mirror of
https://github.com/ItzCrazyKns/Perplexica.git
synced 2025-09-17 14:51:32 +00:00
Compare commits
3 Commits
feat/deep-
...
bdba92f452
Author | SHA1 | Date | |
---|---|---|---|
|
bdba92f452 | ||
|
7288c97326 | ||
|
3545137bc0 |
@@ -89,6 +89,7 @@ There are mainly 2 ways of installing Perplexica - With Docker, Without Docker.
|
|||||||
- `OPENAI`: Your OpenAI API key. **You only need to fill this if you wish to use OpenAI's models**.
|
- `OPENAI`: Your OpenAI API key. **You only need to fill this if you wish to use OpenAI's models**.
|
||||||
- `OLLAMA`: Your Ollama API URL. You should enter it as `http://host.docker.internal:PORT_NUMBER`. If you installed Ollama on port 11434, use `http://host.docker.internal:11434`. For other ports, adjust accordingly. **You need to fill this if you wish to use Ollama's models instead of OpenAI's**.
|
- `OLLAMA`: Your Ollama API URL. You should enter it as `http://host.docker.internal:PORT_NUMBER`. If you installed Ollama on port 11434, use `http://host.docker.internal:11434`. For other ports, adjust accordingly. **You need to fill this if you wish to use Ollama's models instead of OpenAI's**.
|
||||||
- `GROQ`: Your Groq API key. **You only need to fill this if you wish to use Groq's hosted models**.
|
- `GROQ`: Your Groq API key. **You only need to fill this if you wish to use Groq's hosted models**.
|
||||||
|
- `OPENROUTER`: Your OpenRouter API key. **You only need to fill this if you wish to use models via OpenRouter**.
|
||||||
- `ANTHROPIC`: Your Anthropic API key. **You only need to fill this if you wish to use Anthropic models**.
|
- `ANTHROPIC`: Your Anthropic API key. **You only need to fill this if you wish to use Anthropic models**.
|
||||||
|
|
||||||
**Note**: You can change these after starting Perplexica from the settings dialog.
|
**Note**: You can change these after starting Perplexica from the settings dialog.
|
||||||
|
@@ -33,7 +33,6 @@ The API accepts a JSON object in the request body, where you define the focus mo
|
|||||||
["human", "Hi, how are you?"],
|
["human", "Hi, how are you?"],
|
||||||
["assistant", "I am doing well, how can I help you today?"]
|
["assistant", "I am doing well, how can I help you today?"]
|
||||||
],
|
],
|
||||||
"systemInstructions": "Focus on providing technical details about Perplexica's architecture.",
|
|
||||||
"stream": false
|
"stream": false
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
@@ -64,8 +63,6 @@ The API accepts a JSON object in the request body, where you define the focus mo
|
|||||||
|
|
||||||
- **`query`** (string, required): The search query or question.
|
- **`query`** (string, required): The search query or question.
|
||||||
|
|
||||||
- **`systemInstructions`** (string, optional): Custom instructions provided by the user to guide the AI's response. These instructions are treated as user preferences and have lower priority than the system's core instructions. For example, you can specify a particular writing style, format, or focus area.
|
|
||||||
|
|
||||||
- **`history`** (array, optional): An array of message pairs representing the conversation history. Each pair consists of a role (either 'human' or 'assistant') and the message content. This allows the system to use the context of the conversation to refine results. Example:
|
- **`history`** (array, optional): An array of message pairs representing the conversation history. Each pair consists of a role (either 'human' or 'assistant') and the message content. This allows the system to use the context of the conversation to refine results. Example:
|
||||||
|
|
||||||
```json
|
```json
|
||||||
|
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "perplexica-frontend",
|
"name": "perplexica-frontend",
|
||||||
"version": "1.10.2",
|
"version": "1.10.1",
|
||||||
"license": "MIT",
|
"license": "MIT",
|
||||||
"author": "ItzCrazyKns",
|
"author": "ItzCrazyKns",
|
||||||
"scripts": {
|
"scripts": {
|
||||||
|
@@ -11,6 +11,9 @@ API_KEY = ""
|
|||||||
[MODELS.ANTHROPIC]
|
[MODELS.ANTHROPIC]
|
||||||
API_KEY = ""
|
API_KEY = ""
|
||||||
|
|
||||||
|
[MODELS.OPENROUTER]
|
||||||
|
API_KEY = ""
|
||||||
|
|
||||||
[MODELS.GEMINI]
|
[MODELS.GEMINI]
|
||||||
API_KEY = ""
|
API_KEY = ""
|
||||||
|
|
||||||
@@ -22,8 +25,5 @@ MODEL_NAME = ""
|
|||||||
[MODELS.OLLAMA]
|
[MODELS.OLLAMA]
|
||||||
API_URL = "" # Ollama API URL - http://host.docker.internal:11434
|
API_URL = "" # Ollama API URL - http://host.docker.internal:11434
|
||||||
|
|
||||||
[MODELS.DEEPSEEK]
|
|
||||||
API_KEY = ""
|
|
||||||
|
|
||||||
[API_ENDPOINTS]
|
[API_ENDPOINTS]
|
||||||
SEARXNG = "" # SearxNG API URL - http://localhost:32768
|
SEARXNG = "" # SearxNG API URL - http://localhost:32768
|
@@ -5,9 +5,9 @@ import {
|
|||||||
getCustomOpenaiModelName,
|
getCustomOpenaiModelName,
|
||||||
getGeminiApiKey,
|
getGeminiApiKey,
|
||||||
getGroqApiKey,
|
getGroqApiKey,
|
||||||
|
getOpenrouterApiKey,
|
||||||
getOllamaApiEndpoint,
|
getOllamaApiEndpoint,
|
||||||
getOpenaiApiKey,
