isLoading && (
<div className="flex flex-col space-y-4 mt-6">
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Theme
</p>
<ThemeSwitcher />
</div>
<div className="flex flex-col items-start space-y-2">
<p className="text-black/70 dark:text-white/70 text-sm">
Copilot enabled
</p>
<Switch
checked={config.isCopilotEnabled}
onChange={(checked) => {
setConfig({
...config,
isCopilotEnabled: checked,
});
}}
className="bg-light-secondary dark:bg-dark-secondary border border-light-200/70 dark:border-dark-200 relative inline-flex h-5 w-10 sm:h-6 sm:w-11 items-center rounded-full active:scale-95 duration-200 transition cursor-pointer"
>
<span className="sr-only">Copilot</span>
<span
className={cn(
config.isCopilotEnabled
? 'translate-x-6 bg-[#24A0ED]'
: 'translate-x-1 bg-black/50 dark:bg-white/50',
'inline-block h-3 w-3 sm:h-4 sm:w-4 transform rounded-full transition-all duration-200',
)}
/>
</Switch>
</div>
<div className="flex flex-col items-start space-y-2">
<p className="text-black/70 dark:text-white/70 text-sm">
Discover enabled
</p>
<Switch
checked={config.isDiscoverEnabled}
onChange={(checked) => {
setConfig({
...config,
isDiscoverEnabled: checked,
});
}}
className="bg-light-secondary dark:bg-dark-secondary border border-light-200/70 dark:border-dark-200 relative inline-flex h-5 w-10 sm:h-6 sm:w-11 items-center rounded-full active:scale-95 duration-200 transition cursor-pointer"
>
<span className="sr-only">Discover</span>
<span
className={cn(
config.isDiscoverEnabled
? 'translate-x-6 bg-[#24A0ED]'
: 'translate-x-1 bg-black/50 dark:bg-white/50',
'inline-block h-3 w-3 sm:h-4 sm:w-4 transform rounded-full transition-all duration-200',
)}
/>
</Switch>
</div>
<div className="flex flex-col items-start space-y-2">
<p className="text-black/70 dark:text-white/70 text-sm">
Library enabled
</p>
<Switch
checked={config.isLibraryEnabled}
onChange={(checked) => {
setConfig({
...config,
isLibraryEnabled: checked,
});
}}
className="bg-light-secondary dark:bg-dark-secondary border border-light-200/70 dark:border-dark-200 relative inline-flex h-5 w-10 sm:h-6 sm:w-11 items-center rounded-full active:scale-95 duration-200 transition cursor-pointer"
>
<span className="sr-only">Library</span>
<span
className={cn(
config.isLibraryEnabled
? 'translate-x-6 bg-[#24A0ED]'
: 'translate-x-1 bg-black/50 dark:bg-white/50',
'inline-block h-3 w-3 sm:h-4 sm:w-4 transform rounded-full transition-all duration-200',
)}
/>
</Switch>
</div>
{config.chatModelProviders && (
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Chat model Provider
</p>
<Select
value={selectedChatModelProvider ?? undefined}
onChange={(e) => {
setSelectedChatModelProvider(e.target.value);
if (e.target.value === 'custom_openai') {
setSelectedChatModel('');
} else {
setSelectedChatModel(
config.chatModelProviders[
e.target.value
][0],
);
}
}}
options={Object.keys(
config.chatModelProviders,
).map((provider) => ({
value: provider,
label:
provider.charAt(0).toUpperCase() +
provider.slice(1),
}))}
/>
</div>
)}
{selectedChatModelProvider &&
selectedChatModelProvider != 'custom_openai' && (
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Chat Model
</p>
<Select
value={selectedChatModel ?? undefined}
onChange={(e) =>
setSelectedChatModel(e.target.value)
}
options={(() => {
const chatModelProvider =
config.chatModelProviders[
selectedChatModelProvider
];
return chatModelProvider
? chatModelProvider.length > 0
? chatModelProvider.map((model) => ({
value: model,
label: model,
}))
: [
{
value: '',
label: 'No models available',
disabled: true,
},
]
: [
{
value: '',
label:
'Invalid provider, please check backend logs',
disabled: true,
},
];
})()}
/>
</div>
)}
{selectedChatModelProvider &&
selectedChatModelProvider === 'custom_openai' && (
<>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Model name
</p>
<Input
type="text"
placeholder="Model name"
defaultValue={selectedChatModel!}
onChange={(e) =>
setSelectedChatModel(e.target.value)
}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Custom OpenAI API Key
</p>
<Input
type="text"
