Compare commits

..

20 Commits

Author SHA1 Message Date
ItzCrazyKns
35a3eda213 Merge pull request #155 from notedsource/hristo/gcp-deploy-vertexai-models-embeddings
Hristo/gcp deploy vertexai models embeddings
2024-06-01 10:49:38 +05:30
Hristo
dfed6a0ad8 Use container restart policy from main 2024-05-30 17:21:40 -04:00
Hristo
e0d9522435 Merge branch 'master' of github.com:notedsource/Perplexica into hristo/gcp-deploy-vertexai-models-embeddings 2024-05-30 11:19:50 -04:00
Hristo
f7c3bc2823 No auth on root route for health checks, fix suggestions request 2024-05-30 11:18:31 -04:00
Hristo
0ac971e6b4 Merge branch 'hristo/deploy-on-gcp-gke' of github.com:notedsource/Perplexica into hristo/vertexai-embeddings 2024-05-22 15:05:45 -04:00
Hristo
4ff6502dae Restore searxng dockerfile to enable remote builds 2024-05-22 15:04:25 -04:00
Hristo
795309cfe2 Private searxng instance 2024-05-22 14:52:47 -04:00
Hristo
8bf4269208 Add vertexai text embeddings capability 2024-05-21 16:23:34 -04:00
Hristo
4c7942d2e8 Merge branch 'master' of github.com:notedsource/Perplexica into hristo/deploy-on-gcp-gke 2024-05-21 15:41:23 -04:00
Hristo
aa55206a30 Add VertexAI deps using yarn not npm 2024-05-21 15:15:19 -04:00
Hristo
27d7b000d0 Add AI/ML infrence scope to OAuth credentials requested for cluster IAM account 2024-05-21 14:31:14 -04:00
Hristo
8b9b4085ea Fix query appearing twice in chat history
The initial query appears twice in the prompt, this is ignored by OpenAI
models, however it breaks with Gemini models are they fail with an error
stating that AI and User prompts need to alternate.

Tested all search modes with both OpenAI GTP3 turbo and Vertex Gemini
1.0 and this changes appears to now function correctly with both.
2024-05-17 14:10:11 -04:00
Hristo
2e58dab30a Additional changes for VertexAI 2024-05-17 14:08:57 -04:00
Hristo
48018990be Ensure containers are brought backup when exiting on error
This is esp. important for the NodeJS (backend) container as  Node will
exit on any unhandled error, it is best practice to let the errored
process crash and start a new one in its place. It this case we use
docker to do that for us (`restart: always` policy)
2024-05-16 09:53:33 -04:00
Hristo
ebbe18ab45 Adds Google VertexAI as model provider 2024-05-14 15:05:17 -04:00
Hristo
cef75279c5 Add Google VertexAI deps. 2024-05-14 14:51:26 -04:00
Hristo
c56a058a74 Websocket auth, pass access token in gke configs 2024-05-10 19:32:35 -04:00
Hristo
4e20c4ac56 Finalizes option to secure backend http endpoints with a token
- Also fixes to build commands in makefile
2024-05-10 18:11:23 -04:00
Hristo
e6c2042df6 Backend GKE Deploy, access key for backend
- Configs and automation for deploying backend to GKE
- First steps to adding an optional token check for requests to backend
- First steps frontend sending optional token to backend when configured
2024-05-10 16:07:58 -04:00
Hristo
0fedaef537 First pass at setting up GCP deploy config as infrastructure
- Terraform config files to setup cluster, deployments and services
  - Adds only Searxng deployment and test service in this commit

- Makefile to:
  - Build and push images
  - Run terraform with correct project configuration

- Env file template to help setting .env file with project configs
2024-05-08 18:19:59 -04:00
206 changed files with 6095 additions and 36699 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 641 KiB

After

Width:  |  Height:  |  Size: 151 KiB

View File

@@ -1,11 +0,0 @@
PORT=3000
NODE_ENV=development
SUPABASE_URL=your_supabase_url
SUPABASE_KEY=your_supabase_key
OLLAMA_URL=http://localhost:11434
OLLAMA_MODEL=llama2
SEARXNG_URL=http://localhost:4000
SEARXNG_INSTANCES=["http://localhost:4000"]
MAX_RESULTS_PER_QUERY=50
CACHE_DURATION_HOURS=24
CACHE_DURATION_DAYS=7

View File

@@ -1,29 +0,0 @@
---
name: CI
on:
push:
branches: [ main ]
pull_request:
branches: [ main ]
jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Setup Node.js
uses: actions/setup-node@v2
with:
node-version: '18'
- name: Install dependencies
run: npm ci
- name: Run tests
run: npm test
- name: Run type check
run: npm run build

View File

@@ -1,73 +0,0 @@
name: Build & Push Docker Images
on:
push:
branches:
- master
release:
types: [published]
jobs:
build-and-push:
runs-on: ubuntu-latest
strategy:
matrix:
service: [backend, app]
steps:
- name: Checkout code
uses: actions/checkout@v3
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
with:
install: true
- name: Log in to DockerHub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Extract version from release tag
if: github.event_name == 'release'
id: version
run: echo "RELEASE_VERSION=${GITHUB_REF#refs/tags/}" >> $GITHUB_ENV
- name: Build and push Docker image for ${{ matrix.service }}
if: github.ref == 'refs/heads/master' && github.event_name == 'push'
run: |
docker buildx create --use
if [[ "${{ matrix.service }}" == "backend" ]]; then \
DOCKERFILE=backend.dockerfile; \
IMAGE_NAME=perplexica-backend; \
else \
DOCKERFILE=app.dockerfile; \
IMAGE_NAME=perplexica-frontend; \
fi
docker buildx build --platform linux/amd64,linux/arm64 \
--cache-from=type=registry,ref=itzcrazykns1337/${IMAGE_NAME}:main \
--cache-to=type=inline \
-f $DOCKERFILE \
-t itzcrazykns1337/${IMAGE_NAME}:main \
--push .
- name: Build and push release Docker image for ${{ matrix.service }}
if: github.event_name == 'release'
run: |
docker buildx create --use
if [[ "${{ matrix.service }}" == "backend" ]]; then \
DOCKERFILE=backend.dockerfile; \
IMAGE_NAME=perplexica-backend; \
else \
DOCKERFILE=app.dockerfile; \
IMAGE_NAME=perplexica-frontend; \
fi
docker buildx build --platform linux/amd64,linux/arm64 \
--cache-from=type=registry,ref=itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }} \
--cache-to=type=inline \
-f $DOCKERFILE \
-t itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }} \
--push .

44
.gitignore vendored
View File

@@ -1,32 +1,34 @@
# Environment variables
.env
.env.*
!.env.example
# Dependencies
# Node.js
node_modules/
yarn-error.log
npm-debug.log
yarn-error.log
# Build outputs
dist/
build/
.next/
# Build output
/.next/
/out/
# IDE/Editor
# IDE/Editor specific
.vscode/
.idea/
*.swp
*.swo
*.iml
# OS
.DS_Store
Thumbs.db
# Environment variables
.env
.env.local
.env.development.local
.env.test.local
.env.production.local
# Logs
# Config files
config.toml
# Log files
logs/
*.log
# Cache
.cache/
.npm/
# Testing
/coverage/
# Miscellaneous
.DS_Store
Thumbs.db

View File

@@ -35,7 +35,4 @@ coverage
*.swp
# Ignore all files with the .DS_Store extension (macOS specific)
.DS_Store
# Ignore all files in uploads directory
uploads
.DS_Store

View File

@@ -8,7 +8,6 @@ Perplexica's design consists of two main domains:
- **Frontend (`ui` directory)**: This is a Next.js application holding all user interface components. It's a self-contained environment that manages everything the user interacts with.
- **Backend (root and `src` directory)**: The backend logic is situated in the `src` folder, but the root directory holds the main `package.json` for backend dependency management.
- All of the focus modes are created using the Meta Search Agent class present in `src/search/metaSearchAgent.ts`. The main logic behind Perplexica lies there.
## Setting Up Your Environment
@@ -19,8 +18,7 @@ Before diving into coding, setting up your local environment is key. Here's what
1. In the root directory, locate the `sample.config.toml` file.
2. Rename it to `config.toml` and fill in the necessary configuration fields specific to the backend.
3. Run `npm install` to install dependencies.
4. Run `npm run db:push` to set up the local sqlite.
5. Use `npm run dev` to start the backend in development mode.
4. Use `npm run dev` to start the backend in development mode.
### Frontend

20
Makefile Normal file
View File

@@ -0,0 +1,20 @@
.PHONY: run
run:
docker compose -f docker-compose.yaml up
.PHONY: rebuild-run
rebuild-run:
docker compose -f docker-compose.yaml build --no-cache \
&& docker compose -f docker-compose.yaml up
.PHONY: run-app-only
run-app-only:
docker compose -f app-docker-compose.yaml up
.PHONY: rebuild-run-app-only
rebuild-run-app-only:
docker compose -f app-docker-compose.yaml build --no-cache \
&& docker compose -f app-docker-compose.yaml up

238
README.md
View File

@@ -1,120 +1,170 @@
# BizSearch
# 🚀 Perplexica - An AI-powered search engine 🔎 <!-- omit in toc -->
A tool for finding and analyzing local businesses using AI-powered data extraction.
![preview](.assets/perplexica-screenshot.png)
## Prerequisites
## Table of Contents <!-- omit in toc -->
- Node.js 16+
- Ollama (for local LLM)
- SearxNG instance
- [Overview](#overview)
- [Preview](#preview)
- [Features](#features)
- [Installation](#installation)
- [Getting Started with Docker (Recommended)](#getting-started-with-docker-recommended)
- [Non-Docker Installation](#non-docker-installation)
- [Ollama connection errors](#ollama-connection-errors)
- [Using as a Search Engine](#using-as-a-search-engine)
- [One-Click Deployment](#one-click-deployment)
- [Upcoming Features](#upcoming-features)
- [Support Us](#support-us)
- [Donations](#donations)
- [Contribution](#contribution)
- [Help and Support](#help-and-support)
## Installation
## Overview
1. Install Ollama:
```bash
# On macOS
brew install ollama
```
Perplexica is an open-source AI-powered searching tool or an AI-powered search engine that goes deep into the internet to find answers. Inspired by Perplexity AI, it's an open-source option that not just searches the web but understands your questions. It uses advanced machine learning algorithms like similarity searching and embeddings to refine results and provides clear answers with sources cited.
2. Start Ollama:
```bash
# Start and enable on login
brew services start ollama
Using SearxNG to stay current and fully open source, Perplexica ensures you always get the most up-to-date information without compromising your privacy.
# Or run without auto-start
/usr/local/opt/ollama/bin/ollama serve
```
Want to know more about its architecture and how it works? You can read it [here](https://github.com/ItzCrazyKns/Perplexica/tree/master/docs/architecture/README.md).
3. Pull the required model:
```bash
ollama pull mistral
```
## Preview
4. Clone and set up the project:
```bash
git clone https://github.com/yourusername/bizsearch.git
cd bizsearch
npm install
```
5. Configure environment:
```bash
cp .env.example .env
# Edit .env with your settings
```
6. Start the application:
```bash
npm run dev
```
7. Open http://localhost:3000 in your browser
## Troubleshooting
If Ollama fails to start:
```bash
# Stop any existing instance
brew services stop ollama
# Wait a few seconds
sleep 5
# Start again
brew services start ollama
```
To verify Ollama is running:
```bash
curl http://localhost:11434/api/version
```
![video-preview](.assets/perplexica-preview.gif)
## Features
- Business search with location filtering
- Contact information extraction
- AI-powered data validation
- Clean, user-friendly interface
- Service health monitoring
- **Local LLMs**: You can make use local LLMs such as Llama3 and Mixtral using Ollama.
- **Two Main Modes:**
- **Copilot Mode:** (In development) Boosts search by generating different queries to find more relevant internet sources. Like normal search instead of just using the context by SearxNG, it visits the top matches and tries to find relevant sources to the user's query directly from the page.
- **Normal Mode:** Processes your query and performs a web search.
- **Focus Modes:** Special modes to better answer specific types of questions. Perplexica currently has 6 focus modes:
- **All Mode:** Searches the entire web to find the best results.
- **Writing Assistant Mode:** Helpful for writing tasks that does not require searching the web.
- **Academic Search Mode:** Finds articles and papers, ideal for academic research.
- **YouTube Search Mode:** Finds YouTube videos based on the search query.
- **Wolfram Alpha Search Mode:** Answers queries that need calculations or data analysis using Wolfram Alpha.
- **Reddit Search Mode:** Searches Reddit for discussions and opinions related to the query.
- **Current Information:** Some search tools might give you outdated info because they use data from crawling bots and convert them into embeddings and store them in a index. Unlike them, Perplexica uses SearxNG, a metasearch engine to get the results and rerank and get the most relevant source out of it, ensuring you always get the latest information without the overhead of daily data updates.
## Configuration
It has many more features like image and video search. Some of the planned features are mentioned in [upcoming features](#upcoming-features).
Key environment variables:
- `SEARXNG_URL`: Your SearxNG instance URL
- `OLLAMA_URL`: Ollama API endpoint (default: http://localhost:11434)
- `SUPABASE_URL`: Your Supabase project URL
- `SUPABASE_ANON_KEY`: Your Supabase anonymous key
- `CACHE_DURATION_DAYS`: How long to cache results (default: 7)
## Installation
## Supabase Setup
There are mainly 2 ways of installing Perplexica - With Docker, Without Docker. Using Docker is highly recommended.
1. Create a new Supabase project
2. Run the SQL commands in `db/init.sql` to create the cache table
3. Copy your project URL and anon key to `.env`
### Getting Started with Docker (Recommended)
## License
1. Ensure Docker is installed and running on your system.
2. Clone the Perplexica repository:
MIT
```bash
git clone https://github.com/ItzCrazyKns/Perplexica.git
```
## Cache Management
3. After cloning, navigate to the directory containing the project files.
The application uses Supabase for caching search results. Cache entries expire after 7 days.
4. Rename the `sample.config.toml` file to `config.toml`. For Docker setups, you need only fill in the following fields:
### Manual Cache Cleanup
- `OPENAI`: Your OpenAI API key. **You only need to fill this if you wish to use OpenAI's models**.
- `OLLAMA`: Your Ollama API URL. You should enter it as `http://host.docker.internal:PORT_NUMBER`. If you installed Ollama on port 11434, use `http://host.docker.internal:11434`. For other ports, adjust accordingly. **You need to fill this if you wish to use Ollama's models instead of OpenAI's**.
- `GROQ`: Your Groq API key. **You only need to fill this if you wish to use Groq's hosted models**
If automatic cleanup is not available, you can manually clean up expired entries:
**Note**: You can change these after starting Perplexica from the settings dialog.
1. Using the API:
```bash
curl -X POST http://localhost:3000/api/cleanup
```
- `SIMILARITY_MEASURE`: The similarity measure to use (This is filled by default; you can leave it as is if you are unsure about it.)
2. Using SQL:
```sql
select manual_cleanup();
```
5. Ensure you are in the directory containing the `docker-compose.yaml` file and execute:
### Cache Statistics
```bash
docker compose up -d
```
View cache statistics using:
```sql
select * from cache_stats;
```
6. Wait a few minutes for the setup to complete. You can access Perplexica at http://localhost:3000 in your web browser.
**Note**: After the containers are built, you can start Perplexica directly from Docker without having to open a terminal.
### Non-Docker Installation
1. Clone the repository and rename the `sample.config.toml` file to `config.toml` in the root directory. Ensure you complete all required fields in this file.
2. Rename the `.env.example` file to `.env` in the `ui` folder and fill in all necessary fields.
3. After populating the configuration and environment files, run `npm i` in both the `ui` folder and the root directory.
4. Install the dependencies and then execute `npm run build` in both the `ui` folder and the root directory.
5. Finally, start both the frontend and the backend by running `npm run start` in both the `ui` folder and the root directory.
**Note**: Using Docker is recommended as it simplifies the setup process, especially for managing environment variables and dependencies.
See the [installation documentation](https://github.com/ItzCrazyKns/Perplexica/tree/master/docs/installation) for more information like exposing it your network, etc.
### Ollama connection errors
If you're facing an Ollama connection error, it is often related to the backend not being able to connect to Ollama's API. How can you fix it? You can fix it by updating your Ollama API URL in the settings menu to the following:
On Windows: `http://host.docker.internal:11434`<br>
On Mac: `http://host.docker.internal:11434`<br>
On Linux: `http://private_ip_of_computer_hosting_ollama:11434`
You need to edit the ports accordingly.
## Using as a Search Engine
If you wish to use Perplexica as an alternative to traditional search engines like Google or Bing, or if you want to add a shortcut for quick access from your browser's search bar, follow these steps:
1. Open your browser's settings.
2. Navigate to the 'Search Engines' section.
3. Add a new site search with the following URL: `http://localhost:3000/?q=%s`. Replace `localhost` with your IP address or domain name, and `3000` with the port number if Perplexica is not hosted locally.
4. Click the add button. Now, you can use Perplexica directly from your browser's search bar.
## One-Click Deployment
[![Deploy to RepoCloud](https://d16t0pc4846x52.cloudfront.net/deploylobe.svg)](https://repocloud.io/details/?app_id=267)
## Deploy Perplexica backend to Google GKE
0: Install `docker` and `terraform` (Process specific to your system)
1a: Copy the `sample.env` file to `.env`
1b: Copy the `deploy/gcp/sample.env` file to `deploy/gcp/.env`
2a: Fillout desired LLM provider access keys etc. in `.env`
- Note: you will have to comeback and edit this file again once you have the address of the K8s backend deploy
2b: Fillout the GCP info in `deploy/gcp/.env`
3: Edit `GCP_REPO` to the correct docker image repo path if you are using something other than Container registry
4: Edit the `PREFIX` if you would like images and GKE entities to be prefixed with something else
5: In `deploy/gcp` run `make init` to initialize terraform
6: Follow the normal Preplexica configuration steps outlined in the project readme
7: Auth docker with the appropriate credential for repo Ex. for `gcr.io` -> `gcloud auth configure-docker`
8: In `deploy/gcp` run `make build-deplpy` to build and push the project images to the repo, create a GKE cluster and deploy the app
9: Once deployed successfully edit the `.env` file in the root project folder and update the `REMOTE_BACKEND_ADDRESS` with the remote k8s deployment address and port
10: In root project folder run `make rebuild-run-app-only`
If you configured everything correctly frontend app will run locally and provide you with a local url to open it.
Now you can run queries against the remotely deployed backend from your local machine. :celebrate:
## Upcoming Features
- [ ] Finalizing Copilot Mode
- [x] Add settings page
- [x] Adding support for local LLMs
- [ ] Adding Discover and History Saving features
- [x] Introducing various Focus Modes
## Support Us
If you find Perplexica useful, consider giving us a star on GitHub. This helps more people discover Perplexica and supports the development of new features. Your support is greatly appreciated.
### Donations
We also accept donations to help sustain our project. If you would like to contribute, you can use the following button to make a donation in cryptocurrency. Thank you for your support!
<a href="https://nowpayments.io/donation?api_key=RFFKJH1-GRR4DQG-HFV1DZP-00G6MMK&source=lk_donation&medium=referral" target="_blank">
<img src="https://nowpayments.io/images/embeds/donation-button-white.svg" alt="Crypto donation button by NOWPayments">
</a>
## Contribution
Perplexica is built on the idea that AI and large language models should be easy for everyone to use. If you find bugs or have ideas, please share them in via GitHub Issues. For more information on contributing to Perplexica you can read the [CONTRIBUTING.md](CONTRIBUTING.md) file to learn more about Perplexica and how you can contribute to it.
## Help and Support
If you have any questions or feedback, please feel free to reach out to us. You can create an issue on GitHub or join our Discord server. There, you can connect with other users, share your experiences and reviews, and receive more personalized help. [Click here](https://discord.gg/EFwsmQDgAu) to join the Discord server. To discuss matters outside of regular support, feel free to contact me on Discord at `itzcrazykns`.
Thank you for exploring Perplexica, the AI-powered search engine designed to enhance your search experience. We are constantly working to improve Perplexica and expand its capabilities. We value your feedback and contributions which help us make Perplexica even better. Don't forget to check back for updates and new features!

