mirror of
https://github.com/ItzCrazyKns/Perplexica.git
synced 2025-09-17 06:41:33 +00:00
Compare commits
35 Commits
develop/v1
...
008c7cbec0
Author | SHA1 | Date | |
---|---|---|---|
|
008c7cbec0 | ||
|
4d1ee79b8d | ||
|
ea638279e5 | ||
|
403d13eb50 | ||
|
217736d05a | ||
|
8a24572cd2 | ||
|
649c68f292 | ||
|
bab5dba6e1 | ||
|
c24edac16d | ||
|
3150c21f17 | ||
|
c46fd7a9c8 | ||
|
bab32e8d70 | ||
|
1130746f5d | ||
|
d1e9361665 | ||
|
3bf2337697 | ||
|
ee6e197ec0 | ||
|
32f26bb4e8 | ||
|
4cb20542a5 | ||
|
97f6196d9b | ||
|
6c227cab6f | ||
|
e9e34ddff9 | ||
|
e29a08dc46 | ||
|
5c313e9bed | ||
|
6b5bd9d79b | ||
|
64d2a467b0 | ||
|
9a2c4fe3b6 | ||
|
060c68a900 | ||
|
e6b87f89ec | ||
|
89b5229ce9 | ||
|
7756340dd9 | ||
|
bbd2e9c359 | ||
|
a32eb1dda3 | ||
|
aa834f7f04 | ||
|
064c0fbe42 | ||
|
bf4cf8eaeb |
25
.github/workflows/docker-build.yaml
vendored
25
.github/workflows/docker-build.yaml
vendored
@@ -10,9 +10,6 @@ on:
|
||||
jobs:
|
||||
build-and-push:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
service: [backend, app]
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v3
|
||||
@@ -36,17 +33,12 @@ jobs:
|
||||
id: version
|
||||
run: echo "RELEASE_VERSION=${GITHUB_REF#refs/tags/}" >> $GITHUB_ENV
|
||||
|
||||
- name: Build and push Docker image for ${{ matrix.service }}
|
||||
- name: Build and push Docker image
|
||||
if: github.ref == 'refs/heads/master' && github.event_name == 'push'
|
||||
run: |
|
||||
docker buildx create --use
|
||||
if [[ "${{ matrix.service }}" == "backend" ]]; then \
|
||||
DOCKERFILE=backend.dockerfile; \
|
||||
IMAGE_NAME=perplexica-backend; \
|
||||
else \
|
||||
DOCKERFILE=app.dockerfile; \
|
||||
IMAGE_NAME=perplexica-frontend; \
|
||||
fi
|
||||
DOCKERFILE=app.dockerfile; \
|
||||
IMAGE_NAME=perplexica; \
|
||||
docker buildx build --platform linux/amd64,linux/arm64 \
|
||||
--cache-from=type=registry,ref=itzcrazykns1337/${IMAGE_NAME}:main \
|
||||
--cache-to=type=inline \
|
||||
@@ -54,17 +46,12 @@ jobs:
|
||||
-t itzcrazykns1337/${IMAGE_NAME}:main \
|
||||
--push .
|
||||
|
||||
- name: Build and push release Docker image for ${{ matrix.service }}
|
||||
- name: Build and push release Docker image
|
||||
if: github.event_name == 'release'
|
||||
run: |
|
||||
docker buildx create --use
|
||||
if [[ "${{ matrix.service }}" == "backend" ]]; then \
|
||||
DOCKERFILE=backend.dockerfile; \
|
||||
IMAGE_NAME=perplexica-backend; \
|
||||
else \
|
||||
DOCKERFILE=app.dockerfile; \
|
||||
IMAGE_NAME=perplexica-frontend; \
|
||||
fi
|
||||
DOCKERFILE=app.dockerfile; \
|
||||
IMAGE_NAME=perplexica; \
|
||||
docker buildx build --platform linux/amd64,linux/arm64 \
|
||||
--cache-from=type=registry,ref=itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }} \
|
||||
--cache-to=type=inline \
|
||||
|
10
.gitignore
vendored
10
.gitignore
vendored
@@ -2,12 +2,11 @@
|
||||
node_modules/
|
||||
npm-debug.log
|
||||
yarn-error.log
|
||||
package-lock.json
|
||||
|
||||
# Build output
|
||||
/.next/
|
||||
/out/
|
||||
/dist/
|
||||
.next/
|
||||
out/
|
||||
dist/
|
||||
|
||||
# IDE/Editor specific
|
||||
.vscode/
|
||||
@@ -38,6 +37,3 @@ Thumbs.db
|
||||
# Db
|
||||
db.sqlite
|
||||
/searxng
|
||||
|
||||
# Dev
|
||||
docker-compose-dev.yaml
|
||||
|
@@ -6,7 +6,6 @@ const config = {
|
||||
endOfLine: 'auto',
|
||||
singleQuote: true,
|
||||
tabWidth: 2,
|
||||
semi: true,
|
||||
};
|
||||
|
||||
module.exports = config;
|
||||
|
16
README.md
16
README.md
@@ -1,5 +1,21 @@
|
||||
# 🚀 Perplexica - An AI-powered search engine 🔎 <!-- omit in toc -->
|
||||
|
||||
<div align="center" markdown="1">
|
||||
<sup>Special thanks to:</sup>
|
||||
<br>
|
||||
<br>
|
||||
<a href="https://www.warp.dev/perplexica">
|
||||
<img alt="Warp sponsorship" width="400" src="https://github.com/user-attachments/assets/775dd593-9b5f-40f1-bf48-479faff4c27b">
|
||||
</a>
|
||||
|
||||
### [Warp, the AI Devtool that lives in your terminal](https://www.warp.dev/perplexica)
|
||||
|
||||
[Available for MacOS, Linux, & Windows](https://www.warp.dev/perplexica)
|
||||
|
||||
</div>
|
||||
|
||||
<hr/>
|
||||
|
||||
[](https://discord.gg/26aArMy8tT)
|
||||
|
||||

|
||||
|
@@ -1,15 +1,27 @@
|
||||
FROM node:20.18.0-alpine
|
||||
|
||||
ARG NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
|
||||
ARG NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
|
||||
ENV NEXT_PUBLIC_WS_URL=${NEXT_PUBLIC_WS_URL}
|
||||
ENV NEXT_PUBLIC_API_URL=${NEXT_PUBLIC_API_URL}
|
||||
FROM node:20.18.0-alpine AS builder
|
||||
|
||||
WORKDIR /home/perplexica
|
||||
|
||||
COPY ui /home/perplexica/
|
||||
|
||||
COPY package.json yarn.lock ./
|
||||
RUN yarn install --frozen-lockfile
|
||||
|
||||
COPY tsconfig.json next.config.mjs next-env.d.ts postcss.config.js drizzle.config.ts tailwind.config.ts ./
|
||||
COPY src ./src
|
||||
COPY public ./public
|
||||
|
||||
RUN mkdir -p /home/perplexica/data
|
||||
RUN yarn build
|
||||
|
||||
CMD ["yarn", "start"]
|
||||
FROM node:20.18.0-alpine
|
||||
|
||||
WORKDIR /home/perplexica
|
||||
|
||||
COPY --from=builder /home/perplexica/public ./public
|
||||
COPY --from=builder /home/perplexica/.next/static ./public/_next/static
|
||||
|
||||
COPY --from=builder /home/perplexica/.next/standalone ./
|
||||
COPY --from=builder /home/perplexica/data ./data
|
||||
|
||||
RUN mkdir /home/perplexica/uploads
|
||||
|
||||
CMD ["node", "server.js"]
|
@@ -1,17 +0,0 @@
|
||||
FROM node:18-slim
|
||||
|
||||
WORKDIR /home/perplexica
|
||||
|
||||
COPY src /home/perplexica/src
|
||||
COPY tsconfig.json /home/perplexica/
|
||||
COPY drizzle.config.ts /home/perplexica/
|
||||
COPY package.json /home/perplexica/
|
||||
COPY yarn.lock /home/perplexica/
|
||||
|
||||
RUN mkdir /home/perplexica/data
|
||||
RUN mkdir /home/perplexica/uploads
|
||||
|
||||
RUN yarn install --frozen-lockfile --network-timeout 600000
|
||||
RUN yarn build
|
||||
|
||||
CMD ["yarn", "start"]
|
@@ -4,46 +4,26 @@ services:
|
||||
volumes:
|
||||
- ./searxng:/etc/searxng:rw
|
||||
ports:
|
||||
- '4000:8080'
|
||||
- 4000:8080
|
||||
networks:
|
||||
- perplexica-network
|
||||
restart: unless-stopped
|
||||
|
||||
perplexica-backend:
|
||||
app:
|
||||
image: itzcrazykns1337/perplexica:main
|
||||
build:
|
||||
context: .
|
||||
dockerfile: backend.dockerfile
|
||||
image: itzcrazykns1337/perplexica-backend:main
|
||||
dockerfile: app.dockerfile
|
||||
environment:
|
||||
- SEARXNG_API_URL=http://searxng:8080
|
||||
depends_on:
|
||||
- searxng
|
||||
ports:
|
||||
- '3001:3001'
|
||||
- 3000:3000
|
||||
networks:
|
||||
- perplexica-network
|
||||
volumes:
|
||||
- backend-dbstore:/home/perplexica/data
|
||||
- uploads:/home/perplexica/uploads
|
||||
- ./config.toml:/home/perplexica/config.toml
|
||||
extra_hosts:
|
||||
- 'host.docker.internal:host-gateway'
|
||||
networks:
|
||||
- perplexica-network
|
||||
restart: unless-stopped
|
||||
|
||||
perplexica-frontend:
|
||||
build:
|
||||
context: .
|
||||
dockerfile: app.dockerfile
|
||||
args:
|
||||
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
|
||||
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
|
||||
image: itzcrazykns1337/perplexica-frontend:main
|
||||
depends_on:
|
||||
- perplexica-backend
|
||||
ports:
|
||||
- '3000:3000'
|
||||
networks:
|
||||
- perplexica-network
|
||||
restart: unless-stopped
|
||||
|
||||
networks:
|
||||
|
@@ -2,7 +2,7 @@ import { defineConfig } from 'drizzle-kit';
|
||||
|
||||
export default defineConfig({
|
||||
dialect: 'sqlite',
|
||||
schema: './src/db/schema.ts',
|
||||
schema: './src/lib/db/schema.ts',
|
||||
out: './drizzle',
|
||||
dbCredentials: {
|
||||
url: './data/db.sqlite',
|
||||
|
5
next-env.d.ts
vendored
Normal file
5
next-env.d.ts
vendored
Normal file
@@ -0,0 +1,5 @@
|
||||
/// <reference types="next" />
|
||||
/// <reference types="next/image-types/global" />
|
||||
|
||||
// NOTE: This file should not be edited
|
||||
// see https://nextjs.org/docs/app/api-reference/config/typescript for more information.
|
@@ -1,5 +1,6 @@
|
||||
/** @type {import('next').NextConfig} */
|
||||
const nextConfig = {
|
||||
output: 'standalone',
|
||||
images: {
|
||||
remotePatterns: [
|
||||
{
|
||||
@@ -7,6 +8,7 @@ const nextConfig = {
|
||||
},
|
||||
],
|
||||
},
|
||||
serverExternalPackages: ['pdf-parse'],
|
||||
};
|
||||
|
||||
export default nextConfig;
|
81
package.json
81
package.json
@@ -1,53 +1,62 @@
|
||||
{
|
||||
"name": "perplexica-backend",
|
||||
"name": "perplexica-frontend",
|
||||
"version": "1.10.0-rc3",
|
||||
"license": "MIT",
|
||||
"author": "ItzCrazyKns",
|
||||
"scripts": {
|
||||
"start": "npm run db:push && node dist/app.js",
|
||||
"build": "tsc",
|
||||
"dev": "nodemon --ignore uploads/ src/app.ts ",
|
||||
"db:push": "drizzle-kit push sqlite",
|
||||
"format": "prettier . --check",
|
||||
"format:write": "prettier . --write"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@types/better-sqlite3": "^7.6.10",
|
||||
"@types/cors": "^2.8.17",
|
||||
"@types/express": "^4.17.21",
|
||||
"@types/html-to-text": "^9.0.4",
|
||||
"@types/multer": "^1.4.12",
|
||||
"@types/pdf-parse": "^1.1.4",
|
||||
"@types/readable-stream": "^4.0.11",
|
||||
"@types/ws": "^8.5.12",
|
||||
"drizzle-kit": "^0.22.7",
|
||||
"nodemon": "^3.1.0",
|
||||
"prettier": "^3.2.5",
|
||||
"ts-node": "^10.9.2",
|
||||
"typescript": "^5.4.3"
|
||||
"dev": "next dev",
|
||||
"build": "npm run db:push && next build",
|
||||
"start": "next start",
|
||||
"lint": "next lint",
|
||||
"format:write": "prettier . --write",
|
||||
"db:push": "drizzle-kit push"
|
||||
},
|
||||
"dependencies": {
|
||||
"@headlessui/react": "^2.2.0",
|
||||
"@iarna/toml": "^2.2.5",
|
||||
"@langchain/anthropic": "^0.2.3",
|
||||
"@langchain/community": "^0.2.16",
|
||||
"@langchain/google-genai": "^0.0.23",
|
||||
"@icons-pack/react-simple-icons": "^12.3.0",
|
||||
"@langchain/community": "^0.3.36",
|
||||
"@langchain/core": "^0.3.42",
|
||||
"@langchain/openai": "^0.0.25",
|
||||
"@xenova/transformers": "^2.17.1",
|
||||
"axios": "^1.6.8",
|
||||
"better-sqlite3": "^11.0.0",
|
||||
"@langchain/textsplitters": "^0.1.0",
|
||||
"@tailwindcss/typography": "^0.5.12",
|
||||
"axios": "^1.8.3",
|
||||
"better-sqlite3": "^11.9.1",
|
||||
"clsx": "^2.1.0",
|
||||
"compute-cosine-similarity": "^1.1.0",
|
||||
"compute-dot": "^1.1.0",
|
||||
"cors": "^2.8.5",
|
||||
"dotenv": "^16.4.5",
|
||||
"drizzle-orm": "^0.31.2",
|
||||
"express": "^4.19.2",
|
||||
"drizzle-orm": "^0.40.1",
|
||||
"html-to-text": "^9.0.5",
|
||||
"langchain": "^0.1.30",
|
||||
"mammoth": "^1.8.0",
|
||||
"multer": "^1.4.5-lts.1",
|
||||
"lucide-react": "^0.363.0",
|
||||
"markdown-to-jsx": "^7.7.2",
|
||||
"next": "^15.2.2",
|
||||
"next-themes": "^0.3.0",
|
||||
"pdf-parse": "^1.1.1",
|
||||
"winston": "^3.13.0",
|
||||
"ws": "^8.17.1",
|
||||
"react": "^18",
|
||||
"react-dom": "^18",
|
||||
"react-text-to-speech": "^0.14.5",
|
||||
"react-textarea-autosize": "^8.5.3",
|
||||
"sonner": "^1.4.41",
|
||||
"tailwind-merge": "^2.2.2",
|
||||
"winston": "^3.17.0",
|
||||
"yet-another-react-lightbox": "^3.17.2",
|
||||
"zod": "^3.22.4"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@types/better-sqlite3": "^7.6.12",
|
||||
"@types/html-to-text": "^9.0.4",
|
||||
"@types/node": "^20",
|
||||
"@types/pdf-parse": "^1.1.4",
|
||||
"@types/react": "^18",
|
||||
"@types/react-dom": "^18",
|
||||
"autoprefixer": "^10.0.1",
|
||||
"drizzle-kit": "^0.30.5",
|
||||
"eslint": "^8",
|
||||
"eslint-config-next": "14.1.4",
|
||||
"postcss": "^8",
|
||||
"prettier": "^3.2.5",
|
||||
"tailwindcss": "^3.3.0",
|
||||
"typescript": "^5"
|
||||
}
|
||||
}
|
||||
|
Before Width: | Height: | Size: 1.3 KiB After Width: | Height: | Size: 1.3 KiB |
Before Width: | Height: | Size: 629 B After Width: | Height: | Size: 629 B |
@@ -3,12 +3,6 @@ PORT = 3001 # Port to run the server on
|
||||
SIMILARITY_MEASURE = "cosine" # "cosine" or "dot"
|
||||
KEEP_ALIVE = "5m" # How long to keep Ollama models loaded into memory. (Instead of using -1 use "-1m")
|
||||
|
||||
[SEARCH_ENGINE_BACKENDS] # "google" | "searxng" | "bing" | "brave" | "yacy"
|
||||
SEARCH = "searxng"
|
||||
IMAGE = "searxng"
|
||||
VIDEO = "searxng"
|
||||
NEWS = "searxng"
|
||||
|
||||
[MODELS.OPENAI]
|
||||
API_KEY = ""
|
||||
|
||||
@@ -24,22 +18,10 @@ API_KEY = ""
|
||||
[MODELS.CUSTOM_OPENAI]
|
||||
API_KEY = ""
|
||||
API_URL = ""
|
||||
MODEL_NAME = ""
|
||||
|
||||
[MODELS.OLLAMA]
|
||||
API_URL = "" # Ollama API URL - http://host.docker.internal:11434
|
||||
|
||||
[SEARCH_ENGINES.GOOGLE]
|
||||
API_KEY = ""
|
||||
CSE_ID = ""
|
||||
|
||||
[SEARCH_ENGINES.SEARXNG]
|
||||
ENDPOINT = ""
|
||||
|
||||
[SEARCH_ENGINES.BING]
|
||||
SUBSCRIPTION_KEY = ""
|
||||
|
||||
[SEARCH_ENGINES.BRAVE]
|
||||
API_KEY = ""
|
||||
|
||||
[SEARCH_ENGINES.YACY]
|
||||
ENDPOINT = ""
|
||||
[API_ENDPOINTS]
|
||||
SEARXNG = "" # SearxNG API URL - http://localhost:32768
|
@@ -15,5 +15,3 @@ server:
|
||||
engines:
|
||||
- name: wolframalpha
|
||||
disabled: false
|
||||
- name: qwant
|
||||
disabled: true
|
||||
|
38
src/app.ts
38
src/app.ts
@@ -1,38 +0,0 @@
|
||||
import { startWebSocketServer } from './websocket';
|
||||
import express from 'express';
|
||||
import cors from 'cors';
|
||||
import http from 'http';
|
||||
import routes from './routes';
|
||||
import { getPort } from './config';
|
||||
import logger from './utils/logger';
|
||||
|
||||
const port = getPort();
|
||||
|
||||
const app = express();
|
||||
const server = http.createServer(app);
|
||||
|
||||
const corsOptions = {
|
||||
origin: '*',
|
||||
};
|
||||
|
||||
app.use(cors(corsOptions));
|
||||
app.use(express.json());
|
||||
|
||||
app.use('/api', routes);
|
||||
app.get('/api', (_, res) => {
|
||||
res.status(200).json({ status: 'ok' });
|
||||
});
|
||||
|
||||
server.listen(port, () => {
|
||||
logger.info(`Server is running on port ${port}`);
|
||||
});
|
||||
|
||||
startWebSocketServer(server);
|
||||
|
||||
process.on('uncaughtException', (err, origin) => {
|
||||
logger.error(`Uncaught Exception at ${origin}: ${err}`);
|
||||
});
|
||||
|
||||
process.on('unhandledRejection', (reason, promise) => {
|
||||
logger.error(`Unhandled Rejection at: ${promise}, reason: ${reason}`);
|
||||
});
|
360
src/app/api/chat/route.ts
Normal file
360
src/app/api/chat/route.ts
Normal file
@@ -0,0 +1,360 @@
|
||||
import prompts from '@/lib/prompts';
|
||||
import MetaSearchAgent from '@/lib/search/metaSearchAgent';
|
||||
import crypto from 'crypto';
|
||||
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
|
||||
import { EventEmitter } from 'stream';
|
||||
import {
|
||||
chatModelProviders,
|
||||
embeddingModelProviders,
|
||||
getAvailableChatModelProviders,
|
||||
getAvailableEmbeddingModelProviders,
|
||||
} from '@/lib/providers';
|
||||
import db from '@/lib/db';
|
||||
import { chats, messages as messagesSchema } from '@/lib/db/schema';
|
||||
import { and, eq, gt } from 'drizzle-orm';
|
||||
import { getFileDetails } from '@/lib/utils/files';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
import {
|
||||
getCustomOpenaiApiKey,
|
||||
getCustomOpenaiApiUrl,
|
||||
getCustomOpenaiModelName,
|
||||
} from '@/lib/config';
|
||||
|
||||
export const runtime = 'nodejs';
|
||||
export const dynamic = 'force-dynamic';
|
||||
|
||||
const searchHandlers: Record<string, MetaSearchAgent> = {
|
||||
webSearch: new MetaSearchAgent({
|
||||
activeEngines: [],
|
||||
queryGeneratorPrompt: prompts.webSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.webSearchResponsePrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0.3,
|
||||
searchWeb: true,
|
||||
summarizer: true,
|
||||
}),
|
||||
academicSearch: new MetaSearchAgent({
|
||||
activeEngines: ['arxiv', 'google scholar', 'pubmed'],
|
||||
queryGeneratorPrompt: prompts.academicSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.academicSearchResponsePrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0,
|
||||
searchWeb: true,
|
||||
summarizer: false,
|
||||
}),
|
||||
writingAssistant: new MetaSearchAgent({
|
||||
activeEngines: [],
|
||||
queryGeneratorPrompt: '',
|
||||
responsePrompt: prompts.writingAssistantPrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0,
|
||||
searchWeb: false,
|
||||
summarizer: false,
|
||||
}),
|
||||
wolframAlphaSearch: new MetaSearchAgent({
|
||||
activeEngines: ['wolframalpha'],
|
||||
queryGeneratorPrompt: prompts.wolframAlphaSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.wolframAlphaSearchResponsePrompt,
|
||||
rerank: false,
|
||||
rerankThreshold: 0,
|
||||
searchWeb: true,
|
||||
summarizer: false,
|
||||
}),
|
||||
youtubeSearch: new MetaSearchAgent({
|
||||
activeEngines: ['youtube'],
|
||||
queryGeneratorPrompt: prompts.youtubeSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.youtubeSearchResponsePrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0.3,
|
||||
searchWeb: true,
|
||||
summarizer: false,
|
||||
}),
|
||||
redditSearch: new MetaSearchAgent({
|
||||
activeEngines: ['reddit'],
|
||||
queryGeneratorPrompt: prompts.redditSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.redditSearchResponsePrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0.3,
|
||||
searchWeb: true,
|
||||
summarizer: false,
|
||||
}),
|
||||
};
|
||||
|
||||
type Message = {
|
||||
messageId: string;
|
||||
chatId: string;
|
||||
content: string;
|
||||
};
|
||||
|
||||
type ChatModel = {
|
||||
provider: string;
|
||||
name: string;
|
||||
};
|
||||
|
||||
type EmbeddingModel = {
|
||||
provider: string;
|
||||
name: string;
|
||||
};
|
||||
|
||||
type Body = {
|
||||
message: Message;
|
||||
optimizationMode: 'speed' | 'balanced' | 'quality';
|
||||
focusMode: string;
|
||||
history: Array<[string, string]>;
|
||||
files: Array<string>;
|
||||
chatModel: ChatModel;
|
||||
embeddingModel: EmbeddingModel;
|
||||
};
|
||||
|
||||
const handleEmitterEvents = async (
|
||||
stream: EventEmitter,
|
||||
writer: WritableStreamDefaultWriter,
|
||||
encoder: TextEncoder,
|
||||
aiMessageId: string,
|
||||
chatId: string,
|
||||
) => {
|
||||
let recievedMessage = '';
|
||||
let sources: any[] = [];
|
||||
|
||||
stream.on('data', (data) => {
|
||||
const parsedData = JSON.parse(data);
|
||||
if (parsedData.type === 'response') {
|
||||
writer.write(
|
||||
encoder.encode(
|
||||
JSON.stringify({
|
||||
type: 'message',
|
||||
data: parsedData.data,
|
||||
messageId: aiMessageId,
|
||||
}) + '\n',
|
||||
),
|
||||
);
|
||||
|
||||
recievedMessage += parsedData.data;
|
||||
} else if (parsedData.type === 'sources') {
|
||||
writer.write(
|
||||
encoder.encode(
|
||||
JSON.stringify({
|
||||
type: 'sources',
|
||||
data: parsedData.data,
|
||||
messageId: aiMessageId,
|
||||
}) + '\n',
|
||||
),
|
||||
);
|
||||
|
||||
sources = parsedData.data;
|
||||
}
|
||||
});
|
||||
stream.on('end', () => {
|
||||
writer.write(
|
||||
encoder.encode(
|
||||
JSON.stringify({
|
||||
type: 'messageEnd',
|
||||
messageId: aiMessageId,
|
||||
}) + '\n',
|