placeholder="Custom OpenAI API Key"
defaultValue={customOpenAIApiKey!}
onChange={(e) =>
setCustomOpenAIApiKey(e.target.value)
}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Custom OpenAI Base URL
</p>
<Input
type="text"
placeholder="Custom OpenAI Base URL"
defaultValue={customOpenAIBaseURL!}
onChange={(e) =>
setCustomOpenAIBaseURL(e.target.value)
}
/>
</div>
</>
)}
{/* Embedding models */}
{config.embeddingModelProviders && (
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Embedding model Provider
</p>
<Select
value={
selectedEmbeddingModelProvider ?? undefined
}
onChange={(e) => {
setSelectedEmbeddingModelProvider(
e.target.value,
);
setSelectedEmbeddingModel(
config.embeddingModelProviders[
e.target.value
][0],
);
}}
options={Object.keys(
config.embeddingModelProviders,
).map((provider) => ({
label:
provider.charAt(0).toUpperCase() +
provider.slice(1),
value: provider,
}))}
/>
</div>
)}
{selectedEmbeddingModelProvider && (
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Embedding Model
</p>
<Select
value={selectedEmbeddingModel ?? undefined}
onChange={(e) =>
setSelectedEmbeddingModel(e.target.value)
}
options={(() => {
const embeddingModelProvider =
config.embeddingModelProviders[
selectedEmbeddingModelProvider
];
return embeddingModelProvider
? embeddingModelProvider.length > 0
? embeddingModelProvider.map((model) => ({
label: model,
value: model,
}))
: [
{
label:
'No embedding models available',
value: '',
disabled: true,
},
]
: [
{
label:
'Invalid provider, please check backend logs',
value: '',
disabled: true,
},
];
})()}
/>
</div>
)}
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
OpenAI API Key
</p>
<Input
type="text"
placeholder="OpenAI API Key"
defaultValue={config.openaiApiKey}
onChange={(e) =>
setConfig({
...config,
openaiApiKey: e.target.value,
})
}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Ollama API URL
</p>
<Input
type="text"
placeholder="Ollama API URL"
defaultValue={config.ollamaApiUrl}
onChange={(e) =>
setConfig({
...config,
ollamaApiUrl: e.target.value,
})
}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
GROQ API Key
</p>
<Input
type="text"
placeholder="GROQ API Key"
defaultValue={config.groqApiKey}
onChange={(e) =>
setConfig({
...config,
groqApiKey: e.target.value,
})
}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Anthropic API Key
</p>
<Input
type="text"
placeholder="Anthropic API key"
defaultValue={config.anthropicApiKey}
onChange={(e) =>
setConfig({
...config,
anthropicApiKey: e.target.value,
})
}
/>
</div>
</div>
)}
{isLoading && (
<div className="w-full flex items-center justify-center mt-6 text-black/70 dark:text-white/70 py-6">
<RefreshCcw className="animate-spin" />
</div>
)}
<div className="w-full mt-6 space-y-2">
<p className="text-xs text-black/50 dark:text-white/50">
We&apos;ll refresh the page after updating the settings.
</p>
<button
onClick={handleSubmit}
className="bg-[#24A0ED] flex flex-row items-center space-x-2 text-white disabled:text-white/50 hover:bg-opacity-85 transition duration-100 disabled:bg-[#ececec21] rounded-full px-4 py-2"
disabled={isLoading || isUpdating}
>
{isUpdating ? (
<RefreshCw size={20} className="animate-spin" />
) : (
<CloudUpload size={20} />
)}
</button>
</div>
</>
)}
{!passwordSubmitted && (
<>
<Dialog.Title className="text-sm dark:font-white/80 font-black/80">
Enter the password to access the settings
</Dialog.Title>
<div className="flex flex-col">
<Input
type="password"
placeholder="Password"
className="mt-4"
disabled={isLoading}
onChange={(e) => setPassword(e.target.value)}
/>
</div>
{!isPasswordValid && (
<p className="text-xs text-red-500 mt-2">
Password is incorrect
</p>
)}
<button
onClick={handlePasswordSubmit}
disabled={isLoading}
className="bg-[#24A0ED] flex flex-row items-center text-xs mt-4 text-white disabled:text-white/50 hover:bg-opacity-85 transition duration-100 disabled:bg-[#ececec21] rounded-full px-4 py-2"
>
Submit
</button>
</>
)}
</Dialog.Panel>
</Transition.Child>
</div>
</div>
</Dialog>
</Transition>
);
};
export default SettingsDialog;