|
getOpenaiApiKey,
|
||||||
getDeepseekApiKey,
|
|
||||||
updateConfig,
|
updateConfig,
|
||||||
} from '@/lib/config';
|
} from '@/lib/config';
|
||||||
import {
|
import {
|
||||||
@@ -53,8 +53,8 @@ export const GET = async (req: Request) => {
|
|||||||
config['ollamaApiUrl'] = getOllamaApiEndpoint();
|
config['ollamaApiUrl'] = getOllamaApiEndpoint();
|
||||||
config['anthropicApiKey'] = getAnthropicApiKey();
|
config['anthropicApiKey'] = getAnthropicApiKey();
|
||||||
config['groqApiKey'] = getGroqApiKey();
|
config['groqApiKey'] = getGroqApiKey();
|
||||||
|
config['openrouterApiKey'] = getOpenrouterApiKey();
|
||||||
config['geminiApiKey'] = getGeminiApiKey();
|
config['geminiApiKey'] = getGeminiApiKey();
|
||||||
config['deepseekApiKey'] = getDeepseekApiKey();
|
|
||||||
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
|
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
|
||||||
config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
|
config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
|
||||||
config['customOpenaiModelName'] = getCustomOpenaiModelName();
|
config['customOpenaiModelName'] = getCustomOpenaiModelName();
|
||||||
@@ -81,6 +81,9 @@ export const POST = async (req: Request) => {
|
|||||||
GROQ: {
|
GROQ: {
|
||||||
API_KEY: config.groqApiKey,
|
API_KEY: config.groqApiKey,
|
||||||
},
|
},
|
||||||
|
OPENROUTER: {
|
||||||
|
API_KEY: config.openrouterApiKey,
|
||||||
|
},
|
||||||
ANTHROPIC: {
|
ANTHROPIC: {
|
||||||
API_KEY: config.anthropicApiKey,
|
API_KEY: config.anthropicApiKey,
|
||||||
},
|
},
|
||||||
@@ -90,9 +93,6 @@ export const POST = async (req: Request) => {
|
|||||||
OLLAMA: {
|
OLLAMA: {
|
||||||
API_URL: config.ollamaApiUrl,
|
API_URL: config.ollamaApiUrl,
|
||||||
},
|
},
|
||||||
DEEPSEEK: {
|
|
||||||
API_KEY: config.deepseekApiKey,
|
|
||||||
},
|
|
||||||
CUSTOM_OPENAI: {
|
CUSTOM_OPENAI: {
|
||||||
API_URL: config.customOpenaiApiUrl,
|
API_URL: config.customOpenaiApiUrl,
|
||||||
API_KEY: config.customOpenaiApiKey,
|
API_KEY: config.customOpenaiApiKey,
|
||||||
|
@@ -34,7 +34,6 @@ interface ChatRequestBody {
|
|||||||
query: string;
|
query: string;
|
||||||
history: Array<[string, string]>;
|
history: Array<[string, string]>;
|
||||||
stream?: boolean;
|
stream?: boolean;
|
||||||
systemInstructions?: string;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
export const POST = async (req: Request) => {
|
export const POST = async (req: Request) => {
|
||||||
@@ -126,7 +125,7 @@ export const POST = async (req: Request) => {
|
|||||||
embeddings,
|
embeddings,
|
||||||
body.optimizationMode,
|
body.optimizationMode,
|
||||||
[],
|
[],
|
||||||
body.systemInstructions || '',
|
'',
|
||||||
);
|
);
|
||||||
|
|
||||||
if (!body.stream) {
|
if (!body.stream) {
|
||||||
|
@@ -17,10 +17,10 @@ interface SettingsType {
|
|||||||
};
|
};
|
||||||
openaiApiKey: string;
|
openaiApiKey: string;
|
||||||
groqApiKey: string;
|
groqApiKey: string;
|
||||||
|
openrouterApiKey: string;
|
||||||
anthropicApiKey: string;
|
anthropicApiKey: string;
|
||||||
geminiApiKey: string;
|
geminiApiKey: string;
|
||||||
ollamaApiUrl: string;
|
ollamaApiUrl: string;
|
||||||
deepseekApiKey: string;
|
|
||||||
customOpenaiApiKey: string;
|
customOpenaiApiKey: string;
|
||||||
customOpenaiApiUrl: string;
|
customOpenaiApiUrl: string;
|
||||||
customOpenaiModelName: string;
|
customOpenaiModelName: string;
|
||||||
@@ -802,6 +802,25 @@ const Page = () => {
|
|||||||
/>
|
/>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
|
<div className="flex flex-col space-y-1">
|
||||||
|
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||||
|
OpenRouter API Key
|
||||||
|
</p>
|
||||||
|
<Input
|
||||||
|
type="text"
|
||||||
|
placeholder="OpenRouter API Key"
|
||||||
|
value={config.openrouterApiKey}
|
||||||
|
isSaving={savingStates['openrouterApiKey']}
|
||||||
|
onChange={(e) => {
|
||||||
|
setConfig((prev) => ({
|
||||||
|
...prev!,
|
||||||
|
openrouterApiKey: e.target.value,
|
||||||
|
}));
|
||||||
|
}}
|
||||||
|
onSave={(value) => saveConfig('openrouterApiKey', value)}
|
||||||
|
/>
|
||||||
|
</div>
|
||||||
|
|
||||||
<div className="flex flex-col space-y-1">
|
<div className="flex flex-col space-y-1">
|
||||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||||
Anthropic API Key
|
Anthropic API Key
|
||||||
@@ -839,25 +858,6 @@ const Page = () => {
|
|||||||
onSave={(value) => saveConfig('geminiApiKey', value)}
|
onSave={(value) => saveConfig('geminiApiKey', value)}
|
||||||
/>
|
/>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
<div className="flex flex-col space-y-1">
|
|
||||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
|
||||||
Deepseek API Key
|
|
||||||
</p>
|
|
||||||
<Input
|
|
||||||
type="text"
|
|
||||||
placeholder="Deepseek API Key"
|
|
||||||
value={config.deepseekApiKey}
|
|
||||||
isSaving={savingStates['deepseekApiKey']}
|
|
||||||
onChange={(e) => {
|
|
||||||
setConfig((prev) => ({
|
|
||||||
...prev!,
|
|
||||||