||||
),
|
||||
);
|
||||
writer.close();
|
||||
|
||||
db.insert(messagesSchema)
|
||||
.values({
|
||||
content: recievedMessage,
|
||||
chatId: chatId,
|
||||
messageId: aiMessageId,
|
||||
role: 'assistant',
|
||||
metadata: JSON.stringify({
|
||||
createdAt: new Date(),
|
||||
...(sources && sources.length > 0 && { sources }),
|
||||
}),
|
||||
})
|
||||
.execute();
|
||||
});
|
||||
stream.on('error', (data) => {
|
||||
const parsedData = JSON.parse(data);
|
||||
writer.write(
|
||||
encoder.encode(
|
||||
JSON.stringify({
|
||||
type: 'error',
|
||||
data: parsedData.data,
|
||||
}),
|
||||
),
|
||||
);
|
||||
writer.close();
|
||||
});
|
||||
};
|
||||
|
||||
const handleHistorySave = async (
|
||||
message: Message,
|
||||
humanMessageId: string,
|
||||
focusMode: string,
|
||||
files: string[],
|
||||
) => {
|
||||
const chat = await db.query.chats.findFirst({
|
||||
where: eq(chats.id, message.chatId),
|
||||
});
|
||||
|
||||
if (!chat) {
|
||||
await db
|
||||
.insert(chats)
|
||||
.values({
|
||||
id: message.chatId,
|
||||
title: message.content,
|
||||
createdAt: new Date().toString(),
|
||||
focusMode: focusMode,
|
||||
files: files.map(getFileDetails),
|
||||
})
|
||||
.execute();
|
||||
}
|
||||
|
||||
const messageExists = await db.query.messages.findFirst({
|
||||
where: eq(messagesSchema.messageId, humanMessageId),
|
||||
});
|
||||
|
||||
if (!messageExists) {
|
||||
await db
|
||||
.insert(messagesSchema)
|
||||
.values({
|
||||
content: message.content,
|
||||
chatId: message.chatId,
|
||||
messageId: humanMessageId,
|
||||
role: 'user',
|
||||
metadata: JSON.stringify({
|
||||
createdAt: new Date(),
|
||||
}),
|
||||
})
|
||||
.execute();
|
||||
} else {
|
||||
await db
|
||||
.delete(messagesSchema)
|
||||
.where(
|
||||
and(
|
||||
gt(messagesSchema.id, messageExists.id),
|
||||
eq(messagesSchema.chatId, message.chatId),
|
||||
),
|
||||
)
|
||||
.execute();
|
||||
}
|
||||
};
|
||||
|
||||
export const POST = async (req: Request) => {
|
||||
try {
|
||||
const body = (await req.json()) as Body;
|
||||
const { message } = body;
|
||||
|
||||
if (message.content === '') {
|
||||
return Response.json(
|
||||
{
|
||||
message: 'Please provide a message to process',
|
||||
},
|
||||
{ status: 400 },
|
||||
);
|
||||
}
|
||||
|
||||
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
|
||||
getAvailableChatModelProviders(),
|
||||
getAvailableEmbeddingModelProviders(),
|
||||
]);
|
||||
|
||||
const chatModelProvider =
|
||||
chatModelProviders[
|
||||
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
|
||||
];
|
||||
const chatModel =
|
||||
chatModelProvider[
|
||||
body.chatModel?.name || Object.keys(chatModelProvider)[0]
|
||||
];
|
||||
|
||||
const embeddingProvider =
|
||||
embeddingModelProviders[
|
||||
body.embeddingModel?.provider || Object.keys(embeddingModelProviders)[0]
|
||||
];
|
||||
const embeddingModel =
|
||||
embeddingProvider[
|
||||
body.embeddingModel?.name || Object.keys(embeddingProvider)[0]
|
||||
];
|
||||
|
||||
let llm: BaseChatModel | undefined;
|
||||
let embedding = embeddingModel.model;
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
openAIApiKey: getCustomOpenaiApiKey(),
|
||||
modelName: getCustomOpenaiModelName(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
baseURL: getCustomOpenaiApiUrl(),
|
||||
},
|
||||
}) as unknown as BaseChatModel;
|
||||
} else if (chatModelProvider && chatModel) {
|
||||
llm = chatModel.model;
|
||||
}
|
||||
|
||||
if (!llm) {
|
||||
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
|
||||
}
|
||||
|
||||
if (!embedding) {
|
||||
return Response.json(
|
||||
{ error: 'Invalid embedding model' },
|
||||
{ status: 400 },
|
||||
);
|
||||
}
|
||||
|
||||
const humanMessageId =
|
||||
message.messageId ?? crypto.randomBytes(7).toString('hex');
|
||||
const aiMessageId = crypto.randomBytes(7).toString('hex');
|
||||
|
||||
const history: BaseMessage[] = body.history.map((msg) => {
|
||||
if (msg[0] === 'human') {
|
||||
return new HumanMessage({
|
||||
content: msg[1],
|
||||
});
|
||||
} else {
|
||||
return new AIMessage({
|
||||
content: msg[1],
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
const handler = searchHandlers[body.focusMode];
|
||||
|
||||
if (!handler) {
|
||||
return Response.json(
|
||||
{
|
||||
message: 'Invalid focus mode',
|
||||
},
|
||||
{ status: 400 },
|
||||
);
|
||||
}
|
||||
|
||||
const stream = await handler.searchAndAnswer(
|
||||
message.content,
|
||||
history,
|
||||
llm,
|
||||
embedding,
|
||||
body.optimizationMode,
|
||||
body.files,
|
||||
);
|
||||
|
||||
const responseStream = new TransformStream();
|
||||
const writer = responseStream.writable.getWriter();
|
||||
const encoder = new TextEncoder();
|
||||
|
||||
handleEmitterEvents(stream, writer, encoder, aiMessageId, message.chatId);
|
||||
handleHistorySave(message, humanMessageId, body.focusMode, body.files);
|
||||
|
||||
return new Response(responseStream.readable, {
|
||||
headers: {
|
||||
'Content-Type': 'text/event-stream',
|
||||
Connection: 'keep-alive',
|
||||
'Cache-Control': 'no-cache, no-transform',
|
||||
},
|
||||
});
|
||||
} catch (err) {
|
||||
console.error('An error ocurred while processing chat request:', err);
|
||||
return Response.json(
|
||||
{ message: 'An error ocurred while processing chat request' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
69
src/app/api/chats/[id]/route.ts
Normal file
69
src/app/api/chats/[id]/route.ts
Normal file
@@ -0,0 +1,69 @@
|
||||
import db from '@/lib/db';
|
||||
import { chats, messages } from '@/lib/db/schema';
|
||||
import { eq } from 'drizzle-orm';
|
||||
|
||||
export const GET = async (
|
||||
req: Request,
|
||||
{ params }: { params: Promise<{ id: string }> },
|
||||
) => {
|
||||
try {
|
||||
const { id } = await params;
|
||||
|
||||
const chatExists = await db.query.chats.findFirst({
|
||||
where: eq(chats.id, id),
|
||||
});
|
||||
|
||||
if (!chatExists) {
|
||||
return Response.json({ message: 'Chat not found' }, { status: 404 });
|
||||
}
|
||||
|
||||
const chatMessages = await db.query.messages.findMany({
|
||||
where: eq(messages.chatId, id),
|
||||
});
|
||||
|
||||
return Response.json(
|
||||
{
|
||||
chat: chatExists,
|
||||
messages: chatMessages,
|
||||
},
|
||||
{ status: 200 },
|
||||
);
|
||||
} catch (err) {
|
||||
console.error('Error in getting chat by id: ', err);
|
||||
return Response.json(
|
||||
{ message: 'An error has occurred.' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
export const DELETE = async (
|
||||
req: Request,
|
||||
{ params }: { params: Promise<{ id: string }> },
|
||||
) => {
|
||||
try {
|
||||
const { id } = await params;
|
||||
|
||||
const chatExists = await db.query.chats.findFirst({
|
||||
where: eq(chats.id, id),
|
||||
});
|
||||
|
||||
if (!chatExists) {
|
||||
return Response.json({ message: 'Chat not found' }, { status: 404 });
|
||||
}
|
||||
|
||||
await db.delete(chats).where(eq(chats.id, id)).execute();
|
||||
await db.delete(messages).where(eq(messages.chatId, id)).execute();
|
||||
|
||||
return Response.json(
|
||||
{ message: 'Chat deleted successfully' },
|
||||
{ status: 200 },
|
||||
);
|
||||
} catch (err) {
|
||||
console.error('Error in deleting chat by id: ', err);
|
||||
return Response.json(
|
||||
{ message: 'An error has occurred.' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
15
src/app/api/chats/route.ts
Normal file
15
src/app/api/chats/route.ts
Normal file
@@ -0,0 +1,15 @@
|
||||
import db from '@/lib/db';
|
||||
|
||||
export const GET = async (req: Request) => {
|
||||
try {
|
||||
let chats = await db.query.chats.findMany();
|
||||
chats = chats.reverse();
|
||||
return Response.json({ chats: chats }, { status: 200 });
|
||||
} catch (err) {
|
||||
console.error('Error in getting chats: ', err);
|
||||
return Response.json(
|
||||
{ message: 'An error has occurred.' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
109
src/app/api/config/route.ts
Normal file
109
src/app/api/config/route.ts
Normal file
@@ -0,0 +1,109 @@
|
||||
import {
|
||||
getAnthropicApiKey,
|
||||
getCustomOpenaiApiKey,
|
||||
getCustomOpenaiApiUrl,
|
||||
getCustomOpenaiModelName,
|
||||
getGeminiApiKey,
|
||||
getGroqApiKey,
|
||||
getOllamaApiEndpoint,
|
||||
getOpenaiApiKey,
|
||||
updateConfig,
|
||||
} from '@/lib/config';
|
||||
import {
|
||||
getAvailableChatModelProviders,
|
||||
getAvailableEmbeddingModelProviders,
|
||||
} from '@/lib/providers';
|
||||
|
||||
export const GET = async (req: Request) => {
|
||||
try {
|
||||
const config: Record<string, any> = {};
|
||||
|
||||
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
|
||||
getAvailableChatModelProviders(),
|
||||
getAvailableEmbeddingModelProviders(),
|
||||
]);
|
||||
|
||||
config['chatModelProviders'] = {};
|
||||
config['embeddingModelProviders'] = {};
|
||||
|
||||
for (const provider in chatModelProviders) {
|
||||
config['chatModelProviders'][provider] = Object.keys(
|
||||
chatModelProviders[provider],
|
||||
).map((model) => {
|
||||
return {
|
||||
name: model,
|
||||
displayName: chatModelProviders[provider][model].displayName,
|
||||
};
|
||||
});
|
||||
}
|
||||
|
||||
for (const provider in embeddingModelProviders) {
|
||||
config['embeddingModelProviders'][provider] = Object.keys(
|
||||
embeddingModelProviders[provider],
|
||||
).map((model) => {
|
||||
return {
|
||||
name: model,
|
||||
displayName: embeddingModelProviders[provider][model].displayName,
|
||||
};
|
||||
});
|
||||
}
|
||||
|
||||
config['openaiApiKey'] = getOpenaiApiKey();
|
||||
config['ollamaApiUrl'] = getOllamaApiEndpoint();
|
||||
config['anthropicApiKey'] = getAnthropicApiKey();
|
||||
config['groqApiKey'] = getGroqApiKey();
|
||||
config['geminiApiKey'] = getGeminiApiKey();
|
||||
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
|
||||
config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
|
||||
config['customOpenaiModelName'] = getCustomOpenaiModelName();
|
||||
|
||||
return Response.json({ ...config }, { status: 200 });
|
||||
} catch (err) {
|
||||
console.error('An error ocurred while getting config:', err);
|
||||
return Response.json(
|
||||
{ message: 'An error ocurred while getting config' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
export const POST = async (req: Request) => {
|
||||
try {
|
||||
const config = await req.json();
|
||||
|
||||
const updatedConfig = {
|
||||
MODELS: {
|
||||
OPENAI: {
|
||||
API_KEY: config.openaiApiKey,
|
||||
},
|
||||
GROQ: {
|
||||
API_KEY: config.groqApiKey,
|
||||
},
|
||||
ANTHROPIC: {
|
||||
API_KEY: config.anthropicApiKey,
|
||||
},
|
||||
GEMINI: {
|
||||
API_KEY: config.geminiApiKey,
|
||||
},
|
||||
OLLAMA: {
|
||||
API_URL: config.ollamaApiUrl,
|
||||
},
|
||||
CUSTOM_OPENAI: {
|
||||
API_URL: config.customOpenaiApiUrl,
|
||||
API_KEY: config.customOpenaiApiKey,
|
||||
MODEL_NAME: config.customOpenaiModelName,
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
updateConfig(updatedConfig);
|
||||
|
||||
return Response.json({ message: 'Config updated' }, { status: 200 });
|
||||
} catch (err) {
|
||||
console.error('An error ocurred while updating config:', err);
|
||||
return Response.json(
|
||||
{ message: 'An error ocurred while updating config' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
61
src/app/api/discover/route.ts
Normal file
61
src/app/api/discover/route.ts
Normal file
@@ -0,0 +1,61 @@
|
||||
import { searchSearxng } from '@/lib/searxng';
|
||||
|
||||
const articleWebsites = [
|
||||
'yahoo.com',
|
||||
'www.exchangewire.com',
|
||||
'businessinsider.com',
|
||||
/* 'wired.com',
|
||||
'mashable.com',
|
||||
'theverge.com',
|
||||
'gizmodo.com',
|
||||
'cnet.com',
|
||||
'venturebeat.com', */
|
||||
];
|
||||
|
||||
const topics = ['AI', 'tech']; /* TODO: Add UI to customize this */
|
||||
|
||||
export const GET = async (req: Request) => {
|
||||
try {
|
||||
const data = (
|
||||
await Promise.all([
|
||||
...new Array(articleWebsites.length * topics.length)
|
||||
.fill(0)
|
||||
.map(async (_, i) => {
|
||||
return (
|
||||
await searchSearxng(
|
||||
`site:${articleWebsites[i % articleWebsites.length]} ${
|
||||
topics[i % topics.length]
|
||||
}`,
|
||||
{
|
||||
engines: ['bing news'],
|
||||
pageno: 1,
|
||||
},
|
||||
)
|
||||
).results;
|
||||
}),
|
||||
])
|
||||
)
|
||||
.map((result) => result)
|
||||
.flat()
|
||||
.sort(() => Math.random() - 0.5);
|
||||
|
||||
return Response.json(
|
||||
{
|
||||
blogs: data,
|
||||
},
|
||||
{
|
||||
status: 200,
|
||||
},
|
||||
);
|
||||
} catch (err) {
|
||||
console.error(`An error ocurred in discover route: ${err}`);
|
||||
return Response.json(
|
||||
{
|
||||
message: 'An error has occurred',
|
||||
},
|
||||
{
|
||||
status: 500,
|
||||
},
|
||||
);
|
||||
}
|
||||
};
|
83
src/app/api/images/route.ts
Normal file
83
src/app/api/images/route.ts
Normal file
@@ -0,0 +1,83 @@
|
||||
import handleImageSearch from '@/lib/chains/imageSearchAgent';
|
||||
import {
|
||||
getCustomOpenaiApiKey,
|
||||
getCustomOpenaiApiUrl,
|
||||
getCustomOpenaiModelName,
|
||||
} from '@/lib/config';
|
||||
import { getAvailableChatModelProviders } from '@/lib/providers';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
|
||||
interface ChatModel {
|
||||
provider: string;
|
||||
model: string;
|
||||
}
|
||||
|
||||
interface ImageSearchBody {
|
||||
query: string;
|
||||
chatHistory: any[];
|
||||
chatModel?: ChatModel;
|
||||
}
|
||||
|
||||
export const POST = async (req: Request) => {
|
||||
try {
|
||||
const body: ImageSearchBody = await req.json();
|
||||
|
||||
const chatHistory = body.chatHistory
|
||||
.map((msg: any) => {
|
||||
if (msg.role === 'user') {
|
||||
return new HumanMessage(msg.content);
|
||||
} else if (msg.role === 'assistant') {
|
||||
return new AIMessage(msg.content);
|
||||
}
|
||||
})
|
||||
.filter((msg) => msg !== undefined) as BaseMessage[];
|
||||
|
||||
const chatModelProviders = await getAvailableChatModelProviders();
|
||||
|
||||
const chatModelProvider =
|
||||
chatModelProviders[
|
||||
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
|
||||
];
|
||||
const chatModel =
|
||||
chatModelProvider[
|
||||
body.chatModel?.model || Object.keys(chatModelProvider)[0]
|
||||
];
|
||||
|
||||
let llm: BaseChatModel | undefined;
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
openAIApiKey: getCustomOpenaiApiKey(),
|
||||
modelName: getCustomOpenaiModelName(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
baseURL: getCustomOpenaiApiUrl(),
|
||||
},
|
||||
}) as unknown as BaseChatModel;
|
||||
} else if (chatModelProvider && chatModel) {
|
||||
llm = chatModel.model;
|
||||
}
|
||||
|
||||
if (!llm) {
|
||||
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
|
||||
}
|
||||
|
||||
const images = await handleImageSearch(
|
||||
{
|
||||
chat_history: chatHistory,
|
||||
query: body.query,
|
||||
},
|
||||
llm,
|
||||
);
|
||||
|
||||
return Response.json({ images }, { status: 200 });
|
||||
} catch (err) {
|
||||
console.error(`An error ocurred while searching images: ${err}`);
|
||||
return Response.json(
|
||||
{ message: 'An error ocurred while searching images' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
47
src/app/api/models/route.ts
Normal file
47
src/app/api/models/route.ts
Normal file
@@ -0,0 +1,47 @@
|
||||
import {
|
||||
getAvailableChatModelProviders,
|
||||
getAvailableEmbeddingModelProviders,
|
||||
} from '@/lib/providers';
|
||||
|
||||
export const GET = async (req: Request) => {
|
||||
try {
|
||||
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
|
||||
getAvailableChatModelProviders(),
|
||||
getAvailableEmbeddingModelProviders(),
|
||||
]);
|
||||
|
||||
Object.keys(chatModelProviders).forEach((provider) => {
|
||||
Object.keys(chatModelProviders[provider]).forEach((model) => {
|
||||
delete (chatModelProviders[provider][model] as { model?: unknown })
|
||||
.model;
|
||||
});
|
||||
});
|
||||
|
||||
Object.keys(embeddingModelProviders).forEach((provider) => {
|
||||
Object.keys(embeddingModelProviders[provider]).forEach((model) => {
|
||||
delete (embeddingModelProviders[provider][model] as { model?: unknown })
|
||||
.model;
|
||||
});
|
||||
});
|
||||
|
||||
return Response.json(
|
||||
{
|
||||
chatModelProviders,
|
||||
embeddingModelProviders,
|
||||
},
|
||||
{
|
||||
status: 200,
|
||||
},
|
||||
);
|
||||
} catch (err) {
|
||||
console.error('An error ocurred while fetching models', err);
|
||||
return Response.json(
|
||||
{
|
||||
message: 'An error has occurred.',
|
||||
},
|
||||
{
|
||||
status: 500,
|
||||
},
|
||||
);
|
||||
}
|
||||
};
|
81
src/app/api/suggestions/route.ts
Normal file
81
src/app/api/suggestions/route.ts
Normal file
@@ -0,0 +1,81 @@
|
||||
import generateSuggestions from '@/lib/chains/suggestionGeneratorAgent';
|
||||
import {
|
||||
getCustomOpenaiApiKey,
|
||||
getCustomOpenaiApiUrl,
|
||||
getCustomOpenaiModelName,
|
||||
} from '@/lib/config';
|
||||
import { getAvailableChatModelProviders } from '@/lib/providers';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
|
||||
interface ChatModel {
|
||||
provider: string;
|
||||
model: string;
|
||||
}
|
||||
|
||||
interface SuggestionsGenerationBody {
|
||||
chatHistory: any[];
|
||||
chatModel?: ChatModel;
|
||||
}
|
||||
|
||||
export const POST = async (req: Request) => {
|
||||
try {
|
||||
const body: SuggestionsGenerationBody = await req.json();
|
||||
|
||||
const chatHistory = body.chatHistory
|
||||
.map((msg: any) => {
|
||||
if (msg.role === 'user') {
|
||||
return new HumanMessage(msg.content);
|
||||
} else if (msg.role === 'assistant') {
|
||||
return new AIMessage(msg.content);
|
||||
}
|
||||
})
|
||||
.filter((msg) => msg !== undefined) as BaseMessage[];
|
||||
|
||||
const chatModelProviders = await getAvailableChatModelProviders();
|
||||
|
||||
const chatModelProvider =
|
||||
chatModelProviders[
|
||||
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
|
||||
];
|
||||
const chatModel =
|
||||
chatModelProvider[
|
||||
body.chatModel?.model || Object.keys(chatModelProvider)[0]
|
||||
];
|
||||
|
||||
let llm: BaseChatModel | undefined;
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
openAIApiKey: getCustomOpenaiApiKey(),
|
||||
modelName: getCustomOpenaiModelName(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
baseURL: getCustomOpenaiApiUrl(),
|
||||
},
|
||||
}) as unknown as BaseChatModel;
|
||||
} else if (chatModelProvider && chatModel) {
|
||||
llm = chatModel.model;
|
||||
}
|
||||
|
||||
if (!llm) {
|
||||
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
|
||||
}
|
||||
|
||||
const suggestions = await generateSuggestions(
|
||||
{
|
||||
chat_history: chatHistory,
|
||||
},
|
||||
llm,
|
||||
);
|
||||
|
||||
return Response.json({ suggestions }, { status: 200 });
|
||||
} catch (err) {
|
||||
console.error(`An error ocurred while generating suggestions: ${err}`);
|
||||
return Response.json(