View File

@@ -1,86 +1,154 @@
'use client';
import { cn } from '@/lib/utils';
import { BookOpenText, Home, Search, SquarePen } from 'lucide-react';
import { SiGithub } from '@icons-pack/react-simple-icons';
import { BookOpenText, Home, Search, SquarePen, Settings } from 'lucide-react';
import Link from 'next/link';
import { useSelectedLayoutSegments } from 'next/navigation';
import React from 'react';
import React, { useEffect, useMemo, useState, type ReactNode } from 'react';
import Layout from './Layout';
import SettingsDialog from './SettingsDialog';
export type Preferences = {
isLibraryEnabled: boolean;
isDiscoverEnabled: boolean;
isCopilotEnabled: boolean;
};
const VerticalIconContainer = ({ children }: { children: ReactNode }) => {
return (
<div className="flex flex-col items-center gap-y-3 w-full">{children}</div>
);
};
const Sidebar = ({ children }: { children: React.ReactNode }) => {
const segments = useSelectedLayoutSegments();
const [isSettingsOpen, setIsSettingsOpen] = useState(false);
const [preferences, setPreferences] = useState<Preferences | null>(null);
const [loading, setLoading] = useState(true);
useEffect(() => {
const fetchPreferences = async () => {
setLoading(true);
const res = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/config/preferences`,
{
method: 'GET',
headers: {
'Content-Type': 'application/json',
},
},
);
const data = await res.json();
setPreferences(data);
setLoading(false);
};
fetchPreferences();
}, []);
const navLinks = [
{
icon: Home,
href: '/',
active: segments.length === 0,
active: segments.length === 0 || segments.includes('c'),
label: 'Home',
show: true,
},
{
icon: Search,
href: '/discover',
active: segments.includes('discover'),
label: 'Discover',
show: preferences?.isDiscoverEnabled,
},
{
icon: BookOpenText,
href: '/library',
active: segments.includes('library'),
label: 'Library',
show: preferences?.isLibraryEnabled,
},
];
return (
return loading ? (
<div className="flex flex-row items-center justify-center h-full">
<svg
aria-hidden="true"
className="w-8 h-8 text-light-200 fill-light-secondary dark:text-[#202020] animate-spin dark:fill-[#ffffff3b]"
viewBox="0 0 100 101"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<path
d="M100 50.5908C100.003 78.2051 78.1951 100.003 50.5908 100C22.9765 99.9972 0.997224 78.018 1 50.4037C1.00281 22.7993 22.8108 0.997224 50.4251 1C78.0395 1.00281 100.018 22.8108 100 50.4251ZM9.08164 50.594C9.06312 73.3997 27.7909 92.1272 50.5966 92.1457C73.4023 92.1642 92.1298 73.4365 92.1483 50.6308C92.1669 27.8251 73.4392 9.0973 50.6335 9.07878C27.8278 9.06026 9.10003 27.787 9.08164 50.594Z"
fill="currentColor"
/>
<path
d="M93.9676 39.0409C96.393 38.4037 97.8624 35.9116 96.9801 33.5533C95.1945 28.8227 92.871 24.3692 90.0681 20.348C85.6237 14.1775 79.4473 9.36872 72.0454 6.45794C64.6435 3.54717 56.3134 2.65431 48.3133 3.89319C45.869 4.27179 44.3768 6.77534 45.014 9.20079C45.6512 11.6262 48.1343 13.0956 50.5786 12.717C56.5073 11.8281 62.5542 12.5399 68.0406 14.7911C73.527 17.0422 78.2187 20.7487 81.5841 25.4923C83.7976 28.5886 85.4467 32.059 86.4416 35.7474C87.1273 38.1189 89.5423 39.6781 91.9676 39.0409Z"