deepseekApiKey: e.target.value,
|
|
||||||
}));
|
|
||||||
}}
|
|
||||||
onSave={(value) => saveConfig('deepseekApiKey', value)}
|
|
||||||
/>
|
|
||||||
</div>
|
|
||||||
</div>
|
</div>
|
||||||
</SettingsSection>
|
</SettingsSection>
|
||||||
</div>
|
</div>
|
||||||
|
@@ -363,6 +363,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
|||||||
|
|
||||||
if (data.type === 'sources') {
|
if (data.type === 'sources') {
|
||||||
sources = data.data;
|
sources = data.data;
|
||||||
|
if (!added) {
|
||||||
setMessages((prevMessages) => [
|
setMessages((prevMessages) => [
|
||||||
...prevMessages,
|
...prevMessages,
|
||||||
{
|
{
|
||||||
@@ -375,6 +376,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
|||||||
},
|
},
|
||||||
]);
|
]);
|
||||||
added = true;
|
added = true;
|
||||||
|
}
|
||||||
setMessageAppeared(true);
|
setMessageAppeared(true);
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -392,8 +394,8 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
|||||||
},
|
},
|
||||||
]);
|
]);
|
||||||
added = true;
|
added = true;
|
||||||
setMessageAppeared(true);
|
}
|
||||||
} else {
|
|
||||||
setMessages((prev) =>
|
setMessages((prev) =>
|
||||||
prev.map((message) => {
|
prev.map((message) => {
|
||||||
if (message.messageId === data.messageId) {
|
if (message.messageId === data.messageId) {
|
||||||
@@ -403,9 +405,9 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
|||||||
return message;
|
return message;
|
||||||
}),
|
}),
|
||||||
);
|
);
|
||||||
}
|
|
||||||
|
|
||||||
recievedMessage += data.data;
|
recievedMessage += data.data;
|
||||||
|
setMessageAppeared(true);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (data.type === 'messageEnd') {
|
if (data.type === 'messageEnd') {
|
||||||
|
@@ -48,7 +48,6 @@ const MessageBox = ({
|
|||||||
const [speechMessage, setSpeechMessage] = useState(message.content);
|
const [speechMessage, setSpeechMessage] = useState(message.content);
|
||||||
|
|
||||||
useEffect(() => {
|
useEffect(() => {
|
||||||
const citationRegex = /\[([^\]]+)\]/g;
|
|
||||||
const regex = /\[(\d+)\]/g;
|
const regex = /\[(\d+)\]/g;
|
||||||
let processedMessage = message.content;
|
let processedMessage = message.content;
|
||||||
|
|
||||||
@@ -68,33 +67,11 @@ const MessageBox = ({
|
|||||||
) {
|
) {
|
||||||
setParsedMessage(
|
setParsedMessage(
|
||||||
processedMessage.replace(
|
processedMessage.replace(
|
||||||
citationRegex,
|
regex,
|
||||||
(_, capturedContent: string) => {
|
(_, number) =>
|
||||||
const numbers = capturedContent
|
`<a href="${
|
||||||
.split(',')
|
message.sources?.[number - 1]?.metadata?.url
|
||||||
.map((numStr) => numStr.trim());
|
}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${number}</a>`,
|
||||||
|
|
||||||
const linksHtml = numbers
|
|
||||||
.map((numStr) => {
|
|
||||||
const number = parseInt(numStr);
|
|
||||||
|
|
||||||
if (isNaN(number) || number <= 0) {
|
|
||||||
return `[${numStr}]`;
|
|
||||||
}
|
|
||||||
|
|
||||||
const source = message.sources?.[number - 1];
|
|
||||||
const url = source?.metadata?.url;
|
|
||||||
|
|
||||||
if (url) {
|
|
||||||
return `<a href="${url}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${numStr}</a>`;
|
|
||||||
} else {
|
|
||||||
return `[${numStr}]`;
|
|
||||||
}
|
|
||||||
})
|
|
||||||
.join('');
|
|
||||||
|
|
||||||
return linksHtml;
|
|
||||||
},
|
|
||||||
),
|
),
|
||||||
);
|
);
|
||||||
return;
|
return;
|
||||||
|
@@ -76,11 +76,13 @@ const Optimization = ({
|
|||||||
<PopoverButton
|
<PopoverButton
|
||||||
onClick={() => setOptimizationMode(mode.key)}
|
onClick={() => setOptimizationMode(mode.key)}
|
||||||
key={i}
|
key={i}
|
||||||
|
disabled={mode.key === 'quality'}
|
||||||
className={cn(
|
className={cn(
|
||||||
'p-2 rounded-lg flex flex-col items-start justify-start text-start space-y-1 duration-200 cursor-pointer transition',
|
'p-2 rounded-lg flex flex-col items-start justify-start text-start space-y-1 duration-200 cursor-pointer transition',
|
||||||
optimizationMode === mode.key
|
optimizationMode === mode.key
|
||||||
? 'bg-light-secondary dark:bg-dark-secondary'
|
? 'bg-light-secondary dark:bg-dark-secondary'
|
||||||
: 'hover:bg-light-secondary dark:hover:bg-dark-secondary',
|
: 'hover:bg-light-secondary dark:hover:bg-dark-secondary',
|
||||||
|
mode.key === 'quality' && 'opacity-50 cursor-not-allowed',
|
||||||
)}
|
)}
|
||||||
>
|
>
|
||||||
<div className="flex flex-row items-center space-x-1 text-black dark:text-white">
|
<div className="flex flex-row items-center space-x-1 text-black dark:text-white">
|
||||||
|
@@ -25,7 +25,7 @@ interface Config {
|
|||||||
OLLAMA: {
|
OLLAMA: {
|
||||||
API_URL: string;
|
API_URL: string;
|
||||||
};
|
};
|
||||||
DEEPSEEK: {
|
OPENROUTER: {
|
||||||
API_KEY: string;
|
API_KEY: string;
|
||||||
};
|
};
|
||||||
CUSTOM_OPENAI: {
|
CUSTOM_OPENAI: {
|
||||||
@@ -57,6 +57,8 @@ export const getOpenaiApiKey = () => loadConfig().MODELS.OPENAI.API_KEY;
|
|||||||
|
|
||||||