|
||||
{ message: 'An error ocurred while generating suggestions' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
134
src/app/api/uploads/route.ts
Normal file
134
src/app/api/uploads/route.ts
Normal file
@@ -0,0 +1,134 @@
|
||||
import { NextResponse } from 'next/server';
|
||||
import fs from 'fs';
|
||||
import path from 'path';
|
||||
import crypto from 'crypto';
|
||||
import { getAvailableEmbeddingModelProviders } from '@/lib/providers';
|
||||
import { PDFLoader } from '@langchain/community/document_loaders/fs/pdf';
|
||||
import { DocxLoader } from '@langchain/community/document_loaders/fs/docx';
|
||||
import { RecursiveCharacterTextSplitter } from '@langchain/textsplitters';
|
||||
import { Document } from 'langchain/document';
|
||||
|
||||
interface FileRes {
|
||||
fileName: string;
|
||||
fileExtension: string;
|
||||
fileId: string;
|
||||
}
|
||||
|
||||
const uploadDir = path.join(process.cwd(), 'uploads');
|
||||
|
||||
if (!fs.existsSync(uploadDir)) {
|
||||
fs.mkdirSync(uploadDir, { recursive: true });
|
||||
}
|
||||
|
||||
const splitter = new RecursiveCharacterTextSplitter({
|
||||
chunkSize: 500,
|
||||
chunkOverlap: 100,
|
||||
});
|
||||
|
||||
export async function POST(req: Request) {
|
||||
try {
|
||||
const formData = await req.formData();
|
||||
|
||||
const files = formData.getAll('files') as File[];
|
||||
const embedding_model = formData.get('embedding_model');
|
||||
const embedding_model_provider = formData.get('embedding_model_provider');
|
||||
|
||||
if (!embedding_model || !embedding_model_provider) {
|
||||
return NextResponse.json(
|
||||
{ message: 'Missing embedding model or provider' },
|
||||
{ status: 400 },
|
||||
);
|
||||
}
|
||||
|
||||
const embeddingModels = await getAvailableEmbeddingModelProviders();
|
||||
const provider =
|
||||
embedding_model_provider ?? Object.keys(embeddingModels)[0];
|
||||
const embeddingModel =
|
||||
embedding_model ?? Object.keys(embeddingModels[provider as string])[0];
|
||||
|
||||
let embeddingsModel =
|
||||
embeddingModels[provider as string]?.[embeddingModel as string]?.model;
|
||||
if (!embeddingsModel) {
|
||||
return NextResponse.json(
|
||||
{ message: 'Invalid embedding model selected' },
|
||||
{ status: 400 },
|
||||
);
|
||||
}
|
||||
|
||||
const processedFiles: FileRes[] = [];
|
||||
|
||||
await Promise.all(
|
||||
files.map(async (file: any) => {
|
||||
const fileExtension = file.name.split('.').pop();
|
||||
if (!['pdf', 'docx', 'txt'].includes(fileExtension!)) {
|
||||
return NextResponse.json(
|
||||
{ message: 'File type not supported' },
|
||||
{ status: 400 },
|
||||
);
|
||||
}
|
||||
|
||||
const uniqueFileName = `${crypto.randomBytes(16).toString('hex')}.${fileExtension}`;
|
||||
const filePath = path.join(uploadDir, uniqueFileName);
|
||||
|
||||
const buffer = Buffer.from(await file.arrayBuffer());
|
||||
fs.writeFileSync(filePath, new Uint8Array(buffer));
|
||||
|
||||
let docs: any[] = [];
|
||||
if (fileExtension === 'pdf') {
|
||||
const loader = new PDFLoader(filePath);
|
||||
docs = await loader.load();
|
||||
} else if (fileExtension === 'docx') {
|
||||
const loader = new DocxLoader(filePath);
|
||||
docs = await loader.load();
|
||||
} else if (fileExtension === 'txt') {
|
||||
const text = fs.readFileSync(filePath, 'utf-8');
|
||||
docs = [
|
||||
new Document({ pageContent: text, metadata: { title: file.name } }),
|
||||
];
|
||||
}
|
||||
|
||||
const splitted = await splitter.splitDocuments(docs);
|
||||
|
||||
const extractedDataPath = filePath.replace(/\.\w+$/, '-extracted.json');
|
||||
fs.writeFileSync(
|
||||
extractedDataPath,
|
||||
JSON.stringify({
|
||||
title: file.name,
|
||||
contents: splitted.map((doc) => doc.pageContent),
|
||||
}),
|
||||
);
|
||||
|
||||
const embeddings = await embeddingsModel.embedDocuments(
|
||||
splitted.map((doc) => doc.pageContent),
|
||||
);
|
||||
const embeddingsDataPath = filePath.replace(
|
||||
/\.\w+$/,
|
||||
'-embeddings.json',
|
||||
);
|
||||
fs.writeFileSync(
|
||||
embeddingsDataPath,
|
||||
JSON.stringify({
|
||||
title: file.name,
|
||||
embeddings,
|
||||
}),
|
||||
);
|
||||
|
||||
processedFiles.push({
|
||||
fileName: file.name,
|
||||
fileExtension: fileExtension,
|
||||
fileId: uniqueFileName.replace(/\.\w+$/, ''),
|
||||
});
|
||||
}),
|
||||
);
|
||||
|
||||
return NextResponse.json({
|
||||
files: processedFiles,
|
||||
});
|
||||
} catch (error) {
|
||||
console.error('Error uploading file:', error);
|
||||
return NextResponse.json(
|
||||
{ message: 'An error has occurred.' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
}
|
83
src/app/api/videos/route.ts
Normal file
83
src/app/api/videos/route.ts
Normal file
@@ -0,0 +1,83 @@
|
||||
import handleVideoSearch from '@/lib/chains/videoSearchAgent';
|
||||
import {
|
||||
getCustomOpenaiApiKey,
|
||||
getCustomOpenaiApiUrl,
|
||||
getCustomOpenaiModelName,
|
||||
} from '@/lib/config';
|
||||
import { getAvailableChatModelProviders } from '@/lib/providers';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
|
||||
interface ChatModel {
|
||||
provider: string;
|
||||
model: string;
|
||||
}
|
||||
|
||||
interface VideoSearchBody {
|
||||
query: string;
|
||||
chatHistory: any[];
|
||||
chatModel?: ChatModel;
|
||||
}
|
||||
|
||||
export const POST = async (req: Request) => {
|
||||
try {
|
||||
const body: VideoSearchBody = await req.json();
|
||||
|
||||
const chatHistory = body.chatHistory
|
||||
.map((msg: any) => {
|
||||
if (msg.role === 'user') {
|
||||
return new HumanMessage(msg.content);
|
||||
} else if (msg.role === 'assistant') {
|
||||
return new AIMessage(msg.content);
|
||||
}
|
||||
})
|
||||
.filter((msg) => msg !== undefined) as BaseMessage[];
|
||||
|
||||
const chatModelProviders = await getAvailableChatModelProviders();
|
||||
|
||||
const chatModelProvider =
|
||||
chatModelProviders[
|
||||
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
|
||||
];
|
||||
const chatModel =
|
||||
chatModelProvider[
|
||||
body.chatModel?.model || Object.keys(chatModelProvider)[0]
|
||||
];
|
||||
|
||||
let llm: BaseChatModel | undefined;
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
openAIApiKey: getCustomOpenaiApiKey(),
|
||||
modelName: getCustomOpenaiModelName(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
baseURL: getCustomOpenaiApiUrl(),
|
||||
},
|
||||
}) as unknown as BaseChatModel;
|
||||
} else if (chatModelProvider && chatModel) {
|
||||
llm = chatModel.model;
|
||||
}
|
||||
|
||||
if (!llm) {
|
||||
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
|
||||
}
|
||||
|
||||
const videos = await handleVideoSearch(
|
||||
{
|
||||
chat_history: chatHistory,
|
||||
query: body.query,
|
||||
},
|
||||
llm,
|
||||
);
|
||||
|
||||
return Response.json({ videos }, { status: 200 });
|
||||
} catch (err) {
|
||||
console.error(`An error ocurred while searching videos: ${err}`);
|
||||
return Response.json(
|
||||
{ message: 'An error ocurred while searching videos' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
9
src/app/c/[chatId]/page.tsx
Normal file
9
src/app/c/[chatId]/page.tsx
Normal file
@@ -0,0 +1,9 @@
|
||||
import ChatWindow from '@/components/ChatWindow';
|
||||
import React from 'react';
|
||||
|
||||
const Page = ({ params }: { params: Promise<{ chatId: string }> }) => {
|
||||
const { chatId } = React.use(params);
|
||||
return <ChatWindow id={chatId} />;
|
||||
};
|
||||
|
||||
export default Page;
|
@@ -19,7 +19,7 @@ const Page = () => {
|
||||
useEffect(() => {
|
||||
const fetchData = async () => {
|
||||
try {
|
||||
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/discover`, {
|
||||
const res = await fetch(`/api/discover`, {
|
||||
method: 'GET',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
Before Width: | Height: | Size: 25 KiB After Width: | Height: | Size: 25 KiB |
@@ -21,7 +21,7 @@ const Page = () => {
|
||||
const fetchChats = async () => {
|
||||
setLoading(true);
|
||||
|
||||
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/chats`, {
|
||||
const res = await fetch(`/api/chats`, {
|
||||
method: 'GET',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
@@ -23,18 +23,6 @@ interface SettingsType {
|
||||
customOpenaiApiKey: string;
|
||||
customOpenaiApiUrl: string;
|
||||
customOpenaiModelName: string;
|
||||
searchEngineBackends: {
|
||||
search: string;
|
||||
image: string;
|
||||
video: string;
|
||||
news: string;
|
||||
};
|
||||
searxngEndpoint: string;
|
||||
googleApiKey: string;
|
||||
googleCseId: string;
|
||||
bingSubscriptionKey: string;
|
||||
braveApiKey: string;
|
||||
yacyEndpoint: string;
|
||||
}
|
||||
|
||||
interface InputProps extends React.InputHTMLAttributes<HTMLInputElement> {
|
||||
@@ -124,17 +112,11 @@ const Page = () => {
|
||||
const [automaticImageSearch, setAutomaticImageSearch] = useState(false);
|
||||
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
|
||||
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
|
||||
const [searchEngineBackends, setSearchEngineBackends] = useState({
|
||||
search: '',
|
||||
image: '',
|
||||
video: '',
|
||||
news: '',
|
||||
});
|
||||
|
||||
useEffect(() => {
|
||||
const fetchConfig = async () => {
|
||||
setIsLoading(true);
|
||||
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/config`, {
|
||||
const res = await fetch(`/api/config`, {
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
@@ -143,16 +125,6 @@ const Page = () => {
|
||||
const data = (await res.json()) as SettingsType;
|
||||
setConfig(data);
|
||||
|
||||
// Set search engine backends if they exist in the response
|
||||
if (data.searchEngineBackends) {
|
||||
setSearchEngineBackends({
|
||||
search: data.searchEngineBackends.search || '',
|
||||
image: data.searchEngineBackends.image || '',
|
||||
video: data.searchEngineBackends.video || '',
|
||||
news: data.searchEngineBackends.news || '',
|
||||
});
|
||||
}
|
||||
|
||||
const chatModelProvidersKeys = Object.keys(data.chatModelProviders || {});
|
||||
const embeddingModelProvidersKeys = Object.keys(
|
||||
data.embeddingModelProviders || {},
|
||||
@@ -215,16 +187,13 @@ const Page = () => {
|
||||
[key]: value,
|
||||
} as SettingsType;
|
||||
|
||||
const response = await fetch(
|
||||
`${process.env.NEXT_PUBLIC_API_URL}/config`,
|
||||
{
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
body: JSON.stringify(updatedConfig),
|
||||
const response = await fetch(`/api/config`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
);
|
||||
body: JSON.stringify(updatedConfig),
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
throw new Error('Failed to update config');
|
||||
@@ -236,7 +205,7 @@ const Page = () => {
|
||||
key.toLowerCase().includes('api') ||
|
||||
key.toLowerCase().includes('url')
|
||||
) {
|
||||
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/config`, {
|
||||
const res = await fetch(`/api/config`, {
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
@@ -359,8 +328,6 @@ const Page = () => {
|
||||
localStorage.setItem('embeddingModelProvider', value);
|
||||
} else if (key === 'embeddingModel') {
|
||||
localStorage.setItem('embeddingModel', value);
|
||||
} else if (key === 'searchEngineBackends') {
|
||||
localStorage.setItem('searchEngineBackends', value);
|
||||
}
|
||||
} catch (err) {
|
||||
console.error('Failed to save:', err);
|
||||
@@ -823,234 +790,6 @@ const Page = () => {
|
||||
</div>
|
||||
</div>
|
||||
</SettingsSection>
|
||||
|
||||
<SettingsSection title="Search Engine Settings">
|
||||
<div className="flex flex-col space-y-4">
|
||||
<div className="flex flex-col space-y-1">
|
||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||
Default Search Engine
|
||||
</p>
|
||||
<Select
|
||||
value={searchEngineBackends.search}
|
||||
onChange={(e) => {
|
||||
const value = e.target.value;
|
||||
setSearchEngineBackends((prev) => ({
|
||||
...prev,
|
||||
search: value,
|
||||
}));
|
||||
saveConfig('searchEngineBackends', {
|
||||
...searchEngineBackends,
|
||||
search: value,
|
||||
});
|
||||
}}
|
||||
options={[
|
||||
{ value: 'searxng', label: 'SearXNG' },
|
||||
{ value: 'google', label: 'Google' },
|
||||
{ value: 'bing', label: 'Bing' },
|
||||
{ value: 'brave', label: 'Brave' },
|
||||
{ value: 'yacy', label: 'YaCy' },
|
||||
]}
|
||||
/>
|
||||
</div>
|
||||
|
||||
<div className="flex flex-col space-y-1">
|
||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||
Image Search Engine
|
||||
</p>
|
||||
<Select
|
||||
value={searchEngineBackends.image}
|
||||
onChange={(e) => {
|
||||
const value = e.target.value;
|
||||
setSearchEngineBackends((prev) => ({
|
||||
...prev,
|
||||
image: value,
|
||||
}));
|
||||
saveConfig('searchEngineBackends', {
|
||||
...searchEngineBackends,
|
||||
image: value,
|
||||
});
|
||||
}}
|
||||
options={[
|
||||
{ value: '', label: 'Use Default Search Engine' },
|
||||
{ value: 'searxng', label: 'SearXNG' },
|
||||
{ value: 'google', label: 'Google' },
|
||||
{ value: 'bing', label: 'Bing' },
|
||||
{ value: 'brave', label: 'Brave' },
|
||||
]}
|
||||
/>
|
||||
</div>
|
||||
|
||||
<div className="flex flex-col space-y-1">
|
||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||
Video Search Engine
|
||||
</p>
|
||||
<Select
|
||||
value={searchEngineBackends.video}
|
||||
onChange={(e) => {
|
||||
const value = e.target.value;
|
||||
setSearchEngineBackends((prev) => ({
|
||||
...prev,
|
||||
video: value,
|
||||
}));
|
||||
saveConfig('searchEngineBackends', {
|
||||
...searchEngineBackends,
|
||||
video: value,
|
||||
});
|
||||
}}
|
||||
options={[
|
||||
{ value: '', label: 'Use Default Search Engine' },
|
||||
{ value: 'searxng', label: 'SearXNG' },
|
||||
{ value: 'google', label: 'Google' },
|
||||
{ value: 'bing', label: 'Bing' },
|
||||
{ value: 'brave', label: 'Brave' },
|
||||
]}
|
||||
/>
|
||||
</div>
|
||||
|
||||
<div className="flex flex-col space-y-1">
|
||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||
News Search Engine
|
||||
</p>
|
||||
<Select
|
||||
value={searchEngineBackends.news}
|
||||
onChange={(e) => {
|
||||
const value = e.target.value;
|
||||
setSearchEngineBackends((prev) => ({
|
||||
...prev,
|
||||
news: value,
|
||||
}));
|
||||
saveConfig('searchEngineBackends', {
|
||||
...searchEngineBackends,
|
||||
news: value,
|
||||
});
|
||||
}}
|
||||
options={[
|
||||
{ value: '', label: 'Use Default Search Engine' },
|
||||
{ value: 'searxng', label: 'SearXNG' },
|
||||
{ value: 'google', label: 'Google' },
|
||||
{ value: 'bing', label: 'Bing' },
|
||||
{ value: 'brave', label: 'Brave' },
|
||||
]}
|
||||
/>
|
||||
</div>
|
||||
|
||||
<div className="pt-4 border-t border-light-200 dark:border-dark-200">
|
||||
<div className="flex flex-col space-y-1">
|
||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||
SearXNG Endpoint
|
||||
</p>
|
||||
<Input
|
||||
type="text"
|
||||
placeholder="SearXNG API Endpoint"
|
||||
value={config.searxngEndpoint || ''}
|
||||
isSaving={savingStates['searxngEndpoint']}
|
||||
onChange={(e) => {
|
||||
setConfig((prev) => ({
|
||||
...prev!,
|
||||
searxngEndpoint: e.target.value,
|
||||
}));
|
||||
}}
|
||||
onSave={(value) => saveConfig('searxngEndpoint', value)}
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div className="flex flex-col space-y-1">
|
||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||
Google API Key
|
||||
</p>
|
||||
<Input
|
||||
type="text"
|
||||
placeholder="Google API Key"
|
||||
value={config.googleApiKey || ''}
|
||||
isSaving={savingStates['googleApiKey']}
|
||||
onChange={(e) => {
|
||||
setConfig((prev) => ({
|
||||
...prev!,
|
||||
googleApiKey: e.target.value,
|
||||
}));
|
||||
}}
|
||||
onSave={(value) => saveConfig('googleApiKey', value)}
|
||||
/>
|
||||
</div>
|
||||
|
||||
<div className="flex flex-col space-y-1">
|
||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||
Google CSE ID
|
||||
</p>
|
||||
<Input
|
||||
type="text"
|
||||
placeholder="Google Custom Search Engine ID"
|
||||
value={config.googleCseId || ''}
|
||||
isSaving={savingStates['googleCseId']}
|
||||
onChange={(e) => {
|
||||
setConfig((prev) => ({
|
||||
...prev!,
|
||||
googleCseId: e.target.value,
|
||||
}));
|
||||
}}
|
||||
onSave={(value) => saveConfig('googleCseId', value)}
|
||||
/>
|
||||
</div>
|
||||
|
||||
<div className="flex flex-col space-y-1">
|
||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||
Bing Subscription Key
|
||||
</p>
|
||||
<Input
|
||||
type="text"
|
||||
placeholder="Bing Subscription Key"
|
||||
value={config.bingSubscriptionKey || ''}
|
||||
isSaving={savingStates['bingSubscriptionKey']}
|
||||
onChange={(e) => {
|
||||
setConfig((prev) => ({
|
||||
...prev!,
|
||||
bingSubscriptionKey: e.target.value,
|
||||
}));
|
||||
}}
|
||||
onSave={(value) => saveConfig('bingSubscriptionKey', value)}
|
||||
/>
|
||||
</div>
|
||||
|
||||
<div className="flex flex-col space-y-1">
|
||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||
Brave API Key
|
||||
</p>
|
||||
<Input
|
||||
type="text"
|
||||
placeholder="Brave API Key"
|
||||
value={config.braveApiKey || ''}
|
||||
isSaving={savingStates['braveApiKey']}
|
||||
onChange={(e) => {
|
||||
setConfig((prev) => ({
|
||||
...prev!,
|
||||
braveApiKey: e.target.value,
|
||||
}));
|
||||
}}
|
||||
onSave={(value) => saveConfig('braveApiKey', value)}
|
||||
/>
|
||||
</div>
|
||||
|
||||
<div className="flex flex-col space-y-1">
|
||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||
YaCy Endpoint
|
||||
</p>
|
||||
<Input
|
||||
type="text"
|
||||
placeholder="YaCy API Endpoint"
|
||||
value={config.yacyEndpoint || ''}
|
||||
isSaving={savingStates['yacyEndpoint']}
|
||||
onChange={(e) => {
|
||||
setConfig((prev) => ({
|
||||
...prev!,
|
||||
yacyEndpoint: e.target.value,
|
||||
}));
|
||||
}}
|
||||
onSave={(value) => saveConfig('yacyEndpoint', value)}
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
</SettingsSection>
|
||||
</div>
|
||||
)
|
||||
)}
|
@@ -1,171 +0,0 @@
|
||||
import {
|
||||
RunnableSequence,
|
||||
RunnableMap,
|
||||
RunnableLambda,
|
||||
} from '@langchain/core/runnables';
|
||||
import { PromptTemplate } from '@langchain/core/prompts';
|
||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||
import { BaseMessage } from '@langchain/core/messages';
|
||||
import { StringOutputParser } from '@langchain/core/output_parsers';
|
||||
import { searchSearxng } from '../lib/searchEngines/searxng';
|
||||
import { searchGooglePSE } from '../lib/searchEngines/google_pse';
|
||||
import { searchBraveAPI } from '../lib/searchEngines/brave';
|
||||
import { searchYaCy } from '../lib/searchEngines/yacy';
|
||||
import { searchBingAPI } from '../lib/searchEngines/bing';
|
||||
import { getImageSearchEngineBackend } from '../config';
|
||||
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
|
||||
const imageSearchChainPrompt = `
|
||||
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search the web for images.