13
app-docker-compose.yaml Normal file
View File

@@ -0,0 +1,13 @@
services:
perplexica-frontend:
build:
context: .
dockerfile: app.dockerfile
args:
- NEXT_PUBLIC_SUPER_SECRET_KEY=${SUPER_SECRET_KEY}
- NEXT_PUBLIC_API_URL=https://${REMOTE_BACKEND_ADDRESS}/api
- NEXT_PUBLIC_WS_URL=wss://${REMOTE_BACKEND_ADDRESS}
expose:
- 3000
ports:
- 3000:3000

View File

@@ -1,15 +1,18 @@
FROM node:20.18.0-alpine
FROM node:alpine
ARG NEXT_PUBLIC_WS_URL
ARG NEXT_PUBLIC_API_URL
ARG NEXT_PUBLIC_SUPER_SECRET_KEY
ARG NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
ARG NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
ENV NEXT_PUBLIC_WS_URL=${NEXT_PUBLIC_WS_URL}
ENV NEXT_PUBLIC_API_URL=${NEXT_PUBLIC_API_URL}
ENV NEXT_PUBLIC_SUPER_SECRET_KEY=${NEXT_PUBLIC_SUPER_SECRET_KEY}
WORKDIR /home/perplexica
COPY ui /home/perplexica/
RUN yarn install --frozen-lockfile
RUN yarn install
RUN yarn build
CMD ["yarn", "start"]
CMD ["yarn", "start"]

View File

@@ -1,17 +1,18 @@
FROM node:18-slim
FROM node:buster-slim
ARG SEARXNG_API_URL
WORKDIR /home/perplexica
COPY src /home/perplexica/src
COPY tsconfig.json /home/perplexica/
COPY drizzle.config.ts /home/perplexica/
COPY config.toml /home/perplexica/
COPY package.json /home/perplexica/
COPY yarn.lock /home/perplexica/
RUN mkdir /home/perplexica/data
RUN mkdir /home/perplexica/uploads
RUN sed -i "s|SEARXNG = \".*\"|SEARXNG = \"${SEARXNG_API_URL}\"|g" /home/perplexica/config.toml
RUN yarn install --frozen-lockfile --network-timeout 600000
RUN yarn install
RUN yarn build
CMD ["yarn", "start"]

View File

@@ -1,14 +0,0 @@
[GENERAL]
PORT = 3001 # Port to run the server on
SIMILARITY_MEASURE = "cosine" # "cosine" or "dot"
KEEP_ALIVE = "5m" # How long to keep Ollama models loaded into memory. (Instead of using -1 use "-1m")
[API_KEYS]
OPENAI = "" # OpenAI API key - sk-1234567890abcdef1234567890abcdef
GROQ = "" # Groq API key - gsk_1234567890abcdef1234567890abcdef
ANTHROPIC = "" # Anthropic API key - sk-ant-1234567890abcdef1234567890abcdef
GEMINI = "" # Gemini API key - sk-1234567890abcdef1234567890abcdef
[API_ENDPOINTS]
SEARXNG = "http://localhost:32768" # SearxNG API URL
OLLAMA = "" # Ollama API URL - http://host.docker.internal:11434

2
data/.gitignore vendored
View File

@@ -1,2 +0,0 @@
*
!.gitignore

View File

@@ -1,189 +0,0 @@
-- Enable required extensions
create extension if not exists "uuid-ossp"; -- For UUID generation
create extension if not exists pg_cron; -- For scheduled jobs
-- Create the search_cache table
create table public.search_cache (
id uuid default uuid_generate_v4() primary key,
query text not null,
results jsonb not null,
location text not null,
category text not null,
created_at timestamp with time zone default timezone('utc'::text, now()) not null,
updated_at timestamp with time zone default timezone('utc'::text, now()) not null,
expires_at timestamp with time zone default timezone('utc'::text, now() + interval '7 days') not null
);
-- Create indexes
create index search_cache_query_idx on public.search_cache (query);
create index search_cache_location_category_idx on public.search_cache (location, category);
create index search_cache_expires_at_idx on public.search_cache (expires_at);
-- Enable RLS
alter table public.search_cache enable row level security;
-- Create policies
create policy "Allow public read access"
on public.search_cache for select
using (true);
create policy "Allow service write access"
on public.search_cache for insert
with check (true);
create policy "Allow service update access"
on public.search_cache for update
using (true)
with check (true);
create policy "Allow delete expired records"
on public.search_cache for delete
using (expires_at < now());
-- Create function to clean up expired records
create or replace function cleanup_expired_cache()
returns void
language plpgsql
security definer
as $$
begin
delete from public.search_cache
where expires_at < now();
end;
$$;
-- Create a manual cleanup function since pg_cron might not be available
create or replace function manual_cleanup()
returns void
language plpgsql
security definer
as $$
begin
delete from public.search_cache
where expires_at < now();
end;
$$;
-- Create a view for cache statistics
create or replace view cache_stats as
select
count(*) as total_entries,
count(*) filter (where expires_at < now()) as expired_entries,
count(*) filter (where expires_at >= now()) as valid_entries,
min(created_at) as oldest_entry,
max(created_at) as newest_entry,
count(distinct category) as unique_categories,
count(distinct location) as unique_locations
from public.search_cache;
-- Grant permissions to access the view
grant select on cache_stats to postgres;
-- Create table if not exists businesses
create table if not exists businesses (
id text primary key,
name text not null,
phone text,
email text,
address text,
rating numeric,
website text,
logo text,
source text,
description text,
latitude numeric,
longitude numeric,
last_updated timestamp with time zone default timezone('utc'::text, now()),
search_count integer default 1,
created_at timestamp with time zone default timezone('utc'::text, now())
);
-- Create indexes for common queries
create index if not exists businesses_name_idx on businesses (name);
create index if not exists businesses_rating_idx on businesses (rating desc);
create index if not exists businesses_search_count_idx on businesses (search_count desc);
create index if not exists businesses_last_updated_idx on businesses (last_updated desc);
-- Create tables if they don't exist
CREATE TABLE IF NOT EXISTS businesses (
id TEXT PRIMARY KEY,
name TEXT NOT NULL,
phone TEXT,
email TEXT,
address TEXT,
rating INTEGER,
website TEXT,
logo TEXT,
source TEXT,
description TEXT,
location JSONB,
place_id TEXT,
photos TEXT[],
opening_hours TEXT[],
distance JSONB,
last_updated TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
search_count INTEGER DEFAULT 0
);
CREATE TABLE IF NOT EXISTS searches (
id SERIAL PRIMARY KEY,
query TEXT NOT NULL,
location TEXT NOT NULL,
timestamp TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
results_count INTEGER
);
CREATE TABLE IF NOT EXISTS cache (
key TEXT PRIMARY KEY,
value JSONB NOT NULL,
created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
expires_at TIMESTAMP WITH TIME ZONE NOT NULL
);
-- Create indexes
CREATE INDEX IF NOT EXISTS idx_businesses_location ON businesses USING GIN (location);
CREATE INDEX IF NOT EXISTS idx_businesses_search ON businesses USING GIN (to_tsvector('english', name || ' ' || COALESCE(description, '')));
CREATE INDEX IF NOT EXISTS idx_cache_expires ON cache (expires_at);
-- Set up RLS (Row Level Security)
ALTER TABLE businesses ENABLE ROW LEVEL SECURITY;
ALTER TABLE searches ENABLE ROW LEVEL SECURITY;
ALTER TABLE cache ENABLE ROW LEVEL SECURITY;
-- Create policies
CREATE POLICY "Allow anonymous select" ON businesses FOR SELECT USING (true);
CREATE POLICY "Allow service role insert" ON businesses FOR INSERT WITH CHECK (true);
CREATE POLICY "Allow service role update" ON businesses FOR UPDATE USING (true);
CREATE POLICY "Allow anonymous select" ON searches FOR SELECT USING (true);
CREATE POLICY "Allow service role insert" ON searches FOR INSERT WITH CHECK (true);
CREATE POLICY "Allow anonymous select" ON cache FOR SELECT USING (true);
CREATE POLICY "Allow service role all" ON cache USING (true);
-- Add place_id column to businesses table if it doesn't exist
ALTER TABLE businesses ADD COLUMN IF NOT EXISTS place_id TEXT;
CREATE INDEX IF NOT EXISTS idx_businesses_place_id ON businesses(place_id);
-- Create a unique constraint on place_id (excluding nulls)
CREATE UNIQUE INDEX IF NOT EXISTS idx_businesses_place_id_unique
ON businesses(place_id)
WHERE place_id IS NOT NULL;
CREATE TABLE IF NOT EXISTS businesses (
id TEXT PRIMARY KEY,
name TEXT NOT NULL,
address TEXT NOT NULL,
phone TEXT NOT NULL,
description TEXT NOT NULL,
website TEXT,
source TEXT NOT NULL,
rating REAL,
lat REAL,
lng REAL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
CREATE INDEX IF NOT EXISTS idx_businesses_source ON businesses(source);
CREATE INDEX IF NOT EXISTS idx_businesses_rating ON businesses(rating);

View File

@@ -1,44 +0,0 @@
-- Create the businesses table
create table businesses (
id uuid primary key,
name text not null,
phone text,
address text,
city text,
state text,
zip text,
category text[],
rating numeric,
review_count integer,
license text,
services text[],
hours jsonb,
website text,
email text,
verified boolean default false,
last_updated timestamp with time zone,
search_query text,
search_location text,
search_timestamp timestamp with time zone,
reliability_score integer,
-- Create a composite index for deduplication
constraint unique_business unique (phone, address)
);
-- Create indexes for common queries
create index idx_business_location on businesses (city, state);
create index idx_business_category on businesses using gin (category);
create index idx_search_query on businesses using gin (search_query gin_trgm_ops);
create index idx_search_location on businesses using gin (search_location gin_trgm_ops);
create index idx_reliability on businesses (reliability_score);
-- Enable full text search
alter table businesses add column search_vector tsvector
generated always as (
setweight(to_tsvector('english', coalesce(name, '')), 'A') ||
setweight(to_tsvector('english', coalesce(search_query, '')), 'B') ||
setweight(to_tsvector('english', coalesce(search_location, '')), 'C')
) stored;
create index idx_business_search on businesses using gin(search_vector);

View File

@@ -1,15 +0,0 @@
-- Check if table exists
SELECT EXISTS (
SELECT FROM information_schema.tables
WHERE table_schema = 'public'
AND table_name = 'businesses'
);
-- Check table structure
SELECT column_name, data_type, is_nullable
FROM information_schema.columns
WHERE table_schema = 'public'
AND table_name = 'businesses';
-- Check row count
SELECT COUNT(*) as count FROM businesses;

6
deploy/gcp/.gitignore vendored Normal file
View File

@@ -0,0 +1,6 @@
.env
.auto.tfvars
.terraform
terraform.tfstate
terraform.tfstate.*
.terraform.lock.hcl

103
deploy/gcp/Makefile Normal file
View File

@@ -0,0 +1,103 @@
# Adds all the deployment relevant sensitive information about project
include .env
# Adds secrets/ keys we have define for the project locally and deployment
include ../../.env
# Use `location-id-docker.pkg` for artifact registry Ex. west-1-docker.pkg
GCP_REPO=gcr.io
PREFIX=perplexica
SEARCH_PORT=8080
BACKEND_PORT=3001
SEARCH_IMAGE_TAG=$(GCP_REPO)/$(GCP_PROJECT_ID)/$(PREFIX)-searxng:latest
BACKEND_IMAGE_TAG=$(GCP_REPO)/$(GCP_PROJECT_ID)/$(PREFIX)-backend:latest
APP_IMAGE_TAG=$(GCP_REPO)/$(GCP_PROJECT_ID)/$(PREFIX)-app:latest
CLUSTER_NAME=$(PREFIX)-cluster
.PHONY: build-deploy
build-deploy: docker-build-all deploy
.PHONY: docker-build-all
docker-build-all: docker-build-push-searxng docker-build-push-backend docker-build-push-app
.PHONY: show_config
show_config:
@echo $(GCP_PROJECT_ID) \
&& echo $(CLUSTER_NAME) \
&& echo $(GCP_REGION) \
&& echo $(GCP_SERVICE_ACCOUNT_KEY_FILE) \
&& echo $(SEARCH_IMAGE_TAG) \
&& echo $(BACKEND_IMAGE_TAG) \
&& echo $(APP_IMAGE_TAG) \
&& echo $(SEARCH_PORT) \
&& echo $(BACKEND_PORT) \
&& echo $(OPENAI) \
&& echo $(SUPER_SECRET_KEY)
.PHONY: docker-build-push-searxng
docker-build-push-searxng:
cd ../../ && docker build -f ./deploy/gcp/searxng.dockerfile -t $(SEARCH_IMAGE_TAG) . --platform="linux/amd64"
docker push $(SEARCH_IMAGE_TAG)
.PHONY: docker-build-push-backend
docker-build-push-backend:
cd ../../ && docker build -f ./backend.dockerfile -t $(BACKEND_IMAGE_TAG) . --platform="linux/amd64"
docker push $(BACKEND_IMAGE_TAG)
.PHONY: docker-build-push-app
docker-build-push-app:
#
# cd ../../ && docker build -f ./app.dockerfile -t $(APP_IMAGE_TAG) . --platform="linux/amd64"
# docker push $(APP_IMAGE_TAG)
.PHONY: init
init:
terraform init
.PHONY: deploy
deploy:
export TF_VAR_project_id=$(GCP_PROJECT_ID) \
&& export TF_VAR_cluster_name=$(CLUSTER_NAME) \
&& export TF_VAR_region=$(GCP_REGION) \
&& export TF_VAR_key_file=$(GCP_SERVICE_ACCOUNT_KEY_FILE) \
&& export TF_VAR_search_image=$(SEARCH_IMAGE_TAG) \
&& export TF_VAR_backend_image=$(BACKEND_IMAGE_TAG) \
&& export TF_VAR_app_image=$(APP_IMAGE_TAG) \
&& export TF_VAR_search_port=$(SEARCH_PORT) \
&& export TF_VAR_backend_port=$(BACKEND_PORT) \
&& export TF_VAR_open_ai=$(OPENAI) \
&& export TF_VAR_secret_key=$(SUPER_SECRET_KEY) \
&& terraform apply
.PHONY: teardown
teardown:
export TF_VAR_project_id=$(GCP_PROJECT_ID) \
&& export TF_VAR_cluster_name=$(CLUSTER_NAME) \
&& export TF_VAR_region=$(GCP_REGION) \
&& export TF_VAR_key_file=$(GCP_SERVICE_ACCOUNT_KEY_FILE) \
&& export TF_VAR_search_image=$(SEARCH_IMAGE_TAG) \
&& export TF_VAR_backend_image=$(BACKEND_IMAGE_TAG) \
&& export TF_VAR_app_image=$(APP_IMAGE_TAG) \
&& export TF_VAR_search_port=$(SEARCH_PORT) \
&& export TF_VAR_backend_port=$(BACKEND_PORT) \
&& export TF_VAR_open_ai=$(OPENAI) \
&& export TF_VAR_secret_key=$(SUPER_SECRET_KEY) \
&& terraform destroy
.PHONY: auth-kubectl
auth-kubectl:
gcloud container clusters get-credentials $(CLUSTER_NAME) --region=$(GCP_REGION)
.PHONY: rollout-new-version-backend
rollout-new-version-backend: auth-kubectl
kubectl rollout restart deploy backend

View File

@@ -0,0 +1,60 @@
terraform {
required_providers {
google = {
source = "hashicorp/google"
version = "5.28.0"
}
}
}
variable "project_id" {
description = "The ID of the project in which resources will be deployed."
type = string
}
variable "name" {
description = "The GKE Cluster name"
type = string
}
variable "region" {
description = "The GCP region to deploy to."
type = string
}
variable "key_file" {
description = "The path to the GCP service account key file."
type = string
}
provider "google" {
credentials = file(var.key_file)
project = var.project_id
region = var.region
}
resource "google_container_cluster" "cluster" {
name = var.name
location = var.region
initial_node_count = 1
remove_default_node_pool = true
}
resource "google_container_node_pool" "primary_preemptible_nodes" {
name = "${google_container_cluster.cluster.name}-node-pool"
location = var.region
cluster = google_container_cluster.cluster.name
node_count = 1
node_config {
machine_type = "n1-standard-4"
disk_size_gb = 25
spot = true
oauth_scopes = [
"https://www.googleapis.com/auth/cloud-platform",
"https://www.googleapis.com/auth/devstorage.read_only",
"https://www.googleapis.com/auth/logging.write",
"https://www.googleapis.com/auth/monitoring",
]
}
}

238
deploy/gcp/main.tf Normal file
View File

@@ -0,0 +1,238 @@
terraform {
required_providers {
google = {
source = "hashicorp/google"
version = "5.28.0"
}
kubernetes = {
source = "hashicorp/kubernetes"
}
}
}
provider "google" {
credentials = file(var.key_file)
project = var.project_id
region = var.region
}
data "google_client_config" "default" {
depends_on = [module.gke-cluster]
}
# Defer reading the cluster data until the GKE cluster exists.
data "google_container_cluster" "default" {
name = var.cluster_name
depends_on = [module.gke-cluster]
location = var.region
}
provider "kubernetes" {
host = "https://${data.google_container_cluster.default.endpoint}"
token = data.google_client_config.default.access_token
cluster_ca_certificate = base64decode(
data.google_container_cluster.default.master_auth[0].cluster_ca_certificate,
)
}
#####################################################################################################
# SearXNG - Search engine deployment and service
#####################################################################################################
resource "kubernetes_deployment" "searxng" {
metadata {
name = "searxng"
labels = {
app = "searxng"
}
}
spec {
replicas = 1
selector {
match_labels = {
component = "searxng"
}
}
template {
metadata {
labels = {
component = "searxng"
}
}
spec {
container {
image = var.search_image
name = "searxng-container"
port {
container_port = var.search_port
}
}
}
}
}
}
resource "kubernetes_service" "searxng_service" {
metadata {
name = "searxng-service"
namespace = "default"
annotations = {
"networking.gke.io/load-balancer-type" = "Internal" # Remove to create an external loadbalancer
}
}
spec {
selector = {
component = "searxng"
}
port {
port = var.search_port
target_port = var.search_port
}
type = "LoadBalancer"
}
}
#####################################################################################################
# Perplexica - backend deployment and service
#####################################################################################################
resource "kubernetes_deployment" "backend" {
metadata {
name = "backend"
labels = {
app = "backend"
}
}
spec {
replicas = 1
selector {
match_labels = {
component = "backend"
}
}
template {
metadata {
labels = {
component = "backend"
}
}
spec {
container {
image = var.backend_image
name = "backend-container"
port {
container_port = var.backend_port
}
env {
# searxng service ip
name = "SEARXNG_API_URL"
value = "http://${kubernetes_service.searxng_service.status[0].load_balancer[0].ingress[0].ip}:${var.search_port}"
}
env {
# openai key
name = "OPENAI"
value = var.open_ai
}
env {
# port
name = "PORT"
value = var.backend_port
}
env {
# Access key for backend
name = "SUPER_SECRET_KEY"
value = var.secret_key
}
}
}
}
}
}
resource "kubernetes_service" "backend_service" {
metadata {
name = "backend-service"
namespace = "default"
}
spec {
selector = {
component = "backend"
}
port {
port = var.backend_port
target_port = var.backend_port
}
type = "LoadBalancer"
}
}
#####################################################################################################
# Variable and module definitions
#####################################################################################################
variable "project_id" {
description = "The ID of the project in which the resources will be deployed."
type = string
}
variable "key_file" {
description = "The path to the GCP service account key file."
type = string
}
variable "region" {
description = "The GCP region to deploy to."
type = string
}
variable "cluster_name" {
description = "The GCP region to deploy to."
type = string
}
variable "search_image" {
description = "Tag for the searxng image"
type = string
}
variable "backend_image" {
description = "Tag for the Perplexica backend image"
type = string
}
variable "app_image" {
description = "Tag for the app image"
type = string
}
variable "open_ai" {
description = "OPENAI access key"
type = string
}
variable "secret_key" {
description = "Access key to secure backend endpoints"
type = string
}
variable "search_port" {
description = "Port for searxng service"
type = number
}
variable "backend_port" {
description = "Port for backend service"
type = number
}
module "gke-cluster" {
source = "./gke-cluster"
project_id = var.project_id
name = var.cluster_name
region = var.region
key_file = var.key_file
}