export const getGroqApiKey = () => loadConfig().MODELS.GROQ.API_KEY;
|
export const getGroqApiKey = () => loadConfig().MODELS.GROQ.API_KEY;
|
||||||
|
|
||||||
|
export const getOpenrouterApiKey = () => loadConfig().MODELS.OPENROUTER.API_KEY;
|
||||||
|
|
||||||
export const getAnthropicApiKey = () => loadConfig().MODELS.ANTHROPIC.API_KEY;
|
export const getAnthropicApiKey = () => loadConfig().MODELS.ANTHROPIC.API_KEY;
|
||||||
|
|
||||||
export const getGeminiApiKey = () => loadConfig().MODELS.GEMINI.API_KEY;
|
export const getGeminiApiKey = () => loadConfig().MODELS.GEMINI.API_KEY;
|
||||||
@@ -66,8 +68,6 @@ export const getSearxngApiEndpoint = () =>
|
|||||||
|
|
||||||
export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL;
|
export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL;
|
||||||
|
|
||||||
export const getDeepseekApiKey = () => loadConfig().MODELS.DEEPSEEK.API_KEY;
|
|
||||||
|
|
||||||
export const getCustomOpenaiApiKey = () =>
|
export const getCustomOpenaiApiKey = () =>
|
||||||
loadConfig().MODELS.CUSTOM_OPENAI.API_KEY;
|
loadConfig().MODELS.CUSTOM_OPENAI.API_KEY;
|
||||||
|
|
||||||
|
@@ -1,44 +0,0 @@
|
|||||||
import { ChatOpenAI } from '@langchain/openai';
|
|
||||||
import { getDeepseekApiKey } from '../config';
|
|
||||||
import { ChatModel } from '.';
|
|
||||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
|
||||||
|
|
||||||
const deepseekChatModels: Record<string, string>[] = [
|
|
||||||
{
|
|
||||||
displayName: 'Deepseek Chat (Deepseek V3)',
|
|
||||||
key: 'deepseek-chat',
|
|
||||||
},
|
|
||||||
{
|
|
||||||
displayName: 'Deepseek Reasoner (Deepseek R1)',
|
|
||||||
key: 'deepseek-reasoner',
|
|
||||||
},
|
|
||||||
];
|
|
||||||
|
|
||||||
export const loadDeepseekChatModels = async () => {
|
|
||||||
const deepseekApiKey = getDeepseekApiKey();
|
|
||||||
|
|
||||||
if (!deepseekApiKey) return {};
|
|
||||||
|
|
||||||
try {
|
|
||||||
const chatModels: Record<string, ChatModel> = {};
|
|
||||||
|
|
||||||
deepseekChatModels.forEach((model) => {
|
|
||||||
chatModels[model.key] = {
|
|
||||||
displayName: model.displayName,
|
|
||||||
model: new ChatOpenAI({
|
|
||||||
openAIApiKey: deepseekApiKey,
|
|
||||||
modelName: model.key,
|
|
||||||
temperature: 0.7,
|
|
||||||
configuration: {
|
|
||||||
baseURL: 'https://api.deepseek.com',
|
|
||||||
},
|
|
||||||
}) as unknown as BaseChatModel,
|
|
||||||
};
|
|
||||||
});
|
|
||||||
|
|
||||||
return chatModels;
|
|
||||||
} catch (err) {
|
|
||||||
console.error(`Error loading Deepseek models: ${err}`);
|
|
||||||
return {};
|
|
||||||
}
|
|
||||||
};
|
|
@@ -40,12 +40,8 @@ const geminiChatModels: Record<string, string>[] = [
|
|||||||
|
|
||||||
const geminiEmbeddingModels: Record<string, string>[] = [
|
const geminiEmbeddingModels: Record<string, string>[] = [
|
||||||
{
|
{
|
||||||
displayName: 'Text Embedding 004',
|
displayName: 'Gemini Embedding',
|
||||||
key: 'models/text-embedding-004',
|
key: 'gemini-embedding-exp',
|
||||||
},
|
|
||||||
{
|
|
||||||
displayName: 'Embedding 001',
|
|
||||||
key: 'models/embedding-001',
|
|
||||||
},
|
},
|
||||||
];
|
];
|
||||||
|
|
||||||
|
@@ -72,14 +72,6 @@ const groqChatModels: Record<string, string>[] = [
|
|||||||
displayName: 'Llama 3.2 90B Vision Preview (Preview)',
|
displayName: 'Llama 3.2 90B Vision Preview (Preview)',
|
||||||
key: 'llama-3.2-90b-vision-preview',
|
key: 'llama-3.2-90b-vision-preview',
|
||||||
},
|
},
|
||||||
/* {
|
|
||||||
displayName: 'Llama 4 Maverick 17B 128E Instruct (Preview)',
|
|
||||||
key: 'meta-llama/llama-4-maverick-17b-128e-instruct',
|
|
||||||
}, */
|
|
||||||
{
|
|
||||||
displayName: 'Llama 4 Scout 17B 16E Instruct (Preview)',
|
|
||||||
key: 'meta-llama/llama-4-scout-17b-16e-instruct',
|
|
||||||
},
|
|
||||||
];
|
];
|
||||||
|
|
||||||
export const loadGroqChatModels = async () => {
|
export const loadGroqChatModels = async () => {
|
||||||
|
@@ -12,7 +12,7 @@ import { loadGroqChatModels } from './groq';
|
|||||||
import { loadAnthropicChatModels } from './anthropic';
|
import { loadAnthropicChatModels } from './anthropic';
|
||||||
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini';
|
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini';
|
||||||
import { loadTransformersEmbeddingsModels } from './transformers';
|
import { loadTransformersEmbeddingsModels } from './transformers';
|
||||||
import { loadDeepseekChatModels } from './deepseek';
|
import { loadOpenrouterChatModels } from '@/lib/providers/openrouter';
|
||||||
|
|
||||||
export interface ChatModel {
|
export interface ChatModel {
|
||||||
displayName: string;
|
displayName: string;
|
||||||
@@ -33,7 +33,7 @@ export const chatModelProviders: Record<
|
|||||||
groq: loadGroqChatModels,
|
groq: loadGroqChatModels,
|
||||||
anthropic: loadAnthropicChatModels,
|
anthropic: loadAnthropicChatModels,
|
||||||
gemini: loadGeminiChatModels,
|
gemini: loadGeminiChatModels,
|
||||||
deepseek: loadDeepseekChatModels,
|
openrouter: loadOpenrouterChatModels,
|
||||||
};
|
};
|
||||||