fill="currentFill"
/>
</svg>
</div>
) : (
<div>
<div className="hidden lg:fixed lg:inset-y-0 lg:z-50 lg:flex lg:w-20 lg:flex-col">
<div className="flex grow flex-col items-center justify-between gap-y-5 overflow-y-auto bg-[#111111] px-2 py-8">
<div className="flex grow flex-col items-center justify-between gap-y-5 overflow-y-auto bg-light-secondary dark:bg-dark-secondary px-2 py-8">
<a href="/">
<SquarePen className="text-white cursor-pointer" />
<SquarePen className="cursor-pointer" />
</a>
<div className="flex flex-col items-center gap-y-3 w-full">
{navLinks.map((link, i) => (
<Link
key={i}
href={link.href}
className={cn(
'relative flex flex-row items-center justify-center cursor-pointer hover:bg-white/10 hover:text-white duration-150 transition w-full py-2 rounded-lg',
link.active ? 'text-white' : 'text-white/70',
)}
>
<link.icon />
{link.active && (
<div className="absolute right-0 -mr-2 h-full w-1 rounded-l-lg bg-white" />
)}
</Link>
))}
</div>
<Link
href="https://github.com/ItzCrazyKns/Perplexica"
className="flex flex-col items-center text-center justify-center"
>
<SiGithub
className="text-white"
onPointerEnterCapture={undefined}
onPointerLeaveCapture={undefined}
/>
</Link>
<VerticalIconContainer>
{navLinks.map(
(link, i) =>
link.show === true && (
<Link
key={i}
href={link.href}
className={cn(
'relative flex flex-row items-center justify-center cursor-pointer hover:bg-black/10 dark:hover:bg-white/10 duration-150 transition w-full py-2 rounded-lg',
link.active
? 'text-black dark:text-white'
: 'text-black/70 dark:text-white/70',
)}
>
<link.icon />
{link.active && (
<div className="absolute right-0 -mr-2 h-full w-1 rounded-l-lg bg-black dark:bg-white" />
)}
</Link>
),
)}
</VerticalIconContainer>
<Settings
onClick={() => setIsSettingsOpen(!isSettingsOpen)}
className="cursor-pointer"
/>
<SettingsDialog
isOpen={isSettingsOpen}
setIsOpen={setIsSettingsOpen}
/>
</div>
</div>
<div className="fixed bottom-0 w-full z-50 flex flex-row items-center gap-x-6 bg-[#111111] px-4 py-4 shadow-sm lg:hidden">
<div className="fixed bottom-0 w-full z-50 flex flex-row items-center gap-x-6 bg-light-primary dark:bg-dark-primary px-4 py-4 shadow-sm lg:hidden">
{navLinks.map((link, i) => (
<Link
href={link.href}
key={i}
className={cn(
'relative flex flex-col items-center space-y-1 text-center w-full',
link.active ? 'text-white' : 'text-white/70',
link.active
? 'text-black dark:text-white'
: 'text-black dark:text-white/70',
)}
>
{link.active && (
<div className="absolute top-0 -mt-4 h-1 w-full rounded-b-lg bg-white" />
<div className="absolute top-0 -mt-4 h-1 w-full rounded-b-lg bg-black dark:bg-white" />
)}
<link.icon />
<p className="text-xs">{link.label}</p>