7
deploy/gcp/sample.env Normal file
View File

@@ -0,0 +1,7 @@
# Rename this file to .env
# 0: Update to your GCP project id
# 1: Update to the path where the GCP service account credential file is kept
# 2: Update the region to your desired GCP region
GCP_PROJECT_ID=name-of-your-gcp-project
GCP_SERVICE_ACCOUNT_KEY_FILE=/Path/to/your/gcp-service-account-key-file.json
GCP_REGION=us-east1

View File

@@ -0,0 +1,3 @@
FROM searxng/searxng
COPY searxng/ /etc/searxng/

View File

@@ -13,19 +13,23 @@ services:
build:
context: .
dockerfile: backend.dockerfile
image: itzcrazykns1337/perplexica-backend:main
args:
- SEARXNG_API_URL=null
volumes:
- "/Volumes/keys/headllamp/keys/:/var/keys/"
- "${GOOGLE_APPLICATION_CREDENTIALS}:/var/keys/gcp_service_account.json"
environment:
- SEARXNG_API_URL=http://searxng:8080
SEARXNG_API_URL: 'http://searxng:8080'
SUPER_SECRET_KEY: ${SUPER_SECRET_KEY}
OPENAI: ${OPENAI}
GROQ: ${GROQ}
OLLAMA_API_URL: ${OLLAMA_API_URL}
GOOGLE_APPLICATION_CREDENTIALS: /var/keys/gcp_service_account.json
USE_JWT: ${USE_JWT}
depends_on:
- searxng
ports:
- 3001:3001
volumes:
- backend-dbstore:/home/perplexica/data
- uploads:/home/perplexica/uploads
- ./config.toml:/home/perplexica/config.toml
extra_hosts:
- 'host.docker.internal:host-gateway'
networks:
- perplexica-network
restart: unless-stopped
@@ -35,9 +39,9 @@ services:
context: .
dockerfile: app.dockerfile
args:
- NEXT_PUBLIC_SUPER_SECRET_KEY=${SUPER_SECRET_KEY}
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
image: itzcrazykns1337/perplexica-frontend:main
depends_on:
- perplexica-backend
ports:
@@ -48,7 +52,3 @@ services:
networks:
perplexica-network:
volumes:
backend-dbstore:
uploads:

View File

@@ -1,26 +0,0 @@
version: '3'
services:
searxng:
image: searxng/searxng
ports:
- "4000:8080"
volumes:
- ./searxng:/etc/searxng
environment:
- INSTANCE_NAME=perplexica-searxng
- BASE_URL=http://localhost:4000/
- SEARXNG_SECRET=your_secret_key_here
restart: unless-stopped
app:
build:
context: .
dockerfile: backend.dockerfile
ports:
- "3000:3000"
environment:
- SEARXNG_URL=http://searxng:8080
volumes:
- ./config.toml:/home/perplexica/config.toml
depends_on:
- searxng

View File

@@ -1,117 +0,0 @@
# Perplexica Search API Documentation
## Overview
Perplexicas Search API makes it easy to use our AI-powered search engine. You can run different types of searches, pick the models you want to use, and get the most recent info. Follow the following headings to learn more about Perplexica's search API.
## Endpoint
### **POST** `http://localhost:3001/api/search`
**Note**: Replace `3001` with any other port if you've changed the default PORT
### Request
The API accepts a JSON object in the request body, where you define the focus mode, chat models, embedding models, and your query.
#### Request Body Structure
```json
{
"chatModel": {
"provider": "openai",
"model": "gpt-4o-mini"
},
"embeddingModel": {
"provider": "openai",
"model": "text-embedding-3-large"
},
"optimizationMode": "speed",
"focusMode": "webSearch",
"query": "What is Perplexica",
"history": [
["human", "Hi, how are you?"],
["assistant", "I am doing well, how can I help you today?"]
]
}
```
### Request Parameters
- **`chatModel`** (object, optional): Defines the chat model to be used for the query. For model details you can send a GET request at `http://localhost:3001/api/models`. Make sure to use the key value (For example "gpt-4o-mini" instead of the display name "GPT 4 omni mini").
- `provider`: Specifies the provider for the chat model (e.g., `openai`, `ollama`).
- `model`: The specific model from the chosen provider (e.g., `gpt-4o-mini`).
- Optional fields for custom OpenAI configuration:
- `customOpenAIBaseURL`: If youre using a custom OpenAI instance, provide the base URL.
- `customOpenAIKey`: The API key for a custom OpenAI instance.
- **`embeddingModel`** (object, optional): Defines the embedding model for similarity-based searching. For model details you can send a GET request at `http://localhost:3001/api/models`. Make sure to use the key value (For example "text-embedding-3-large" instead of the display name "Text Embedding 3 Large").
- `provider`: The provider for the embedding model (e.g., `openai`).
- `model`: The specific embedding model (e.g., `text-embedding-3-large`).
- **`focusMode`** (string, required): Specifies which focus mode to use. Available modes:
- `webSearch`, `academicSearch`, `writingAssistant`, `wolframAlphaSearch`, `youtubeSearch`, `redditSearch`.
- **`optimizationMode`** (string, optional): Specifies the optimization mode to control the balance between performance and quality. Available modes:
- `speed`: Prioritize speed and return the fastest answer.
- `balanced`: Provide a balanced answer with good speed and reasonable quality.
- **`query`** (string, required): The search query or question.
- **`history`** (array, optional): An array of message pairs representing the conversation history. Each pair consists of a role (either 'human' or 'assistant') and the message content. This allows the system to use the context of the conversation to refine results. Example:
```json
[
["human", "What is Perplexica?"],
["assistant", "Perplexica is an AI-powered search engine..."]
]
```
### Response
The response from the API includes both the final message and the sources used to generate that message.
#### Example Response
```json
{
"message": "Perplexica is an innovative, open-source AI-powered search engine designed to enhance the way users search for information online. Here are some key features and characteristics of Perplexica:\n\n- **AI-Powered Technology**: It utilizes advanced machine learning algorithms to not only retrieve information but also to understand the context and intent behind user queries, providing more relevant results [1][5].\n\n- **Open-Source**: Being open-source, Perplexica offers flexibility and transparency, allowing users to explore its functionalities without the constraints of proprietary software [3][10].",
"sources": [
{
"pageContent": "Perplexica is an innovative, open-source AI-powered search engine designed to enhance the way users search for information online.",
"metadata": {
"title": "What is Perplexica, and how does it function as an AI-powered search ...",
"url": "https://askai.glarity.app/search/What-is-Perplexica--and-how-does-it-function-as-an-AI-powered-search-engine"
}
},
{
"pageContent": "Perplexica is an open-source AI-powered search tool that dives deep into the internet to find precise answers.",
"metadata": {
"title": "Sahar Mor's Post",
"url": "https://www.linkedin.com/posts/sahar-mor_a-new-open-source-project-called-perplexica-activity-7204489745668694016-ncja"
}
}
....
]
}
```
### Fields in the Response
- **`message`** (string): The search result, generated based on the query and focus mode.
- **`sources`** (array): A list of sources that were used to generate the search result. Each source includes:
- `pageContent`: A snippet of the relevant content from the source.
- `metadata`: Metadata about the source, including:
- `title`: The title of the webpage.
- `url`: The URL of the webpage.
### Error Handling
If an error occurs during the search process, the API will return an appropriate error message with an HTTP status code.
- **400**: If the request is malformed or missing required fields (e.g., no focus mode or query).
- **500**: If an internal server error occurs during the search.

View File

@@ -1,108 +0,0 @@
# Ethical Web Scraping Guidelines
## Core Principles
1. **Respect Robots.txt**
- Always check and honor robots.txt directives
- Cache robots.txt to reduce server load
- Default to conservative behavior when uncertain
2. **Proper Identification**
- Use clear, identifiable User-Agent strings
- Provide contact information
- Be transparent about your purpose
3. **Rate Limiting**
- Implement conservative rate limits
- Use exponential backoff for errors
- Distribute requests over time
4. **Data Usage**
- Only collect publicly available business information
- Respect privacy and data protection laws
- Provide clear opt-out mechanisms
- Keep data accurate and up-to-date
5. **Technical Considerations**
- Cache results to minimize requests
- Handle errors gracefully
- Monitor and log access patterns
- Use structured data when available
## Implementation
1. **Request Headers**
```typescript
const headers = {
'User-Agent': 'BizSearch/1.0 (+https://bizsearch.com/about)',
'Accept': 'text/html,application/xhtml+xml',
'From': 'contact@bizsearch.com'
};
```
2. **Rate Limiting**
```typescript
const rateLimits = {
requestsPerMinute: 10,
requestsPerHour: 100,
requestsPerDomain: 20
};
```
3. **Caching**
```typescript
const cacheSettings = {
ttl: 24 * 60 * 60, // 24 hours
maxSize: 1000 // entries
};
```
## Opt-Out Process
1. Business owners can opt-out by:
- Submitting a form on our website
- Emailing opt-out@bizsearch.com
- Adding a meta tag: `<meta name="bizsearch" content="noindex">`
2. We honor opt-outs within:
- 24 hours for direct requests
- 72 hours for cached data
## Legal Compliance
1. **Data Protection**
- GDPR compliance for EU businesses
- CCPA compliance for California businesses
- Regular data audits and cleanup
2. **Attribution**
- Clear source attribution
- Last-updated timestamps
- Data accuracy disclaimers
## Best Practices
1. **Before Scraping**
- Check robots.txt
- Verify site status
- Review terms of service
- Look for API alternatives
2. **During Scraping**
- Monitor response codes
- Respect server hints
- Implement backoff strategies
- Log access patterns
3. **After Scraping**
- Verify data accuracy
- Update cache entries
- Clean up old data
- Monitor opt-out requests
## Contact
For questions or concerns about our scraping practices:
- Email: ethics@bizsearch.com
- Phone: (555) 123-4567
- Web: https://bizsearch.com/ethics

View File

@@ -1,4 +1,4 @@
# Perplexica's Architecture
## Perplexica's Architecture
Perplexica's architecture consists of the following key components:

View File

@@ -1,4 +1,4 @@
# How does Perplexica work?
## How does Perplexica work?
Curious about how Perplexica works? Don't worry, we'll cover it here. Before we begin, make sure you've read about the architecture of Perplexica to ensure you understand what it's made up of. Haven't read it? You can read it [here](https://github.com/ItzCrazyKns/Perplexica/tree/master/docs/architecture/README.md).
@@ -10,10 +10,10 @@ We'll understand how Perplexica works by taking an example of a scenario where a
4. After the information is retrieved, it is based on keyword-based search. We then convert the information into embeddings and the query as well, then we perform a similarity search to find the most relevant sources to answer the query.
5. After all this is done, the sources are passed to the response generator. This chain takes all the chat history, the query, and the sources. It generates a response that is streamed to the UI.
## How are the answers cited?
### How are the answers cited?
The LLMs are prompted to do so. We've prompted them so well that they cite the answers themselves, and using some UI magic, we display it to the user.
## Image and Video Search
### Image and Video Search
Image and video searches are conducted in a similar manner. A query is always generated first, then we search the web for images and videos that match the query. These results are then returned to the user.

View File

@@ -10,27 +10,27 @@ This guide will show you how to make Perplexica available over a network. Follow
3. Stop and remove the existing Perplexica containers and images:
```bash
docker compose down --rmi all
```
```
docker compose down --rmi all
```
4. Open the `docker-compose.yaml` file in a text editor like Notepad++
5. Replace `127.0.0.1` with the IP address of the server Perplexica is running on in these two lines:
```bash
args:
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
```
```
args:
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
```
6. Save and close the `docker-compose.yaml` file
7. Rebuild and restart the Perplexica container:
```bash
docker compose up -d --build
```
```
docker compose up -d --build
```
## macOS
@@ -38,37 +38,37 @@ This guide will show you how to make Perplexica available over a network. Follow
2. Navigate to the directory with the `docker-compose.yaml` file:
```bash
cd /path/to/docker-compose.yaml
```
```
cd /path/to/docker-compose.yaml
```
3. Stop and remove existing containers and images:
```bash
docker compose down --rmi all
```
```
docker compose down --rmi all
```
4. Open `docker-compose.yaml` in a text editor like Sublime Text:
```bash
nano docker-compose.yaml
```
```
nano docker-compose.yaml
```
5. Replace `127.0.0.1` with the server IP in these lines:
```bash
args:
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
```
```
args:
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
```
6. Save and exit the editor
7. Rebuild and restart Perplexica:
```bash
docker compose up -d --build
```
```
docker compose up -d --build
```
## Linux
@@ -76,34 +76,34 @@ This guide will show you how to make Perplexica available over a network. Follow
2. Navigate to the `docker-compose.yaml` directory:
```bash
cd /path/to/docker-compose.yaml
```
```
cd /path/to/docker-compose.yaml
```
3. Stop and remove containers and images:
```bash
docker compose down --rmi all
```
```
docker compose down --rmi all
```
4. Edit `docker-compose.yaml`:
```bash
nano docker-compose.yaml
```
```
nano docker-compose.yaml
```
5. Replace `127.0.0.1` with the server IP:
```bash
args:
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
```
```
args:
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
```
6. Save and exit the editor
7. Rebuild and restart Perplexica:
```bash
docker compose up -d --build
```
```
docker compose up -d --build
```

View File

@@ -1,40 +0,0 @@
# Update Perplexica to the latest version
To update Perplexica to the latest version, follow these steps:
## For Docker users
1. Clone the latest version of Perplexica from GitHub:
```bash
git clone https://github.com/ItzCrazyKns/Perplexica.git
```
2. Navigate to the Project Directory.
3. Pull latest images from registry.
```bash
docker compose pull
```
4. Update and Recreate containers.
```bash
docker compose up -d
```
5. Once the command completes running go to http://localhost:3000 and verify the latest changes.
## For non Docker users
1. Clone the latest version of Perplexica from GitHub:
```bash
git clone https://github.com/ItzCrazyKns/Perplexica.git
```
2. Navigate to the Project Directory
3. Execute `npm i` in both the `ui` folder and the root directory.
4. Once packages are updated, execute `npm run build` in both the `ui` folder and the root directory.
5. Finally, start both the frontend and the backend by running `npm run start` in both the `ui` folder and the root directory.

View File

@@ -1,10 +0,0 @@
import { defineConfig } from 'drizzle-kit';
export default defineConfig({
dialect: 'sqlite',
schema: './src/db/schema.ts',
out: './drizzle',
dbCredentials: {
url: './data/db.sqlite',
},
});

41
frontend/.gitignore vendored
View File

@@ -1,41 +0,0 @@
# See https://help.github.com/articles/ignoring-files/ for more about ignoring files.
# dependencies
/node_modules
/.pnp
.pnp.*
.yarn/*
!.yarn/patches
!.yarn/plugins
!.yarn/releases
!.yarn/versions
# testing
/coverage
# next.js
/.next/
/out/
# production
/build
# misc
.DS_Store
*.pem
# debug
npm-debug.log*
yarn-debug.log*
yarn-error.log*
.pnpm-debug.log*
# env files (can opt-in for committing if needed)
.env*
# vercel
.vercel
# typescript
*.tsbuildinfo
next-env.d.ts

View File

@@ -1,36 +0,0 @@
This is a [Next.js](https://nextjs.org) project bootstrapped with [`create-next-app`](https://nextjs.org/docs/app/api-reference/cli/create-next-app).
## Getting Started
First, run the development server:
```bash
npm run dev
# or
yarn dev
# or
pnpm dev
# or
bun dev
```
Open [http://localhost:3000](http://localhost:3000) with your browser to see the result.
You can start editing the page by modifying `app/page.tsx`. The page auto-updates as you edit the file.
This project uses [`next/font`](https://nextjs.org/docs/app/building-your-application/optimizing/fonts) to automatically optimize and load [Geist](https://vercel.com/font), a new font family for Vercel.
## Learn More
To learn more about Next.js, take a look at the following resources:
- [Next.js Documentation](https://nextjs.org/docs) - learn about Next.js features and API.
- [Learn Next.js](https://nextjs.org/learn) - an interactive Next.js tutorial.
You can check out [the Next.js GitHub repository](https://github.com/vercel/next.js) - your feedback and contributions are welcome!
## Deploy on Vercel
The easiest way to deploy your Next.js app is to use the [Vercel Platform](https://vercel.com/new?utm_medium=default-template&filter=next.js&utm_source=create-next-app&utm_campaign=create-next-app-readme) from the creators of Next.js.
Check out our [Next.js deployment documentation](https://nextjs.org/docs/app/building-your-application/deploying) for more details.

View File

@@ -1,16 +0,0 @@
import { dirname } from "path";
import { fileURLToPath } from "url";
import { FlatCompat } from "@eslint/eslintrc";
const __filename = fileURLToPath(import.meta.url);
const __dirname = dirname(__filename);
const compat = new FlatCompat({
baseDirectory: __dirname,
});
const eslintConfig = [
...compat.extends("next/core-web-vitals", "next/typescript"),
];
export default eslintConfig;

View File

@@ -1,13 +0,0 @@
/** @type {import('next').NextConfig} */
const nextConfig = {
async rewrites() {
return [
{
source: '/api/:path*',
destination: 'http://localhost:3000/api/:path*',
},
]
}
}
module.exports = nextConfig

View File

@@ -1,7 +0,0 @@
import type { NextConfig } from "next";
const nextConfig: NextConfig = {
/* config options here */
};
export default nextConfig;

File diff suppressed because it is too large Load Diff

View File

@@ -1,33 +0,0 @@
{
"name": "frontend",
"version": "0.1.0",
"private": true,
"scripts": {
"dev": "next dev",
"build": "next build",
"start": "next start",
"lint": "next lint"
},
"dependencies": {
"@radix-ui/react-icons": "^1.3.2",
"class-variance-authority": "^0.7.1",
"clsx": "^2.1.1",
"lucide-react": "^0.469.0",
"next": "15.1.3",
"react": "^19.0.0",
"react-dom": "^19.0.0",
"tailwind-merge": "^2.6.0",
"tailwindcss-animate": "^1.0.7"
},
"devDependencies": {
"@eslint/eslintrc": "^3",
"@types/node": "^20",
"@types/react": "^19",
"@types/react-dom": "^19",
"eslint": "^9",
"eslint-config-next": "15.1.3",
"postcss": "^8",
"tailwindcss": "^3.4.1",
"typescript": "^5"
}
}

View File

@@ -1,8 +0,0 @@
/** @type {import('postcss-load-config').Config} */
const config = {
plugins: {
tailwindcss: {},
},
};
export default config;

View File

@@ -1 +0,0 @@
<svg fill="none" viewBox="0 0 16 16" xmlns="http://www.w3.org/2000/svg"><path d="M14.5 13.5V5.41a1 1 0 0 0-.3-.7L9.8.29A1 1 0 0 0 9.08 0H1.5v13.5A2.5 2.5 0 0 0 4 16h8a2.5 2.5 0 0 0 2.5-2.5m-1.5 0v-7H8v-5H3v12a1 1 0 0 0 1 1h8a1 1 0 0 0 1-1M9.5 5V2.12L12.38 5zM5.13 5h-.62v1.25h2.12V5zm-.62 3h7.12v1.25H4.5zm.62 3h-.62v1.25h7.12V11z" clip-rule="evenodd" fill="#666" fill-rule="evenodd"/></svg>

Before

Width:  |  Height:  |  Size: 391 B

View File

@@ -1 +0,0 @@
<svg fill="none" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 16 16"><g clip-path="url(#a)"><path fill-rule="evenodd" clip-rule="evenodd" d="M10.27 14.1a6.5 6.5 0 0 0 3.67-3.45q-1.24.21-2.7.34-.31 1.83-.97 3.1M8 16A8 8 0 1 0 8 0a8 8 0 0 0 0 16m.48-1.52a7 7 0 0 1-.96 0H7.5a4 4 0 0 1-.84-1.32q-.38-.89-.63-2.08a40 40 0 0 0 3.92 0q-.25 1.2-.63 2.08a4 4 0 0 1-.84 1.31zm2.94-4.76q1.66-.15 2.95-.43a7 7 0 0 0 0-2.58q-1.3-.27-2.95-.43a18 18 0 0 1 0 3.44m-1.27-3.54a17 17 0 0 1 0 3.64 39 39 0 0 1-4.3 0 17 17 0 0 1 0-3.64 39 39 0 0 1 4.3 0m1.1-1.17q1.45.13 2.69.34a6.5 6.5 0 0 0-3.67-3.44q.65 1.26.98 3.1M8.48 1.5l.01.02q.41.37.84 1.31.38.89.63 2.08a40 40 0 0 0-3.92 0q.25-1.2.63-2.08a4 4 0 0 1 .85-1.32 7 7 0 0 1 .96 0m-2.75.4a6.5 6.5 0 0 0-3.67 3.44 29 29 0 0 1 2.7-.34q.31-1.83.97-3.1M4.58 6.28q-1.66.16-2.95.43a7 7 0 0 0 0 2.58q1.3.27 2.95.43a18 18 0 0 1 0-3.44m.17 4.71q-1.45-.12-2.69-.34a6.5 6.5 0 0 0 3.67 3.44q-.65-1.27-.98-3.1" fill="#666"/></g><defs><clipPath id="a"><path fill="#fff" d="M0 0h16v16H0z"/></clipPath></defs></svg>