|
||||
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
|
||||
|
||||
Example:
|
||||
1. Follow up question: What is a cat?
|
||||
Rephrased: A cat
|
||||
|
||||
2. Follow up question: What is a car? How does it works?
|
||||
Rephrased: Car working
|
||||
|
||||
3. Follow up question: How does an AC work?
|
||||
Rephrased: AC working
|
||||
|
||||
Conversation:
|
||||
{chat_history}
|
||||
|
||||
Follow up question: {query}
|
||||
Rephrased question:
|
||||
`;
|
||||
|
||||
type ImageSearchChainInput = {
|
||||
chat_history: BaseMessage[];
|
||||
query: string;
|
||||
};
|
||||
|
||||
async function performImageSearch(query: string) {
|
||||
const searchEngine = getImageSearchEngineBackend();
|
||||
let images = [];
|
||||
|
||||
switch (searchEngine) {
|
||||
case 'google': {
|
||||
const googleResult = await searchGooglePSE(query);
|
||||
images = googleResult.results
|
||||
.map((result) => {
|
||||
if (result.img_src && result.url && result.title) {
|
||||
return {
|
||||
img_src: result.img_src,
|
||||
url: result.url,
|
||||
title: result.title,
|
||||
source: result.displayLink,
|
||||
};
|
||||
}
|
||||
})
|
||||
.filter(Boolean);
|
||||
break;
|
||||
}
|
||||
|
||||
case 'searxng': {
|
||||
const searxResult = await searchSearxng(query, {
|
||||
engines: ['google images', 'bing images'],
|
||||
pageno: 1,
|
||||
});
|
||||
searxResult.results.forEach((result) => {
|
||||
if (result.img_src && result.url && result.title) {
|
||||
images.push({
|
||||
img_src: result.img_src,
|
||||
url: result.url,
|
||||
title: result.title,
|
||||
});
|
||||
}
|
||||
});
|
||||
break;
|
||||
}
|
||||
|
||||
case 'brave': {
|
||||
const braveResult = await searchBraveAPI(query);
|
||||
images = braveResult.results
|
||||
.map((result) => {
|
||||
if (result.img_src && result.url && result.title) {
|
||||
return {
|
||||
img_src: result.img_src,
|
||||
url: result.url,
|
||||
title: result.title,
|
||||
source: result.url,
|
||||
};
|
||||
}
|
||||
})
|
||||
.filter(Boolean);
|
||||
break;
|
||||
}
|
||||
|
||||
case 'yacy': {
|
||||
const yacyResult = await searchYaCy(query);
|
||||
images = yacyResult.results
|
||||
.map((result) => {
|
||||
if (result.img_src && result.url && result.title) {
|
||||
return {
|
||||
img_src: result.img_src,
|
||||
url: result.url,
|
||||
title: result.title,
|
||||
source: result.url,
|
||||
};
|
||||
}
|
||||
})
|
||||
.filter(Boolean);
|
||||
break;
|
||||
}
|
||||
|
||||
case 'bing': {
|
||||
const bingResult = await searchBingAPI(query);
|
||||
images = bingResult.results
|
||||
.map((result) => {
|
||||
if (result.img_src && result.url && result.title) {
|
||||
return {
|
||||
img_src: result.img_src,
|
||||
url: result.url,
|
||||
title: result.title,
|
||||
source: result.url,
|
||||
};
|
||||
}
|
||||
})
|
||||
.filter(Boolean);
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
throw new Error(`Unknown search engine ${searchEngine}`);
|
||||
}
|
||||
|
||||
return images;
|
||||
}
|
||||
|
||||
const strParser = new StringOutputParser();
|
||||
|
||||
const createImageSearchChain = (llm: BaseChatModel) => {
|
||||
return RunnableSequence.from([
|
||||
RunnableMap.from({
|
||||
chat_history: (input: ImageSearchChainInput) => {
|
||||
return formatChatHistoryAsString(input.chat_history);
|
||||
},
|
||||
query: (input: ImageSearchChainInput) => {
|
||||
return input.query;
|
||||
},
|
||||
}),
|
||||
PromptTemplate.fromTemplate(imageSearchChainPrompt),
|
||||
llm,
|
||||
strParser,
|
||||
RunnableLambda.from(async (input: string) => {
|
||||
const images = await performImageSearch(input);
|
||||
return images.slice(0, 10);
|
||||
}),
|
||||
]);
|
||||
};
|
||||
|
||||
const handleImageSearch = (
|
||||
input: ImageSearchChainInput,
|
||||
llm: BaseChatModel,
|
||||
) => {
|
||||
const imageSearchChain = createImageSearchChain(llm);
|
||||
return imageSearchChain.invoke(input);
|
||||
};
|
||||
|
||||
export default handleImageSearch;
|
@@ -1,169 +0,0 @@
|
||||
import {
|
||||
RunnableSequence,
|
||||
RunnableMap,
|
||||
RunnableLambda,
|
||||
} from '@langchain/core/runnables';
|
||||
import { PromptTemplate } from '@langchain/core/prompts';
|
||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||
import { BaseMessage } from '@langchain/core/messages';
|
||||
import { StringOutputParser } from '@langchain/core/output_parsers';
|
||||
import { searchSearxng } from '../lib/searchEngines/searxng';
|
||||
import { searchGooglePSE } from '../lib/searchEngines/google_pse';
|
||||
import { searchBraveAPI } from '../lib/searchEngines/brave';
|
||||
import { searchBingAPI } from '../lib/searchEngines/bing';
|
||||
import { getVideoSearchEngineBackend } from '../config';
|
||||
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
|
||||
const VideoSearchChainPrompt = `
|
||||
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search Youtube for videos.
|
||||
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
|
||||
|
||||
Example:
|
||||
1. Follow up question: How does a car work?
|
||||
Rephrased: How does a car work?
|
||||
|
||||
2. Follow up question: What is the theory of relativity?
|
||||
Rephrased: What is theory of relativity
|
||||
|
||||
3. Follow up question: How does an AC work?
|
||||
Rephrased: How does an AC work
|
||||
|
||||
Conversation:
|
||||
{chat_history}
|
||||
|
||||
Follow up question: {query}
|
||||
Rephrased question:
|
||||
`;
|
||||
|
||||
type VideoSearchChainInput = {
|
||||
chat_history: BaseMessage[];
|
||||
query: string;
|
||||
};
|
||||
|
||||
const strParser = new StringOutputParser();
|
||||
|
||||
async function performVideoSearch(query: string) {
|
||||
const searchEngine = getVideoSearchEngineBackend();
|
||||
const youtubeQuery = `${query} site:youtube.com`;
|
||||
let videos = [];
|
||||
|
||||
switch (searchEngine) {
|
||||
case 'google': {
|
||||
const googleResult = await searchGooglePSE(youtubeQuery);
|
||||
googleResult.results.forEach((result) => {
|
||||
// Use .results instead of .originalres
|
||||
if (result.img_src && result.url && result.title) {
|
||||
const videoId = new URL(result.url).searchParams.get('v');
|
||||
videos.push({
|
||||
img_src: result.img_src,
|
||||
url: result.url,
|
||||
title: result.title,
|
||||
iframe_src: videoId
|
||||
? `https://www.youtube.com/embed/${videoId}`
|
||||
: null,
|
||||
});
|
||||
}
|
||||
});
|
||||
break;
|
||||
}
|
||||
|
||||
case 'searxng': {
|
||||
const searxResult = await searchSearxng(query, {
|
||||
engines: ['youtube'],
|
||||
});
|
||||
searxResult.results.forEach((result) => {
|
||||
if (
|
||||
result.thumbnail &&
|
||||
result.url &&
|
||||
result.title &&
|
||||
result.iframe_src
|
||||
) {
|
||||
videos.push({
|
||||
img_src: result.thumbnail,
|
||||
url: result.url,
|
||||
title: result.title,
|
||||
iframe_src: result.iframe_src,
|
||||
});
|
||||
}
|
||||
});
|
||||
break;
|
||||
}
|
||||
|
||||
case 'brave': {
|
||||
const braveResult = await searchBraveAPI(youtubeQuery);
|
||||
braveResult.results.forEach((result) => {
|
||||
if (result.img_src && result.url && result.title) {
|
||||
const videoId = new URL(result.url).searchParams.get('v');
|
||||
videos.push({
|
||||
img_src: result.img_src,
|
||||
url: result.url,
|
||||
title: result.title,
|
||||
iframe_src: videoId
|
||||
? `https://www.youtube.com/embed/${videoId}`
|
||||
: null,
|
||||
});
|
||||
}
|
||||
});
|
||||
break;
|
||||
}
|
||||
|
||||
case 'yacy': {
|
||||
console.log('Not available for yacy');
|
||||
videos = [];
|
||||
break;
|
||||
}
|
||||
|
||||
case 'bing': {
|
||||
const bingResult = await searchBingAPI(youtubeQuery);
|
||||
bingResult.results.forEach((result) => {
|
||||
if (result.img_src && result.url && result.title) {
|
||||
const videoId = new URL(result.url).searchParams.get('v');
|
||||
videos.push({
|
||||
img_src: result.img_src,
|
||||
url: result.url,
|
||||
title: result.title,
|
||||
iframe_src: videoId
|
||||
? `https://www.youtube.com/embed/${videoId}`
|
||||
: null,
|
||||
});
|
||||
}
|
||||
});
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
throw new Error(`Unknown search engine ${searchEngine}`);
|
||||
}
|
||||
|
||||
return videos;
|
||||
}
|
||||
|
||||
const createVideoSearchChain = (llm: BaseChatModel) => {
|
||||
return RunnableSequence.from([
|
||||
RunnableMap.from({
|
||||
chat_history: (input: VideoSearchChainInput) => {
|
||||
return formatChatHistoryAsString(input.chat_history);
|
||||
},
|
||||
query: (input: VideoSearchChainInput) => {
|
||||
return input.query;
|
||||
},
|
||||
}),
|
||||
PromptTemplate.fromTemplate(VideoSearchChainPrompt),
|
||||
llm,
|
||||
strParser,
|
||||
RunnableLambda.from(async (input: string) => {
|
||||
const videos = await performVideoSearch(input);
|
||||
return videos.slice(0, 10);
|
||||
}),
|
||||
]);
|
||||
};
|
||||
|
||||
const handleVideoSearch = (
|
||||
input: VideoSearchChainInput,
|
||||
llm: BaseChatModel,
|
||||
) => {
|
||||
const VideoSearchChain = createVideoSearchChain(llm);
|
||||
return VideoSearchChain.invoke(input);
|
||||
};
|
||||
|
||||
export default handleVideoSearch;
|
@@ -48,11 +48,17 @@ const Chat = ({
|
||||
});
|
||||
|
||||
useEffect(() => {
|
||||
messageEnd.current?.scrollIntoView({ behavior: 'smooth' });
|
||||
const scroll = () => {
|
||||
messageEnd.current?.scrollIntoView({ behavior: 'smooth' });
|
||||
};
|
||||
|
||||
if (messages.length === 1) {
|
||||
document.title = `${messages[0].content.substring(0, 30)} - Perplexica`;
|
||||
}
|
||||
|
||||
if (messages[messages.length - 1]?.role == 'user') {
|
||||
scroll();
|
||||
}
|
||||
}, [messages]);
|
||||
|
||||
return (
|
@@ -29,280 +29,154 @@ export interface File {
|
||||
fileId: string;
|
||||
}
|
||||
|
||||
const useSocket = (
|
||||
url: string,
|
||||
setIsWSReady: (ready: boolean) => void,
|
||||
setError: (error: boolean) => void,
|
||||
interface ChatModelProvider {
|
||||
name: string;
|
||||
provider: string;
|
||||
}
|
||||
|
||||
interface EmbeddingModelProvider {
|
||||
name: string;
|
||||
provider: string;
|
||||
}
|
||||
|
||||
const checkConfig = async (
|
||||
setChatModelProvider: (provider: ChatModelProvider) => void,
|
||||
setEmbeddingModelProvider: (provider: EmbeddingModelProvider) => void,
|
||||
setIsConfigReady: (ready: boolean) => void,
|
||||
setHasError: (hasError: boolean) => void,
|
||||
) => {
|
||||
const wsRef = useRef<WebSocket | null>(null);
|
||||
const reconnectTimeoutRef = useRef<NodeJS.Timeout>();
|
||||
const retryCountRef = useRef(0);
|
||||
const isCleaningUpRef = useRef(false);
|
||||
const MAX_RETRIES = 3;
|
||||
const INITIAL_BACKOFF = 1000; // 1 second
|
||||
const isConnectionErrorRef = useRef(false);
|
||||
try {
|
||||
let chatModel = localStorage.getItem('chatModel');
|
||||
let chatModelProvider = localStorage.getItem('chatModelProvider');
|
||||
let embeddingModel = localStorage.getItem('embeddingModel');
|
||||
let embeddingModelProvider = localStorage.getItem('embeddingModelProvider');
|
||||
|
||||
const getBackoffDelay = (retryCount: number) => {
|
||||
return Math.min(INITIAL_BACKOFF * Math.pow(2, retryCount), 10000); // Cap at 10 seconds
|
||||
};
|
||||
const autoImageSearch = localStorage.getItem('autoImageSearch');
|
||||
const autoVideoSearch = localStorage.getItem('autoVideoSearch');
|
||||
|
||||
useEffect(() => {
|
||||
const connectWs = async () => {
|
||||
if (wsRef.current?.readyState === WebSocket.OPEN) {
|
||||
wsRef.current.close();
|
||||
if (!autoImageSearch) {
|
||||
localStorage.setItem('autoImageSearch', 'true');
|
||||
}
|
||||
|
||||
if (!autoVideoSearch) {
|
||||
localStorage.setItem('autoVideoSearch', 'false');
|
||||
}
|
||||
|
||||
const providers = await fetch(`/api/models`, {
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
}).then(async (res) => {
|
||||
if (!res.ok)
|
||||
throw new Error(
|
||||
`Failed to fetch models: ${res.status} ${res.statusText}`,
|
||||
);
|
||||
return res.json();
|
||||
});
|
||||
|
||||
if (
|
||||
!chatModel ||
|
||||
!chatModelProvider ||
|
||||
!embeddingModel ||
|
||||
!embeddingModelProvider
|
||||
) {
|
||||
if (!chatModel || !chatModelProvider) {
|
||||
const chatModelProviders = providers.chatModelProviders;
|
||||
|
||||
chatModelProvider =
|
||||
chatModelProvider || Object.keys(chatModelProviders)[0];
|
||||
|
||||
chatModel = Object.keys(chatModelProviders[chatModelProvider])[0];
|
||||
|
||||
if (!chatModelProviders || Object.keys(chatModelProviders).length === 0)
|
||||
return toast.error('No chat models available');
|
||||
}
|
||||
|
||||
try {
|
||||
let chatModel = localStorage.getItem('chatModel');
|
||||
let chatModelProvider = localStorage.getItem('chatModelProvider');
|
||||
let embeddingModel = localStorage.getItem('embeddingModel');
|
||||
let embeddingModelProvider = localStorage.getItem(
|
||||
'embeddingModelProvider',
|
||||
);
|
||||
|
||||
const autoImageSearch = localStorage.getItem('autoImageSearch');
|
||||
const autoVideoSearch = localStorage.getItem('autoVideoSearch');
|
||||
|
||||
if (!autoImageSearch) {
|
||||
localStorage.setItem('autoImageSearch', 'true');
|
||||
}
|
||||
|
||||
if (!autoVideoSearch) {
|
||||
localStorage.setItem('autoVideoSearch', 'false');
|
||||
}
|
||||
|
||||
const providers = await fetch(
|
||||
`${process.env.NEXT_PUBLIC_API_URL}/models`,
|
||||
{
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
},
|
||||
).then(async (res) => {
|
||||
if (!res.ok)
|
||||
throw new Error(
|
||||
`Failed to fetch models: ${res.status} ${res.statusText}`,
|
||||
);
|
||||
return res.json();
|
||||
});
|
||||
if (!embeddingModel || !embeddingModelProvider) {
|
||||
const embeddingModelProviders = providers.embeddingModelProviders;
|
||||
|
||||
if (
|
||||
!chatModel ||
|
||||
!chatModelProvider ||
|
||||
!embeddingModel ||
|
||||
!embeddingModelProvider
|
||||
) {
|
||||
if (!chatModel || !chatModelProvider) {
|
||||
const chatModelProviders = providers.chatModelProviders;
|
||||
!embeddingModelProviders ||
|
||||
Object.keys(embeddingModelProviders).length === 0
|
||||
)
|
||||
return toast.error('No embedding models available');
|
||||
|
||||
chatModelProvider =
|
||||
chatModelProvider || Object.keys(chatModelProviders)[0];
|
||||
|
||||
chatModel = Object.keys(chatModelProviders[chatModelProvider])[0];
|
||||
|
||||
if (
|
||||
!chatModelProviders ||
|
||||
Object.keys(chatModelProviders).length === 0
|
||||
)
|
||||
return toast.error('No chat models available');
|
||||
}
|
||||
|
||||
if (!embeddingModel || !embeddingModelProvider) {
|
||||
const embeddingModelProviders = providers.embeddingModelProviders;
|
||||
|
||||
if (
|
||||
!embeddingModelProviders ||
|
||||
Object.keys(embeddingModelProviders).length === 0
|
||||
)
|
||||
return toast.error('No embedding models available');
|
||||
|
||||
embeddingModelProvider = Object.keys(embeddingModelProviders)[0];
|
||||
embeddingModel = Object.keys(
|
||||
embeddingModelProviders[embeddingModelProvider],
|
||||
)[0];
|
||||
}
|
||||
|
||||
localStorage.setItem('chatModel', chatModel!);
|
||||
localStorage.setItem('chatModelProvider', chatModelProvider);
|
||||
localStorage.setItem('embeddingModel', embeddingModel!);
|
||||
localStorage.setItem(
|
||||
'embeddingModelProvider',
|
||||
embeddingModelProvider,
|
||||
);
|
||||
} else {
|
||||
const chatModelProviders = providers.chatModelProviders;
|
||||
const embeddingModelProviders = providers.embeddingModelProviders;
|
||||
|
||||
if (
|
||||
Object.keys(chatModelProviders).length > 0 &&
|
||||
!chatModelProviders[chatModelProvider]
|
||||
) {
|
||||
const chatModelProvidersKeys = Object.keys(chatModelProviders);
|
||||
chatModelProvider =
|
||||
chatModelProvidersKeys.find(
|
||||
(key) => Object.keys(chatModelProviders[key]).length > 0,
|
||||
) || chatModelProvidersKeys[0];
|
||||
|
||||
localStorage.setItem('chatModelProvider', chatModelProvider);
|
||||
}
|
||||
|
||||
if (
|
||||
chatModelProvider &&
|
||||
!chatModelProviders[chatModelProvider][chatModel]
|
||||
) {
|
||||
chatModel = Object.keys(
|
||||
chatModelProviders[
|
||||
Object.keys(chatModelProviders[chatModelProvider]).length > 0
|
||||
? chatModelProvider
|
||||
: Object.keys(chatModelProviders)[0]
|
||||
],
|
||||
)[0];
|
||||
localStorage.setItem('chatModel', chatModel);
|
||||
}
|
||||
|
||||
if (
|
||||
Object.keys(embeddingModelProviders).length > 0 &&
|
||||
!embeddingModelProviders[embeddingModelProvider]
|
||||
) {
|
||||
embeddingModelProvider = Object.keys(embeddingModelProviders)[0];
|
||||
localStorage.setItem(
|
||||
'embeddingModelProvider',
|
||||
embeddingModelProvider,
|
||||
);
|
||||
}
|
||||
|
||||
if (
|
||||
embeddingModelProvider &&
|
||||
!embeddingModelProviders[embeddingModelProvider][embeddingModel]
|
||||
) {
|
||||
embeddingModel = Object.keys(
|
||||
embeddingModelProviders[embeddingModelProvider],
|
||||
)[0];
|
||||
localStorage.setItem('embeddingModel', embeddingModel);
|
||||
}
|
||||
}
|
||||
|
||||
const wsURL = new URL(url);
|
||||
const searchParams = new URLSearchParams({});
|
||||
|
||||
searchParams.append('chatModel', chatModel!);
|
||||
searchParams.append('chatModelProvider', chatModelProvider);
|
||||
|
||||
if (chatModelProvider === 'custom_openai') {
|
||||
searchParams.append(
|
||||
'openAIApiKey',
|
||||
localStorage.getItem('openAIApiKey')!,
|
||||
);
|
||||
searchParams.append(
|
||||
'openAIBaseURL',
|
||||
localStorage.getItem('openAIBaseURL')!,
|
||||
);
|
||||
}
|
||||
|
||||
searchParams.append('embeddingModel', embeddingModel!);
|
||||
searchParams.append('embeddingModelProvider', embeddingModelProvider);
|
||||
|
||||
wsURL.search = searchParams.toString();
|
||||
|
||||
const ws = new WebSocket(wsURL.toString());
|
||||
wsRef.current = ws;
|
||||
|
||||
const timeoutId = setTimeout(() => {
|
||||
if (ws.readyState !== 1) {
|
||||
toast.error(
|
||||
'Failed to connect to the server. Please try again later.',
|
||||
);
|
||||
}
|
||||
}, 10000);
|
||||
|
||||
ws.addEventListener('message', (e) => {
|
||||
const data = JSON.parse(e.data);
|
||||
if (data.type === 'signal' && data.data === 'open') {
|
||||
const interval = setInterval(() => {
|
||||
if (ws.readyState === 1) {
|
||||
setIsWSReady(true);
|
||||
setError(false);
|
||||
if (retryCountRef.current > 0) {
|
||||
toast.success('Connection restored.');
|
||||
}
|
||||
retryCountRef.current = 0;
|
||||
clearInterval(interval);
|
||||
}
|
||||
}, 5);
|
||||
clearTimeout(timeoutId);
|
||||
console.debug(new Date(), 'ws:connected');
|
||||
}
|
||||
if (data.type === 'error') {
|
||||
isConnectionErrorRef.current = true;
|
||||
setError(true);
|
||||
toast.error(data.data);
|
||||
}
|
||||
});
|
||||
|
||||
ws.onerror = () => {
|
||||
clearTimeout(timeoutId);
|
||||
setIsWSReady(false);
|
||||
toast.error('WebSocket connection error.');
|
||||
};
|
||||
|
||||
ws.onclose = () => {
|
||||
clearTimeout(timeoutId);
|
||||
setIsWSReady(false);
|
||||
console.debug(new Date(), 'ws:disconnected');
|
||||
if (!isCleaningUpRef.current && !isConnectionErrorRef.current) {
|
||||
toast.error('Connection lost. Attempting to reconnect...');
|
||||
attemptReconnect();
|
||||
}
|
||||
};
|
||||
} catch (error) {
|
||||
console.debug(new Date(), 'ws:error', error);
|
||||
setIsWSReady(false);
|
||||
attemptReconnect();
|
||||
}
|
||||
};
|
||||
|
||||
const attemptReconnect = () => {
|
||||
retryCountRef.current += 1;
|
||||
|
||||
if (retryCountRef.current > MAX_RETRIES) {