View File

@@ -0,0 +1,16 @@
'use client';
import { ThemeProvider } from 'next-themes';
const ThemeProviderComponent = ({
children,
}: {
children: React.ReactNode;
}) => {
return (
<ThemeProvider attribute="class" enableSystem={false} defaultTheme="dark">
{children}
</ThemeProvider>
);
};
export default ThemeProviderComponent;

View File

@@ -0,0 +1,61 @@
'use client';
import { useTheme } from 'next-themes';
import { SunIcon, MoonIcon, MonitorIcon } from 'lucide-react';
import { useCallback, useEffect, useState } from 'react';
import { Select } from '../SettingsDialog';
type Theme = 'dark' | 'light' | 'system';
const ThemeSwitcher = ({ className }: { className?: string }) => {
const [mounted, setMounted] = useState(false);
const { theme, setTheme } = useTheme();
const isTheme = useCallback((t: Theme) => t === theme, [theme]);
const handleThemeSwitch = (theme: Theme) => {
setTheme(theme);
};
useEffect(() => {
setMounted(true);
}, []);
useEffect(() => {
if (isTheme('system')) {
const preferDarkScheme = window.matchMedia(
'(prefers-color-scheme: dark)',
);
const detectThemeChange = (event: MediaQueryListEvent) => {
const theme: Theme = event.matches ? 'dark' : 'light';
setTheme(theme);
};
preferDarkScheme.addEventListener('change', detectThemeChange);
return () => {
preferDarkScheme.removeEventListener('change', detectThemeChange);
};
}
}, [isTheme, setTheme, theme]);
// Avoid Hydration Mismatch
if (!mounted) {
return null;
}
return (
<Select
className={className}
value={theme}
onChange={(e) => handleThemeSwitch(e.target.value as Theme)}
options={[
{ value: 'light', label: 'Light' },
{ value: 'dark', label: 'Dark' },
]}
/>
);
};
export default ThemeSwitcher;

22
ui/lib/actions.ts Normal file
View File

@@ -0,0 +1,22 @@
import { Message } from '@/components/ChatWindow';
export const getSuggestions = async (chatHisory: Message[]) => {
const chatModel = localStorage.getItem('chatModel');
const chatModelProvider = localStorage.getItem('chatModelProvider');
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/suggestions`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
chat_history: chatHisory,
chat_model: chatModel,
chat_model_provider: chatModelProvider,
}),
});
const data = (await res.json()) as { suggestions: string[] };
return data.suggestions;
};

View File

@@ -3,7 +3,13 @@ import { twMerge } from 'tailwind-merge';
export const cn = (...classes: ClassValue[]) => twMerge(clsx(...classes));
export const formatTimeDifference = (date1: Date, date2: Date): string => {
export const formatTimeDifference = (
date1: Date | string,
date2: Date | string,
): string => {
date1 = new Date(date1);
date2 = new Date(date2);
const diffInSeconds = Math.floor(
Math.abs(date2.getTime() - date1.getTime()) / 1000,
);

View File

@@ -1,6 +1,6 @@
{
"name": "perplexica-frontend",
"version": "1.0.0",
"version": "1.9.0-rc1",
"license": "MIT",
"author": "ItzCrazyKns",
"scripts": {
@@ -20,9 +20,12 @@
"lucide-react": "^0.363.0",
"markdown-to-jsx": "^7.4.5",
"next": "14.1.4",
"next-themes": "^0.3.0",
"react": "^18",
"react-dom": "^18",
"react-text-to-speech": "^0.14.5",
"react-textarea-autosize": "^8.5.3",
"sonner": "^1.4.41",
"tailwind-merge": "^2.2.2",
"yet-another-react-lightbox": "^3.17.2",
"zod": "^3.22.4"