Before

Width:  |  Height:  |  Size: 1.0 KiB

View File

@@ -1 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 394 80"><path fill="#000" d="M262 0h68.5v12.7h-27.2v66.6h-13.6V12.7H262V0ZM149 0v12.7H94v20.4h44.3v12.6H94v21h55v12.6H80.5V0h68.7zm34.3 0h-17.8l63.8 79.4h17.9l-32-39.7 32-39.6h-17.9l-23 28.6-23-28.6zm18.3 56.7-9-11-27.1 33.7h17.8l18.3-22.7z"/><path fill="#000" d="M81 79.3 17 0H0v79.3h13.6V17l50.2 62.3H81Zm252.6-.4c-1 0-1.8-.4-2.5-1s-1.1-1.6-1.1-2.6.3-1.8 1-2.5 1.6-1 2.6-1 1.8.3 2.5 1a3.4 3.4 0 0 1 .6 4.3 3.7 3.7 0 0 1-3 1.8zm23.2-33.5h6v23.3c0 2.1-.4 4-1.3 5.5a9.1 9.1 0 0 1-3.8 3.5c-1.6.8-3.5 1.3-5.7 1.3-2 0-3.7-.4-5.3-1s-2.8-1.8-3.7-3.2c-.9-1.3-1.4-3-1.4-5h6c.1.8.3 1.6.7 2.2s1 1.2 1.6 1.5c.7.4 1.5.5 2.4.5 1 0 1.8-.2 2.4-.6a4 4 0 0 0 1.6-1.8c.3-.8.5-1.8.5-3V45.5zm30.9 9.1a4.4 4.4 0 0 0-2-3.3 7.5 7.5 0 0 0-4.3-1.1c-1.3 0-2.4.2-3.3.5-.9.4-1.6 1-2 1.6a3.5 3.5 0 0 0-.3 4c.3.5.7.9 1.3 1.2l1.8 1 2 .5 3.2.8c1.3.3 2.5.7 3.7 1.2a13 13 0 0 1 3.2 1.8 8.1 8.1 0 0 1 3 6.5c0 2-.5 3.7-1.5 5.1a10 10 0 0 1-4.4 3.5c-1.8.8-4.1 1.2-6.8 1.2-2.6 0-4.9-.4-6.8-1.2-2-.8-3.4-2-4.5-3.5a10 10 0 0 1-1.7-5.6h6a5 5 0 0 0 3.5 4.6c1 .4 2.2.6 3.4.6 1.3 0 2.5-.2 3.5-.6 1-.4 1.8-1 2.4-1.7a4 4 0 0 0 .8-2.4c0-.9-.2-1.6-.7-2.2a11 11 0 0 0-2.1-1.4l-3.2-1-3.8-1c-2.8-.7-5-1.7-6.6-3.2a7.2 7.2 0 0 1-2.4-5.7 8 8 0 0 1 1.7-5 10 10 0 0 1 4.3-3.5c2-.8 4-1.2 6.4-1.2 2.3 0 4.4.4 6.2 1.2 1.8.8 3.2 2 4.3 3.4 1 1.4 1.5 3 1.5 5h-5.8z"/></svg>

Before

Width:  |  Height:  |  Size: 1.3 KiB

View File

@@ -1 +0,0 @@
<svg fill="none" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 1155 1000"><path d="m577.3 0 577.4 1000H0z" fill="#fff"/></svg>

Before

Width:  |  Height:  |  Size: 128 B

View File

@@ -1 +0,0 @@
<svg fill="none" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 16 16"><path fill-rule="evenodd" clip-rule="evenodd" d="M1.5 2.5h13v10a1 1 0 0 1-1 1h-11a1 1 0 0 1-1-1zM0 1h16v11.5a2.5 2.5 0 0 1-2.5 2.5h-11A2.5 2.5 0 0 1 0 12.5zm3.75 4.5a.75.75 0 1 0 0-1.5.75.75 0 0 0 0 1.5M7 4.75a.75.75 0 1 1-1.5 0 .75.75 0 0 1 1.5 0m1.75.75a.75.75 0 1 0 0-1.5.75.75 0 0 0 0 1.5" fill="#666"/></svg>

Before

Width:  |  Height:  |  Size: 385 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 25 KiB

View File

@@ -1,76 +0,0 @@
@tailwind base;
@tailwind components;
@tailwind utilities;
@layer base {
:root {
--background: 0 0% 100%;
--foreground: 222.2 84% 4.9%;
--card: 0 0% 100%;
--card-foreground: 222.2 84% 4.9%;
--popover: 0 0% 100%;
--popover-foreground: 222.2 84% 4.9%;
--primary: 222.2 47.4% 11.2%;
--primary-foreground: 210 40% 98%;
--secondary: 210 40% 96.1%;
--secondary-foreground: 222.2 47.4% 11.2%;
--muted: 210 40% 96.1%;
--muted-foreground: 215.4 16.3% 46.9%;
--accent: 210 40% 96.1%;
--accent-foreground: 222.2 47.4% 11.2%;
--destructive: 0 84.2% 60.2%;
--destructive-foreground: 210 40% 98%;
--border: 214.3 31.8% 91.4%;
--input: 214.3 31.8% 91.4%;
--ring: 222.2 84% 4.9%;
--radius: 0.5rem;
}
.dark {
--background: 222.2 84% 4.9%;
--foreground: 210 40% 98%;
--card: 222.2 84% 4.9%;
--card-foreground: 210 40% 98%;
--popover: 222.2 84% 4.9%;
--popover-foreground: 210 40% 98%;
--primary: 210 40% 98%;
--primary-foreground: 222.2 47.4% 11.2%;
--secondary: 217.2 32.6% 17.5%;
--secondary-foreground: 210 40% 98%;
--muted: 217.2 32.6% 17.5%;
--muted-foreground: 215 20.2% 65.1%;
--accent: 217.2 32.6% 17.5%;
--accent-foreground: 210 40% 98%;
--destructive: 0 62.8% 30.6%;
--destructive-foreground: 210 40% 98%;
--border: 217.2 32.6% 17.5%;
--input: 217.2 32.6% 17.5%;
--ring: 212.7 26.8% 83.9%;
}
}
@layer base {
* {
@apply border-border;
}
body {
@apply bg-background text-foreground;
}
}

View File

@@ -1,34 +0,0 @@
import type { Metadata } from "next";
import { Geist, Geist_Mono } from "next/font/google";
import "./globals.css";
const geistSans = Geist({
variable: "--font-geist-sans",
subsets: ["latin"],
});
const geistMono = Geist_Mono({
variable: "--font-geist-mono",
subsets: ["latin"],
});
export const metadata: Metadata = {
title: "Create Next App",
description: "Generated by create next app",
};
export default function RootLayout({
children,
}: Readonly<{
children: React.ReactNode;
}>) {
return (
<html lang="en">
<body
className={`${geistSans.variable} ${geistMono.variable} antialiased`}
>
{children}
</body>
</html>
);
}

View File

@@ -1,26 +0,0 @@
'use client'
import { ServerStatus } from "@/components/server-status"
import { SearchForm } from "@/components/search-form"
import { SearchResults } from "@/components/search-results"
import { useState } from "react"
export default function Home() {
const [searchResults, setSearchResults] = useState([])
const [isSearching, setIsSearching] = useState(false)
const services = [
{ name: "Ollama", status: "running" as const },
{ name: "SearxNG", status: "running" as const },
{ name: "Supabase", status: "running" as const }
]
return (
<main className="container mx-auto p-4">
<h1 className="text-4xl font-bold text-center mb-8">Business Search</h1>
<SearchForm onSearch={setSearchResults} onSearchingChange={setIsSearching} />
<SearchResults results={searchResults} isLoading={isSearching} />
<ServerStatus services={services} />
</main>
)
}

View File

@@ -1,79 +0,0 @@
import { Search } from "lucide-react"
import { useState } from "react"
interface SearchFormProps {
onSearch: (results: any[]) => void;
onSearchingChange: (isSearching: boolean) => void;
}
export function SearchForm({ onSearch, onSearchingChange }: SearchFormProps) {
const [query, setQuery] = useState("")
const [error, setError] = useState<string | null>(null)
const handleSearch = async (e: React.FormEvent) => {
e.preventDefault()
if (!query.trim()) return
setError(null)
onSearchingChange(true)
try {
const response = await fetch("/api/search", {
method: "POST",
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify({ query: query.trim() }),
})
if (!response.ok) {
throw new Error("Search failed")
}
const data = await response.json()
onSearch(data.results || [])
} catch (error) {
console.error("Search error:", error)
onSearch([])
setError("Failed to perform search. Please try again.")
} finally {
onSearchingChange(false)
}
}
return (
<div className="w-full max-w-2xl mx-auto mt-8 mb-12">
<div className="flex flex-col gap-4">
<div className="flex flex-col gap-2">
<label htmlFor="search" className="text-lg font-medium text-center">
Find local businesses
</label>
<form onSubmit={handleSearch} className="relative">
<input
id="search"
type="text"
value={query}
onChange={(e) => setQuery(e.target.value)}
placeholder="e.g. plumbers in Denver, CO"
className="w-full px-4 py-3 text-lg rounded-lg border border-border bg-background focus:outline-none focus:ring-2 focus:ring-primary"
/>
<button
type="submit"
disabled={!query.trim()}
className="absolute right-2 top-1/2 -translate-y-1/2 p-3 rounded-md bg-primary text-primary-foreground hover:bg-primary/90 transition-colors disabled:opacity-50 disabled:cursor-not-allowed"
aria-label="Search"
>
<Search className="h-5 w-5" />
</button>
</form>
{error && (
<p className="text-sm text-destructive text-center">{error}</p>
)}
<p className="text-sm text-muted-foreground text-center mt-2">
Try searching for: restaurants, dentists, electricians, etc.
</p>
</div>
</div>
</div>
)
}

View File

@@ -1,76 +0,0 @@
interface Business {
id: string;
name: string;
address: string;
phone: string;
website?: string;
email?: string;
description?: string;
rating?: number;
}
interface SearchResultsProps {
results: Business[];
isLoading: boolean;
}
export function SearchResults({ results, isLoading }: SearchResultsProps) {
if (isLoading) {
return (
<div className="w-full max-w-4xl mx-auto mt-8">
<div className="animate-pulse space-y-4">
{[...Array(3)].map((_, i) => (
<div key={i} className="bg-muted rounded-lg p-6">
<div className="h-4 bg-muted-foreground/20 rounded w-3/4 mb-4"></div>
<div className="h-3 bg-muted-foreground/20 rounded w-1/2"></div>
</div>
))}
</div>
</div>
)
}
if (!results.length) {
return null
}
return (
<div className="w-full max-w-4xl mx-auto mt-8">
<div className="space-y-4">
{results.map((business) => (
<div key={business.id} className="bg-card rounded-lg p-6 shadow-sm">
<h3 className="text-xl font-semibold mb-2">{business.name}</h3>
{business.address && (
<p className="text-muted-foreground mb-2">{business.address}</p>
)}
<div className="flex flex-wrap gap-4 text-sm">
{business.phone && (
<a
href={`tel:${business.phone}`}
className="text-primary hover:underline"
>
{business.phone}
</a>
)}
{business.website && (
<a
href={business.website}
target="_blank"
rel="noopener noreferrer"
className="text-primary hover:underline"
>
Visit Website
</a>
)}
</div>
{business.description && (
<p className="mt-4 text-sm text-muted-foreground">
{business.description}
</p>
)}
</div>
))}
</div>
</div>
)
}

View File

@@ -1,59 +0,0 @@
import { CheckCircle2, XCircle, AlertCircle } from "lucide-react"
import { Alert, AlertDescription, AlertTitle } from "@/components/ui/alert"
interface ServiceStatus {
name: string
status: "running" | "error" | "warning"
}
interface ServerStatusProps {
services: ServiceStatus[]
error?: string
}
export function ServerStatus({ services, error }: ServerStatusProps) {
if (error) {
return (
<Alert variant="destructive" className="max-w-md mx-auto mt-4">
<XCircle className="h-4 w-4" />
<AlertTitle>Server Error</AlertTitle>
<AlertDescription>{error}</AlertDescription>
</Alert>
)
}
return (
<div className="space-y-4 max-w-md mx-auto mt-4">
<h2 className="text-xl font-semibold text-center mb-6">Service Status</h2>
<div className="space-y-3">
{services.map((service) => (
<Alert
key={service.name}
variant={service.status === "error" ? "destructive" : "default"}
className="flex items-center justify-between hover:bg-accent/50 transition-colors"
>
<div className="flex items-center gap-3">
{service.status === "running" && (
<CheckCircle2 className="h-5 w-5 text-green-500 shrink-0" />
)}
{service.status === "error" && (
<XCircle className="h-5 w-5 text-red-500 shrink-0" />
)}
{service.status === "warning" && (
<AlertCircle className="h-5 w-5 text-yellow-500 shrink-0" />
)}
<AlertTitle className="font-medium">{service.name}</AlertTitle>
</div>
<span className={`text-sm ${
service.status === "running" ? "text-green-600" :
service.status === "error" ? "text-red-600" :
"text-yellow-600"
}`}>
{service.status.charAt(0).toUpperCase() + service.status.slice(1)}
</span>
</Alert>
))}
</div>
</div>
)
}

View File

@@ -1,58 +0,0 @@
import * as React from "react"
import { cva, type VariantProps } from "class-variance-authority"
import { cn } from "@/lib/utils"
const alertVariants = cva(
"relative w-full rounded-lg border p-4 [&>svg~*]:pl-7 [&>svg+div]:translate-y-[-3px] [&>svg]:absolute [&>svg]:left-4 [&>svg]:top-4 [&>svg]:text-foreground",
{
variants: {
variant: {
default: "bg-background text-foreground",
destructive:
"border-destructive/50 text-destructive dark:border-destructive [&>svg]:text-destructive",
},
},
defaultVariants: {
variant: "default",
},
}
)
const Alert = React.forwardRef<
HTMLDivElement,
React.HTMLAttributes<HTMLDivElement> & VariantProps<typeof alertVariants>
>(({ className, variant, ...props }, ref) => (
<div
ref={ref}
role="alert"
className={cn(alertVariants({ variant }), className)}
{...props}
/>
))
Alert.displayName = "Alert"
const AlertTitle = React.forwardRef<
HTMLParagraphElement,
React.HTMLAttributes<HTMLHeadingElement>
>(({ className, ...props }, ref) => (
<h5
ref={ref}
className={cn("mb-1 font-medium leading-none tracking-tight", className)}
{...props}
/>
))
AlertTitle.displayName = "AlertTitle"
const AlertDescription = React.forwardRef<
HTMLParagraphElement,
React.HTMLAttributes<HTMLParagraphElement>
>(({ className, ...props }, ref) => (
<div
ref={ref}
className={cn("text-sm [&_p]:leading-relaxed", className)}
{...props}
/>
))
AlertDescription.displayName = "AlertDescription"
export { Alert, AlertTitle, AlertDescription }

View File

@@ -1,6 +0,0 @@
import { type ClassValue, clsx } from "clsx"
import { twMerge } from "tailwind-merge"
export function cn(...inputs: ClassValue[]) {
return twMerge(clsx(inputs))
}

View File

@@ -1,79 +0,0 @@
import type { Config } from "tailwindcss";
const config: Config = {
darkMode: ["class"],
content: [
'./pages/**/*.{ts,tsx}',
'./components/**/*.{ts,tsx}',
'./app/**/*.{ts,tsx}',
'./src/**/*.{ts,tsx}',
],
theme: {
container: {
center: true,
padding: "2rem",
screens: {
"2xl": "1400px",
},
},
extend: {
colors: {
border: "hsl(var(--border))",
input: "hsl(var(--input))",
ring: "hsl(var(--ring))",
background: "hsl(var(--background))",
foreground: "hsl(var(--foreground))",
primary: {
DEFAULT: "hsl(var(--primary))",
foreground: "hsl(var(--primary-foreground))",
},
secondary: {
DEFAULT: "hsl(var(--secondary))",
foreground: "hsl(var(--secondary-foreground))",
},
destructive: {
DEFAULT: "hsl(var(--destructive))",
foreground: "hsl(var(--destructive-foreground))",
},
muted: {
DEFAULT: "hsl(var(--muted))",
foreground: "hsl(var(--muted-foreground))",
},
accent: {
DEFAULT: "hsl(var(--accent))",
foreground: "hsl(var(--accent-foreground))",
},
popover: {
DEFAULT: "hsl(var(--popover))",
foreground: "hsl(var(--popover-foreground))",
},
card: {
DEFAULT: "hsl(var(--card))",
foreground: "hsl(var(--card-foreground))",
},
},
borderRadius: {
lg: "var(--radius)",
md: "calc(var(--radius) - 2px)",
sm: "calc(var(--radius) - 4px)",
},
keyframes: {
"accordion-down": {
from: { height: "0" },
to: { height: "var(--radix-accordion-content-height)" },
},
"accordion-up": {
from: { height: "var(--radix-accordion-content-height)" },
to: { height: "0" },
},
},
animation: {
"accordion-down": "accordion-down 0.2s ease-out",
"accordion-up": "accordion-up 0.2s ease-out",
},
},
},
plugins: [require("tailwindcss-animate")],
}
export default config;

View File

@@ -1,27 +0,0 @@
{
"compilerOptions": {
"target": "ES2017",
"lib": ["dom", "dom.iterable", "esnext"],
"allowJs": true,
"skipLibCheck": true,
"strict": true,
"noEmit": true,
"esModuleInterop": true,
"module": "esnext",
"moduleResolution": "bundler",
"resolveJsonModule": true,
"isolatedModules": true,
"jsx": "preserve",
"incremental": true,
"plugins": [
{
"name": "next"
}
],
"paths": {
"@/*": ["./src/*"]
}
},
"include": ["next-env.d.ts", "**/*.ts", "**/*.tsx", ".next/types/**/*.ts"],
"exclude": ["node_modules"]
}

View File

@@ -1,17 +0,0 @@
module.exports = {
preset: 'ts-jest',
testEnvironment: 'node',
roots: ['<rootDir>/src'],
testMatch: ['**/__tests__/**/*.ts', '**/?(*.)+(spec|test).ts'],
transform: {
'^.+\\.ts$': 'ts-jest',
},
moduleFileExtensions: ['ts', 'js', 'json', 'node'],
collectCoverageFrom: [
'src/**/*.{ts,js}',
'!src/tests/**',
'!**/node_modules/**',
],
coverageDirectory: 'coverage',
setupFilesAfterEnv: ['<rootDir>/src/tests/setup.ts'],
};