|
||||
console.debug(new Date(), 'ws:max_retries');
|
||||
setError(true);
|
||||
toast.error(
|
||||
'Unable to connect to server after multiple attempts. Please refresh the page to try again.',
|
||||
);
|
||||
return;
|
||||
embeddingModelProvider = Object.keys(embeddingModelProviders)[0];
|
||||
embeddingModel = Object.keys(
|
||||
embeddingModelProviders[embeddingModelProvider],
|
||||
)[0];
|
||||
}
|
||||
|
||||
const backoffDelay = getBackoffDelay(retryCountRef.current);
|
||||
console.debug(
|
||||
new Date(),
|
||||
`ws:retry attempt=${retryCountRef.current}/${MAX_RETRIES} delay=${backoffDelay}ms`,
|
||||
);
|
||||
localStorage.setItem('chatModel', chatModel!);
|
||||
localStorage.setItem('chatModelProvider', chatModelProvider);
|
||||
localStorage.setItem('embeddingModel', embeddingModel!);
|
||||
localStorage.setItem('embeddingModelProvider', embeddingModelProvider);
|
||||
} else {
|
||||
const chatModelProviders = providers.chatModelProviders;
|
||||
const embeddingModelProviders = providers.embeddingModelProviders;
|
||||
|
||||
if (reconnectTimeoutRef.current) {
|
||||
clearTimeout(reconnectTimeoutRef.current);
|
||||
if (
|
||||
Object.keys(chatModelProviders).length > 0 &&
|
||||
!chatModelProviders[chatModelProvider]
|
||||
) {
|
||||
const chatModelProvidersKeys = Object.keys(chatModelProviders);
|
||||
chatModelProvider =
|
||||
chatModelProvidersKeys.find(
|
||||
(key) => Object.keys(chatModelProviders[key]).length > 0,
|
||||
) || chatModelProvidersKeys[0];
|
||||
|
||||
localStorage.setItem('chatModelProvider', chatModelProvider);
|
||||
}
|
||||
|
||||
reconnectTimeoutRef.current = setTimeout(() => {
|
||||
connectWs();
|
||||
}, backoffDelay);
|
||||
};
|
||||
|
||||
connectWs();
|
||||
|
||||
return () => {
|
||||
if (reconnectTimeoutRef.current) {
|
||||
clearTimeout(reconnectTimeoutRef.current);
|
||||
if (
|
||||
chatModelProvider &&
|
||||
!chatModelProviders[chatModelProvider][chatModel]
|
||||
) {
|
||||
chatModel = Object.keys(
|
||||
chatModelProviders[
|
||||
Object.keys(chatModelProviders[chatModelProvider]).length > 0
|
||||
? chatModelProvider
|
||||
: Object.keys(chatModelProviders)[0]
|
||||
],
|
||||
)[0];
|
||||
localStorage.setItem('chatModel', chatModel);
|
||||
}
|
||||
if (wsRef.current?.readyState === WebSocket.OPEN) {
|
||||
wsRef.current.close();
|
||||
isCleaningUpRef.current = true;
|
||||
console.debug(new Date(), 'ws:cleanup');
|
||||
}
|
||||
};
|
||||
}, [url, setIsWSReady, setError]);
|
||||
|
||||
return wsRef.current;
|
||||
if (
|
||||
Object.keys(embeddingModelProviders).length > 0 &&
|
||||
!embeddingModelProviders[embeddingModelProvider]
|
||||
) {
|
||||
embeddingModelProvider = Object.keys(embeddingModelProviders)[0];
|
||||
localStorage.setItem('embeddingModelProvider', embeddingModelProvider);
|
||||
}
|
||||
|
||||
if (
|
||||
embeddingModelProvider &&
|
||||
!embeddingModelProviders[embeddingModelProvider][embeddingModel]
|
||||
) {
|
||||
embeddingModel = Object.keys(
|
||||
embeddingModelProviders[embeddingModelProvider],
|
||||
)[0];
|
||||
localStorage.setItem('embeddingModel', embeddingModel);
|
||||
}
|
||||
}
|
||||
|
||||
setChatModelProvider({
|
||||
name: chatModel!,
|
||||
provider: chatModelProvider,
|
||||
});
|
||||
|
||||
setEmbeddingModelProvider({
|
||||
name: embeddingModel!,
|
||||
provider: embeddingModelProvider,
|
||||
});
|
||||
|
||||
setIsConfigReady(true);
|
||||
} catch (err) {
|
||||
console.error('An error occurred while checking the configuration:', err);
|
||||
setIsConfigReady(false);
|
||||
setHasError(true);
|
||||
}
|
||||
};
|
||||
|
||||
const loadMessages = async (
|
||||
@@ -315,15 +189,12 @@ const loadMessages = async (
|
||||
setFiles: (files: File[]) => void,
|
||||
setFileIds: (fileIds: string[]) => void,
|
||||
) => {
|
||||
const res = await fetch(
|
||||
`${process.env.NEXT_PUBLIC_API_URL}/chats/${chatId}`,
|
||||
{
|
||||
method: 'GET',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
const res = await fetch(`/api/chats/${chatId}`, {
|
||||
method: 'GET',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
);
|
||||
});
|
||||
|
||||
if (res.status === 404) {
|
||||
setNotFound(true);
|
||||
@@ -373,15 +244,32 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
||||
const [chatId, setChatId] = useState<string | undefined>(id);
|
||||
const [newChatCreated, setNewChatCreated] = useState(false);
|
||||
|
||||
const [chatModelProvider, setChatModelProvider] = useState<ChatModelProvider>(
|
||||
{
|
||||
name: '',
|
||||
provider: '',
|
||||
},
|
||||
);
|
||||
|
||||
const [embeddingModelProvider, setEmbeddingModelProvider] =
|
||||
useState<EmbeddingModelProvider>({
|
||||
name: '',
|
||||
provider: '',
|
||||
});
|
||||
|
||||
const [isConfigReady, setIsConfigReady] = useState(false);
|
||||
const [hasError, setHasError] = useState(false);
|
||||
const [isReady, setIsReady] = useState(false);
|
||||
|
||||
const [isWSReady, setIsWSReady] = useState(false);
|
||||
const ws = useSocket(
|
||||
process.env.NEXT_PUBLIC_WS_URL!,
|
||||
setIsWSReady,
|
||||
setHasError,
|
||||
);
|
||||
useEffect(() => {
|
||||
checkConfig(
|
||||
setChatModelProvider,
|
||||
setEmbeddingModelProvider,
|
||||
setIsConfigReady,
|
||||
setHasError,
|
||||
);
|
||||
// eslint-disable-next-line react-hooks/exhaustive-deps
|
||||
}, []);
|
||||
|
||||
const [loading, setLoading] = useState(false);
|
||||
const [messageAppeared, setMessageAppeared] = useState(false);
|
||||
@@ -399,8 +287,6 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
||||
|
||||
const [notFound, setNotFound] = useState(false);
|
||||
|
||||
const [isSettingsOpen, setIsSettingsOpen] = useState(false);
|
||||
|
||||
useEffect(() => {
|
||||
if (
|
||||
chatId &&
|
||||
@@ -426,16 +312,6 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
||||
// eslint-disable-next-line react-hooks/exhaustive-deps
|
||||
}, []);
|
||||
|
||||
useEffect(() => {
|
||||
return () => {
|
||||
if (ws?.readyState === 1) {
|
||||
ws.close();
|
||||
console.debug(new Date(), 'ws:cleanup');
|
||||
}
|
||||
};
|
||||
// eslint-disable-next-line react-hooks/exhaustive-deps
|
||||
}, []);
|
||||
|
||||
const messagesRef = useRef<Message[]>([]);
|
||||
|
||||
useEffect(() => {
|
||||
@@ -443,18 +319,18 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
||||
}, [messages]);
|
||||
|
||||
useEffect(() => {
|
||||
if (isMessagesLoaded && isWSReady) {
|
||||
if (isMessagesLoaded && isConfigReady) {
|
||||
setIsReady(true);
|
||||
console.debug(new Date(), 'app:ready');
|
||||
} else {
|
||||
setIsReady(false);
|
||||
}
|
||||
}, [isMessagesLoaded, isWSReady]);
|
||||
}, [isMessagesLoaded, isConfigReady]);
|
||||
|
||||
const sendMessage = async (message: string, messageId?: string) => {
|
||||
if (loading) return;
|
||||
if (!ws || ws.readyState !== WebSocket.OPEN) {
|
||||
toast.error('Cannot send message while disconnected');
|
||||
if (!isConfigReady) {
|
||||
toast.error('Cannot send message before the configuration is ready');
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -467,21 +343,6 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
||||
|
||||
messageId = messageId ?? crypto.randomBytes(7).toString('hex');
|
||||
|
||||
ws.send(
|
||||
JSON.stringify({
|
||||
type: 'message',
|
||||
message: {
|
||||
messageId: messageId,
|
||||
chatId: chatId!,
|
||||
content: message,
|
||||
},
|
||||
files: fileIds,
|
||||
focusMode: focusMode,
|
||||
optimizationMode: optimizationMode,
|
||||
history: [...chatHistory, ['human', message]],
|
||||
}),
|
||||
);
|
||||
|
||||
setMessages((prevMessages) => [
|
||||
...prevMessages,
|
||||
{
|
||||
@@ -493,9 +354,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
||||
},
|
||||
]);
|
||||
|
||||
const messageHandler = async (e: MessageEvent) => {
|
||||
const data = JSON.parse(e.data);
|
||||
|
||||
const messageHandler = async (data: any) => {
|
||||
if (data.type === 'error') {
|
||||
toast.error(data.data);
|
||||
setLoading(false);
|
||||
@@ -558,11 +417,25 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
||||
['assistant', recievedMessage],
|
||||
]);
|
||||
|
||||
ws?.removeEventListener('message', messageHandler);
|
||||
setLoading(false);
|
||||
|
||||
const lastMsg = messagesRef.current[messagesRef.current.length - 1];
|
||||
|
||||
const autoImageSearch = localStorage.getItem('autoImageSearch');
|
||||
const autoVideoSearch = localStorage.getItem('autoVideoSearch');
|
||||
|
||||
if (autoImageSearch === 'true') {
|
||||
document
|
||||
.getElementById(`search-images-${lastMsg.messageId}`)
|
||||
?.click();
|
||||
}
|
||||
|
||||
if (autoVideoSearch === 'true') {
|
||||
document
|
||||
.getElementById(`search-videos-${lastMsg.messageId}`)
|
||||
?.click();
|
||||
}
|
||||
|
||||
if (
|
||||
lastMsg.role === 'assistant' &&
|
||||
lastMsg.sources &&
|
||||
@@ -579,21 +452,62 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
||||
}),
|
||||
);
|
||||
}
|
||||
|
||||
const autoImageSearch = localStorage.getItem('autoImageSearch');
|
||||
const autoVideoSearch = localStorage.getItem('autoVideoSearch');
|
||||
|
||||
if (autoImageSearch === 'true') {
|
||||
document.getElementById('search-images')?.click();
|
||||
}
|
||||
|
||||
if (autoVideoSearch === 'true') {
|
||||
document.getElementById('search-videos')?.click();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
ws?.addEventListener('message', messageHandler);
|
||||
const res = await fetch('/api/chat', {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
body: JSON.stringify({
|
||||
content: message,
|
||||
message: {
|
||||
messageId: messageId,
|
||||
chatId: chatId!,
|
||||
content: message,
|
||||
},
|
||||
chatId: chatId!,
|
||||
files: fileIds,
|
||||
focusMode: focusMode,
|
||||
optimizationMode: optimizationMode,
|
||||
history: chatHistory,
|
||||
chatModel: {
|
||||
name: chatModelProvider.name,
|
||||
provider: chatModelProvider.provider,
|
||||
},
|
||||
embeddingModel: {
|
||||
name: embeddingModelProvider.name,
|
||||
provider: embeddingModelProvider.provider,
|
||||
},
|
||||
}),
|
||||
});
|
||||
|
||||
if (!res.body) throw new Error('No response body');
|
||||
|
||||
const reader = res.body?.getReader();
|
||||
const decoder = new TextDecoder('utf-8');
|
||||
|
||||
let partialChunk = '';
|
||||
|
||||
while (true) {
|
||||
const { value, done } = await reader.read();
|
||||
if (done) break;
|
||||
|
||||
partialChunk += decoder.decode(value, { stream: true });
|
||||
|
||||
try {
|
||||
const messages = partialChunk.split('\n');
|
||||
for (const msg of messages) {
|
||||
if (!msg.trim()) continue;
|
||||
const json = JSON.parse(msg);
|
||||
messageHandler(json);
|
||||
}
|
||||
partialChunk = '';
|
||||
} catch (error) {
|
||||
console.warn('Incomplete JSON, waiting for next chunk...');
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
const rewrite = (messageId: string) => {
|
||||
@@ -614,11 +528,11 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
||||
};
|
||||
|
||||
useEffect(() => {
|
||||
if (isReady && initialMessage && ws?.readyState === 1) {
|
||||
if (isReady && initialMessage && isConfigReady) {
|
||||
sendMessage(initialMessage);
|
||||
}
|
||||
// eslint-disable-next-line react-hooks/exhaustive-deps
|
||||
}, [ws?.readyState, isReady, initialMessage, isWSReady]);
|
||||
}, [isConfigReady, isReady, initialMessage]);
|
||||
|
||||
if (hasError) {
|
||||
return (
|
@@ -29,15 +29,12 @@ const DeleteChat = ({
|
||||
const handleDelete = async () => {
|
||||
setLoading(true);
|
||||
try {
|
||||
const res = await fetch(
|
||||
`${process.env.NEXT_PUBLIC_API_URL}/chats/${chatId}`,
|
||||
{
|
||||
method: 'DELETE',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
const res = await fetch(`/api/chats/${chatId}`, {
|
||||
method: 'DELETE',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
);
|
||||
});
|
||||
|
||||
if (res.status != 200) {
|
||||
throw new Error('Failed to delete chat');
|
@@ -193,10 +193,12 @@ const MessageBox = ({
|
||||
<SearchImages
|
||||
query={history[messageIndex - 1].content}
|
||||
chatHistory={history.slice(0, messageIndex - 1)}
|
||||
messageId={message.messageId}
|
||||
/>
|
||||
<SearchVideos
|
||||
chatHistory={history.slice(0, messageIndex - 1)}
|
||||
query={history[messageIndex - 1].content}
|
||||
messageId={message.messageId}
|
||||
/>
|
||||
</div>
|
||||
</div>
|
@@ -41,7 +41,7 @@ const Attach = ({
|
||||
data.append('embedding_model_provider', embeddingModelProvider!);
|
||||
data.append('embedding_model', embeddingModel!);
|
||||
|
||||
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/uploads`, {
|
||||
const res = await fetch(`/api/uploads`, {
|
||||
method: 'POST',
|
||||
body: data,
|
||||
});
|
@@ -39,7 +39,7 @@ const AttachSmall = ({
|
||||
data.append('embedding_model_provider', embeddingModelProvider!);
|
||||
data.append('embedding_model', embeddingModel!);
|
||||
|
||||
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/uploads`, {
|
||||
const res = await fetch(`/api/uploads`, {
|
||||
method: 'POST',
|
||||
body: data,
|
||||
});
|
@@ -45,25 +45,13 @@ const focusModes = [
|
||||
key: 'youtubeSearch',
|
||||
title: 'Youtube',
|
||||
description: 'Search and watch videos',
|
||||
icon: (
|
||||
<SiYoutube
|
||||
className="h-5 w-auto mr-0.5"
|
||||
onPointerEnterCapture={undefined}
|
||||
onPointerLeaveCapture={undefined}
|
||||
/>
|
||||
),
|
||||
icon: <SiYoutube className="h-5 w-auto mr-0.5" />,
|
||||
},
|
||||
{
|
||||
key: 'redditSearch',
|
||||
title: 'Reddit',
|
||||
description: 'Search for discussions and opinions',
|
||||
icon: (
|
||||
<SiReddit
|
||||
className="h-5 w-auto mr-0.5"
|
||||
onPointerEnterCapture={undefined}
|
||||
onPointerLeaveCapture={undefined}
|
||||
/>
|
||||
),
|
||||
icon: <SiReddit className="h-5 w-auto mr-0.5" />,
|
||||
},
|
||||
];
|
||||
|
@@ -69,11 +69,15 @@ const MessageSources = ({ sources }: { sources: Document[] }) => {
|
||||
<div className="flex flex-row items-center space-x-1">
|
||||
{sources.slice(3, 6).map((source, i) => {
|
||||
return source.metadata.url === 'File' ? (
|
||||
<div className="bg-dark-200 hover:bg-dark-100 transition duration-200 flex items-center justify-center w-6 h-6 rounded-full">
|
||||
<div
|
||||
key={i}
|
||||
className="bg-dark-200 hover:bg-dark-100 transition duration-200 flex items-center justify-center w-6 h-6 rounded-full"
|
||||
>
|
||||
<File size={12} className="text-white/70" />
|
||||
</div>
|
||||
) : (
|
||||
<img
|
||||
key={i}
|
||||
src={`https://s2.googleusercontent.com/s2/favicons?domain_url=${source.metadata.url}`}
|
||||
width={16}
|
||||
height={16}
|
@@ -14,9 +14,11 @@ type Image = {
|
||||
const SearchImages = ({
|
||||
query,
|
||||
chatHistory,
|
||||
messageId,
|
||||
}: {
|
||||
query: string;
|
||||
chatHistory: Message[];
|
||||
messageId: string;
|
||||
}) => {
|
||||
const [images, setImages] = useState<Image[] | null>(null);
|
||||
const [loading, setLoading] = useState(false);
|
||||
@@ -27,7 +29,7 @@ const SearchImages = ({
|
||||
<>
|
||||
{!loading && images === null && (
|
||||
<button
|
||||
id="search-images"
|
||||
id={`search-images-${messageId}`}
|
||||
onClick={async () => {
|
||||
setLoading(true);
|
||||
|
||||
@@ -37,27 +39,24 @@ const SearchImages = ({
|
||||
const customOpenAIBaseURL = localStorage.getItem('openAIBaseURL');
|
||||
const customOpenAIKey = localStorage.getItem('openAIApiKey');
|
||||
|
||||
const res = await fetch(
|
||||
`${process.env.NEXT_PUBLIC_API_URL}/images`,
|
||||
{
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
body: JSON.stringify({
|
||||
query: query,
|
||||
chatHistory: chatHistory,
|
||||
chatModel: {
|
||||
provider: chatModelProvider,
|
||||
model: chatModel,
|
||||
...(chatModelProvider === 'custom_openai' && {
|
||||
customOpenAIBaseURL: customOpenAIBaseURL,
|
||||
customOpenAIKey: customOpenAIKey,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
const res = await fetch(`/api/images`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
);
|
||||
body: JSON.stringify({
|
||||
query: query,
|
||||
chatHistory: chatHistory,
|
||||
chatModel: {
|
||||
provider: chatModelProvider,
|
||||
model: chatModel,
|
||||
...(chatModelProvider === 'custom_openai' && {
|
||||
customOpenAIBaseURL: customOpenAIBaseURL,
|
||||
customOpenAIKey: customOpenAIKey,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
});
|
||||
|
||||
const data = await res.json();
|
||||
|
@@ -27,9 +27,11 @@ declare module 'yet-another-react-lightbox' {
|
||||
const Searchvideos = ({
|
||||
query,
|
||||
chatHistory,
|
||||
messageId,
|
||||
}: {
|
||||
query: string;
|
||||
chatHistory: Message[];
|
||||
messageId: string;
|
||||
}) => {
|
||||
const [videos, setVideos] = useState<Video[] | null>(null);
|
||||
const [loading, setLoading] = useState(false);
|
||||
@@ -42,7 +44,7 @@ const Searchvideos = ({
|
||||
<>
|
||||
{!loading && videos === null && (
|
||||
<button
|
||||
id="search-videos"
|
||||
id={`search-videos-${messageId}`}
|
||||
onClick={async () => {
|
||||
setLoading(true);
|
||||
|
||||
@@ -52,27 +54,24 @@ const Searchvideos = ({
|
||||
const customOpenAIBaseURL = localStorage.getItem('openAIBaseURL');
|
||||
const customOpenAIKey = localStorage.getItem('openAIApiKey');
|
||||
|
||||
const res = await fetch(
|
||||
`${process.env.NEXT_PUBLIC_API_URL}/videos`,
|
||||
{
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
body: JSON.stringify({
|
||||
query: query,
|
||||
chatHistory: chatHistory,
|
||||
chatModel: {
|
||||
provider: chatModelProvider,
|
||||
model: chatModel,
|
||||
...(chatModelProvider === 'custom_openai' && {
|
||||
customOpenAIBaseURL: customOpenAIBaseURL,
|
||||
customOpenAIKey: customOpenAIKey,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
const res = await fetch(`/api/videos`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
);
|
||||
body: JSON.stringify({
|
||||
query: query,
|
||||
chatHistory: chatHistory,
|
||||
chatModel: {
|
||||
provider: chatModelProvider,
|
||||
model: chatModel,
|
||||
...(chatModelProvider === 'custom_openai' && {
|
||||
customOpenAIBaseURL: customOpenAIBaseURL,
|
||||
customOpenAIKey: customOpenAIKey,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
});
|
||||
|
||||
const data = await res.json();
|
||||
|
@@ -7,7 +7,7 @@ export const getSuggestions = async (chatHisory: Message[]) => {
|
||||
const customOpenAIKey = localStorage.getItem('openAIApiKey');
|
||||
const customOpenAIBaseURL = localStorage.getItem('openAIBaseURL');
|
||||
|
||||
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/suggestions`, {
|
||||
const res = await fetch(`/api/suggestions`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
90
src/lib/chains/imageSearchAgent.ts
Normal file
90
src/lib/chains/imageSearchAgent.ts
Normal file
@@ -0,0 +1,90 @@
|
||||
import {
|
||||
RunnableSequence,
|
||||
RunnableMap,
|
||||
RunnableLambda,
|
||||
} from '@langchain/core/runnables';
|
||||
import { PromptTemplate } from '@langchain/core/prompts';
|
||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||
import { BaseMessage } from '@langchain/core/messages';
|
||||
import { StringOutputParser } from '@langchain/core/output_parsers';
|
||||
import { searchSearxng } from '../searxng';
|
||||
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
|
||||
const imageSearchChainPrompt = `
|
||||
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search the web for images.