|
|
||||||
export const embeddingModelProviders: Record<
|
export const embeddingModelProviders: Record<
|
||||||
|
61
src/lib/providers/openrouter.ts
Normal file
61
src/lib/providers/openrouter.ts
Normal file
@@ -0,0 +1,61 @@
|
|||||||
|
import { ChatOpenAI } from '@langchain/openai';
|
||||||
|
import { getOpenrouterApiKey } from '../config';
|
||||||
|
import { ChatModel } from '.';
|
||||||
|
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||||
|
|
||||||
|
let openrouterChatModels: Record<string, string>[] = [];
|
||||||
|
|
||||||
|
async function fetchModelList(): Promise<void> {
|
||||||
|
try {
|
||||||
|
const response = await fetch('https://openrouter.ai/api/v1/models', {
|
||||||
|
method: 'GET',
|
||||||
|
headers: {
|
||||||
|
'Content-Type': 'application/json',
|
||||||
|
},
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!response.ok) {
|
||||||
|
throw new Error(`API request failed with status: ${response.status}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const data = await response.json();
|
||||||
|
|
||||||
|
openrouterChatModels = data.data.map((model: any) => ({
|
||||||
|
displayName: model.name,
|
||||||
|
key: model.id,
|
||||||
|
}));
|
||||||
|
} catch (error) {
|
||||||
|
console.error('Error fetching models:', error);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
export const loadOpenrouterChatModels = async () => {
|
||||||
|
await fetchModelList();
|
||||||
|
|
||||||
|
const openrouterApikey = getOpenrouterApiKey();
|
||||||
|
|
||||||
|
if (!openrouterApikey) return {};
|
||||||
|
|
||||||
|
try {
|
||||||
|
const chatModels: Record<string, ChatModel> = {};
|
||||||
|
|
||||||
|
openrouterChatModels.forEach((model) => {
|
||||||
|
chatModels[model.key] = {
|
||||||
|
displayName: model.displayName,
|
||||||
|
model: new ChatOpenAI({
|
||||||
|
openAIApiKey: openrouterApikey,
|
||||||
|
modelName: model.key,
|
||||||
|
temperature: 0.7,
|
||||||
|
configuration: {
|
||||||
|
baseURL: 'https://openrouter.ai/api/v1',
|
||||||
|
},
|
||||||
|
}) as unknown as BaseChatModel,
|
||||||
|
};
|
||||||
|
});
|
||||||
|
|
||||||
|
return chatModels;
|
||||||
|
} catch (err) {
|
||||||
|
console.error(`Error loading Openrouter models: ${err}`);
|
||||||
|
return {};
|
||||||
|
}
|
||||||
|
};
|
@@ -6,20 +6,24 @@ import {
|
|||||||
MessagesPlaceholder,
|
MessagesPlaceholder,
|
||||||
PromptTemplate,
|
PromptTemplate,
|
||||||
} from '@langchain/core/prompts';
|
} from '@langchain/core/prompts';
|
||||||
|
import {
|
||||||
|
RunnableLambda,
|
||||||
|
RunnableMap,
|
||||||
|
RunnableSequence,
|
||||||
|
} from '@langchain/core/runnables';
|
||||||
import { BaseMessage } from '@langchain/core/messages';
|
import { BaseMessage } from '@langchain/core/messages';
|
||||||
import { StringOutputParser } from '@langchain/core/output_parsers';
|
import { StringOutputParser } from '@langchain/core/output_parsers';
|
||||||
import LineListOutputParser from '../outputParsers/listLineOutputParser';
|
import LineListOutputParser from '../outputParsers/listLineOutputParser';
|
||||||
import LineOutputParser from '../outputParsers/lineOutputParser';
|
import LineOutputParser from '../outputParsers/lineOutputParser';
|
||||||
import { getDocumentsFromLinks } from '../utils/documents';
|
import { getDocumentsFromLinks } from '../utils/documents';
|
||||||
import { Document } from 'langchain/document';
|
import { Document } from 'langchain/document';
|
||||||
import { searchSearxng, SearxngSearchResult } from '../searxng';
|
import { searchSearxng } from '../searxng';
|
||||||
import path from 'node:path';
|
import path from 'node:path';
|
||||||
import fs from 'node:fs';
|
import fs from 'node:fs';
|
||||||
import computeSimilarity from '../utils/computeSimilarity';
|
import computeSimilarity from '../utils/computeSimilarity';
|
||||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||||
import eventEmitter from 'events';
|
import eventEmitter from 'events';
|
||||||
import { StreamEvent } from '@langchain/core/tracers/log_stream';
|
import { StreamEvent } from '@langchain/core/tracers/log_stream';
|
||||||
import { EventEmitter } from 'node:stream';
|
|
||||||
|
|
||||||
export interface MetaSearchAgentType {
|
export interface MetaSearchAgentType {
|
||||||
searchAndAnswer: (
|
searchAndAnswer: (
|
||||||
@@ -43,7 +47,7 @@ interface Config {
|
|||||||
activeEngines: string[];
|
activeEngines: string[];
|
||||||
}
|
}
|
||||||
|
|
||||||
type SearchInput = {
|
type BasicChainInput = {
|
||||||
chat_history: BaseMessage[];
|
chat_history: BaseMessage[];
|
||||||
query: string;
|
query: string;
|
||||||
};
|
};
|
||||||
@@ -56,25 +60,14 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||||||
this.config = config;
|
this.config = config;
|
||||||
}
|
}
|
||||||
|
|
||||||
private async searchSources(
|
private async createSearchRetrieverChain(llm: BaseChatModel) {
|
||||||
llm: BaseChatModel,
|
|
||||||
input: SearchInput,
|
|
||||||
emitter: EventEmitter,
|
|
||||||
) {