14318
package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,80 +1,38 @@
{
"name": "perplexica-backend",
"version": "1.10.0-rc2",
"version": "1.5.0",
"license": "MIT",
"author": "ItzCrazyKns",
"scripts": {
"start": "ts-node src/index.ts",
"start": "node dist/app.js",
"build": "tsc",
"dev": "nodemon src/index.ts",
"db:push": "drizzle-kit push sqlite",
"dev": "nodemon src/app.ts",
"format": "prettier . --check",
"format:write": "prettier . --write",
"test:search": "ts-node src/tests/testSearch.ts",
"test:supabase": "ts-node src/tests/supabaseTest.ts",
"test:deepseek": "ts-node src/tests/testDeepseek.ts",
"test:ollama": "ts-node src/tests/testOllama.ts",
"test": "jest",
"test:watch": "jest --watch",
"test:coverage": "jest --coverage",
"build:css": "tailwindcss -i ./src/styles/input.css -o ./public/styles/output.css",
"watch:css": "tailwindcss -i ./src/styles/input.css -o ./public/styles/output.css --watch"
"format:write": "prettier . --write"
},
"devDependencies": {
"@testing-library/jest-dom": "^6.1.5",
"@types/better-sqlite3": "^7.6.10",
"@types/cors": "^2.8.17",
"@types/express": "^4.17.21",
"@types/html-to-text": "^9.0.4",
"@types/jest": "^29.5.11",
"@types/multer": "^1.4.12",
"@types/node-fetch": "^2.6.12",
"@types/pdf-parse": "^1.1.4",
"@types/readable-stream": "^4.0.11",
"@types/supertest": "^6.0.2",
"@types/ws": "^8.5.12",
"autoprefixer": "^10.4.20",
"drizzle-kit": "^0.22.7",
"jest": "^29.7.0",
"nodemon": "^3.1.0",
"postcss": "^8.4.49",
"prettier": "^3.2.5",
"supertest": "^7.0.0",
"tailwindcss": "^3.4.17",
"ts-jest": "^29.1.1",
"ts-node": "^10.9.2",
"typescript": "^5.4.3"
},
"dependencies": {
"@huggingface/transformers": "latest",
"@iarna/toml": "^2.2.5",
"@langchain/anthropic": "^0.2.3",
"@langchain/community": "^0.2.16",
"@langchain/google-genai": "^0.0.23",
"@langchain/google-vertexai": "^0.0.16",
"@langchain/openai": "^0.0.25",
"@shadcn/ui": "^0.0.4",
"@supabase/supabase-js": "^2.47.10",
"@xenova/transformers": "^2.17.1",
"axios": "^1.6.8",
"better-sqlite3": "^11.7.0",
"cheerio": "^1.0.0",
"compute-cosine-similarity": "^1.1.0",
"compute-dot": "^1.1.0",
"cors": "^2.8.5",
"dotenv": "^16.4.7",
"drizzle-orm": "^0.31.2",
"dotenv": "^16.4.5",
"express": "^4.19.2",
"html-to-text": "^9.0.5",
"langchain": "^0.1.30",
"mammoth": "^1.8.0",
"multer": "^1.4.5-lts.1",
"node-fetch": "^2.7.0",
"pdf-parse": "^1.1.1",
"robots-parser": "^3.0.1",
"tesseract.js": "^4.1.4",
"torch": "latest",
"winston": "^3.13.0",
"ws": "^8.17.1",
"zod": "^3.24.1"
"ws": "^8.16.0",
"zod": "^3.22.4"
}
}

View File

@@ -1,6 +0,0 @@
module.exports = {
plugins: {
tailwindcss: {},
autoprefixer: {},
},
}

View File

@@ -1,214 +0,0 @@
<!DOCTYPE html>
<html lang="en" class="h-full bg-gray-50">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>OffMarket Pro - Business Search</title>
<link href="/styles/output.css" rel="stylesheet">
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap" rel="stylesheet">
</head>
<body class="min-h-full">
<div class="bg-white">
<!-- Navigation -->
<nav class="bg-white shadow-sm">
<div class="mx-auto max-w-7xl px-4 sm:px-6 lg:px-8">
<div class="flex h-16 justify-between items-center">
<div class="flex-shrink-0 flex items-center">
<h1 class="text-xl font-bold text-gray-900">OffMarket Pro</h1>
</div>
</div>
</div>
</nav>
<!-- Main Content -->
<main class="mx-auto max-w-7xl px-4 sm:px-6 lg:px-8 py-8">
<!-- Search Form -->
<div class="mb-8">
<h2 class="text-2xl font-bold text-gray-900 mb-6">Find Off-Market Property Services</h2>
<div class="grid grid-cols-1 gap-4 sm:grid-cols-2">
<div>
<label for="searchQuery" class="block text-sm font-medium text-gray-700">Service Type</label>
<input type="text" id="searchQuery" class="mt-1 block w-full rounded-md border-gray-300 shadow-sm focus:border-primary focus:ring-primary sm:text-sm" placeholder="e.g. plumber, electrician">
</div>
<div>
<label for="searchLocation" class="block text-sm font-medium text-gray-700">Location</label>
<input type="text" id="searchLocation" class="mt-1 block w-full rounded-md border-gray-300 shadow-sm focus:border-primary focus:ring-primary sm:text-sm" placeholder="e.g. Denver, CO">
</div>
</div>
<div class="mt-4">
<button onclick="performSearch()" class="inline-flex items-center px-4 py-2 border border-transparent text-sm font-medium rounded-md shadow-sm text-white bg-primary hover:bg-primary-hover focus:outline-none focus:ring-2 focus:ring-offset-2 focus:ring-primary">
Search
</button>
</div>
</div>
<!-- Progress Indicator -->
<div id="searchProgress" class="hidden mb-8">
<div class="bg-white shadow sm:rounded-lg">
<div class="px-4 py-5 sm:p-6">
<h3 class="text-lg font-medium leading-6 text-gray-900">Search Progress</h3>
<div class="mt-4">
<div class="relative pt-1">
<div class="overflow-hidden h-2 mb-4 text-xs flex rounded bg-gray-200">
<div id="progressBar" class="shadow-none flex flex-col text-center whitespace-nowrap text-white justify-center bg-primary transition-all duration-500" style="width: 0%"></div>
</div>
<div id="progressText" class="text-sm text-gray-600"></div>
</div>
</div>
</div>
</div>
</div>
<!-- Error Display -->
<div id="errorDisplay" class="hidden mb-8">
<div class="rounded-md bg-red-50 p-4">
<div class="flex">
<div class="flex-shrink-0">
<svg class="h-5 w-5 text-red-400" viewBox="0 0 20 20" fill="currentColor">
<path fill-rule="evenodd" d="M10 18a8 8 0 100-16 8 8 0 000 16zM8.707 7.293a1 1 0 00-1.414 1.414L8.586 10l-1.293 1.293a1 1 0 101.414 1.414L10 11.414l1.293 1.293a1 1 0 001.414-1.414L11.414 10l1.293-1.293a1 1 0 00-1.414-1.414L10 8.586 8.707 7.293z" clip-rule="evenodd"/>
</svg>
</div>
<div class="ml-3">
<h3 class="text-sm font-medium text-red-800">Error</h3>
<div class="mt-2 text-sm text-red-700">
<p id="errorMessage"></p>
</div>
</div>
</div>
</div>
</div>
<!-- Results Table -->
<div id="resultsContainer" class="hidden">
<div class="bg-white shadow overflow-hidden sm:rounded-lg">
<div class="px-4 py-5 sm:px-6">
<h3 class="text-lg leading-6 font-medium text-gray-900">Search Results</h3>
</div>
<div class="border-t border-gray-200">
<div class="overflow-x-auto">
<table class="min-w-full divide-y divide-gray-200">
<thead class="bg-gray-50">
<tr>
<th scope="col" class="px-6 py-3 text-left text-xs font-medium text-gray-500 uppercase tracking-wider">Business</th>
<th scope="col" class="px-6 py-3 text-left text-xs font-medium text-gray-500 uppercase tracking-wider">Contact</th>
<th scope="col" class="px-6 py-3 text-left text-xs font-medium text-gray-500 uppercase tracking-wider">Actions</th>
</tr>
</thead>
<tbody id="resultsBody" class="bg-white divide-y divide-gray-200">
<!-- Results will be inserted here -->
</tbody>
</table>
</div>
</div>
</div>
</div>
</main>
</div>
<script>
class SearchProgress {
constructor() {
this.progressBar = document.getElementById('progressBar');
this.progressText = document.getElementById('progressText');
this.container = document.getElementById('searchProgress');
}
show() {
this.container.classList.remove('hidden');
this.setProgress(0, 'Starting search...');
}
hide() {
this.container.classList.add('hidden');
}
setProgress(percent, message) {
this.progressBar.style.width = `${percent}%`;
this.progressText.textContent = message;
}
showError(message) {
this.setProgress(100, `Error: ${message}`);
this.progressBar.classList.remove('bg-primary');
this.progressBar.classList.add('bg-red-500');
}
}
async function performSearch() {
const query = document.getElementById('searchQuery').value;
const location = document.getElementById('searchLocation').value;
if (!query || !location) {
showError('Please enter both search query and location');
return;
}
const progress = new SearchProgress();
progress.show();
try {
document.getElementById('errorDisplay').classList.add('hidden');
document.getElementById('resultsContainer').classList.add('hidden');
const response = await fetch('/api/search', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({ query, location })
});
const data = await response.json();
if (!data.success) {
throw new Error(data.error || 'Search failed');
}
displayResults(data.results);
progress.hide();
} catch (error) {
console.error('Search error:', error);
progress.showError(error.message);
showError(error.message);
}
}
function showError(message) {
const errorDisplay = document.getElementById('errorDisplay');
const errorMessage = document.getElementById('errorMessage');
errorMessage.textContent = message;
errorDisplay.classList.remove('hidden');
}
function displayResults(results) {
const container = document.getElementById('resultsContainer');
const tbody = document.getElementById('resultsBody');
tbody.innerHTML = results.map(business => `
<tr>
<td class="px-6 py-4">
<div class="text-sm font-medium text-gray-900">${business.name}</div>
<div class="text-sm text-gray-500">${business.description}</div>
</td>
<td class="px-6 py-4">
<div class="text-sm text-gray-900">${business.address}</div>
<div class="text-sm text-gray-500">${business.phone}</div>
</td>
<td class="px-6 py-4">
${business.website ?
`<a href="${business.website}" target="_blank"
class="inline-flex items-center px-3 py-2 border border-transparent text-sm leading-4 font-medium rounded-md text-white bg-primary hover:bg-primary-hover focus:outline-none focus:ring-2 focus:ring-offset-2 focus:ring-primary">
Visit Website
</a>` :
'<span class="text-sm text-gray-500">No website available</span>'
}
</td>
</tr>
`).join('');
container.classList.remove('hidden');
}
</script>
</body>
</html>

View File

@@ -1,13 +1,10 @@
[GENERAL]
PORT = 3001 # Port to run the server on
SIMILARITY_MEASURE = "cosine" # "cosine" or "dot"
KEEP_ALIVE = "5m" # How long to keep Ollama models loaded into memory. (Instead of using -1 use "-1m")
[API_KEYS]
OPENAI = "" # OpenAI API key - sk-1234567890abcdef1234567890abcdef
GROQ = "" # Groq API key - gsk_1234567890abcdef1234567890abcdef
ANTHROPIC = "" # Anthropic API key - sk-ant-1234567890abcdef1234567890abcdef
GEMINI = "" # Gemini API key - sk-1234567890abcdef1234567890abcdef
[API_ENDPOINTS]
SEARXNG = "http://localhost:32768" # SearxNG API URL

24
sample.env Normal file
View File

@@ -0,0 +1,24 @@
# Copy this file over to .env and fill in the desired config.
# .env will become available to docker compose and these values will be
# used when running docker compose up
# Edit to set OpenAI access key
OPENAI=ADD OPENAI KEY HERE
# Uncomment and edit to set GROQ access key
# GROQ: ${GROQ}
# Uncomment and edit to set OLLAMA Url
# OLLAMA_API_URL: ${OLLAMA_API_URL}
# Address and port of the remotely deployed Perplexica backend
REMOTE_BACKEND_ADDRESS=111.111.111.111:0000
# Uncomment and edit to configure backend to reject requests without token
# leave commented to have open access to all endpoints
# Secret key to "secure" backend
# SUPER_SECRET_KEY=THISISASUPERSECRETKEYSERIOUSLY
# Uncomment and edit to configure a specific service account key file to use to
# auth with VertexAI when running (backend) full Perplexica stack locally
# GOOGLE_APPLICATION_CREDENTIALS=/absolute/path/to/gcp-service-account-key-file.json

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,264 @@
import { BaseMessage } from '@langchain/core/messages';
import {
PromptTemplate,
ChatPromptTemplate,
MessagesPlaceholder,
} from '@langchain/core/prompts';
import {
RunnableSequence,
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { Document } from '@langchain/core/documents';
import { searchSearxng } from '../lib/searxng';
import type { StreamEvent } from '@langchain/core/tracers/log_stream';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import computeSimilarity from '../utils/computeSimilarity';
import logger from '../utils/logger';
const basicAcademicSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
Example:
1. Follow up question: How does stable diffusion work?
Rephrased: Stable diffusion working
2. Follow up question: What is linear algebra?
Rephrased: Linear algebra
3. Follow up question: What is the third law of thermodynamics?
Rephrased: Third law of thermodynamics
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
const basicAcademicSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Academic', this means you will be searching for academic papers and articles on the web.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containg a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Aything inside the following \`context\` HTML block provided below is for your knowledge returned by the search engine and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
{context}
</context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'.
Anything between the \`context\` is retrieved from a search engine and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
`;
const strParser = new StringOutputParser();
const handleStream = async (
stream: AsyncGenerator<StreamEvent, any, unknown>,
emitter: eventEmitter,
) => {
for await (const event of stream) {
if (
event.event === 'on_chain_end' &&
event.name === 'FinalSourceRetriever'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'sources', data: event.data.output }),
);
}
if (
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
);
}
if (
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit('end');
}
}
};
type BasicChainInput = {
chat_history: BaseMessage[];
query: string;
};
const createBasicAcademicSearchRetrieverChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
PromptTemplate.fromTemplate(basicAcademicSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
return { query: '', docs: [] };
}
const res = await searchSearxng(input, {
language: 'en',
engines: [
'arxiv',
'google scholar',
'internetarchivescholar',
'pubmed',
],
});
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: input, docs: documents };
}),
]);
};
const createBasicAcademicSearchAnsweringChain = (
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const basicAcademicSearchRetrieverChain =
createBasicAcademicSearchRetrieverChain(llm);
const processDocs = async (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
const rerankDocs = async ({
query,
docs,
}: {
query: string;
docs: Document[];
}) => {
if (docs.length === 0) {
return docs;
}
const docsWithContent = docs.filter(
(doc) => doc.pageContent && doc.pageContent.length > 0,
);
const [docEmbeddings, queryEmbedding] = await Promise.all([
embeddings.embedDocuments(docsWithContent.map((doc) => doc.pageContent)),
embeddings.embedQuery(query),
]);
const similarity = docEmbeddings.map((docEmbedding, i) => {
const sim = computeSimilarity(queryEmbedding, docEmbedding);
return {
index: i,
similarity: sim,
};
});
const sortedDocs = similarity
.sort((a, b) => b.similarity - a.similarity)
.slice(0, 15)
.map((sim) => docsWithContent[sim.index]);
return sortedDocs;
};
return RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
basicAcademicSearchRetrieverChain
.pipe(rerankDocs)
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicAcademicSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
]),
llm,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
};
const basicAcademicSearch = (
query: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = new eventEmitter();
try {
const basicAcademicSearchAnsweringChain =
createBasicAcademicSearchAnsweringChain(llm, embeddings);
const stream = basicAcademicSearchAnsweringChain.streamEvents(
{
chat_history: history,
query: query,
},
{
version: 'v1',
},
);
handleStream(stream, emitter);
} catch (err) {
emitter.emit(
'error',
JSON.stringify({ data: 'An error has occurred please try again later' }),
);
logger.error(`Error in academic search: ${err}`);
}
return emitter;
};
const handleAcademicSearch = (
message: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = basicAcademicSearch(message, history, llm, embeddings);
return emitter;
};
export default handleAcademicSearch;

View File

@@ -0,0 +1,259 @@
import { BaseMessage } from '@langchain/core/messages';
import {
PromptTemplate,
ChatPromptTemplate,
MessagesPlaceholder,
} from '@langchain/core/prompts';
import {
RunnableSequence,
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { Document } from '@langchain/core/documents';
import { searchSearxng } from '../lib/searxng';
import type { StreamEvent } from '@langchain/core/tracers/log_stream';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import computeSimilarity from '../utils/computeSimilarity';
import logger from '../utils/logger';
const basicRedditSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
Example:
1. Follow up question: Which company is most likely to create an AGI
Rephrased: Which company is most likely to create an AGI
2. Follow up question: Is Earth flat?
Rephrased: Is Earth flat?
3. Follow up question: Is there life on Mars?
Rephrased: Is there life on Mars?
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
const basicRedditSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Reddit', this means you will be searching for information, opinions and discussions on the web using Reddit.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containg a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Aything inside the following \`context\` HTML block provided below is for your knowledge returned by Reddit and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
{context}
</context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'.
Anything between the \`context\` is retrieved from Reddit and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
`;
const strParser = new StringOutputParser();
const handleStream = async (
stream: AsyncGenerator<StreamEvent, any, unknown>,
emitter: eventEmitter,
) => {
for await (const event of stream) {
if (
event.event === 'on_chain_end' &&
event.name === 'FinalSourceRetriever'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'sources', data: event.data.output }),
);
}
if (
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
);
}
if (
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit('end');
}
}
};
type BasicChainInput = {
chat_history: BaseMessage[];
query: string;
};
const createBasicRedditSearchRetrieverChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
PromptTemplate.fromTemplate(basicRedditSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
return { query: '', docs: [] };
}
const res = await searchSearxng(input, {
language: 'en',
engines: ['reddit'],
});
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content ? result.content : result.title,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: input, docs: documents };
}),
]);
};
const createBasicRedditSearchAnsweringChain = (
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const basicRedditSearchRetrieverChain =
createBasicRedditSearchRetrieverChain(llm);
const processDocs = async (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
const rerankDocs = async ({
query,
docs,
}: {
query: string;
docs: Document[];
}) => {
if (docs.length === 0) {
return docs;
}
const docsWithContent = docs.filter(
(doc) => doc.pageContent && doc.pageContent.length > 0,
);
const [docEmbeddings, queryEmbedding] = await Promise.all([
embeddings.embedDocuments(docsWithContent.map((doc) => doc.pageContent)),
embeddings.embedQuery(query),
]);
const similarity = docEmbeddings.map((docEmbedding, i) => {
const sim = computeSimilarity(queryEmbedding, docEmbedding);
return {
index: i,
similarity: sim,
};
});
const sortedDocs = similarity
.sort((a, b) => b.similarity - a.similarity)
.slice(0, 15)
.filter((sim) => sim.similarity > 0.3)
.map((sim) => docsWithContent[sim.index]);
return sortedDocs;
};
return RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
basicRedditSearchRetrieverChain
.pipe(rerankDocs)
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicRedditSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
]),
llm,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
};
const basicRedditSearch = (
query: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = new eventEmitter();
try {
const basicRedditSearchAnsweringChain =
createBasicRedditSearchAnsweringChain(llm, embeddings);
const stream = basicRedditSearchAnsweringChain.streamEvents(
{
chat_history: history,
query: query,
},
{
version: 'v1',
},
);
handleStream(stream, emitter);
} catch (err) {
emitter.emit(
'error',
JSON.stringify({ data: 'An error has occurred please try again later' }),
);
logger.error(`Error in RedditSearch: ${err}`);
}
return emitter;
};
const handleRedditSearch = (
message: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = basicRedditSearch(message, history, llm, embeddings);
return emitter;
};
export default handleRedditSearch;

View File

@@ -47,7 +47,7 @@ const generateSuggestions = (
input: SuggestionGeneratorInput,
llm: BaseChatModel,
) => {
(llm as unknown as ChatOpenAI).temperature = 0;
(llm as ChatOpenAI).temperature = 0;
const suggestionGeneratorChain = createSuggestionGeneratorChain(llm);
return suggestionGeneratorChain.invoke(input);
};