|
||||
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
|
||||
|
||||
Example:
|
||||
1. Follow up question: What is a cat?
|
||||
Rephrased: A cat
|
||||
|
||||
2. Follow up question: What is a car? How does it works?
|
||||
Rephrased: Car working
|
||||
|
||||
3. Follow up question: How does an AC work?
|
||||
Rephrased: AC working
|
||||
|
||||
Conversation:
|
||||
{chat_history}
|
||||
|
||||
Follow up question: {query}
|
||||
Rephrased question:
|
||||
`;
|
||||
|
||||
type ImageSearchChainInput = {
|
||||
chat_history: BaseMessage[];
|
||||
query: string;
|
||||
};
|
||||
|
||||
interface ImageSearchResult {
|
||||
img_src: string;
|
||||
url: string;
|
||||
title: string;
|
||||
}
|
||||
|
||||
const strParser = new StringOutputParser();
|
||||
|
||||
const createImageSearchChain = (llm: BaseChatModel) => {
|
||||
return RunnableSequence.from([
|
||||
RunnableMap.from({
|
||||
chat_history: (input: ImageSearchChainInput) => {
|
||||
return formatChatHistoryAsString(input.chat_history);
|
||||
},
|
||||
query: (input: ImageSearchChainInput) => {
|
||||
return input.query;
|
||||
},
|
||||
}),
|
||||
PromptTemplate.fromTemplate(imageSearchChainPrompt),
|
||||
llm,
|
||||
strParser,
|
||||
RunnableLambda.from(async (input: string) => {
|
||||
const res = await searchSearxng(input, {
|
||||
engines: ['bing images', 'google images'],
|
||||
});
|
||||
|
||||
const images: ImageSearchResult[] = [];
|
||||
|
||||
res.results.forEach((result) => {
|
||||
if (result.img_src && result.url && result.title) {
|
||||
images.push({
|
||||
img_src: result.img_src,
|
||||
url: result.url,
|
||||
title: result.title,
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
return images.slice(0, 10);
|
||||
}),
|
||||
]);
|
||||
};
|
||||
|
||||
const handleImageSearch = (
|
||||
input: ImageSearchChainInput,
|
||||
llm: BaseChatModel,
|
||||
) => {
|
||||
const imageSearchChain = createImageSearchChain(llm);
|
||||
return imageSearchChain.invoke(input);
|
||||
};
|
||||
|
||||
export default handleImageSearch;
|
@@ -1,5 +1,5 @@
|
||||
import { RunnableSequence, RunnableMap } from '@langchain/core/runnables';
|
||||
import ListLineOutputParser from '../lib/outputParsers/listLineOutputParser';
|
||||
import ListLineOutputParser from '../outputParsers/listLineOutputParser';
|
||||
import { PromptTemplate } from '@langchain/core/prompts';
|
||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||
import { BaseMessage } from '@langchain/core/messages';
|
97
src/lib/chains/videoSearchAgent.ts
Normal file
97
src/lib/chains/videoSearchAgent.ts
Normal file
@@ -0,0 +1,97 @@
|
||||
import {
|
||||
RunnableSequence,
|
||||
RunnableMap,
|
||||
RunnableLambda,
|
||||
} from '@langchain/core/runnables';
|
||||
import { PromptTemplate } from '@langchain/core/prompts';
|
||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||
import { BaseMessage } from '@langchain/core/messages';
|
||||
import { StringOutputParser } from '@langchain/core/output_parsers';
|
||||
import { searchSearxng } from '../searxng';
|
||||
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
|
||||
const VideoSearchChainPrompt = `
|
||||
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search Youtube for videos.
|
||||
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
|
||||
|
||||
Example:
|
||||
1. Follow up question: How does a car work?
|
||||
Rephrased: How does a car work?
|
||||
|
||||
2. Follow up question: What is the theory of relativity?
|
||||
Rephrased: What is theory of relativity
|
||||
|
||||
3. Follow up question: How does an AC work?
|
||||
Rephrased: How does an AC work
|
||||
|
||||
Conversation:
|
||||
{chat_history}
|
||||
|
||||
Follow up question: {query}
|
||||
Rephrased question:
|
||||
`;
|
||||
|
||||
type VideoSearchChainInput = {
|
||||
chat_history: BaseMessage[];
|
||||
query: string;
|
||||
};
|
||||
|
||||
interface VideoSearchResult {
|
||||
img_src: string;
|
||||
url: string;
|
||||
title: string;
|
||||
iframe_src: string;
|
||||
}
|
||||
|
||||
const strParser = new StringOutputParser();
|
||||
|
||||
const createVideoSearchChain = (llm: BaseChatModel) => {
|
||||
return RunnableSequence.from([
|
||||
RunnableMap.from({
|
||||
chat_history: (input: VideoSearchChainInput) => {
|
||||
return formatChatHistoryAsString(input.chat_history);
|
||||
},
|
||||
query: (input: VideoSearchChainInput) => {
|
||||
return input.query;
|
||||
},
|
||||
}),
|
||||
PromptTemplate.fromTemplate(VideoSearchChainPrompt),
|
||||
llm,
|
||||
strParser,
|
||||
RunnableLambda.from(async (input: string) => {
|
||||
const res = await searchSearxng(input, {
|
||||
engines: ['youtube'],
|
||||
});
|
||||
|
||||
const videos: VideoSearchResult[] = [];
|
||||
|
||||
res.results.forEach((result) => {
|
||||
if (
|
||||
result.thumbnail &&
|
||||
result.url &&
|
||||
result.title &&
|
||||
result.iframe_src
|
||||
) {
|
||||
videos.push({
|
||||
img_src: result.thumbnail,
|
||||
url: result.url,
|
||||
title: result.title,
|
||||
iframe_src: result.iframe_src,
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
return videos.slice(0, 10);
|
||||
}),
|
||||
]);
|
||||
};
|
||||
|
||||
const handleVideoSearch = (
|
||||
input: VideoSearchChainInput,
|
||||
llm: BaseChatModel,
|
||||
) => {
|
||||
const VideoSearchChain = createVideoSearchChain(llm);
|
||||
return VideoSearchChain.invoke(input);
|
||||
};
|
||||
|
||||
export default handleVideoSearch;
|
@@ -10,12 +10,6 @@ interface Config {
|
||||
SIMILARITY_MEASURE: string;
|
||||
KEEP_ALIVE: string;
|
||||
};
|
||||
SEARCH_ENGINE_BACKENDS: {
|
||||
SEARCH: string;
|
||||
IMAGE: string;
|
||||
VIDEO: string;
|
||||
NEWS: string;
|
||||
};
|
||||
MODELS: {
|
||||
OPENAI: {
|
||||
API_KEY: string;
|
||||
@@ -38,23 +32,8 @@ interface Config {
|
||||
MODEL_NAME: string;
|
||||
};
|
||||
};
|
||||
SEARCH_ENGINES: {
|
||||
GOOGLE: {
|
||||
API_KEY: string;
|
||||
CSE_ID: string;
|
||||
};
|
||||
SEARXNG: {
|
||||
ENDPOINT: string;
|
||||
};
|
||||
BING: {
|
||||
SUBSCRIPTION_KEY: string;
|
||||
};
|
||||
BRAVE: {
|
||||
API_KEY: string;
|
||||
};
|
||||
YACY: {
|
||||
ENDPOINT: string;
|
||||
};
|
||||
API_ENDPOINTS: {
|
||||
SEARXNG: string;
|
||||
};
|
||||
}
|
||||
|
||||
@@ -64,7 +43,7 @@ type RecursivePartial<T> = {
|
||||
|
||||
const loadConfig = () =>
|
||||
toml.parse(
|
||||
fs.readFileSync(path.join(__dirname, `../${configFileName}`), 'utf-8'),
|
||||
fs.readFileSync(path.join(process.cwd(), `${configFileName}`), 'utf-8'),
|
||||
) as any as Config;
|
||||
|
||||
export const getPort = () => loadConfig().GENERAL.PORT;
|
||||
@@ -82,32 +61,8 @@ export const getAnthropicApiKey = () => loadConfig().MODELS.ANTHROPIC.API_KEY;
|
||||
|
||||
export const getGeminiApiKey = () => loadConfig().MODELS.GEMINI.API_KEY;
|
||||
|
||||
export const getSearchEngineBackend = () =>
|
||||
loadConfig().SEARCH_ENGINE_BACKENDS.SEARCH;
|
||||
|
||||
export const getImageSearchEngineBackend = () =>
|
||||
loadConfig().SEARCH_ENGINE_BACKENDS.IMAGE || getSearchEngineBackend();
|
||||
|
||||
export const getVideoSearchEngineBackend = () =>
|
||||
loadConfig().SEARCH_ENGINE_BACKENDS.VIDEO || getSearchEngineBackend();
|
||||
|
||||
export const getNewsSearchEngineBackend = () =>
|
||||
loadConfig().SEARCH_ENGINE_BACKENDS.NEWS || getSearchEngineBackend();
|
||||
|
||||
export const getGoogleApiKey = () => loadConfig().SEARCH_ENGINES.GOOGLE.API_KEY;
|
||||
|
||||
export const getGoogleCseId = () => loadConfig().SEARCH_ENGINES.GOOGLE.CSE_ID;
|
||||
|
||||
export const getBraveApiKey = () => loadConfig().SEARCH_ENGINES.BRAVE.API_KEY;
|
||||
|
||||
export const getBingSubscriptionKey = () =>
|
||||
loadConfig().SEARCH_ENGINES.BING.SUBSCRIPTION_KEY;
|
||||
|
||||
export const getYacyJsonEndpoint = () =>
|
||||
loadConfig().SEARCH_ENGINES.YACY.ENDPOINT;
|
||||
|
||||
export const getSearxngApiEndpoint = () =>
|
||||
process.env.SEARXNG_API_URL || loadConfig().SEARCH_ENGINES.SEARXNG.ENDPOINT;
|
||||
loadConfig().API_ENDPOINTS.SEARXNG || process.env.SEARXNG_API_URL;
|
||||
|
||||
export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL;
|
||||
|
||||
@@ -154,9 +109,8 @@ const mergeConfigs = (current: any, update: any): any => {
|
||||
export const updateConfig = (config: RecursivePartial<Config>) => {
|
||||
const currentConfig = loadConfig();
|
||||
const mergedConfig = mergeConfigs(currentConfig, config);
|
||||
|
||||
fs.writeFileSync(
|
||||
path.join(__dirname, `../${configFileName}`),
|
||||
path.join(path.join(process.cwd(), `${configFileName}`)),
|
||||
toml.stringify(mergedConfig),
|
||||
);
|
||||
};
|
@@ -1,8 +1,9 @@
|
||||
import { drizzle } from 'drizzle-orm/better-sqlite3';
|
||||
import Database from 'better-sqlite3';
|
||||
import * as schema from './schema';
|
||||
import path from 'path';
|
||||
|
||||
const sqlite = new Database('data/db.sqlite');
|
||||
const sqlite = new Database(path.join(process.cwd(), 'data/db.sqlite'));
|
||||
const db = drizzle(sqlite, {
|
||||
schema: schema,
|
||||
});
|
@@ -1,82 +0,0 @@
|
||||
import { Embeddings, type EmbeddingsParams } from '@langchain/core/embeddings';
|
||||
import { chunkArray } from '@langchain/core/utils/chunk_array';
|
||||
|
||||
export interface HuggingFaceTransformersEmbeddingsParams
|
||||
extends EmbeddingsParams {
|
||||
modelName: string;
|
||||
|
||||
model: string;
|
||||
|
||||
timeout?: number;
|
||||
|
||||
batchSize?: number;
|
||||
|
||||
stripNewLines?: boolean;
|
||||
}
|
||||
|
||||
export class HuggingFaceTransformersEmbeddings
|
||||
extends Embeddings
|
||||
implements HuggingFaceTransformersEmbeddingsParams
|
||||
{
|
||||
modelName = 'Xenova/all-MiniLM-L6-v2';
|
||||
|
||||
model = 'Xenova/all-MiniLM-L6-v2';
|
||||
|
||||
batchSize = 512;
|
||||
|
||||
stripNewLines = true;
|
||||
|
||||
timeout?: number;
|
||||
|
||||
private pipelinePromise: Promise<any>;
|
||||
|
||||
constructor(fields?: Partial<HuggingFaceTransformersEmbeddingsParams>) {
|
||||
super(fields ?? {});
|
||||
|
||||
this.modelName = fields?.model ?? fields?.modelName ?? this.model;
|
||||
this.model = this.modelName;
|
||||
this.stripNewLines = fields?.stripNewLines ?? this.stripNewLines;
|
||||
this.timeout = fields?.timeout;
|
||||
}
|
||||
|
||||
async embedDocuments(texts: string[]): Promise<number[][]> {
|
||||
const batches = chunkArray(
|
||||
this.stripNewLines ? texts.map((t) => t.replace(/\n/g, ' ')) : texts,
|
||||
this.batchSize,
|
||||
);
|
||||
|
||||
const batchRequests = batches.map((batch) => this.runEmbedding(batch));
|
||||
const batchResponses = await Promise.all(batchRequests);
|
||||
const embeddings: number[][] = [];
|
||||
|
||||
for (let i = 0; i < batchResponses.length; i += 1) {
|
||||
const batchResponse = batchResponses[i];
|
||||
for (let j = 0; j < batchResponse.length; j += 1) {
|
||||
embeddings.push(batchResponse[j]);
|
||||
}
|
||||
}
|
||||
|
||||
return embeddings;
|
||||
}
|
||||
|
||||
async embedQuery(text: string): Promise<number[]> {
|
||||
const data = await this.runEmbedding([
|
||||
this.stripNewLines ? text.replace(/\n/g, ' ') : text,
|
||||
]);
|
||||
return data[0];
|
||||
}
|
||||
|
||||
private async runEmbedding(texts: string[]) {
|
||||
const { pipeline } = await import('@xenova/transformers');
|
||||
|
||||
const pipe = await (this.pipelinePromise ??= pipeline(
|
||||
'feature-extraction',
|
||||
this.model,
|
||||
));
|
||||
|
||||
return this.caller.call(async () => {
|
||||
const output = await pipe(texts, { pooling: 'mean', normalize: true });
|
||||
return output.tolist();
|
||||
});
|
||||
}
|
||||
}
|
@@ -9,7 +9,7 @@ class LineOutputParser extends BaseOutputParser<string> {
|
||||
|
||||
constructor(args?: LineOutputParserArgs) {
|
||||
super();
|
||||
this.key = args.key ?? this.key;
|
||||
this.key = args?.key ?? this.key;
|
||||
}
|
||||
|
||||
static lc_name() {
|
||||
|
@@ -9,7 +9,7 @@ class LineListOutputParser extends BaseOutputParser<string[]> {
|
||||
|
||||
constructor(args?: LineListOutputParserArgs) {
|
||||
super();
|
||||
this.key = args.key ?? this.key;
|
||||
this.key = args?.key ?? this.key;
|
||||
}
|
||||
|
||||
static lc_name() {
|
||||
|
@@ -1,6 +1,38 @@
|
||||
import { ChatAnthropic } from '@langchain/anthropic';
|
||||
import { getAnthropicApiKey } from '../../config';
|
||||
import logger from '../../utils/logger';
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
import { ChatModel } from '.';
|
||||
import { getAnthropicApiKey } from '../config';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
|
||||
const anthropicChatModels: Record<string, string>[] = [
|
||||
{
|
||||
displayName: 'Claude 3.7 Sonnet',
|
||||
key: 'claude-3-7-sonnet-20250219',
|
||||
},
|
||||
{
|
||||
displayName: 'Claude 3.5 Haiku',
|
||||
key: 'claude-3-5-haiku-20241022',
|
||||
},
|
||||
{
|
||||
displayName: 'Claude 3.5 Sonnet v2',
|
||||
key: 'claude-3-5-sonnet-20241022',
|
||||
},
|
||||
{
|
||||
displayName: 'Claude 3.5 Sonnet',
|
||||
key: 'claude-3-5-sonnet-20240620',
|
||||
},
|
||||
{
|
||||
displayName: 'Claude 3 Opus',
|
||||
key: 'claude-3-opus-20240229',
|
||||
},
|
||||
{
|
||||
displayName: 'Claude 3 Sonnet',
|
||||
key: 'claude-3-sonnet-20240229',
|
||||
},
|
||||
{
|
||||
displayName: 'Claude 3 Haiku',
|
||||
key: 'claude-3-haiku-20240307',
|
||||
},
|
||||
];
|
||||
|
||||
export const loadAnthropicChatModels = async () => {
|
||||
const anthropicApiKey = getAnthropicApiKey();
|
||||
@@ -8,52 +40,25 @@ export const loadAnthropicChatModels = async () => {
|
||||
if (!anthropicApiKey) return {};
|
||||
|
||||
try {
|
||||
const chatModels = {
|
||||
'claude-3-5-sonnet-20241022': {
|
||||
displayName: 'Claude 3.5 Sonnet',
|
||||
model: new ChatAnthropic({
|
||||
const chatModels: Record<string, ChatModel> = {};
|
||||
|
||||
anthropicChatModels.forEach((model) => {
|
||||
chatModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey: anthropicApiKey,
|
||||
modelName: model.key,
|
||||
temperature: 0.7,
|
||||
anthropicApiKey: anthropicApiKey,
|
||||
model: 'claude-3-5-sonnet-20241022',
|
||||
}),
|
||||
},
|
||||
'claude-3-5-haiku-20241022': {
|
||||
displayName: 'Claude 3.5 Haiku',
|
||||
model: new ChatAnthropic({
|
||||
temperature: 0.7,
|
||||
anthropicApiKey: anthropicApiKey,
|
||||
model: 'claude-3-5-haiku-20241022',
|
||||
}),
|
||||
},
|
||||
'claude-3-opus-20240229': {
|
||||
displayName: 'Claude 3 Opus',
|
||||
model: new ChatAnthropic({
|
||||
temperature: 0.7,
|
||||
anthropicApiKey: anthropicApiKey,
|
||||
model: 'claude-3-opus-20240229',
|
||||
}),
|
||||
},
|
||||
'claude-3-sonnet-20240229': {
|
||||
displayName: 'Claude 3 Sonnet',
|
||||
model: new ChatAnthropic({
|
||||
temperature: 0.7,
|
||||
anthropicApiKey: anthropicApiKey,
|
||||
model: 'claude-3-sonnet-20240229',
|
||||
}),
|
||||
},
|
||||
'claude-3-haiku-20240307': {
|
||||
displayName: 'Claude 3 Haiku',
|
||||
model: new ChatAnthropic({
|
||||
temperature: 0.7,
|
||||
anthropicApiKey: anthropicApiKey,
|
||||
model: 'claude-3-haiku-20240307',
|
||||
}),
|
||||
},
|
||||
};
|
||||
configuration: {
|
||||
baseURL: 'https://api.anthropic.com/v1/',
|
||||
},
|
||||
}) as unknown as BaseChatModel,
|
||||
};
|
||||
});
|
||||
|
||||
return chatModels;
|
||||
} catch (err) {
|
||||
logger.error(`Error loading Anthropic models: ${err}`);
|
||||
console.error(`Error loading Anthropic models: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
||||
|
@@ -1,9 +1,42 @@
|
||||
import {
|
||||
ChatGoogleGenerativeAI,
|
||||
GoogleGenerativeAIEmbeddings,
|
||||
} from '@langchain/google-genai';
|
||||
import { getGeminiApiKey } from '../../config';
|
||||
import logger from '../../utils/logger';
|
||||
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
|
||||
import { getGeminiApiKey } from '../config';
|
||||
import { ChatModel, EmbeddingModel } from '.';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { Embeddings } from '@langchain/core/embeddings';
|
||||
|
||||
const geminiChatModels: Record<string, string>[] = [
|
||||
{
|
||||
displayName: 'Gemini 2.0 Flash',
|
||||
key: 'gemini-2.0-flash',
|
||||
},
|
||||
{
|
||||
displayName: 'Gemini 2.0 Flash-Lite',
|
||||
key: 'gemini-2.0-flash-lite',
|
||||
},
|
||||
{
|
||||
displayName: 'Gemini 2.0 Pro Experimental',
|
||||
key: 'gemini-2.0-pro-exp-02-05',
|
||||
},
|
||||
{
|
||||
displayName: 'Gemini 1.5 Flash',
|
||||
key: 'gemini-1.5-flash',
|
||||
},
|
||||
{
|
||||
displayName: 'Gemini 1.5 Flash-8B',
|
||||
key: 'gemini-1.5-flash-8b',
|
||||
},
|
||||
{
|
||||
displayName: 'Gemini 1.5 Pro',
|
||||
key: 'gemini-1.5-pro',
|
||||
},
|
||||
];
|
||||
|
||||
const geminiEmbeddingModels: Record<string, string>[] = [
|
||||
{
|
||||
displayName: 'Gemini Embedding',
|
||||
key: 'gemini-embedding-exp',
|
||||
},
|
||||
];
|
||||
|
||||
export const loadGeminiChatModels = async () => {
|
||||
const geminiApiKey = getGeminiApiKey();
|
||||
@@ -11,75 +44,53 @@ export const loadGeminiChatModels = async () => {
|
||||
if (!geminiApiKey) return {};
|
||||
|
||||
try {
|
||||
const chatModels = {
|
||||
'gemini-1.5-flash': {
|
||||
displayName: 'Gemini 1.5 Flash',
|
||||
model: new ChatGoogleGenerativeAI({
|
||||
modelName: 'gemini-1.5-flash',
|
||||
const chatModels: Record<string, ChatModel> = {};
|
||||
|
||||
geminiChatModels.forEach((model) => {
|
||||
chatModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey: geminiApiKey,
|
||||
modelName: model.key,
|
||||
temperature: 0.7,
|
||||
apiKey: geminiApiKey,
|
||||
}),
|
||||
},
|
||||
'gemini-1.5-flash-8b': {
|
||||
displayName: 'Gemini 1.5 Flash 8B',
|
||||
model: new ChatGoogleGenerativeAI({
|
||||
modelName: 'gemini-1.5-flash-8b',
|
||||
temperature: 0.7,
|
||||
apiKey: geminiApiKey,
|
||||
}),
|
||||
},
|
||||
'gemini-1.5-pro': {
|
||||
displayName: 'Gemini 1.5 Pro',
|
||||
model: new ChatGoogleGenerativeAI({
|
||||
modelName: 'gemini-1.5-pro',
|
||||
temperature: 0.7,
|
||||
apiKey: geminiApiKey,
|
||||
}),
|
||||
},
|
||||
'gemini-2.0-flash-exp': {
|
||||
displayName: 'Gemini 2.0 Flash Exp',
|
||||
model: new ChatGoogleGenerativeAI({
|
||||
modelName: 'gemini-2.0-flash-exp',
|
||||
temperature: 0.7,
|
||||
apiKey: geminiApiKey,
|
||||
}),
|
||||
},
|
||||
'gemini-2.0-flash-thinking-exp-01-21': {
|
||||
displayName: 'Gemini 2.0 Flash Thinking Exp 01-21',
|
||||
model: new ChatGoogleGenerativeAI({
|
||||
modelName: 'gemini-2.0-flash-thinking-exp-01-21',
|
||||
temperature: 0.7,
|
||||
apiKey: geminiApiKey,
|
||||
}),
|
||||
},
|
||||
};
|
||||
configuration: {
|
||||
baseURL: 'https://generativelanguage.googleapis.com/v1beta/openai/',
|
||||
},
|
||||
}) as unknown as BaseChatModel,
|
||||
};
|
||||
});
|
||||
|
||||
return chatModels;
|
||||
} catch (err) {
|
||||
logger.error(`Error loading Gemini models: ${err}`);
|
||||
console.error(`Error loading Gemini models: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
||||
|
||||
export const loadGeminiEmbeddingsModels = async () => {
|
||||
export const loadGeminiEmbeddingModels = async () => {
|
||||
const geminiApiKey = getGeminiApiKey();
|
||||
|
||||
if (!geminiApiKey) return {};
|
||||
|
||||
try {
|
||||
const embeddingModels = {
|
||||
'text-embedding-004': {
|
||||
displayName: 'Text Embedding',
|
||||
model: new GoogleGenerativeAIEmbeddings({
|
||||
apiKey: geminiApiKey,
|
||||
modelName: 'text-embedding-004',
|
||||
}),
|
||||
},
|
||||
};
|
||||
const embeddingModels: Record<string, EmbeddingModel> = {};
|
||||
|
||||
geminiEmbeddingModels.forEach((model) => {
|
||||
embeddingModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new OpenAIEmbeddings({
|
||||
openAIApiKey: geminiApiKey,
|
||||
modelName: model.key,
|
||||
configuration: {
|
||||
baseURL: 'https://generativelanguage.googleapis.com/v1beta/openai/',
|
||||
},
|
||||
}) as unknown as Embeddings,
|
||||
};
|
||||
});
|
||||
|
||||
return embeddingModels;
|
||||
} catch (err) {
|
||||
logger.error(`Error loading Gemini embeddings model: ${err}`);
|
||||
console.error(`Error loading OpenAI embeddings models: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
||||
|
@@ -1,6 +1,82 @@