|
|
||||||
(llm as unknown as ChatOpenAI).temperature = 0;
|
(llm as unknown as ChatOpenAI).temperature = 0;
|
||||||
|
|
||||||
const chatPrompt = PromptTemplate.fromTemplate(
|
return RunnableSequence.from([
|
||||||
this.config.queryGeneratorPrompt,
|
PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt),
|
||||||
);
|
llm,
|
||||||
|
this.strParser,
|
||||||
const processedChatPrompt = await chatPrompt.invoke({
|
RunnableLambda.from(async (input: string) => {
|
||||||
chat_history: formatChatHistoryAsString(input.chat_history),
|
|
||||||
query: input.query,
|
|
||||||
});
|
|
||||||
|
|
||||||
const llmRes = await llm.invoke(processedChatPrompt);
|
|
||||||
const messageStr = await this.strParser.invoke(llmRes);
|
|
||||||
|
|
||||||
const linksOutputParser = new LineListOutputParser({
|
const linksOutputParser = new LineListOutputParser({
|
||||||
key: 'links',
|
key: 'links',
|
||||||
});
|
});
|
||||||
@@ -83,10 +76,10 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||||||
key: 'question',
|
key: 'question',
|
||||||
});
|
});
|
||||||
|
|
||||||
const links = await linksOutputParser.parse(messageStr);
|
const links = await linksOutputParser.parse(input);
|
||||||
let question = this.config.summarizer
|
let question = this.config.summarizer
|
||||||
? await questionOutputParser.parse(messageStr)
|
? await questionOutputParser.parse(input)
|
||||||
: messageStr;
|
: input;
|
||||||
|
|
||||||
if (question === 'not_needed') {
|
if (question === 'not_needed') {
|
||||||
return { query: '', docs: [] };
|
return { query: '', docs: [] };
|
||||||
@@ -106,7 +99,8 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||||||
linkDocs.map((doc) => {
|
linkDocs.map((doc) => {
|
||||||
const URLDocExists = docGroups.find(
|
const URLDocExists = docGroups.find(
|
||||||
(d) =>
|
(d) =>
|
||||||
d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10,
|
d.metadata.url === doc.metadata.url &&
|
||||||
|
d.metadata.totalDocs < 10,
|
||||||
);
|
);
|
||||||
|
|
||||||
if (!URLDocExists) {
|
if (!URLDocExists) {
|
||||||
@@ -121,7 +115,8 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||||||
|
|
||||||
const docIndex = docGroups.findIndex(
|
const docIndex = docGroups.findIndex(
|
||||||
(d) =>
|
(d) =>
|
||||||
d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10,
|
d.metadata.url === doc.metadata.url &&
|
||||||
|
d.metadata.totalDocs < 10,
|
||||||
);
|
);
|
||||||
|
|
||||||
if (docIndex !== -1) {
|
if (docIndex !== -1) {
|
||||||
@@ -233,162 +228,42 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||||||
|
|
||||||
return { query: question, docs: documents };
|
return { query: question, docs: documents };
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
private async performDeepResearch(
|
|
||||||
llm: BaseChatModel,
|
|
||||||
input: SearchInput,
|
|
||||||
emitter: EventEmitter,
|
|
||||||
) {
|
|
||||||
(llm as unknown as ChatOpenAI).temperature = 0;
|
|
||||||
|
|
||||||
const queryGenPrompt = PromptTemplate.fromTemplate(
|
|
||||||
this.config.queryGeneratorPrompt,
|
|
||||||
);
|
|
||||||
|
|
||||||
const formattedChatPrompt = await queryGenPrompt.invoke({
|
|
||||||
chat_history: formatChatHistoryAsString(input.chat_history),
|
|
||||||
query: input.query,
|
|
||||||
});
|
|
||||||
|
|
||||||
let i = 0;
|
|
||||||
let currentQuery = await this.strParser.invoke(
|
|
||||||
await llm.invoke(formattedChatPrompt),
|
|
||||||
);
|
|
||||||
const originalQuery = currentQuery;
|
|
||||||
const pastQueries: string[] = [];
|
|
||||||
const results: SearxngSearchResult[] = [];
|
|
||||||
|
|
||||||
while (i < 10) {
|
|
||||||
const res = await searchSearxng(currentQuery, {
|
|
||||||
language: 'en',
|
|
||||||
engines: this.config.activeEngines,
|
|
||||||
});
|
|
||||||
|
|
||||||
results.push(...res.results);
|
|
||||||
|
|
||||||
const reflectorPrompt = PromptTemplate.fromTemplate(`
|
|
||||||
You are an LLM that is tasked with reflecting on the results of a search query.
|
|
||||||
|
|
||||||
## Goal
|
|
||||||
You will be given question of the user, a list of search results collected from the web to answer that question along with past queries made to collect those results. You have to analyze the results based on user's question and do the following:
|
|
||||||
|
|
||||||
1. Identify unexplored areas or areas with less detailed information in the results and generate a new query that focuses on those areas. The new queries should be more specific and a similar query shall not exist in past queries which will be provided to you. Make sure to include keywords that you're looking for because the new query will be used to search the web for information on that topic. Make sure the query contains only 1 question and is not too long to ensure it is Search Engine friendly.
|
|
||||||
2. You'll have to generate a description explaining what you are doing for example "I am looking for more information about X" or "Understanding how X works" etc. The description should be short and concise.