View File

@@ -0,0 +1,260 @@
import { BaseMessage } from '@langchain/core/messages';
import {
PromptTemplate,
ChatPromptTemplate,
MessagesPlaceholder,
} from '@langchain/core/prompts';
import {
RunnableSequence,
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { Document } from '@langchain/core/documents';
import { searchSearxng } from '../lib/searxng';
import type { StreamEvent } from '@langchain/core/tracers/log_stream';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import computeSimilarity from '../utils/computeSimilarity';
import logger from '../utils/logger';
const basicSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
Example:
1. Follow up question: What is the capital of France?
Rephrased: Capital of france
2. Follow up question: What is the population of New York City?
Rephrased: Population of New York City
3. Follow up question: What is Docker?
Rephrased: What is Docker
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
const basicWebSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containg a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Aything inside the following \`context\` HTML block provided below is for your knowledge returned by the search engine and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
{context}
</context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'.
Anything between the \`context\` is retrieved from a search engine and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
`;
const strParser = new StringOutputParser();
const handleStream = async (
stream: AsyncGenerator<StreamEvent, any, unknown>,
emitter: eventEmitter,
) => {
for await (const event of stream) {
if (
event.event === 'on_chain_end' &&
event.name === 'FinalSourceRetriever'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'sources', data: event.data.output }),
);
}
if (
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
);
}
if (
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit('end');
}
}
};
type BasicChainInput = {
chat_history: BaseMessage[];
query: string;
};
const createBasicWebSearchRetrieverChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
PromptTemplate.fromTemplate(basicSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
return { query: '', docs: [] };
}
const res = await searchSearxng(input, {
language: 'en',
});
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: input, docs: documents };
}),
]);
};
const createBasicWebSearchAnsweringChain = (
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const basicWebSearchRetrieverChain = createBasicWebSearchRetrieverChain(llm);
const processDocs = async (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
const rerankDocs = async ({
query,
docs,
}: {
query: string;
docs: Document[];
}) => {
if (docs.length === 0) {
return docs;
}
const docsWithContent = docs.filter(
(doc) => doc.pageContent && doc.pageContent.length > 0,
);
const [docEmbeddings, queryEmbedding] = await Promise.all([
embeddings.embedDocuments(docsWithContent.map((doc) => doc.pageContent)),
embeddings.embedQuery(query),
]);
const similarity = docEmbeddings.map((docEmbedding, i) => {
const sim = computeSimilarity(queryEmbedding, docEmbedding);
return {
index: i,
similarity: sim,
};
});
const sortedDocs = similarity
.sort((a, b) => b.similarity - a.similarity)
.filter((sim) => sim.similarity > 0.5)
.slice(0, 15)
.map((sim) => docsWithContent[sim.index]);
return sortedDocs;
};
return RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
basicWebSearchRetrieverChain
.pipe(rerankDocs)
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicWebSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
]),
llm,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
};
const basicWebSearch = (
query: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = new eventEmitter();
try {
const basicWebSearchAnsweringChain = createBasicWebSearchAnsweringChain(
llm,
embeddings,
);
const stream = basicWebSearchAnsweringChain.streamEvents(
{
chat_history: history,
query: query,
},
{
version: 'v1',
},
);
handleStream(stream, emitter);
} catch (err) {
emitter.emit(
'error',
JSON.stringify({ data: 'An error has occurred please try again later' }),
);
logger.error(`Error in websearch: ${err}`);
}
return emitter;
};
const handleWebSearch = (
message: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = basicWebSearch(message, history, llm, embeddings);
return emitter;
};
export default handleWebSearch;

View File

@@ -0,0 +1,218 @@
import { BaseMessage } from '@langchain/core/messages';
import {
PromptTemplate,
ChatPromptTemplate,
MessagesPlaceholder,
} from '@langchain/core/prompts';
import {
RunnableSequence,
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { Document } from '@langchain/core/documents';
import { searchSearxng } from '../lib/searxng';
import type { StreamEvent } from '@langchain/core/tracers/log_stream';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import logger from '../utils/logger';
const basicWolframAlphaSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
Example:
1. Follow up question: What is the atomic radius of S?
Rephrased: Atomic radius of S
2. Follow up question: What is linear algebra?
Rephrased: Linear algebra
3. Follow up question: What is the third law of thermodynamics?
Rephrased: Third law of thermodynamics
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
const basicWolframAlphaSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Wolfram Alpha', this means you will be searching for information on the web using Wolfram Alpha. It is a computational knowledge engine that can answer factual queries and perform computations.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containg a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Aything inside the following \`context\` HTML block provided below is for your knowledge returned by Wolfram Alpha and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
{context}
</context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'.
Anything between the \`context\` is retrieved from Wolfram Alpha and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
`;
const strParser = new StringOutputParser();
const handleStream = async (
stream: AsyncGenerator<StreamEvent, any, unknown>,
emitter: eventEmitter,
) => {
for await (const event of stream) {
if (
event.event === 'on_chain_end' &&
event.name === 'FinalSourceRetriever'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'sources', data: event.data.output }),
);
}
if (
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
);
}
if (
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit('end');
}
}
};
type BasicChainInput = {
chat_history: BaseMessage[];
query: string;
};
const createBasicWolframAlphaSearchRetrieverChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
PromptTemplate.fromTemplate(basicWolframAlphaSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
return { query: '', docs: [] };
}
const res = await searchSearxng(input, {
language: 'en',
engines: ['wolframalpha'],
});
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: input, docs: documents };
}),
]);
};
const createBasicWolframAlphaSearchAnsweringChain = (llm: BaseChatModel) => {
const basicWolframAlphaSearchRetrieverChain =
createBasicWolframAlphaSearchRetrieverChain(llm);
const processDocs = (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
return RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
basicWolframAlphaSearchRetrieverChain
.pipe(({ query, docs }) => {
return docs;
})
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicWolframAlphaSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
]),
llm,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
};
const basicWolframAlphaSearch = (
query: string,
history: BaseMessage[],
llm: BaseChatModel,
) => {
const emitter = new eventEmitter();
try {
const basicWolframAlphaSearchAnsweringChain =
createBasicWolframAlphaSearchAnsweringChain(llm);
const stream = basicWolframAlphaSearchAnsweringChain.streamEvents(
{
chat_history: history,
query: query,
},
{
version: 'v1',
},
);
handleStream(stream, emitter);
} catch (err) {
emitter.emit(
'error',
JSON.stringify({ data: 'An error has occurred please try again later' }),
);
logger.error(`Error in WolframAlphaSearch: ${err}`);
}
return emitter;
};
const handleWolframAlphaSearch = (
message: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = basicWolframAlphaSearch(message, history, llm);
return emitter;
};
export default handleWolframAlphaSearch;

View File

@@ -0,0 +1,89 @@
import { BaseMessage } from '@langchain/core/messages';
import {
ChatPromptTemplate,
MessagesPlaceholder,
} from '@langchain/core/prompts';
import { RunnableSequence } from '@langchain/core/runnables';
import { StringOutputParser } from '@langchain/core/output_parsers';
import type { StreamEvent } from '@langchain/core/tracers/log_stream';
import eventEmitter from 'events';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import logger from '../utils/logger';
const writingAssistantPrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are currently set on focus mode 'Writing Assistant', this means you will be helping the user write a response to a given query.
Since you are a writing assistant, you would not perform web searches. If you think you lack information to answer the query, you can ask the user for more information or suggest them to switch to a different focus mode.
`;
const strParser = new StringOutputParser();
const handleStream = async (
stream: AsyncGenerator<StreamEvent, any, unknown>,
emitter: eventEmitter,
) => {
for await (const event of stream) {
if (
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
);
}
if (
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit('end');
}
}
};
const createWritingAssistantChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
ChatPromptTemplate.fromMessages([
['system', writingAssistantPrompt],
new MessagesPlaceholder('chat_history'),
]),
llm,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
};
const handleWritingAssistant = (
query: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = new eventEmitter();
try {
const writingAssistantChain = createWritingAssistantChain(llm);
const stream = writingAssistantChain.streamEvents(
{
chat_history: history,
query: query,
},
{
version: 'v1',
},
);
handleStream(stream, emitter);
} catch (err) {
emitter.emit(
'error',
JSON.stringify({ data: 'An error has occurred please try again later' }),
);
logger.error(`Error in writing assistant: ${err}`);
}
return emitter;
};
export default handleWritingAssistant;

View File

@@ -0,0 +1,260 @@
import { BaseMessage } from '@langchain/core/messages';
import {
PromptTemplate,
ChatPromptTemplate,
MessagesPlaceholder,
} from '@langchain/core/prompts';
import {
RunnableSequence,
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { Document } from '@langchain/core/documents';
import { searchSearxng } from '../lib/searxng';
import type { StreamEvent } from '@langchain/core/tracers/log_stream';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import computeSimilarity from '../utils/computeSimilarity';
import logger from '../utils/logger';
const basicYoutubeSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
Example:
1. Follow up question: How does an A.C work?
Rephrased: A.C working
2. Follow up question: Linear algebra explanation video
Rephrased: What is linear algebra?
3. Follow up question: What is theory of relativity?
Rephrased: What is theory of relativity?
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
const basicYoutubeSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Youtube', this means you will be searching for videos on the web using Youtube and providing information based on the video's transcript.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containg a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Aything inside the following \`context\` HTML block provided below is for your knowledge returned by Youtube and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
{context}
</context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'.
Anything between the \`context\` is retrieved from Youtube and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
`;
const strParser = new StringOutputParser();
const handleStream = async (
stream: AsyncGenerator<StreamEvent, any, unknown>,
emitter: eventEmitter,
) => {
for await (const event of stream) {
if (
event.event === 'on_chain_end' &&
event.name === 'FinalSourceRetriever'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'sources', data: event.data.output }),
);
}
if (
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
);
}
if (
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit('end');
}
}
};
type BasicChainInput = {
chat_history: BaseMessage[];
query: string;
};
const createBasicYoutubeSearchRetrieverChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
PromptTemplate.fromTemplate(basicYoutubeSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
return { query: '', docs: [] };
}
const res = await searchSearxng(input, {
language: 'en',
engines: ['youtube'],
});
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content ? result.content : result.title,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: input, docs: documents };
}),
]);
};
const createBasicYoutubeSearchAnsweringChain = (
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const basicYoutubeSearchRetrieverChain =
createBasicYoutubeSearchRetrieverChain(llm);
const processDocs = async (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
const rerankDocs = async ({
query,
docs,
}: {
query: string;
docs: Document[];
}) => {
if (docs.length === 0) {
return docs;
}
const docsWithContent = docs.filter(
(doc) => doc.pageContent && doc.pageContent.length > 0,
);
const [docEmbeddings, queryEmbedding] = await Promise.all([
embeddings.embedDocuments(docsWithContent.map((doc) => doc.pageContent)),
embeddings.embedQuery(query),
]);
const similarity = docEmbeddings.map((docEmbedding, i) => {
const sim = computeSimilarity(queryEmbedding, docEmbedding);
return {
index: i,
similarity: sim,
};
});
const sortedDocs = similarity
.sort((a, b) => b.similarity - a.similarity)
.slice(0, 15)
.filter((sim) => sim.similarity > 0.3)
.map((sim) => docsWithContent[sim.index]);
return sortedDocs;
};
return RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
basicYoutubeSearchRetrieverChain
.pipe(rerankDocs)
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicYoutubeSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
]),
llm,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
};
const basicYoutubeSearch = (
query: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = new eventEmitter();
try {
const basicYoutubeSearchAnsweringChain =
createBasicYoutubeSearchAnsweringChain(llm, embeddings);
const stream = basicYoutubeSearchAnsweringChain.streamEvents(
{
chat_history: history,
query: query,
},
{
version: 'v1',
},
);
handleStream(stream, emitter);
} catch (err) {
emitter.emit(
'error',
JSON.stringify({ data: 'An error has occurred please try again later' }),
);
logger.error(`Error in youtube search: ${err}`);
}
return emitter;
};
const handleYoutubeSearch = (
message: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = basicYoutubeSearch(message, history, llm, embeddings);
return emitter;
};
export default handleYoutubeSearch;

View File

@@ -1,16 +1,41 @@
import { startWebSocketServer } from './websocket';
import express from 'express';
import cors from 'cors';
import searchRoutes from './routes/search';
import businessRoutes from './routes/business';
import http from 'http';
import routes from './routes';
import { requireAccessKey } from './auth';
import { getAccessKey, getPort } from './config';
import logger from './utils/logger';
const port = getPort();
const app = express();
const server = http.createServer(app);
const corsOptions = {
origin: '*',
allowedHeaders: ['Authorization', 'Content-Type'],
};
app.use(cors(corsOptions));
if (getAccessKey()) {
app.all('/api/*', requireAccessKey);
}
// Middleware
app.use(cors());
app.use(express.json());
// Routes
app.use('/api/search', searchRoutes);
app.use('/api/business', businessRoutes);
app.get('/', (_, res) => {
res.status(200).json({ status: 'ok' });
});
export default app;
app.use('/api', routes);
app.get('/api', (_, res) => {
res.status(200).json({ status: 'ok' });
});
server.listen(port, () => {
logger.info(`Server is running on port ${port}`);
});
startWebSocketServer(server);

29
src/auth.ts Normal file
View File

@@ -0,0 +1,29 @@
import { auth } from 'google-auth-library';
import { getAccessKey } from './config';
export const requireAccessKey = (req, res, next) => {
const authHeader = req.headers.authorization;
if (authHeader) {
if (!checkAccessKey(authHeader)) {
return res.sendStatus(403);
}
next();
} else {
res.sendStatus(401);
}
};
export const checkAccessKey = (authHeader) => {
const token = authHeader.split(' ')[1];
return Boolean(authHeader && token === getAccessKey());
};
export const hasGCPCredentials = async () => {
try {
const credentials = await auth.getCredentials();
return Object.keys(credentials).length > 0;
} catch (e) {
return false;
}
};

View File

@@ -8,13 +8,11 @@ interface Config {
GENERAL: {
PORT: number;
SIMILARITY_MEASURE: string;
KEEP_ALIVE: string;
SUPER_SECRET_KEY: string;
};
API_KEYS: {
OPENAI: string;
GROQ: string;
ANTHROPIC: string;
GEMINI: string;
};
API_ENDPOINTS: {
SEARXNG: string;
@@ -31,25 +29,43 @@ const loadConfig = () =>
fs.readFileSync(path.join(__dirname, `../${configFileName}`), 'utf-8'),
) as any as Config;
const loadEnv = () => {
return {
GENERAL: {
PORT: Number(process.env.PORT),
SIMILARITY_MEASURE: process.env.SIMILARITY_MEASURE,
SUPER_SECRET_KEY: process.env.SUPER_SECRET_KEY,
},
API_KEYS: {
OPENAI: process.env.OPENAI,
GROQ: process.env.GROQ,
},
API_ENDPOINTS: {
SEARXNG: process.env.SEARXNG_API_URL,
OLLAMA: process.env.OLLAMA_API_URL,
},
} as Config;
};
export const getPort = () => loadConfig().GENERAL.PORT;
export const getAccessKey = () =>
loadEnv().GENERAL.SUPER_SECRET_KEY || loadConfig().GENERAL.SUPER_SECRET_KEY;
export const getSimilarityMeasure = () =>
loadConfig().GENERAL.SIMILARITY_MEASURE;
export const getKeepAlive = () => loadConfig().GENERAL.KEEP_ALIVE;
export const getOpenaiApiKey = () =>
loadEnv().API_KEYS.OPENAI || loadConfig().API_KEYS.OPENAI;
export const getOpenaiApiKey = () => loadConfig().API_KEYS.OPENAI;
export const getGroqApiKey = () => loadConfig().API_KEYS.GROQ;
export const getAnthropicApiKey = () => loadConfig().API_KEYS.ANTHROPIC;
export const getGeminiApiKey = () => loadConfig().API_KEYS.GEMINI;
export const getGroqApiKey = () =>
loadEnv().API_KEYS.GROQ || loadConfig().API_KEYS.GROQ;
export const getSearxngApiEndpoint = () =>
process.env.SEARXNG_API_URL || loadConfig().API_ENDPOINTS.SEARXNG;
loadEnv().API_ENDPOINTS.SEARXNG || loadConfig().API_ENDPOINTS.SEARXNG;
export const getOllamaApiEndpoint = () => loadConfig().API_ENDPOINTS.OLLAMA;
export const getOllamaApiEndpoint = () =>
loadEnv().API_ENDPOINTS.OLLAMA || loadConfig().API_ENDPOINTS.OLLAMA;
export const updateConfig = (config: RecursivePartial<Config>) => {
const currentConfig = loadConfig();
@@ -77,16 +93,3 @@ export const updateConfig = (config: RecursivePartial<Config>) => {
toml.stringify(config),
);
};
export const config = {
ollama: {
url: process.env.OLLAMA_URL || 'http://localhost:11434',
model: process.env.OLLAMA_MODEL || 'mistral',
options: {
temperature: 0.1,
top_p: 0.9,
timeout: 30000 // 30 seconds timeout
}
},
// ... other config
};

View File

@@ -1,40 +0,0 @@
import dotenv from 'dotenv';
// Load environment variables
dotenv.config();
// Environment configuration
const env = {
// Supabase Configuration
SUPABASE_URL: process.env.SUPABASE_URL || '',
SUPABASE_KEY: process.env.SUPABASE_KEY || '',
// Server Configuration
PORT: parseInt(process.env.PORT || '3001', 10),
NODE_ENV: process.env.NODE_ENV || 'development',
// Search Configuration
MAX_RESULTS_PER_QUERY: parseInt(process.env.MAX_RESULTS_PER_QUERY || '50', 10),
CACHE_DURATION_HOURS: parseInt(process.env.CACHE_DURATION_HOURS || '24', 10),
CACHE_DURATION_DAYS: parseInt(process.env.CACHE_DURATION_DAYS || '7', 10),
// SearxNG Configuration
SEARXNG_URL: process.env.SEARXNG_URL || 'http://localhost:4000',
// Ollama Configuration
OLLAMA_URL: process.env.OLLAMA_URL || 'http://localhost:11434',
OLLAMA_MODEL: process.env.OLLAMA_MODEL || 'deepseek-coder:6.7b',
// Hugging Face Configuration
HUGGING_FACE_API_KEY: process.env.HUGGING_FACE_API_KEY || ''
};
// Validate required environment variables
const requiredEnvVars = ['SUPABASE_URL', 'SUPABASE_KEY', 'SEARXNG_URL'];
for (const envVar of requiredEnvVars) {
if (!env[envVar as keyof typeof env]) {
throw new Error(`Missing required environment variable: ${envVar}`);
}
}
export { env };

View File

@@ -1,77 +0,0 @@
import dotenv from 'dotenv';
import path from 'path';
// Load .env file
dotenv.config({ path: path.resolve(__dirname, '../../.env') });
export interface Config {
supabase: {
url: string;
anonKey: string;
};
server: {
port: number;
nodeEnv: string;
};
search: {
maxResultsPerQuery: number;
cacheDurationHours: number;
searxngUrl?: string;
};
rateLimit: {
windowMs: number;
maxRequests: number;
};
security: {
corsOrigin: string;
jwtSecret: string;
};
proxy?: {
http?: string;
https?: string;
};
logging: {
level: string;
};
}
const config: Config = {
supabase: {
url: process.env.SUPABASE_URL || '',
anonKey: process.env.SUPABASE_ANON_KEY || '',
},
server: {
port: parseInt(process.env.PORT || '3000', 10),
nodeEnv: process.env.NODE_ENV || 'development',
},
search: {
maxResultsPerQuery: parseInt(process.env.MAX_RESULTS_PER_QUERY || '20', 10),
cacheDurationHours: parseInt(process.env.CACHE_DURATION_HOURS || '24', 10),
searxngUrl: process.env.SEARXNG_URL
},
rateLimit: {
windowMs: parseInt(process.env.RATE_LIMIT_WINDOW_MS || '900000', 10),
maxRequests: parseInt(process.env.RATE_LIMIT_MAX_REQUESTS || '100', 10),
},
security: {
corsOrigin: process.env.CORS_ORIGIN || 'http://localhost:3000',
jwtSecret: process.env.JWT_SECRET || 'your_jwt_secret_key',
},
logging: {
level: process.env.LOG_LEVEL || 'info',
},
};
// Validate required configuration
const validateConfig = () => {
if (!config.supabase.url) {
throw new Error('SUPABASE_URL is required');
}
if (!config.supabase.anonKey) {
throw new Error('SUPABASE_ANON_KEY is required');
}
};
validateConfig();
export { config };

View File

@@ -1,10 +0,0 @@
import { drizzle } from 'drizzle-orm/better-sqlite3';
import Database from 'better-sqlite3';
import * as schema from './schema';
const sqlite = new Database('data/db.sqlite');
const db = drizzle(sqlite, {
schema: schema,
});
export default db;