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
import { getGroqApiKey } from '../../config';
|
||||
import logger from '../../utils/logger';
|
||||
import { getGroqApiKey } from '../config';
|
||||
import { ChatModel } from '.';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
|
||||
const groqChatModels: Record<string, string>[] = [
|
||||
{
|
||||
displayName: 'Gemma2 9B IT',
|
||||
key: 'gemma2-9b-it',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama 3.3 70B Versatile',
|
||||
key: 'llama-3.3-70b-versatile',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama 3.1 8B Instant',
|
||||
key: 'llama-3.1-8b-instant',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama3 70B 8192',
|
||||
key: 'llama3-70b-8192',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama3 8B 8192',
|
||||
key: 'llama3-8b-8192',
|
||||
},
|
||||
{
|
||||
displayName: 'Mixtral 8x7B 32768',
|
||||
key: 'mixtral-8x7b-32768',
|
||||
},
|
||||
{
|
||||
displayName: 'Qwen QWQ 32B (Preview)',
|
||||
key: 'qwen-qwq-32b',
|
||||
},
|
||||
{
|
||||
displayName: 'Mistral Saba 24B (Preview)',
|
||||
key: 'mistral-saba-24b',
|
||||
},
|
||||
{
|
||||
displayName: 'Qwen 2.5 Coder 32B (Preview)',
|
||||
key: 'qwen-2.5-coder-32b',
|
||||
},
|
||||
{
|
||||
displayName: 'Qwen 2.5 32B (Preview)',
|
||||
key: 'qwen-2.5-32b',
|
||||
},
|
||||
{
|
||||
displayName: 'DeepSeek R1 Distill Qwen 32B (Preview)',
|
||||
key: 'deepseek-r1-distill-qwen-32b',
|
||||
},
|
||||
{
|
||||
displayName: 'DeepSeek R1 Distill Llama 70B SpecDec (Preview)',
|
||||
key: 'deepseek-r1-distill-llama-70b-specdec',
|
||||
},
|
||||
{
|
||||
displayName: 'DeepSeek R1 Distill Llama 70B (Preview)',
|
||||
key: 'deepseek-r1-distill-llama-70b',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama 3.3 70B SpecDec (Preview)',
|
||||
key: 'llama-3.3-70b-specdec',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama 3.2 1B Preview (Preview)',
|
||||
key: 'llama-3.2-1b-preview',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama 3.2 3B Preview (Preview)',
|
||||
key: 'llama-3.2-3b-preview',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama 3.2 11B Vision Preview (Preview)',
|
||||
key: 'llama-3.2-11b-vision-preview',
|
||||
},
|
||||
{
|
||||
displayName: 'Llama 3.2 90B Vision Preview (Preview)',
|
||||
key: 'llama-3.2-90b-vision-preview',
|
||||
},
|
||||
];
|
||||
|
||||
export const loadGroqChatModels = async () => {
|
||||
const groqApiKey = getGroqApiKey();
|
||||
@@ -8,129 +84,25 @@ export const loadGroqChatModels = async () => {
|
||||
if (!groqApiKey) return {};
|
||||
|
||||
try {
|
||||
const chatModels = {
|
||||
'llama-3.3-70b-versatile': {
|
||||
displayName: 'Llama 3.3 70B',
|
||||
model: new ChatOpenAI(
|
||||
{
|
||||
openAIApiKey: groqApiKey,
|
||||
modelName: 'llama-3.3-70b-versatile',
|
||||
temperature: 0.7,
|
||||
},
|
||||
{
|
||||
const chatModels: Record<string, ChatModel> = {};
|
||||
|
||||
groqChatModels.forEach((model) => {
|
||||
chatModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey: groqApiKey,
|
||||
modelName: model.key,
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
baseURL: 'https://api.groq.com/openai/v1',
|
||||
},
|
||||
),
|
||||
},
|
||||
'llama-3.2-3b-preview': {
|
||||
displayName: 'Llama 3.2 3B',
|
||||
model: new ChatOpenAI(
|
||||
{
|
||||
openAIApiKey: groqApiKey,
|
||||
modelName: 'llama-3.2-3b-preview',
|
||||
temperature: 0.7,
|
||||
},
|
||||
{
|
||||
baseURL: 'https://api.groq.com/openai/v1',
|
||||
},
|
||||
),
|
||||
},
|
||||
'llama-3.2-11b-vision-preview': {
|
||||
displayName: 'Llama 3.2 11B Vision',
|
||||
model: new ChatOpenAI(
|
||||
{
|
||||
openAIApiKey: groqApiKey,
|
||||
modelName: 'llama-3.2-11b-vision-preview',
|
||||
temperature: 0.7,
|
||||
},
|
||||
{
|
||||
baseURL: 'https://api.groq.com/openai/v1',
|
||||
},
|
||||
),
|
||||
},
|
||||
'llama-3.2-90b-vision-preview': {
|
||||
displayName: 'Llama 3.2 90B Vision',
|
||||
model: new ChatOpenAI(
|
||||
{
|
||||
openAIApiKey: groqApiKey,
|
||||
modelName: 'llama-3.2-90b-vision-preview',
|
||||
temperature: 0.7,
|
||||
},
|
||||
{
|
||||
baseURL: 'https://api.groq.com/openai/v1',
|
||||
},
|
||||
),
|
||||
},
|
||||
'llama-3.1-8b-instant': {
|
||||
displayName: 'Llama 3.1 8B',
|
||||
model: new ChatOpenAI(
|
||||
{
|
||||
openAIApiKey: groqApiKey,
|
||||
modelName: 'llama-3.1-8b-instant',
|
||||
temperature: 0.7,
|
||||
},
|
||||
{
|
||||
baseURL: 'https://api.groq.com/openai/v1',
|
||||
},
|
||||
),
|
||||
},
|
||||
'llama3-8b-8192': {
|
||||
displayName: 'LLaMA3 8B',
|
||||
model: new ChatOpenAI(
|
||||
{
|
||||
openAIApiKey: groqApiKey,
|
||||
modelName: 'llama3-8b-8192',
|
||||
temperature: 0.7,
|
||||
},
|
||||
{
|
||||
baseURL: 'https://api.groq.com/openai/v1',
|
||||
},
|
||||
),
|
||||
},
|
||||
'llama3-70b-8192': {
|
||||
displayName: 'LLaMA3 70B',
|
||||
model: new ChatOpenAI(
|
||||
{
|
||||
openAIApiKey: groqApiKey,
|
||||
modelName: 'llama3-70b-8192',
|
||||
temperature: 0.7,
|
||||
},
|
||||
{
|
||||
baseURL: 'https://api.groq.com/openai/v1',
|
||||
},
|
||||
),
|
||||
},
|
||||
'mixtral-8x7b-32768': {
|
||||
displayName: 'Mixtral 8x7B',
|
||||
model: new ChatOpenAI(
|
||||
{
|
||||
openAIApiKey: groqApiKey,
|
||||
modelName: 'mixtral-8x7b-32768',
|
||||
temperature: 0.7,
|
||||
},
|
||||
{
|
||||
baseURL: 'https://api.groq.com/openai/v1',
|
||||
},
|
||||
),
|
||||
},
|
||||
'gemma2-9b-it': {
|
||||
displayName: 'Gemma2 9B',
|
||||
model: new ChatOpenAI(
|
||||
{
|
||||
openAIApiKey: groqApiKey,
|
||||
modelName: 'gemma2-9b-it',
|
||||
temperature: 0.7,
|
||||
},
|
||||
{
|
||||
baseURL: 'https://api.groq.com/openai/v1',
|
||||
},
|
||||
),
|
||||
},
|
||||
};
|
||||
}) as unknown as BaseChatModel,
|
||||
};
|
||||
});
|
||||
|
||||
return chatModels;
|
||||
} catch (err) {
|
||||
logger.error(`Error loading Groq models: ${err}`);
|
||||
console.error(`Error loading Groq models: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
||||
|
@@ -1,33 +1,49 @@
|
||||
import { loadGroqChatModels } from './groq';
|
||||
import { loadOllamaChatModels, loadOllamaEmbeddingsModels } from './ollama';
|
||||
import { loadOpenAIChatModels, loadOpenAIEmbeddingsModels } from './openai';
|
||||
import { loadAnthropicChatModels } from './anthropic';
|
||||
import { loadTransformersEmbeddingsModels } from './transformers';
|
||||
import { loadGeminiChatModels, loadGeminiEmbeddingsModels } from './gemini';
|
||||
import { Embeddings } from '@langchain/core/embeddings';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { loadOpenAIChatModels, loadOpenAIEmbeddingModels } from './openai';
|
||||
import {
|
||||
getCustomOpenaiApiKey,
|
||||
getCustomOpenaiApiUrl,
|
||||
getCustomOpenaiModelName,
|
||||
} from '../../config';
|
||||
} from '../config';
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
import { loadOllamaChatModels, loadOllamaEmbeddingModels } from './ollama';
|
||||
import { loadGroqChatModels } from './groq';
|
||||
import { loadAnthropicChatModels } from './anthropic';
|
||||
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini';
|
||||
|
||||
const chatModelProviders = {
|
||||
export interface ChatModel {
|
||||
displayName: string;
|
||||
model: BaseChatModel;
|
||||
}
|
||||
|
||||
export interface EmbeddingModel {
|
||||
displayName: string;
|
||||
model: Embeddings;
|
||||
}
|
||||
|
||||
export const chatModelProviders: Record<
|
||||
string,
|
||||
() => Promise<Record<string, ChatModel>>
|
||||
> = {
|
||||
openai: loadOpenAIChatModels,
|
||||
groq: loadGroqChatModels,
|
||||
ollama: loadOllamaChatModels,
|
||||
groq: loadGroqChatModels,
|
||||
anthropic: loadAnthropicChatModels,
|
||||
gemini: loadGeminiChatModels,
|
||||
};
|
||||
|
||||
const embeddingModelProviders = {
|
||||
openai: loadOpenAIEmbeddingsModels,
|
||||
local: loadTransformersEmbeddingsModels,
|
||||
ollama: loadOllamaEmbeddingsModels,
|
||||
gemini: loadGeminiEmbeddingsModels,
|
||||
export const embeddingModelProviders: Record<
|
||||
string,
|
||||
() => Promise<Record<string, EmbeddingModel>>
|
||||
> = {
|
||||
openai: loadOpenAIEmbeddingModels,
|
||||
ollama: loadOllamaEmbeddingModels,
|
||||
gemini: loadGeminiEmbeddingModels,
|
||||
};
|
||||
|
||||
export const getAvailableChatModelProviders = async () => {
|
||||
const models = {};
|
||||
const models: Record<string, Record<string, ChatModel>> = {};
|
||||
|
||||
for (const provider in chatModelProviders) {
|
||||
const providerModels = await chatModelProviders[provider]();
|
||||
@@ -52,7 +68,7 @@ export const getAvailableChatModelProviders = async () => {
|
||||
configuration: {
|
||||
baseURL: customOpenAiApiUrl,
|
||||
},
|
||||
}),
|
||||
}) as unknown as BaseChatModel,
|
||||
},
|
||||
}
|
||||
: {}),
|
||||
@@ -62,7 +78,7 @@ export const getAvailableChatModelProviders = async () => {
|
||||
};
|
||||
|
||||
export const getAvailableEmbeddingModelProviders = async () => {
|
||||
const models = {};
|
||||
const models: Record<string, Record<string, EmbeddingModel>> = {};
|
||||
|
||||
for (const provider in embeddingModelProviders) {
|
||||
const providerModels = await embeddingModelProviders[provider]();
|
||||
|
@@ -1,74 +1,73 @@
|
||||
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
|
||||
import { getKeepAlive, getOllamaApiEndpoint } from '../../config';
|
||||
import logger from '../../utils/logger';
|
||||
import { ChatOllama } from '@langchain/community/chat_models/ollama';
|
||||
import axios from 'axios';
|
||||
import { getKeepAlive, getOllamaApiEndpoint } from '../config';
|
||||
import { ChatModel, EmbeddingModel } from '.';
|
||||
import { ChatOllama } from '@langchain/community/chat_models/ollama';
|
||||
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
|
||||
|
||||
export const loadOllamaChatModels = async () => {
|
||||
const ollamaEndpoint = getOllamaApiEndpoint();
|
||||
const keepAlive = getKeepAlive();
|
||||
const ollamaApiEndpoint = getOllamaApiEndpoint();
|
||||
|
||||
if (!ollamaEndpoint) return {};
|
||||
if (!ollamaApiEndpoint) return {};
|
||||
|
||||
try {
|
||||
const response = await axios.get(`${ollamaEndpoint}/api/tags`, {
|
||||
const res = await axios.get(`${ollamaApiEndpoint}/api/tags`, {
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
});
|
||||
|
||||
const { models: ollamaModels } = response.data;
|
||||
const { models } = res.data;
|
||||
|
||||
const chatModels = ollamaModels.reduce((acc, model) => {
|
||||
acc[model.model] = {
|
||||
const chatModels: Record<string, ChatModel> = {};
|
||||
|
||||
models.forEach((model: any) => {
|
||||
chatModels[model.model] = {
|
||||
displayName: model.name,
|
||||
model: new ChatOllama({
|
||||
baseUrl: ollamaEndpoint,
|
||||
baseUrl: ollamaApiEndpoint,
|
||||
model: model.model,
|
||||
temperature: 0.7,
|
||||
keepAlive: keepAlive,
|
||||
keepAlive: getKeepAlive(),
|
||||
}),
|
||||
};
|
||||
|
||||
return acc;
|
||||
}, {});
|
||||
});
|
||||
|
||||
return chatModels;
|
||||
} catch (err) {
|
||||
logger.error(`Error loading Ollama models: ${err}`);
|
||||
console.error(`Error loading Ollama models: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
||||
|
||||
export const loadOllamaEmbeddingsModels = async () => {
|
||||
const ollamaEndpoint = getOllamaApiEndpoint();
|
||||
export const loadOllamaEmbeddingModels = async () => {
|
||||
const ollamaApiEndpoint = getOllamaApiEndpoint();
|
||||
|
||||
if (!ollamaEndpoint) return {};
|
||||
if (!ollamaApiEndpoint) return {};
|
||||
|
||||
try {
|
||||
const response = await axios.get(`${ollamaEndpoint}/api/tags`, {
|
||||
const res = await axios.get(`${ollamaApiEndpoint}/api/tags`, {
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
});
|
||||
|
||||
const { models: ollamaModels } = response.data;
|
||||
const { models } = res.data;
|
||||
|
||||
const embeddingsModels = ollamaModels.reduce((acc, model) => {
|
||||
acc[model.model] = {
|
||||
const embeddingModels: Record<string, EmbeddingModel> = {};
|
||||
|
||||
models.forEach((model: any) => {
|
||||
embeddingModels[model.model] = {
|
||||
displayName: model.name,
|
||||
model: new OllamaEmbeddings({
|
||||
baseUrl: ollamaEndpoint,
|
||||
baseUrl: ollamaApiEndpoint,
|
||||
model: model.model,
|
||||
}),
|
||||
};
|
||||
});
|
||||
|
||||
return acc;
|
||||
}, {});
|
||||
|
||||
return embeddingsModels;
|
||||
return embeddingModels;
|
||||
} catch (err) {
|
||||
logger.error(`Error loading Ollama embeddings model: ${err}`);
|
||||
console.error(`Error loading Ollama embeddings models: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
||||
|
@@ -1,89 +1,90 @@
|
||||
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
|
||||
import { getOpenaiApiKey } from '../../config';
|
||||
import logger from '../../utils/logger';
|
||||
import { getOpenaiApiKey } from '../config';
|
||||
import { ChatModel, EmbeddingModel } from '.';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { Embeddings } from '@langchain/core/embeddings';
|
||||
|
||||
const openaiChatModels: Record<string, string>[] = [
|
||||
{
|
||||
displayName: 'GPT-3.5 Turbo',
|
||||
key: 'gpt-3.5-turbo',
|
||||
},
|
||||
{
|
||||
displayName: 'GPT-4',
|
||||
key: 'gpt-4',
|
||||
},
|
||||
{
|
||||
displayName: 'GPT-4 turbo',
|
||||
key: 'gpt-4-turbo',
|
||||
},
|
||||
{
|
||||
displayName: 'GPT-4 omni',
|
||||
key: 'gpt-4o',
|
||||
},
|
||||
{
|
||||
displayName: 'GPT-4 omni mini',
|
||||
key: 'gpt-4o-mini',
|
||||
},
|
||||
];
|
||||
|
||||
const openaiEmbeddingModels: Record<string, string>[] = [
|
||||
{
|
||||
displayName: 'Text Embedding 3 Small',
|
||||
key: 'text-embedding-3-small',
|
||||
},
|
||||
{
|
||||
displayName: 'Text Embedding 3 Large',
|
||||
key: 'text-embedding-3-large',
|
||||
},
|
||||
];
|
||||
|
||||
export const loadOpenAIChatModels = async () => {
|
||||
const openAIApiKey = getOpenaiApiKey();
|
||||
const openaiApiKey = getOpenaiApiKey();
|
||||
|
||||
if (!openAIApiKey) return {};
|
||||
if (!openaiApiKey) return {};
|
||||
|
||||
try {
|
||||
const chatModels = {
|
||||
'gpt-3.5-turbo': {
|
||||
displayName: 'GPT-3.5 Turbo',
|
||||
const chatModels: Record<string, ChatModel> = {};
|
||||
|
||||
openaiChatModels.forEach((model) => {
|
||||
chatModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey,
|
||||
modelName: 'gpt-3.5-turbo',
|
||||
openAIApiKey: openaiApiKey,
|
||||
modelName: model.key,
|
||||
temperature: 0.7,
|
||||
}),
|
||||
},
|
||||
'gpt-4': {
|
||||
displayName: 'GPT-4',
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey,
|
||||
modelName: 'gpt-4',
|
||||
temperature: 0.7,
|
||||
}),
|
||||
},
|
||||
'gpt-4-turbo': {
|
||||
displayName: 'GPT-4 turbo',
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey,
|
||||
modelName: 'gpt-4-turbo',
|
||||
temperature: 0.7,
|
||||
}),
|
||||
},
|
||||
'gpt-4o': {
|
||||
displayName: 'GPT-4 omni',
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey,
|
||||
modelName: 'gpt-4o',
|
||||
temperature: 0.7,
|
||||
}),
|
||||
},
|
||||
'gpt-4o-mini': {
|
||||
displayName: 'GPT-4 omni mini',
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey,
|
||||
modelName: 'gpt-4o-mini',
|
||||
temperature: 0.7,
|
||||
}),
|
||||
},
|
||||
};
|
||||
}) as unknown as BaseChatModel,
|
||||
};
|
||||
});
|
||||
|
||||
return chatModels;
|
||||
} catch (err) {
|
||||
logger.error(`Error loading OpenAI models: ${err}`);
|
||||
console.error(`Error loading OpenAI models: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
||||
|
||||
export const loadOpenAIEmbeddingsModels = async () => {
|
||||
const openAIApiKey = getOpenaiApiKey();
|
||||
export const loadOpenAIEmbeddingModels = async () => {
|
||||
const openaiApiKey = getOpenaiApiKey();
|
||||
|
||||
if (!openAIApiKey) return {};
|
||||
if (!openaiApiKey) return {};
|
||||
|
||||
try {
|
||||
const embeddingModels = {
|
||||
'text-embedding-3-small': {
|
||||
displayName: 'Text Embedding 3 Small',
|
||||
const embeddingModels: Record<string, EmbeddingModel> = {};
|
||||
|
||||
openaiEmbeddingModels.forEach((model) => {
|
||||
embeddingModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new OpenAIEmbeddings({
|
||||
openAIApiKey,
|
||||
modelName: 'text-embedding-3-small',
|
||||
}),
|
||||
},
|
||||
'text-embedding-3-large': {
|
||||
displayName: 'Text Embedding 3 Large',
|
||||
model: new OpenAIEmbeddings({
|
||||
openAIApiKey,
|
||||
modelName: 'text-embedding-3-large',
|
||||
}),
|
||||
},
|
||||
};
|
||||
openAIApiKey: openaiApiKey,
|
||||
modelName: model.key,
|
||||
}) as unknown as Embeddings,
|
||||
};
|
||||
});
|
||||
|
||||
return embeddingModels;
|
||||
} catch (err) {
|
||||
logger.error(`Error loading OpenAI embeddings model: ${err}`);
|
||||
console.error(`Error loading OpenAI embeddings models: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
||||
|
@@ -1,32 +0,0 @@
|
||||
import logger from '../../utils/logger';
|
||||
import { HuggingFaceTransformersEmbeddings } from '../huggingfaceTransformer';
|
||||
|
||||
export const loadTransformersEmbeddingsModels = async () => {
|
||||
try {
|
||||
const embeddingModels = {
|
||||
'xenova-bge-small-en-v1.5': {
|
||||
displayName: 'BGE Small',
|
||||
model: new HuggingFaceTransformersEmbeddings({
|
||||
modelName: 'Xenova/bge-small-en-v1.5',
|
||||
}),
|
||||
},
|
||||
'xenova-gte-small': {
|
||||
displayName: 'GTE Small',
|
||||
model: new HuggingFaceTransformersEmbeddings({
|
||||
modelName: 'Xenova/gte-small',
|
||||
}),
|
||||
},
|
||||
'xenova-bert-base-multilingual-uncased': {
|
||||
displayName: 'Bert Multilingual',
|
||||
model: new HuggingFaceTransformersEmbeddings({
|
||||
modelName: 'Xenova/bert-base-multilingual-uncased',
|
||||
}),
|
||||
},
|
||||
};
|
||||
|
||||
return embeddingModels;
|
||||
} catch (err) {
|
||||
logger.error(`Error loading Transformers embeddings model: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
@@ -13,23 +13,17 @@ import {
|
||||
} from '@langchain/core/runnables';
|
||||
import { BaseMessage } from '@langchain/core/messages';
|
||||
import { StringOutputParser } from '@langchain/core/output_parsers';
|
||||
import LineListOutputParser from '../lib/outputParsers/listLineOutputParser';
|
||||
import LineOutputParser from '../lib/outputParsers/lineOutputParser';
|
||||
import LineListOutputParser from '../outputParsers/listLineOutputParser';
|
||||
import LineOutputParser from '../outputParsers/lineOutputParser';
|
||||
import { getDocumentsFromLinks } from '../utils/documents';
|
||||
import { Document } from 'langchain/document';
|
||||
import { searchSearxng } from '../lib/searchEngines/searxng';
|
||||
import { searchGooglePSE } from '../lib/searchEngines/google_pse';
|
||||
import { searchBingAPI } from '../lib/searchEngines/bing';
|
||||
import { searchBraveAPI } from '../lib/searchEngines/brave';
|
||||
import { searchYaCy } from '../lib/searchEngines/yacy';
|
||||
import { getSearchEngineBackend } from '../config';
|
||||
import path from 'path';
|
||||
import fs from 'fs';
|
||||
import { searchSearxng } from '../searxng';
|
||||
import path from 'node:path';
|
||||
import fs from 'node:fs';
|
||||
import computeSimilarity from '../utils/computeSimilarity';
|
||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||
import eventEmitter from 'events';
|
||||
import { StreamEvent } from '@langchain/core/tracers/log_stream';
|
||||
import { IterableReadableStream } from '@langchain/core/utils/stream';
|
||||
|
||||
export interface MetaSearchAgentType {
|
||||
searchAndAnswer: (
|
||||
@@ -95,7 +89,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
question = 'summarize';
|
||||
}
|
||||
|
||||
let docs = [];
|
||||
let docs: Document[] = [];
|
||||
|
||||
const linkDocs = await getDocumentsFromLinks({ links });
|
||||
|
||||
@@ -137,7 +131,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
You are a web search summarizer, tasked with summarizing a piece of text retrieved from a web search. Your job is to summarize the
|
||||
text into a detailed, 2-4 paragraph explanation that captures the main ideas and provides a comprehensive answer to the query.