|
|
||||||
|
|
||||||
## Output format
|
|
||||||
|
|
||||||
You need to output in XML format and do not generate any other text. ake sure to not include any other text in the output or start a conversation in the output. The output should be in the following format:
|
|
||||||
|
|
||||||
<query>(query)</query>
|
|
||||||
<description>(description)</description>
|
|
||||||
|
|
||||||
## Example
|
|
||||||
Say the user asked "What is Llama 4 by Meta?" and let search results contain information about Llama 4 being an LLM and very little information about its features. You can output:
|
|
||||||
|
|
||||||
<query>Llama 4 features</query> // Generate queries that capture keywords for SEO and not making words like "How", "What", "Why" etc.
|
|
||||||
<description>Looking for new features in Llama 4</description>
|
|
||||||
|
|
||||||
or something like
|
|
||||||
|
|
||||||
<query>How is Llama 4 better than its previous generation models</query>
|
|
||||||
<description>Understanding the difference between Llama 4 and previous generation models.</description>
|
|
||||||
|
|
||||||
## BELOW IS THE ACTUAL DATA YOU WILL BE WORKING WITH. IT IS NOT A PART OF EXAMPLES. YOU'LL HAVE TO GENERATE YOUR ANSWER BASED ON THIS DATA.
|
|
||||||
<user_question>\n{question}\n</user_question>
|
|
||||||
<search_results>\n{search_results}\n</search_results>
|
|
||||||
<past_queries>\n{past_queries}\n</past_queries>
|
|
||||||
|
|
||||||
Response:
|
|
||||||
`);
|
|
||||||
|
|
||||||
const formattedReflectorPrompt = await reflectorPrompt.invoke({
|
|
||||||
question: originalQuery,
|
|
||||||
search_results: results
|
|
||||||
.map(
|
|
||||||
(result) => `<result>${result.title} - ${result.content}</result>`,
|
|
||||||
)
|
|
||||||
.join('\n'),
|
|
||||||
past_queries: pastQueries.map((q) => `<query>${q}</query>`).join('\n'),
|
|
||||||
});
|
|
||||||
|
|
||||||
const feedback = await this.strParser.invoke(
|
|
||||||
await llm.invoke(formattedReflectorPrompt),
|
|
||||||
);
|
|
||||||
|
|
||||||
console.log(`Feedback: ${feedback}`);
|
|
||||||
|
|
||||||
const queryOutputParser = new LineOutputParser({
|
|
||||||
key: 'query',
|
|
||||||
});
|
|
||||||
|
|
||||||
const descriptionOutputParser = new LineOutputParser({
|
|
||||||
key: 'description',
|
|
||||||
});
|
|
||||||
|
|
||||||
currentQuery = await queryOutputParser.parse(feedback);
|
|
||||||
const description = await descriptionOutputParser.parse(feedback);
|
|
||||||
console.log(`Query: ${currentQuery}`);
|
|
||||||
console.log(`Description: ${description}`);
|
|
||||||
|
|
||||||
pastQueries.push(currentQuery);
|
|
||||||
++i;
|
|
||||||
}
|
|
||||||
|
|
||||||
const uniqueResults: SearxngSearchResult[] = [];
|
|
||||||
|
|
||||||
results.forEach((res) => {
|
|
||||||
const exists = uniqueResults.find((r) => r.url === res.url);
|
|
||||||
|
|
||||||
if (!exists) {
|
|
||||||
uniqueResults.push(res);
|
|
||||||
} else {
|
|
||||||
exists.content += `\n\n` + res.content;
|
|
||||||
}
|
|
||||||
});
|
|
||||||
|
|
||||||
const documents = uniqueResults /* .slice(0, 50) */
|
|
||||||
.map(
|
|
||||||
(r) =>
|
|
||||||
new Document({
|
|
||||||
pageContent: r.content || '',
|
|
||||||
metadata: {
|
|
||||||
title: r.title,
|
|
||||||
url: r.url,
|
|
||||||
...(r.img_src && { img_src: r.img_src }),
|
|
||||||
},
|
|
||||||
}),
|
}),
|
||||||
);
|
]);
|
||||||
|
|
||||||
return documents;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
private async streamAnswer(
|
private async createAnsweringChain(
|
||||||
llm: BaseChatModel,
|
llm: BaseChatModel,
|
||||||
fileIds: string[],
|
fileIds: string[],
|
||||||
embeddings: Embeddings,
|
embeddings: Embeddings,
|
||||||
optimizationMode: 'speed' | 'balanced' | 'quality',
|
optimizationMode: 'speed' | 'balanced' | 'quality',
|
||||||
systemInstructions: string,
|
systemInstructions: string,
|
||||||
input: SearchInput,
|
|
||||||
emitter: EventEmitter,
|
|
||||||
) {
|
) {
|
||||||
const chatPrompt = ChatPromptTemplate.fromMessages([
|
return RunnableSequence.from([
|
||||||
['system', this.config.responsePrompt],
|
RunnableMap.from({
|
||||||
new MessagesPlaceholder('chat_history'),
|
systemInstructions: () => systemInstructions,
|
||||||
['user', '{query}'],
|
query: (input: BasicChainInput) => input.query,
|
||||||
]);
|
chat_history: (input: BasicChainInput) => input.chat_history,
|
||||||
|
date: () => new Date().toISOString(),
|
||||||
|
context: RunnableLambda.from(async (input: BasicChainInput) => {
|
||||||
|
const processedHistory = formatChatHistoryAsString(
|
||||||
|
input.chat_history,
|
||||||
|
);
|
||||||
|
|
||||||
let context = '';
|
|
||||||
|
|
||||||
if (optimizationMode === 'speed' || optimizationMode === 'balanced') {
|
|
||||||
let docs: Document[] | null = null;
|
let docs: Document[] | null = null;
|
||||||
let query = input.query;
|
let query = input.query;
|
||||||
|
|
||||||
if (this.config.searchWeb) {
|
if (this.config.searchWeb) {
|
||||||
const searchResults = await this.searchSources(llm, input, emitter);
|
const searchRetrieverChain =
|
||||||
|
await this.createSearchRetrieverChain(llm);