View File

@@ -1,28 +0,0 @@
import { sql } from 'drizzle-orm';
import { text, integer, sqliteTable } from 'drizzle-orm/sqlite-core';
export const messages = sqliteTable('messages', {
id: integer('id').primaryKey(),
content: text('content').notNull(),
chatId: text('chatId').notNull(),
messageId: text('messageId').notNull(),
role: text('type', { enum: ['assistant', 'user'] }),
metadata: text('metadata', {
mode: 'json',
}),
});
interface File {
name: string;
fileId: string;
}
export const chats = sqliteTable('chats', {
id: text('id').primaryKey(),
title: text('title').notNull(),
createdAt: text('createdAt').notNull(),
focusMode: text('focusMode').notNull(),
files: text('files', { mode: 'json' })
.$type<File[]>()
.default(sql`'[]'`),
});

View File

@@ -1,24 +0,0 @@
import './config/env'; // Load environment variables first
import { startServer } from './server';
import { isPortAvailable } from './utils/portCheck';
import { testConnection } from './lib/supabase';
const PORT = process.env.PORT || 3001;
const init = async () => {
if (!await isPortAvailable(PORT)) {
console.error(`Port ${PORT} is in use. Please try a different port or free up the current one.`);
process.exit(1);
}
// Test Supabase connection
const isConnected = await testConnection();
if (!isConnected) {
console.error('Failed to connect to Supabase. Please check your configuration.');
process.exit(1);
}
startServer();
};
init().catch(console.error);

View File

@@ -1,116 +0,0 @@
export interface Category {
id: string;
name: string;
icon: string;
subcategories: SubCategory[];
}
export interface SubCategory {
id: string;
name: string;
}
export const categories: Category[] = [
{
id: 'real-estate-pros',
name: 'Real Estate Professionals',
icon: '🏢',
subcategories: [
{ id: 'wholesalers', name: 'Real Estate Wholesalers' },
{ id: 'agents', name: 'Real Estate Agents' },
{ id: 'attorneys', name: 'Real Estate Attorneys' },
{ id: 'scouts', name: 'Property Scouts' },
{ id: 'brokers', name: 'Real Estate Brokers' },
{ id: 'consultants', name: 'Real Estate Consultants' }
]
},
{
id: 'legal-title',
name: 'Legal & Title Services',
icon: '⚖️',
subcategories: [
{ id: 'title-companies', name: 'Title Companies' },
{ id: 'closing-attorneys', name: 'Closing Attorneys' },
{ id: 'zoning-consultants', name: 'Zoning Consultants' },
{ id: 'probate-specialists', name: 'Probate Specialists' },
{ id: 'eviction-specialists', name: 'Eviction Specialists' }
]
},
{
id: 'financial',
name: 'Financial Services',
icon: '💰',
subcategories: [
{ id: 'hard-money', name: 'Hard Money Lenders' },
{ id: 'private-equity', name: 'Private Equity Investors' },
{ id: 'mortgage-brokers', name: 'Mortgage Brokers' },
{ id: 'tax-advisors', name: 'Tax Advisors' },
{ id: 'appraisers', name: 'Appraisers' }
]
},
{
id: 'contractors',
name: 'Specialist Contractors',
icon: '🔨',
subcategories: [
{ id: 'general', name: 'General Contractors' },
{ id: 'plumbers', name: 'Plumbers' },
{ id: 'electricians', name: 'Electricians' },
{ id: 'hvac', name: 'HVAC Technicians' },
{ id: 'roofers', name: 'Roofers' },
{ id: 'foundation', name: 'Foundation Specialists' },
{ id: 'asbestos', name: 'Asbestos Removal' },
{ id: 'mold', name: 'Mold Remediation' }
]
},
{
id: 'property-services',
name: 'Property Services',
icon: '🏠',
subcategories: [
{ id: 'surveyors', name: 'Surveyors' },
{ id: 'inspectors', name: 'Inspectors' },
{ id: 'property-managers', name: 'Property Managers' },
{ id: 'environmental', name: 'Environmental Consultants' },
{ id: 'junk-removal', name: 'Junk Removal Services' },
{ id: 'cleaning', name: 'Property Cleaning' }
]
},
{
id: 'marketing',
name: 'Marketing & Lead Gen',
icon: '📢',
subcategories: [
{ id: 'direct-mail', name: 'Direct Mail Services' },
{ id: 'social-media', name: 'Social Media Marketing' },
{ id: 'seo', name: 'SEO Specialists' },
{ id: 'ppc', name: 'PPC Advertising' },
{ id: 'lead-gen', name: 'Lead Generation' },
{ id: 'skip-tracing', name: 'Skip Tracing Services' }
]
},
{
id: 'data-tech',
name: 'Data & Technology',
icon: '💻',
subcategories: [
{ id: 'data-providers', name: 'Property Data Providers' },
{ id: 'crm', name: 'CRM Systems' },
{ id: 'valuation', name: 'Valuation Tools' },
{ id: 'virtual-tours', name: 'Virtual Tour Services' },
{ id: 'automation', name: 'Automation Tools' }
]
},
{
id: 'specialty',
name: 'Specialty Services',
icon: '🎯',
subcategories: [
{ id: 'auction', name: 'Auction Companies' },
{ id: 'relocation', name: 'Relocation Services' },
{ id: 'staging', name: 'Home Staging' },
{ id: 'photography', name: 'Real Estate Photography' },
{ id: 'virtual-assistant', name: 'Virtual Assistants' }
]
}
];

View File

@@ -1,51 +0,0 @@
import { Database } from 'better-sqlite3';
import path from 'path';
interface OptOutEntry {
domain: string;
email: string;
reason?: string;
timestamp: Date;
}
export class OptOutDatabase {
private db: Database;
constructor() {
this.db = new Database(path.join(__dirname, '../../../data/optout.db'));
this.initializeDatabase();
}
private initializeDatabase() {
this.db.exec(`
CREATE TABLE IF NOT EXISTS opt_outs (
domain TEXT PRIMARY KEY,
email TEXT NOT NULL,
reason TEXT,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
);
CREATE INDEX IF NOT EXISTS idx_domain ON opt_outs(domain);
`);
}
async addOptOut(entry: OptOutEntry): Promise<void> {
const stmt = this.db.prepare(
'INSERT OR REPLACE INTO opt_outs (domain, email, reason, timestamp) VALUES (?, ?, ?, ?)'
);
stmt.run(entry.domain, entry.email, entry.reason, entry.timestamp.toISOString());
}
isOptedOut(domain: string): boolean {
const stmt = this.db.prepare('SELECT 1 FROM opt_outs WHERE domain = ?');
return stmt.get(domain) !== undefined;
}
removeOptOut(domain: string): void {
const stmt = this.db.prepare('DELETE FROM opt_outs WHERE domain = ?');
stmt.run(domain);
}
getOptOutList(): OptOutEntry[] {
return this.db.prepare('SELECT * FROM opt_outs').all();
}
}

View File

@@ -1,74 +0,0 @@
import { createClient } from '@supabase/supabase-js';
import { BusinessData } from '../searxng';
import { env } from '../../config/env';
// Create the Supabase client with validated environment variables
export const supabase = createClient(
env.supabase.url,
env.supabase.anonKey,
{
auth: {
persistSession: false // Since this is a server environment
}
}
);
// Define the cache record type
export interface CacheRecord {
id: string;
query: string;
results: BusinessData[];
location: string;
category: string;
created_at: string;
updated_at: string;
expires_at: string;
}
// Export database helper functions
export async function getCacheEntry(
category: string,
location: string
): Promise<CacheRecord | null> {
const { data, error } = await supabase
.from('search_cache')
.select('*')
.eq('category', category.toLowerCase())
.eq('location', location.toLowerCase())
.gt('expires_at', new Date().toISOString())
.order('created_at', { ascending: false })
.limit(1)
.single();
if (error) {
console.error('Cache lookup failed:', error);
return null;
}
return data;
}
export async function saveCacheEntry(
category: string,
location: string,
results: BusinessData[],
expiresInDays: number = 7
): Promise<void> {
const expiresAt = new Date();
expiresAt.setDate(expiresAt.getDate() + expiresInDays);
const { error } = await supabase
.from('search_cache')
.insert({
query: `${category} in ${location}`,
category: category.toLowerCase(),
location: location.toLowerCase(),
results,
expires_at: expiresAt.toISOString()
});
if (error) {
console.error('Failed to save cache entry:', error);
throw error;
}
}

View File

@@ -1,195 +0,0 @@
import axios from 'axios';
import * as cheerio from 'cheerio';
import { Cache } from './utils/cache';
import { RateLimiter } from './utils/rateLimiter';
import robotsParser from 'robots-parser';
interface ScrapingResult {
emails: string[];
phones: string[];
addresses: string[];
socialLinks: string[];
source: string;
timestamp: Date;
attribution: string;
}
export class EmailScraper {
private cache: Cache<ScrapingResult>;
private rateLimiter: RateLimiter;
private robotsCache = new Map<string, any>();
constructor(private options = {
timeout: 5000,
cacheTTL: 60,
rateLimit: { windowMs: 60000, maxRequests: 10 }, // More conservative rate limiting
userAgent: 'BizSearch/1.0 (+https://your-domain.com/about) - Business Directory Service'
}) {
this.cache = new Cache<ScrapingResult>(options.cacheTTL);
this.rateLimiter = new RateLimiter(options.rateLimit.windowMs, options.rateLimit.maxRequests);
}
private async checkRobotsPermission(url: string): Promise<boolean> {
try {
const { protocol, host } = new URL(url);
const robotsUrl = `${protocol}//${host}/robots.txt`;
let parser = this.robotsCache.get(host);
if (!parser) {
const response = await axios.get(robotsUrl);
parser = robotsParser(robotsUrl, response.data);
this.robotsCache.set(host, parser);
}
return parser.isAllowed(url, this.options.userAgent);
} catch (error) {
console.warn(`Could not check robots.txt for ${url}:`, error);
return true; // Assume allowed if robots.txt is unavailable
}
}
async scrapeEmails(url: string): Promise<ScrapingResult> {
// Check cache first
const cached = this.cache.get(url);
if (cached) return cached;
// Check robots.txt
const allowed = await this.checkRobotsPermission(url);
if (!allowed) {
console.log(`Respecting robots.txt disallow for ${url}`);
return {
emails: [],
phones: [],
addresses: [],
socialLinks: [],
source: url,
timestamp: new Date(),
attribution: 'Restricted by robots.txt'
};
}
// Wait for rate limiting slot
await this.rateLimiter.waitForSlot();
try {
const response = await axios.get(url, {
timeout: this.options.timeout,
headers: {
'User-Agent': this.options.userAgent,
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
}
});
// Check for noindex meta tag
const $ = cheerio.load(response.data);
if ($('meta[name="robots"][content*="noindex"]').length > 0) {
return {
emails: [],
phones: [],
addresses: [],
socialLinks: [],
source: url,
timestamp: new Date(),
attribution: 'Respecting noindex directive'
};
}
// Only extract contact information from public contact pages or structured data
const isContactPage = /contact|about/i.test(url) ||
$('h1, h2').text().toLowerCase().includes('contact');
const result = {
emails: new Set<string>(),
phones: new Set<string>(),
addresses: new Set<string>(),
socialLinks: new Set<string>(),
source: url,
timestamp: new Date(),
attribution: `Data from public business listing at ${new URL(url).hostname}`
};
// Extract from structured data (Schema.org)
$('script[type="application/ld+json"]').each((_, element) => {
try {
const data = JSON.parse($(element).html() || '{}');
if (data['@type'] === 'LocalBusiness' || data['@type'] === 'Organization') {
if (data.email) result.emails.add(data.email.toLowerCase());
if (data.telephone) result.phones.add(this.formatPhoneNumber(data.telephone));
if (data.address) {
const fullAddress = this.formatAddress(data.address);
if (fullAddress) result.addresses.add(fullAddress);
}
}
} catch (e) {
console.error('Error parsing JSON-LD:', e);
}
});
// Only scrape additional info if it's a contact page
if (isContactPage) {
// Extract clearly marked contact information
$('[itemprop="email"], .contact-email, .email').each((_, element) => {
const email = $(element).text().trim();
if (this.isValidEmail(email)) {
result.emails.add(email.toLowerCase());
}
});
$('[itemprop="telephone"], .phone, .contact-phone').each((_, element) => {
const phone = $(element).text().trim();
const formatted = this.formatPhoneNumber(phone);
if (formatted) result.phones.add(formatted);
});
}
const finalResult = {
...result,
emails: Array.from(result.emails),
phones: Array.from(result.phones),
addresses: Array.from(result.addresses),
socialLinks: Array.from(result.socialLinks)
};
this.cache.set(url, finalResult);
return finalResult;
} catch (error) {
console.error(`Failed to scrape ${url}:`, error);
return {
emails: [],
phones: [],
addresses: [],
socialLinks: [],
source: url,
timestamp: new Date(),
attribution: 'Error accessing page'
};
}
}
private isValidEmail(email: string): boolean {
return /^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$/.test(email);
}
private formatPhoneNumber(phone: string): string {
const digits = phone.replace(/\D/g, '');
if (digits.length === 10) {
return `(${digits.slice(0,3)}) ${digits.slice(3,6)}-${digits.slice(6)}`;
}
return phone;
}
private formatAddress(address: any): string | null {
if (typeof address === 'string') return address;
if (typeof address === 'object') {
const parts = [
address.streetAddress,
address.addressLocality,
address.addressRegion,
address.postalCode
].filter(Boolean);
if (parts.length > 0) return parts.join(', ');
}
return null;
}
}

View File

@@ -1,48 +0,0 @@
import { BaseOutputParser } from '@langchain/core/output_parsers';
interface LineOutputParserArgs {
key?: string;
}
class LineOutputParser extends BaseOutputParser<string> {
private key = 'questions';
constructor(args?: LineOutputParserArgs) {
super();
this.key = args.key ?? this.key;
}
static lc_name() {
return 'LineOutputParser';
}
lc_namespace = ['langchain', 'output_parsers', 'line_output_parser'];
async parse(text: string): Promise<string> {
text = text.trim() || '';
const regex = /^(\s*(-|\*|\d+\.\s|\d+\)\s|\u2022)\s*)+/;
const startKeyIndex = text.indexOf(`<${this.key}>`);
const endKeyIndex = text.indexOf(`</${this.key}>`);
if (startKeyIndex === -1 || endKeyIndex === -1) {
return '';
}
const questionsStartIndex =
startKeyIndex === -1 ? 0 : startKeyIndex + `<${this.key}>`.length;
const questionsEndIndex = endKeyIndex === -1 ? text.length : endKeyIndex;
const line = text
.slice(questionsStartIndex, questionsEndIndex)
.trim()
.replace(regex, '');
return line;
}
getFormatInstructions(): string {
throw new Error('Not implemented.');
}
}
export default LineOutputParser;

View File

@@ -19,16 +19,9 @@ class LineListOutputParser extends BaseOutputParser<string[]> {
lc_namespace = ['langchain', 'output_parsers', 'line_list_output_parser'];
async parse(text: string): Promise<string[]> {
text = text.trim() || '';
const regex = /^(\s*(-|\*|\d+\.\s|\d+\)\s|\u2022)\s*)+/;
const startKeyIndex = text.indexOf(`<${this.key}>`);
const endKeyIndex = text.indexOf(`</${this.key}>`);
if (startKeyIndex === -1 || endKeyIndex === -1) {
return [];
}
const questionsStartIndex =
startKeyIndex === -1 ? 0 : startKeyIndex + `<${this.key}>`.length;
const questionsEndIndex = endKeyIndex === -1 ? text.length : endKeyIndex;

217
src/lib/providers.ts Normal file
View File

@@ -0,0 +1,217 @@
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
import { ChatOllama } from '@langchain/community/chat_models/ollama';
import { VertexAI } from "@langchain/google-vertexai";
import { GoogleVertexAIEmbeddings } from "@langchain/community/embeddings/googlevertexai";
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
import { HuggingFaceTransformersEmbeddings } from './huggingfaceTransformer';
import { hasGCPCredentials } from '../auth';
import {
getGroqApiKey,
getOllamaApiEndpoint,
getOpenaiApiKey,
} from '../config';
import logger from '../utils/logger';
export const getAvailableChatModelProviders = async () => {
const openAIApiKey = getOpenaiApiKey();
const groqApiKey = getGroqApiKey();
const ollamaEndpoint = getOllamaApiEndpoint();
const models = {};
if (openAIApiKey) {
try {
models['openai'] = {
'GPT-3.5 turbo': new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-3.5-turbo',
temperature: 0.7,
}),
'GPT-4': new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4',
temperature: 0.7,
}),
'GPT-4 turbo': new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4-turbo',
temperature: 0.7,
}),
'GPT-4 omni': new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4o',
temperature: 0.7,
}),
};
} catch (err) {
logger.error(`Error loading OpenAI models: ${err}`);
}
}
if (groqApiKey) {
try {
models['groq'] = {
'LLaMA3 8b': new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama3-8b-8192',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
'LLaMA3 70b': new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama3-70b-8192',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
'Mixtral 8x7b': new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'mixtral-8x7b-32768',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
'Gemma 7b': new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'gemma-7b-it',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
};
} catch (err) {
logger.error(`Error loading Groq models: ${err}`);
}
}
if (ollamaEndpoint) {
try {
const response = await fetch(`${ollamaEndpoint}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
const { models: ollamaModels } = (await response.json()) as any;
models['ollama'] = ollamaModels.reduce((acc, model) => {
acc[model.model] = new ChatOllama({
baseUrl: ollamaEndpoint,
model: model.model,
temperature: 0.7,
});
return acc;
}, {});
} catch (err) {
logger.error(`Error loading Ollama models: ${err}`);
}
}
if (await hasGCPCredentials()) {
try {
models['vertexai'] = {
'gemini-1.5-pro (preview-0409)': new VertexAI({
temperature: 0.7,
modelName: 'gemini-1.5-pro-preview-0409',
}),
'gemini-1.0-pro (Latest)': new VertexAI({
temperature: 0.7,
modelName: 'gemini-1.0-pro',
}),
};
} catch (err) {
logger.error(`Error loading VertexAI models: ${err}`);
}
}
models['custom_openai'] = {};
return models;
};
export const getAvailableEmbeddingModelProviders = async () => {
const openAIApiKey = getOpenaiApiKey();
const ollamaEndpoint = getOllamaApiEndpoint();
const models = {};
if (openAIApiKey) {
try {
models['openai'] = {
'Text embedding 3 small': new OpenAIEmbeddings({
openAIApiKey,
modelName: 'text-embedding-3-small',
}),
'Text embedding 3 large': new OpenAIEmbeddings({
openAIApiKey,
modelName: 'text-embedding-3-large',
}),
};
} catch (err) {
logger.error(`Error loading OpenAI embeddings: ${err}`);
}
}
if (ollamaEndpoint) {
try {
const response = await fetch(`${ollamaEndpoint}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
const { models: ollamaModels } = (await response.json()) as any;
models['ollama'] = ollamaModels.reduce((acc, model) => {
acc[model.model] = new OllamaEmbeddings({
baseUrl: ollamaEndpoint,
model: model.model,
});
return acc;
}, {});
} catch (err) {
logger.error(`Error loading Ollama embeddings: ${err}`);
}
}
if (await hasGCPCredentials()) {
try {
models['vertexai'] = {
'Text Gecko default': new GoogleVertexAIEmbeddings(),
}
} catch (err) {
logger.error(`Error loading VertexAI embeddings: ${err}`);
}
}
try {
models['local'] = {
'BGE Small': new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/bge-small-en-v1.5',
}),
'GTE Small': new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/gte-small',
}),
'Bert Multilingual': new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/bert-base-multilingual-uncased',
}),
};
} catch (err) {
logger.error(`Error loading local embeddings: ${err}`);
}
return models;
};

View File

@@ -1,59 +0,0 @@
import { ChatAnthropic } from '@langchain/anthropic';
import { getAnthropicApiKey } from '../../config';
import logger from '../../utils/logger';
export const loadAnthropicChatModels = async () => {
const anthropicApiKey = getAnthropicApiKey();
if (!anthropicApiKey) return {};
try {
const chatModels = {
'claude-3-5-sonnet-20241022': {
displayName: 'Claude 3.5 Sonnet',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-5-sonnet-20241022',
}),
},
'claude-3-5-haiku-20241022': {
displayName: 'Claude 3.5 Haiku',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-5-haiku-20241022',
}),
},
'claude-3-opus-20240229': {
displayName: 'Claude 3 Opus',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-opus-20240229',
}),
},
'claude-3-sonnet-20240229': {
displayName: 'Claude 3 Sonnet',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-sonnet-20240229',
}),
},
'claude-3-haiku-20240307': {
displayName: 'Claude 3 Haiku',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-haiku-20240307',
}),
},
};
return chatModels;
} catch (err) {
logger.error(`Error loading Anthropic models: ${err}`);
return {};
}
};