|
||||
If the query is \"summarize\", you should provide a detailed summary of the text. If the query is a specific question, you should answer it in the summary.
|
||||
|
||||
|
||||
- **Journalistic tone**: The summary should sound professional and journalistic, not too casual or vague.
|
||||
- **Thorough and detailed**: Ensure that every key point from the text is captured and that the summary directly answers the query.
|
||||
- **Not too lengthy, but detailed**: The summary should be informative but not excessively long. Focus on providing detailed information in a concise format.
|
||||
@@ -208,37 +202,10 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
|
||||
return { query: question, docs: docs };
|
||||
} else {
|
||||
const searchEngine = getSearchEngineBackend();
|
||||
|
||||
let res;
|
||||
switch (searchEngine) {
|
||||
case 'searxng':
|
||||
res = await searchSearxng(question, {
|
||||
language: 'en',
|
||||
engines: this.config.activeEngines,
|
||||
});
|
||||
break;
|
||||
case 'google':
|
||||
res = await searchGooglePSE(question);
|
||||
break;
|
||||
case 'bing':
|
||||
res = await searchBingAPI(question);
|
||||
break;
|
||||
case 'brave':
|
||||
res = await searchBraveAPI(question);
|
||||
break;
|
||||
case 'yacy':
|
||||
res = await searchYaCy(question);
|
||||
break;
|
||||
default:
|
||||
throw new Error(`Unknown search engine ${searchEngine}`);
|
||||
}
|
||||
|
||||
if (!res?.results) {
|
||||
throw new Error(
|
||||
`No results found for search engine: ${searchEngine}`,
|
||||
);
|
||||
}
|
||||
const res = await searchSearxng(question, {
|
||||
language: 'en',
|
||||
engines: this.config.activeEngines,
|
||||
});
|
||||
|
||||
const documents = res.results.map(
|
||||
(result) =>
|
||||
@@ -343,7 +310,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
const embeddings = JSON.parse(fs.readFileSync(embeddingsPath, 'utf8'));
|
||||
|
||||
const fileSimilaritySearchObject = content.contents.map(
|
||||
(c: string, i) => {
|
||||
(c: string, i: number) => {
|
||||
return {
|
||||
fileName: content.title,
|
||||
content: c,
|
||||
@@ -446,6 +413,8 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
|
||||
return sortedDocs;
|
||||
}
|
||||
|
||||
return [];
|
||||
}
|
||||
|
||||
private processDocs(docs: Document[]) {
|
||||
@@ -458,7 +427,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
}
|
||||
|
||||
private async handleStream(
|
||||
stream: IterableReadableStream<StreamEvent>,
|
||||
stream: AsyncGenerator<StreamEvent, any, any>,
|
||||
emitter: eventEmitter,
|
||||
) {
|
||||
for await (const event of stream) {
|
@@ -1,105 +0,0 @@
|
||||
import axios from 'axios';
|
||||
import { getBingSubscriptionKey } from '../../config';
|
||||
|
||||
interface BingAPISearchResult {
|
||||
_type: string;
|
||||
name: string;
|
||||
url: string;
|
||||
displayUrl: string;
|
||||
snippet?: string;
|
||||
dateLastCrawled?: string;
|
||||
thumbnailUrl?: string;
|
||||
contentUrl?: string;
|
||||
hostPageUrl?: string;
|
||||
width?: number;
|
||||
height?: number;
|
||||
accentColor?: string;
|
||||
contentSize?: string;
|
||||
datePublished?: string;
|
||||
encodingFormat?: string;
|
||||
hostPageDisplayUrl?: string;
|
||||
id?: string;
|
||||
isLicensed?: boolean;
|
||||
isFamilyFriendly?: boolean;
|
||||
language?: string;
|
||||
mediaUrl?: string;
|
||||
motionThumbnailUrl?: string;
|
||||
publisher?: string;
|
||||
viewCount?: number;
|
||||
webSearchUrl?: string;
|
||||
primaryImageOfPage?: {
|
||||
thumbnailUrl?: string;
|
||||
width?: number;
|
||||
height?: number;
|
||||
};
|
||||
video?: {
|
||||
allowHttpsEmbed?: boolean;
|
||||
embedHtml?: string;
|
||||
allowMobileEmbed?: boolean;
|
||||
viewCount?: number;
|
||||
duration?: string;
|
||||
};
|
||||
image?: {
|
||||
thumbnail?: {
|
||||
contentUrl?: string;
|
||||
width?: number;
|
||||
height?: number;
|
||||
};
|
||||
imageInsightsToken?: string;
|
||||
imageId?: string;
|
||||
};
|
||||
}
|
||||
|
||||
export const searchBingAPI = async (query: string) => {
|
||||
try {
|
||||
const bingApiKey = await getBingSubscriptionKey();
|
||||
const url = new URL(`https://api.cognitive.microsoft.com/bing/v7.0/search`);
|
||||
url.searchParams.append('q', query);
|
||||
url.searchParams.append('responseFilter', 'Webpages,Images,Videos');
|
||||
|
||||
const res = await axios.get(url.toString(), {
|
||||
headers: {
|
||||
'Ocp-Apim-Subscription-Key': bingApiKey,
|
||||
Accept: 'application/json',
|
||||
},
|
||||
});
|
||||
|
||||
if (res.data.error) {
|
||||
throw new Error(`Bing API Error: ${res.data.error.message}`);
|
||||
}
|
||||
|
||||
const originalres = res.data;
|
||||
|
||||
// Extract web, image, and video results
|
||||
const webResults = originalres.webPages?.value || [];
|
||||
const imageResults = originalres.images?.value || [];
|
||||
const videoResults = originalres.videos?.value || [];
|
||||
|
||||
const results = webResults.map((item: BingAPISearchResult) => ({
|
||||
title: item.name,
|
||||
url: item.url,
|
||||
content: item.snippet,
|
||||
img_src:
|
||||
item.primaryImageOfPage?.thumbnailUrl ||
|
||||
imageResults.find((img: any) => img.hostPageUrl === item.url)
|
||||
?.thumbnailUrl ||
|
||||
videoResults.find((vid: any) => vid.hostPageUrl === item.url)
|
||||
?.thumbnailUrl,
|
||||
...(item.video && {
|
||||
videoData: {
|
||||
duration: item.video.duration,
|
||||
embedUrl: item.video.embedHtml?.match(/src="(.*?)"/)?.[1],
|
||||
},
|
||||
publisher: item.publisher,
|
||||
datePublished: item.datePublished,
|
||||
}),
|
||||
}));
|
||||
|
||||
return { results, originalres };
|
||||
} catch (error) {
|
||||
const errorMessage = error.response?.data
|
||||
? JSON.stringify(error.response.data, null, 2)
|
||||
: error.message || 'Unknown error';
|
||||
throw new Error(`Bing API Error: ${errorMessage}`);
|
||||
}
|
||||
};
|
@@ -1,102 +0,0 @@
|
||||
import axios from 'axios';
|
||||
import { getBraveApiKey } from '../../config';
|
||||
|
||||
interface BraveSearchResult {
|
||||
title: string;
|
||||
url: string;
|
||||
content?: string;
|
||||
img_src?: string;
|
||||
age?: string;
|
||||
family_friendly?: boolean;
|
||||
language?: string;
|
||||
video?: {
|
||||
embedUrl?: string;
|
||||
duration?: string;
|
||||
};
|
||||
rating?: {
|
||||
value: number;
|
||||
scale: number;
|
||||
};
|
||||
products?: Array<{
|
||||
name: string;
|
||||
price?: string;
|
||||
}>;
|
||||
recipe?: {
|
||||
ingredients?: string[];
|
||||
cookTime?: string;
|
||||
};
|
||||
meta?: {
|
||||
fetched?: string;
|
||||
lastCrawled?: string;
|
||||
};
|
||||
}
|
||||
|
||||
export const searchBraveAPI = async (
|
||||
query: string,
|
||||
numResults: number = 20,
|
||||
): Promise<{ results: BraveSearchResult[]; originalres: any }> => {
|
||||
try {
|
||||
const braveApiKey = await getBraveApiKey();
|
||||
const url = new URL(`https://api.search.brave.com/res/v1/web/search`);
|
||||
|
||||
url.searchParams.append('q', query);
|
||||
url.searchParams.append('count', numResults.toString());
|
||||
|
||||
const res = await axios.get(url.toString(), {
|
||||
headers: {
|
||||
'X-Subscription-Token': braveApiKey,
|
||||
Accept: 'application/json',
|
||||
},
|
||||
});
|
||||
|
||||
if (res.data.error) {
|
||||
throw new Error(`Brave API Error: ${res.data.error.message}`);
|
||||
}
|
||||
|
||||
const originalres = res.data;
|
||||
const webResults = originalres.web?.results || [];
|
||||
|
||||
const results: BraveSearchResult[] = webResults.map((item: any) => ({
|
||||
title: item.title,
|
||||
url: item.url,
|
||||
content: item.description,
|
||||
img_src: item.thumbnail?.src || item.deep_results?.images?.[0]?.src,
|
||||
age: item.age,
|
||||
family_friendly: item.family_friendly,
|
||||
language: item.language,
|
||||
video: item.video
|
||||
? {
|
||||
embedUrl: item.video.embed_url,
|
||||
duration: item.video.duration,
|
||||
}
|
||||
: undefined,
|
||||
rating: item.rating
|
||||
? {
|
||||
value: item.rating.value,
|
||||
scale: item.rating.scale_max,
|
||||
}
|
||||
: undefined,
|
||||
products: item.deep_results?.product_cluster?.map((p: any) => ({
|
||||
name: p.name,
|
||||
price: p.price,
|
||||
})),
|
||||
recipe: item.recipe
|
||||
? {
|
||||
ingredients: item.recipe.ingredients,
|
||||
cookTime: item.recipe.cook_time,
|
||||
}
|
||||
: undefined,
|
||||
meta: {
|
||||
fetched: item.meta?.fetched,
|
||||
lastCrawled: item.meta?.last_crawled,
|
||||
},
|
||||
}));
|
||||
|
||||
return { results, originalres };
|
||||
} catch (error) {
|
||||
const errorMessage = error.response?.data
|
||||
? JSON.stringify(error.response.data, null, 2)
|
||||
: error.message || 'Unknown error';
|
||||
throw new Error(`Brave API Error: ${errorMessage}`);
|
||||
}
|
||||
};
|
@@ -1,85 +0,0 @@
|
||||
import axios from 'axios';
|
||||
import { getGoogleApiKey, getGoogleCseId } from '../../config';
|
||||
|
||||
interface GooglePSESearchResult {
|
||||
kind: string;
|
||||
title: string;
|
||||
htmlTitle: string;
|
||||
link: string;
|
||||
displayLink: string;
|
||||
snippet?: string;
|
||||
htmlSnippet?: string;
|
||||
cacheId?: string;
|
||||
formattedUrl: string;
|
||||
htmlFormattedUrl: string;
|
||||
pagemap?: {
|
||||
videoobject: any;
|
||||
cse_thumbnail?: Array<{
|
||||
src: string;
|
||||
width: string;
|
||||
height: string;
|
||||
}>;
|
||||
metatags?: Array<{
|
||||
[key: string]: string;
|
||||
author?: string;
|
||||
}>;
|
||||
cse_image?: Array<{
|
||||
src: string;
|
||||
}>;
|
||||
};
|
||||
fileFormat?: string;
|
||||
image?: {
|
||||
contextLink: string;
|
||||
thumbnailLink: string;
|
||||
};
|
||||
mime?: string;
|
||||
labels?: Array<{
|
||||
name: string;
|
||||
displayName: string;
|
||||
}>;
|
||||
}
|
||||
|
||||
export const searchGooglePSE = async (query: string) => {
|
||||
try {
|
||||
const [googleApiKey, googleCseID] = await Promise.all([
|
||||
getGoogleApiKey(),
|
||||
getGoogleCseId(),
|
||||
]);
|
||||
|
||||
const url = new URL(`https://www.googleapis.com/customsearch/v1`);
|
||||
url.searchParams.append('q', query);
|
||||
url.searchParams.append('cx', googleCseID);
|
||||
url.searchParams.append('key', googleApiKey);
|
||||
|
||||
const res = await axios.get(url.toString());
|
||||
|
||||
if (res.data.error) {
|
||||
throw new Error(`Google PSE Error: ${res.data.error.message}`);
|
||||
}
|
||||
|
||||
const originalres = res.data.items;
|
||||
|
||||
const results = originalres.map((item: GooglePSESearchResult) => ({
|
||||
title: item.title,
|
||||
url: item.link,
|
||||
content: item.snippet,
|
||||
img_src:
|
||||
item.pagemap?.cse_image?.[0]?.src ||
|
||||
item.pagemap?.cse_thumbnail?.[0]?.src ||
|
||||
item.image?.thumbnailLink,
|
||||
...(item.pagemap?.videoobject?.[0] && {
|
||||
videoData: {
|
||||
duration: item.pagemap.videoobject[0].duration,
|
||||
embedUrl: item.pagemap.videoobject[0].embedurl,
|
||||
},
|
||||
}),
|
||||
}));
|
||||
|
||||
return { results, originalres };
|
||||
} catch (error) {
|
||||
const errorMessage = error.response?.data
|
||||
? JSON.stringify(error.response.data, null, 2)
|
||||
: error.message || 'Unknown error';
|
||||
throw new Error(`Google PSE Error: ${errorMessage}`);
|
||||
}
|
||||
};
|
@@ -1,79 +0,0 @@
|
||||
import axios from 'axios';
|
||||
import { getYacyJsonEndpoint } from '../../config';
|
||||
|
||||
interface YaCySearchResult {
|
||||
channels: {
|
||||
title: string;
|
||||
description: string;
|
||||
link: string;
|
||||
image: {
|
||||
url: string;
|
||||
title: string;
|
||||
link: string;
|
||||
};
|
||||
startIndex: string;
|
||||
itemsPerPage: string;
|
||||
searchTerms: string;
|
||||
items: {
|
||||
title: string;
|
||||
link: string;
|
||||
code: string;
|
||||
description: string;
|
||||
pubDate: string;
|
||||
image?: string;
|
||||
size: string;
|
||||
sizename: string;
|
||||
guid: string;
|
||||
faviconUrl: string;
|
||||
host: string;
|
||||
path: string;
|
||||
file: string;
|
||||
urlhash: string;
|
||||
ranking: string;
|
||||
}[];
|
||||
navigation: {
|
||||
facetname: string;
|
||||
displayname: string;
|
||||
type: string;
|
||||
min: string;
|
||||
max: string;
|
||||
mean: string;
|
||||
elements: {
|
||||
name: string;
|
||||
count: string;
|
||||
modifier: string;
|
||||
url: string;
|
||||
}[];
|
||||
}[];
|
||||
}[];
|
||||
}
|
||||
|
||||
export const searchYaCy = async (query: string, numResults: number = 20) => {
|
||||
try {
|
||||
const yacyBaseUrl = getYacyJsonEndpoint();
|
||||
|
||||
const url = new URL(`${yacyBaseUrl}/yacysearch.json`);
|
||||
url.searchParams.append('query', query);
|
||||
url.searchParams.append('count', numResults.toString());
|
||||
|
||||
const res = await axios.get(url.toString());
|
||||
|
||||
const originalres = res.data as YaCySearchResult;
|
||||
|
||||
const results = originalres.channels[0].items.map((item) => ({
|
||||
title: item.title,
|
||||
url: item.link,
|
||||
content: item.description,
|
||||
img_src: item.image || null,
|
||||
pubDate: item.pubDate,
|
||||
host: item.host,
|
||||
}));
|
||||
|
||||
return { results, originalres };
|
||||
} catch (error) {
|
||||
const errorMessage = error.response?.data
|
||||
? JSON.stringify(error.response.data, null, 2)
|
||||
: error.message || 'Unknown error';
|
||||
throw new Error(`YaCy Error: ${errorMessage}`);
|
||||
}
|
||||
};
|
@@ -1,5 +1,5 @@
|
||||
import axios from 'axios';
|
||||
import { getSearxngApiEndpoint } from '../../config';
|
||||
import { getSearxngApiEndpoint } from './config';
|
||||
|
||||
interface SearxngSearchOptions {
|
||||
categories?: string[];
|
||||
@@ -30,11 +30,12 @@ export const searchSearxng = async (
|
||||
|
||||
if (opts) {
|
||||
Object.keys(opts).forEach((key) => {
|
||||
if (Array.isArray(opts[key])) {
|
||||
url.searchParams.append(key, opts[key].join(','));
|
||||
const value = opts[key as keyof SearxngSearchOptions];
|
||||
if (Array.isArray(value)) {
|
||||
url.searchParams.append(key, value.join(','));
|
||||
return;
|
||||
}
|
||||
url.searchParams.append(key, opts[key]);
|
||||
url.searchParams.append(key, value as string);
|
||||
});
|
||||
}
|
||||
|
5
src/lib/types/compute-dot.d.ts
vendored
Normal file
5
src/lib/types/compute-dot.d.ts
vendored
Normal file
@@ -0,0 +1,5 @@
|
||||
declare function computeDot(vectorA: number[], vectorB: number[]): number;
|
||||
|
||||
declare module 'compute-dot' {
|
||||
export default computeDot;
|
||||
}
|
@@ -6,7 +6,7 @@ const computeSimilarity = (x: number[], y: number[]): number => {
|
||||
const similarityMeasure = getSimilarityMeasure();
|
||||
|
||||
if (similarityMeasure === 'cosine') {
|
||||
return cosineSimilarity(x, y);
|
||||
return cosineSimilarity(x, y) as number;
|
||||
} else if (similarityMeasure === 'dot') {
|
||||
return dot(x, y);
|
||||
}
|
@@ -3,7 +3,6 @@ import { htmlToText } from 'html-to-text';
|
||||
import { RecursiveCharacterTextSplitter } from 'langchain/text_splitter';
|
||||
import { Document } from '@langchain/core/documents';
|
||||
import pdfParse from 'pdf-parse';
|
||||
import logger from './logger';
|
||||
|
||||
export const getDocumentsFromLinks = async ({ links }: { links: string[] }) => {
|
||||
const splitter = new RecursiveCharacterTextSplitter();
|
||||
@@ -79,12 +78,13 @@ export const getDocumentsFromLinks = async ({ links }: { links: string[] }) => {
|
||||
|
||||
docs.push(...linkDocs);
|
||||
} catch (err) {
|
||||
logger.error(
|
||||
`Error at generating documents from links: ${err.message}`,
|
||||
console.error(
|
||||
'An error occurred while getting documents from links: ',
|
||||
err,
|
||||
);
|
||||
docs.push(
|
||||
new Document({
|
||||
pageContent: `Failed to retrieve content from the link: ${err.message}`,
|
||||
pageContent: `Failed to retrieve content from the link: ${err}`,
|
||||
metadata: {
|
||||
title: 'Failed to retrieve content',
|
||||
url: link,
|
@@ -1,66 +0,0 @@
|
||||
import express from 'express';
|
||||
import logger from '../utils/logger';
|
||||
import db from '../db/index';
|
||||
import { eq } from 'drizzle-orm';
|
||||
import { chats, messages } from '../db/schema';
|
||||
|
||||
const router = express.Router();
|
||||
|
||||
router.get('/', async (_, res) => {
|
||||
try {
|
||||
let chats = await db.query.chats.findMany();
|
||||
|
||||
chats = chats.reverse();
|
||||
|
||||
return res.status(200).json({ chats: chats });
|
||||
} catch (err) {
|
||||
res.status(500).json({ message: 'An error has occurred.' });
|
||||
logger.error(`Error in getting chats: ${err.message}`);
|
||||
}
|
||||
});
|
||||
|
||||
router.get('/:id', async (req, res) => {
|
||||
try {
|
||||
const chatExists = await db.query.chats.findFirst({
|
||||
where: eq(chats.id, req.params.id),
|
||||
});
|
||||
|
||||
if (!chatExists) {
|
||||
return res.status(404).json({ message: 'Chat not found' });
|
||||
}
|
||||
|
||||
const chatMessages = await db.query.messages.findMany({
|
||||
where: eq(messages.chatId, req.params.id),
|
||||
});
|
||||
|
||||
return res.status(200).json({ chat: chatExists, messages: chatMessages });
|
||||
} catch (err) {
|
||||
res.status(500).json({ message: 'An error has occurred.' });
|
||||
logger.error(`Error in getting chat: ${err.message}`);
|
||||
}
|
||||
});
|
||||
|
||||
router.delete(`/:id`, async (req, res) => {
|
||||
try {
|
||||
const chatExists = await db.query.chats.findFirst({
|
||||
where: eq(chats.id, req.params.id),
|
||||
});
|
||||
|
||||
if (!chatExists) {
|
||||
return res.status(404).json({ message: 'Chat not found' });
|
||||
}
|
||||
|
||||
await db.delete(chats).where(eq(chats.id, req.params.id)).execute();
|
||||
await db
|
||||
.delete(messages)
|
||||
.where(eq(messages.chatId, req.params.id))
|
||||
.execute();
|
||||
|
||||
return res.status(200).json({ message: 'Chat deleted successfully' });
|
||||
} catch (err) {
|
||||
res.status(500).json({ message: 'An error has occurred.' });
|
||||
logger.error(`Error in deleting chat: ${err.message}`);
|
||||
}
|
||||
});
|
||||
|
||||
export default router;
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user