|
||||||
|
|
||||||
query = searchResults.query;
|
const searchRetrieverResult = await searchRetrieverChain.invoke({
|
||||||
docs = searchResults.docs;
|
chat_history: processedHistory,
|
||||||
|
query,
|
||||||
|
});
|
||||||
|
|
||||||
|
query = searchRetrieverResult.query;
|
||||||
|
docs = searchRetrieverResult.docs;
|
||||||
}
|
}
|
||||||
|
|
||||||
const sortedDocs = await this.rerankDocs(
|
const sortedDocs = await this.rerankDocs(
|
||||||
@@ -399,42 +274,23 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||||||
optimizationMode,
|
optimizationMode,
|
||||||
);
|
);
|
||||||
|
|
||||||
emitter.emit(
|
return sortedDocs;
|
||||||
'data',
|
})
|
||||||
JSON.stringify({ type: 'sources', data: sortedDocs }),
|
.withConfig({
|
||||||
);
|
runName: 'FinalSourceRetriever',
|
||||||
|
})
|
||||||
context = this.processDocs(sortedDocs);
|
.pipe(this.processDocs),
|
||||||
} else if (optimizationMode === 'quality') {
|
}),
|
||||||
let docs: Document[] = [];
|
ChatPromptTemplate.fromMessages([
|
||||||
|
['system', this.config.responsePrompt],
|
||||||
docs = await this.performDeepResearch(llm, input, emitter);
|
new MessagesPlaceholder('chat_history'),
|
||||||
|
['user', '{query}'],
|
||||||
emitter.emit('data', JSON.stringify({ type: 'sources', data: docs }));
|
]),
|
||||||
|
llm,
|
||||||
context = this.processDocs(docs);
|
this.strParser,
|
||||||
}
|
]).withConfig({
|
||||||
|
runName: 'FinalResponseGenerator',
|
||||||
const formattedChatPrompt = await chatPrompt.invoke({
|
|
||||||
query: input.query,
|
|
||||||
chat_history: input.chat_history,
|
|
||||||
date: new Date().toISOString(),
|
|
||||||
context: context,
|
|
||||||
systemInstructions: systemInstructions,
|
|
||||||
});
|
});
|
||||||
|
|
||||||
const llmRes = await llm.stream(formattedChatPrompt);
|
|
||||||
|
|
||||||
for await (const data of llmRes) {
|
|
||||||
const messageStr = await this.strParser.invoke(data);
|
|
||||||
|
|
||||||
emitter.emit(
|
|
||||||
'data',
|
|
||||||
JSON.stringify({ type: 'response', data: messageStr }),
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|
||||||
emitter.emit('end');
|
|
||||||
}
|
}
|
||||||
|
|
||||||
private async rerankDocs(
|
private async rerankDocs(
|
||||||
@@ -570,13 +426,44 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||||||
return docs
|
return docs
|
||||||
.map(
|
.map(
|
||||||
(_, index) =>
|
(_, index) =>
|
||||||
`${index + 1}. ${docs[index].metadata.title} ${
|
`${index + 1}. ${docs[index].metadata.title} ${docs[index].pageContent}`,
|
||||||
docs[index].pageContent
|
|
||||||
}`,
|
|
||||||
)
|
)
|
||||||
.join('\n');
|
.join('\n');
|
||||||
}
|
}
|
||||||
|
|
||||||
|
private async handleStream(
|
||||||
|
stream: AsyncGenerator<StreamEvent, any, any>,
|
||||||
|
emitter: eventEmitter,
|
||||||
|
) {
|
||||||
|
for await (const event of stream) {
|
||||||
|
if (
|
||||||
|
event.event === 'on_chain_end' &&
|
||||||
|
event.name === 'FinalSourceRetriever'
|
||||||
|
) {
|
||||||
|
``;
|
||||||
|
emitter.emit(
|
||||||
|
'data',
|
||||||
|
JSON.stringify({ type: 'sources', data: event.data.output }),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
if (
|
||||||
|
event.event === 'on_chain_stream' &&
|
||||||
|
event.name === 'FinalResponseGenerator'
|
||||||
|
) {
|
||||||
|
emitter.emit(
|
||||||
|
'data',
|
||||||
|
JSON.stringify({ type: 'response', data: event.data.chunk }),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
if (
|
||||||
|
event.event === 'on_chain_end' &&
|
||||||
|
event.name === 'FinalResponseGenerator'
|
||||||
|
) {
|
||||||
|
emitter.emit('end');
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
async searchAndAnswer(
|
async searchAndAnswer(
|
||||||
message: string,
|
message: string,
|
||||||
history: BaseMessage[],
|
history: BaseMessage[],
|
||||||
@@ -588,19 +475,26 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||||||
) {
|
) {
|
||||||
const emitter = new eventEmitter();
|
const emitter = new eventEmitter();
|
||||||
|
|
||||||
this.streamAnswer(
|
const answeringChain = await this.createAnsweringChain(
|
||||||
llm,
|
llm,
|
||||||
fileIds,
|
fileIds,
|
||||||
embeddings,
|
embeddings,
|
||||||
optimizationMode,
|
optimizationMode,
|
||||||
systemInstructions,
|
systemInstructions,
|
||||||
|
);
|
||||||
|
|
||||||
|
const stream = answeringChain.streamEvents(
|
||||||
{
|
{
|
||||||
chat_history: history,
|
chat_history: history,
|
||||||
query: message,
|
query: message,
|
||||||
},
|
},
|
||||||
emitter,
|
{
|
||||||
|
version: 'v1',
|
||||||
|
},
|
||||||
);
|
);
|
||||||
|
|
||||||
|
this.handleStream(stream, emitter);
|
||||||
|
|
||||||
return emitter;
|
return emitter;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@@ -8,7 +8,7 @@ interface SearxngSearchOptions {
|
|||||||
pageno?: number;
|
pageno?: number;
|
||||||
}
|
}
|
||||||
|
|
||||||
export interface SearxngSearchResult {
|
interface SearxngSearchResult {
|
||||||
title: string;
|
title: string;
|
||||||
url: string;
|
url: string;
|
||||||
img_src?: string;
|
img_src?: string;
|
||||||
|
Reference in New Issue
Block a user