View File

@@ -1,4 +1,17 @@
import type { Config } from 'tailwindcss';
import type { DefaultColors } from 'tailwindcss/types/generated/colors';
const themeDark = (colors: DefaultColors) => ({
50: '#0a0a0a',
100: '#111111',
200: '#1c1c1c',
});
const themeLight = (colors: DefaultColors) => ({
50: '#fcfcf9',
100: '#f3f3ee',
200: '#e8e8e3',
});
const config: Config = {
content: [
@@ -6,8 +19,33 @@ const config: Config = {
'./components/**/*.{js,ts,jsx,tsx,mdx}',
'./app/**/*.{js,ts,jsx,tsx,mdx}',
],
darkMode: 'class',
theme: {
extend: {},
extend: {
borderColor: ({ colors }) => {
return {
light: themeLight(colors),
dark: themeDark(colors),
};
},
colors: ({ colors }) => {
const colorsDark = themeDark(colors);
const colorsLight = themeLight(colors);
return {
dark: {
primary: colorsDark[50],
secondary: colorsDark[100],
...colorsDark,
},
light: {
primary: colorsLight[50],
secondary: colorsLight[100],
...colorsLight,
},
};
},
},
},
plugins: [require('@tailwindcss/typography')],
};

View File

@@ -2244,6 +2244,11 @@ natural-compare@^1.4.0:
resolved "https://registry.yarnpkg.com/natural-compare/-/natural-compare-1.4.0.tgz#4abebfeed7541f2c27acfb29bdbbd15c8d5ba4f7"
integrity sha512-OWND8ei3VtNC9h7V60qff3SVobHr996CTwgxubgyQYEpg290h9J0buyECNNJexkFm5sOajh5G116RYA1c8ZMSw==
next-themes@^0.3.0:
version "0.3.0"
resolved "https://registry.yarnpkg.com/next-themes/-/next-themes-0.3.0.tgz#b4d2a866137a67d42564b07f3a3e720e2ff3871a"
integrity sha512-/QHIrsYpd6Kfk7xakK4svpDI5mmXP0gfvCoJdGpZQ2TOrQZmsW0QxjaiLn8wbIKjtm4BTSqLoix4lxYYOnLJ/w==
next@14.1.4:
version "14.1.4"
resolved "https://registry.yarnpkg.com/next/-/next-14.1.4.tgz#203310f7310578563fd5c961f0db4729ce7a502d"
@@ -2632,6 +2637,11 @@ react-is@^16.13.1:
resolved "https://registry.yarnpkg.com/react-is/-/react-is-16.13.1.tgz#789729a4dc36de2999dc156dd6c1d9c18cea56a4"
integrity sha512-24e6ynE2H+OKt4kqsOvNd8kBpV65zoxbA4BVsEOB3ARVWQki/DHzaUoC5KuON/BiccDaCCTZBuOcfZs70kR8bQ==
react-text-to-speech@^0.14.5:
version "0.14.5"
resolved "https://registry.yarnpkg.com/react-text-to-speech/-/react-text-to-speech-0.14.5.tgz#f918786ab283311535682011045bd49777193300"
integrity sha512-3brr/IrK/5YTtOZSTo+Y8b+dnWelzfZiDZvkXnOct1e7O7fgA/h9bYAVrtwSRo/VxKfdw+wh6glkj6M0mlQuQQ==
react-textarea-autosize@^8.5.3:
version "8.5.3"
resolved "https://registry.yarnpkg.com/react-textarea-autosize/-/react-textarea-autosize-8.5.3.tgz#d1e9fe760178413891484847d3378706052dd409"
@@ -2834,6 +2844,11 @@ slash@^3.0.0:
resolved "https://registry.yarnpkg.com/slash/-/slash-3.0.0.tgz#6539be870c165adbd5240220dbe361f1bc4d4634"
integrity sha512-g9Q1haeby36OSStwb4ntCGGGaKsaVSjQ68fBxoQcutl5fS1vuY18H3wSt3jFyFtrkx+Kz0V1G85A4MyAdDMi2Q==
sonner@^1.4.41:
version "1.4.41"
resolved "https://registry.yarnpkg.com/sonner/-/sonner-1.4.41.tgz#ff085ae4f4244713daf294959beaa3e90f842d2c"
integrity sha512-uG511ggnnsw6gcn/X+YKkWPo5ep9il9wYi3QJxHsYe7yTZ4+cOd1wuodOUmOpFuXL+/RE3R04LczdNCDygTDgQ==
source-map-js@^1.0.2, source-map-js@^1.2.0:
version "1.2.0"
resolved "https://registry.yarnpkg.com/source-map-js/-/source-map-js-1.2.0.tgz#16b809c162517b5b8c3e7dcd315a2a5c2612b2af"
@@ -2844,7 +2859,16 @@ streamsearch@^1.1.0:
resolved "https://registry.yarnpkg.com/streamsearch/-/streamsearch-1.1.0.tgz#404dd1e2247ca94af554e841a8ef0eaa238da764"
integrity sha512-Mcc5wHehp9aXz1ax6bZUyY5afg9u2rv5cqQI3mRrYkGC8rW2hM02jWuwjtL++LS5qinSyhj2QfLyNsuc+VsExg==
"string-width-cjs@npm:string-width@^4.2.0", string-width@^4.1.0:
"string-width-cjs@npm:string-width@^4.2.0":
version "4.2.3"
resolved "https://registry.yarnpkg.com/string-width/-/string-width-4.2.3.tgz#269c7117d27b05ad2e536830a8ec895ef9c6d010"
integrity sha512-wKyQRQpjJ0sIp62ErSZdGsjMJWsap5oRNihHhu6G7JVO/9jIB6UyevL+tXuOqrng8j/cxKTWyWUwvSTriiZz/g==
dependencies:
emoji-regex "^8.0.0"
is-fullwidth-code-point "^3.0.0"
strip-ansi "^6.0.1"
string-width@^4.1.0:
version "4.2.3"
resolved "https://registry.yarnpkg.com/string-width/-/string-width-4.2.3.tgz#269c7117d27b05ad2e536830a8ec895ef9c6d010"
integrity sha512-wKyQRQpjJ0sIp62ErSZdGsjMJWsap5oRNihHhu6G7JVO/9jIB6UyevL+tXuOqrng8j/cxKTWyWUwvSTriiZz/g==
@@ -2908,7 +2932,14 @@ string.prototype.trimstart@^1.0.8:
define-properties "^1.2.1"
es-object-atoms "^1.0.0"
"strip-ansi-cjs@npm:strip-ansi@^6.0.1", strip-ansi@^6.0.0, strip-ansi@^6.0.1:
"strip-ansi-cjs@npm:strip-ansi@^6.0.1":
version "6.0.1"
resolved "https://registry.yarnpkg.com/strip-ansi/-/strip-ansi-6.0.1.tgz#9e26c63d30f53443e9489495b2105d37b67a85d9"
integrity sha512-Y38VPSHcqkFrCpFnQ9vuSXmquuv5oXOKpGeT6aGrr3o3Gc9AlVa6JBfUSOCnbxGGZF+/0ooI7KrPuUSztUdU5A==
dependencies:
ansi-regex "^5.0.1"
strip-ansi@^6.0.0, strip-ansi@^6.0.1:
version "6.0.1"
resolved "https://registry.yarnpkg.com/strip-ansi/-/strip-ansi-6.0.1.tgz#9e26c63d30f53443e9489495b2105d37b67a85d9"
integrity sha512-Y38VPSHcqkFrCpFnQ9vuSXmquuv5oXOKpGeT6aGrr3o3Gc9AlVa6JBfUSOCnbxGGZF+/0ooI7KrPuUSztUdU5A==

1591
yarn.lock

File diff suppressed because it is too large Load Diff