View File

@@ -1,19 +0,0 @@
import { Business, SearchParams } from '../../../types/business';
import { WebScraperProvider } from './webScraper';
export class BusinessProvider {
private scraper: WebScraperProvider;
constructor() {
this.scraper = new WebScraperProvider();
}
async search(params: SearchParams): Promise<Business[]> {
return this.scraper.search(params);
}
async getDetails(businessId: string): Promise<Business | null> {
// Implement detailed business lookup using stored data or additional scraping
return null;
}
}

View File

@@ -1,111 +0,0 @@
import { Business, SearchParams } from '../../../types/business';
import { searchWeb } from '../search'; // This is Perplexica's existing search function
import { parseHTML } from '../utils/parser';
export class WebScraperProvider {
async search(params: SearchParams): Promise<Business[]> {
const searchQueries = this.generateQueries(params);
const businesses: Business[] = [];
for (const query of searchQueries) {
// Use Perplexica's existing search functionality
const results = await searchWeb(query, {
maxResults: 20,
type: 'general' // or 'news' depending on what we want
});
for (const result of results) {
try {
const html = await fetch(result.url).then(res => res.text());
const businessData = await this.extractBusinessData(html, result.url);
if (businessData) {
businesses.push(businessData);
}
} catch (error) {
console.error(`Failed to extract data from ${result.url}:`, error);
}
}
}
return this.deduplicateBusinesses(businesses);
}
private generateQueries(params: SearchParams): string[] {
const { location, category } = params;
return [
`${category} in ${location}`,
`${category} business ${location}`,
`best ${category} near ${location}`,
`${category} services ${location} reviews`
];
}
private async extractBusinessData(html: string, sourceUrl: string): Promise<Business | null> {
const $ = parseHTML(html);
// Different extraction logic based on source
if (sourceUrl.includes('yelp.com')) {
return this.extractYelpData($);
} else if (sourceUrl.includes('yellowpages.com')) {
return this.extractYellowPagesData($);
}
// ... other source-specific extractors
return null;
}
private extractYelpData($: any): Business | null {
try {
return {
id: crypto.randomUUID(),
name: $('.business-name').text().trim(),
phone: $('.phone-number').text().trim(),
address: $('.address').text().trim(),
city: $('.city').text().trim(),
state: $('.state').text().trim(),
zip: $('.zip').text().trim(),
category: $('.category-str-list').text().split(',').map(s => s.trim()),
rating: parseFloat($('.rating').text()),
reviewCount: parseInt($('.review-count').text()),
services: $('.services-list').text().split(',').map(s => s.trim()),
hours: this.extractHours($),
website: $('.website-link').attr('href'),
verified: false,
lastUpdated: new Date()
};
} catch (error) {
return null;
}
}
private deduplicateBusinesses(businesses: Business[]): Business[] {
// Group by phone number and address to identify duplicates
const uniqueBusinesses = new Map<string, Business>();
for (const business of businesses) {
const key = `${business.phone}-${business.address}`.toLowerCase();
if (!uniqueBusinesses.has(key)) {
uniqueBusinesses.set(key, business);
} else {
// Merge data if we have additional information
const existing = uniqueBusinesses.get(key)!;
uniqueBusinesses.set(key, this.mergeBusinessData(existing, business));
}
}
return Array.from(uniqueBusinesses.values());
}
private mergeBusinessData(existing: Business, newData: Business): Business {
return {
...existing,
services: [...new Set([...existing.services, ...newData.services])],
rating: (existing.rating + newData.rating) / 2,
reviewCount: existing.reviewCount + newData.reviewCount,
// Keep the most complete data for other fields
website: existing.website || newData.website,
email: existing.email || newData.email,
hours: existing.hours || newData.hours
};
}
}

View File

@@ -1,69 +0,0 @@
import {
ChatGoogleGenerativeAI,
GoogleGenerativeAIEmbeddings,
} from '@langchain/google-genai';
import { getGeminiApiKey } from '../../config';
import logger from '../../utils/logger';
export const loadGeminiChatModels = async () => {
const geminiApiKey = getGeminiApiKey();
if (!geminiApiKey) return {};
try {
const chatModels = {
'gemini-1.5-flash': {
displayName: 'Gemini 1.5 Flash',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-1.5-flash',
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
'gemini-1.5-flash-8b': {
displayName: 'Gemini 1.5 Flash 8B',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-1.5-flash-8b',
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
'gemini-1.5-pro': {
displayName: 'Gemini 1.5 Pro',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-1.5-pro',
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
};
return chatModels;
} catch (err) {
logger.error(`Error loading Gemini models: ${err}`);
return {};
}
};
export const loadGeminiEmbeddingsModels = async () => {
const geminiApiKey = getGeminiApiKey();
if (!geminiApiKey) return {};
try {
const embeddingModels = {
'text-embedding-004': {
displayName: 'Text Embedding',
model: new GoogleGenerativeAIEmbeddings({
apiKey: geminiApiKey,
modelName: 'text-embedding-004',
}),
},
};
return embeddingModels;
} catch (err) {
logger.error(`Error loading Gemini embeddings model: ${err}`);
return {};
}
};

View File

@@ -1,136 +0,0 @@
import { ChatOpenAI } from '@langchain/openai';
import { getGroqApiKey } from '../../config';
import logger from '../../utils/logger';
export const loadGroqChatModels = async () => {
const groqApiKey = getGroqApiKey();
if (!groqApiKey) return {};
try {
const chatModels = {
'llama-3.3-70b-versatile': {
displayName: 'Llama 3.3 70B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.3-70b-versatile',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama-3.2-3b-preview': {
displayName: 'Llama 3.2 3B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.2-3b-preview',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama-3.2-11b-vision-preview': {
displayName: 'Llama 3.2 11B Vision',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.2-11b-vision-preview',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama-3.2-90b-vision-preview': {
displayName: 'Llama 3.2 90B Vision',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.2-90b-vision-preview',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama-3.1-8b-instant': {
displayName: 'Llama 3.1 8B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.1-8b-instant',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama3-8b-8192': {
displayName: 'LLaMA3 8B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama3-8b-8192',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama3-70b-8192': {
displayName: 'LLaMA3 70B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama3-70b-8192',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'mixtral-8x7b-32768': {
displayName: 'Mixtral 8x7B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'mixtral-8x7b-32768',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'gemma2-9b-it': {
displayName: 'Gemma2 9B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'gemma2-9b-it',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
};
return chatModels;
} catch (err) {
logger.error(`Error loading Groq models: ${err}`);
return {};
}
};

View File

@@ -1,49 +0,0 @@
import { loadGroqChatModels } from './groq';
import { loadOllamaChatModels, loadOllamaEmbeddingsModels } from './ollama';
import { loadOpenAIChatModels, loadOpenAIEmbeddingsModels } from './openai';
import { loadAnthropicChatModels } from './anthropic';
import { loadTransformersEmbeddingsModels } from './transformers';
import { loadGeminiChatModels, loadGeminiEmbeddingsModels } from './gemini';
const chatModelProviders = {
openai: loadOpenAIChatModels,
groq: loadGroqChatModels,
ollama: loadOllamaChatModels,
anthropic: loadAnthropicChatModels,
gemini: loadGeminiChatModels,
};
const embeddingModelProviders = {
openai: loadOpenAIEmbeddingsModels,
local: loadTransformersEmbeddingsModels,
ollama: loadOllamaEmbeddingsModels,
gemini: loadGeminiEmbeddingsModels,
};
export const getAvailableChatModelProviders = async () => {
const models = {};
for (const provider in chatModelProviders) {
const providerModels = await chatModelProviders[provider]();
if (Object.keys(providerModels).length > 0) {
models[provider] = providerModels;
}
}
models['custom_openai'] = {};
return models;
};
export const getAvailableEmbeddingModelProviders = async () => {
const models = {};
for (const provider in embeddingModelProviders) {
const providerModels = await embeddingModelProviders[provider]();
if (Object.keys(providerModels).length > 0) {
models[provider] = providerModels;
}
}
return models;
};

View File

@@ -1,74 +0,0 @@
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
import { getKeepAlive, getOllamaApiEndpoint } from '../../config';
import logger from '../../utils/logger';
import { ChatOllama } from '@langchain/community/chat_models/ollama';
import axios from 'axios';
export const loadOllamaChatModels = async () => {
const ollamaEndpoint = getOllamaApiEndpoint();
const keepAlive = getKeepAlive();
if (!ollamaEndpoint) return {};
try {
const response = await axios.get(`${ollamaEndpoint}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
const { models: ollamaModels } = response.data;
const chatModels = ollamaModels.reduce((acc, model) => {
acc[model.model] = {
displayName: model.name,
model: new ChatOllama({
baseUrl: ollamaEndpoint,
model: model.model,
temperature: 0.7,
keepAlive: keepAlive,
}),
};
return acc;
}, {});
return chatModels;
} catch (err) {
logger.error(`Error loading Ollama models: ${err}`);
return {};
}
};
export const loadOllamaEmbeddingsModels = async () => {
const ollamaEndpoint = getOllamaApiEndpoint();
if (!ollamaEndpoint) return {};
try {
const response = await axios.get(`${ollamaEndpoint}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
const { models: ollamaModels } = response.data;
const embeddingsModels = ollamaModels.reduce((acc, model) => {
acc[model.model] = {
displayName: model.name,
model: new OllamaEmbeddings({
baseUrl: ollamaEndpoint,
model: model.model,
}),
};
return acc;
}, {});
return embeddingsModels;
} catch (err) {
logger.error(`Error loading Ollama embeddings model: ${err}`);
return {};
}
};

View File

@@ -1,89 +0,0 @@
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
import { getOpenaiApiKey } from '../../config';
import logger from '../../utils/logger';
export const loadOpenAIChatModels = async () => {
const openAIApiKey = getOpenaiApiKey();
if (!openAIApiKey) return {};
try {
const chatModels = {
'gpt-3.5-turbo': {
displayName: 'GPT-3.5 Turbo',
model: new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-3.5-turbo',
temperature: 0.7,
}),
},
'gpt-4': {
displayName: 'GPT-4',
model: new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4',
temperature: 0.7,
}),
},
'gpt-4-turbo': {
displayName: 'GPT-4 turbo',
model: new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4-turbo',
temperature: 0.7,
}),
},
'gpt-4o': {
displayName: 'GPT-4 omni',
model: new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4o',
temperature: 0.7,
}),
},
'gpt-4o-mini': {
displayName: 'GPT-4 omni mini',
model: new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4o-mini',
temperature: 0.7,
}),
},
};
return chatModels;
} catch (err) {
logger.error(`Error loading OpenAI models: ${err}`);
return {};
}
};
export const loadOpenAIEmbeddingsModels = async () => {
const openAIApiKey = getOpenaiApiKey();
if (!openAIApiKey) return {};
try {
const embeddingModels = {
'text-embedding-3-small': {
displayName: 'Text Embedding 3 Small',
model: new OpenAIEmbeddings({
openAIApiKey,
modelName: 'text-embedding-3-small',
}),
},
'text-embedding-3-large': {
displayName: 'Text Embedding 3 Large',
model: new OpenAIEmbeddings({
openAIApiKey,
modelName: 'text-embedding-3-large',
}),
},
};
return embeddingModels;
} catch (err) {
logger.error(`Error loading OpenAI embeddings model: ${err}`);
return {};
}
};

View File

@@ -1,32 +0,0 @@
import logger from '../../utils/logger';
import { HuggingFaceTransformersEmbeddings } from '../huggingfaceTransformer';
export const loadTransformersEmbeddingsModels = async () => {
try {
const embeddingModels = {
'xenova-bge-small-en-v1.5': {
displayName: 'BGE Small',
model: new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/bge-small-en-v1.5',
}),
},
'xenova-gte-small': {
displayName: 'GTE Small',
model: new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/gte-small',
}),
},
'xenova-bert-base-multilingual-uncased': {
displayName: 'Bert Multilingual',
model: new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/bert-base-multilingual-uncased',
}),
},
};
return embeddingModels;
} catch (err) {
logger.error(`Error loading Transformers embeddings model: ${err}`);
return {};
}
};

View File

@@ -1,54 +0,0 @@
import axios from 'axios';
import { config } from '../config';
interface SearchOptions {
maxResults?: number;
type?: 'general' | 'news';
engines?: string[];
}
interface SearchResult {
url: string;
title: string;
content: string;
score?: number;
}
export async function searchWeb(
query: string,
options: SearchOptions = {}
): Promise<SearchResult[]> {
const {
maxResults = 20,
type = 'general',
engines = ['google', 'bing', 'duckduckgo']
} = options;
try {
const response = await axios.get(`${config.search.searxngUrl || process.env.SEARXNG_URL}/search`, {
params: {
q: query,
format: 'json',
categories: type,
engines: engines.join(','),
limit: maxResults
}
});
if (!response.data || !response.data.results) {
console.error('Invalid response from SearxNG:', response.data);
return [];
}
return response.data.results.map((result: any) => ({
url: result.url,
title: result.title,
content: result.content || result.snippet || '',
score: result.score
}));
} catch (error) {
console.error('Search failed:', error);
throw error;
}
}

View File

@@ -1,313 +1,47 @@
import axios from 'axios';
import * as cheerio from 'cheerio';
import { createWorker } from 'tesseract.js';
import { env } from '../config/env';
import { OllamaService } from './services/ollamaService';
import { BusinessData } from './types';
import { db } from './services/databaseService';
import { generateBusinessId } from './utils';
import { extractContactFromHtml, extractCleanAddress } from './utils/scraper';
import { GeocodingService } from './services/geocodingService';
import { cleanAddress, formatPhoneNumber, cleanEmail, cleanDescription } from './utils/dataCleanup';
import { CleanupService } from './services/cleanupService';
import { getSearxngApiEndpoint } from '../config';
// Define interfaces used only in this file
interface SearchResult {
url: string;
title: string;
content: string;
phone?: string;
email?: string;
address?: string;
website?: string;
rating?: number;
coordinates?: {
lat: number;
lng: number;
};
interface SearxngSearchOptions {
categories?: string[];
engines?: string[];
language?: string;
pageno?: number;
}
interface ContactInfo {
phone?: string;
email?: string;
address?: string;
description?: string;
openingHours?: string[];
interface SearxngSearchResult {
title: string;
url: string;
img_src?: string;
thumbnail_src?: string;
thumbnail?: string;
content?: string;
author?: string;
iframe_src?: string;
}
// Export the main search function
export async function searchBusinesses(
query: string,
options: { onProgress?: (status: string, progress: number) => void } = {}
): Promise<BusinessData[]> {
try {
console.log('Processing search query:', query);
const [searchTerm, location] = query.split(' in ').map(s => s.trim());
if (!searchTerm || !location) {
throw new Error('Invalid search query format. Use: "search term in location"');
}
export const searchSearxng = async (
query: string,
opts?: SearxngSearchOptions,
) => {
const searxngURL = getSearxngApiEndpoint();
options.onProgress?.('Checking cache', 0);
const url = new URL(`${searxngURL}/search?format=json`);
url.searchParams.append('q', query);
// Check cache first
const cacheKey = `search:${searchTerm}:${location}`;
let results = await db.getFromCache(cacheKey);
if (!results) {
// Check database for existing businesses
console.log('Searching database for:', searchTerm, 'in', location);
const existingBusinesses = await db.searchBusinesses(searchTerm, location);
// Start search immediately
console.log('Starting web search');
const searchPromise = performSearch(searchTerm, location, options);
if (existingBusinesses.length > 0) {
console.log(`Found ${existingBusinesses.length} existing businesses`);
options.onProgress?.('Retrieved from database', 50);
}
if (opts) {
Object.keys(opts).forEach((key) => {
if (Array.isArray(opts[key])) {
url.searchParams.append(key, opts[key].join(','));
return;
}
url.searchParams.append(key, opts[key]);
});
}
// Wait for new results
const newResults = await searchPromise;
console.log(`Got ${newResults.length} new results from search`);
// Merge results, removing duplicates by ID
const allResults = [...existingBusinesses];
for (const result of newResults) {
if (!allResults.some(b => b.id === result.id)) {
allResults.push(result);
}
}
console.log(`Total unique results: ${allResults.length}`);
// Cache combined results
await db.saveToCache(cacheKey, allResults, env.cache.durationHours * 60 * 60 * 1000);
console.log(`Returning ${allResults.length} total results (${existingBusinesses.length} existing + ${newResults.length} new)`);
results = allResults;
}
const res = await axios.get(url.toString());
// Clean all results using LLM
options.onProgress?.('Cleaning data', 75);
const cleanedResults = await CleanupService.cleanBusinessRecords(results);
const results: SearxngSearchResult[] = res.data.results;
const suggestions: string[] = res.data.suggestions;
options.onProgress?.('Search complete', 100);
return cleanedResults;
} catch (error) {
console.error('Search error:', error);
return [];
}
}
async function performSearch(
searchTerm: string,
location: string,
options: any
): Promise<BusinessData[]> {
const queries = [
searchTerm + ' ' + location,
searchTerm + ' business near ' + location,
searchTerm + ' services ' + location,
'local ' + searchTerm + ' ' + location
];
options.onProgress?.('Searching multiple sources', 25);
let allResults: SearchResult[] = [];
const seenUrls = new Set<string>();
for (const q of queries) {
try {
const response = await axios.get(`${env.searxng.currentUrl}/search`, {
params: {
q,
format: 'json',
engines: 'google,google_maps',
language: 'en-US',
time_range: '',
safesearch: 1
}
});
if (response.data?.results) {
// Deduplicate results
const newResults = response.data.results.filter((result: SearchResult) => {
if (seenUrls.has(result.url)) {
return false;
}
seenUrls.add(result.url);
return true;
});
console.log(`Found ${newResults.length} unique results from ${response.data.results[0]?.engine}`);
allResults = allResults.concat(newResults);
}
} catch (error) {
console.error(`Search failed for query "${q}":`, error);
}
}
options.onProgress?.('Processing results', 50);
const filteredResults = allResults.filter(isValidBusinessResult);
const processedResults = await processResults(filteredResults, location);
// Save results to database
for (const result of processedResults) {
await db.saveBusiness(result).catch(console.error);
}
options.onProgress?.('Search complete', 100);
return processedResults;
}
// Add other necessary functions (isValidBusinessResult, processResults, etc.)
function isValidBusinessResult(result: SearchResult): boolean {
// Skip listing/directory pages and search results
const skipPatterns = [
'tripadvisor.com',
'yelp.com',
'opentable.com',
'restaurants-for-sale',
'guide.michelin.com',
'denver.org',
'/blog/',
'/maps/',
'search?',
'features/',
'/lists/',
'reddit.com',
'eater.com'
];
if (skipPatterns.some(pattern => result.url.toLowerCase().includes(pattern))) {
console.log(`Skipping listing page: ${result.url}`);
return false;
}
// Must have a title
if (!result.title || result.title.length < 2) {
return false;
}
// Skip results that look like articles or lists
const articlePatterns = [
'Best',
'Top',
'Guide',
'Where to',
'Welcome to',
'Updated',
'Near',
'Restaurants in'
];
if (articlePatterns.some(pattern => result.title.includes(pattern))) {
console.log(`Skipping article: ${result.title}`);
return false;
}
// Only accept results that look like actual business pages
const businessPatterns = [
'menu',
'reservation',
'location',
'contact',
'about-us',
'home'
];
const hasBusinessPattern = businessPatterns.some(pattern =>
result.url.toLowerCase().includes(pattern) ||
result.content.toLowerCase().includes(pattern)
);
if (!hasBusinessPattern) {
console.log(`Skipping non-business page: ${result.url}`);
return false;
}
return true;
}
async function processResults(results: SearchResult[], location: string): Promise<BusinessData[]> {
const processedResults: BusinessData[] = [];
// Get coordinates for the location
const locationGeo = await GeocodingService.geocode(location);
const defaultCoords = locationGeo || { lat: 39.7392, lng: -104.9903 };
for (const result of results) {
try {
// Extract contact info from webpage
const contactInfo = await extractContactFromHtml(result.url);
// Create initial business record
const business: BusinessData = {
id: generateBusinessId(result),
name: cleanBusinessName(result.title),
phone: result.phone || contactInfo.phone || '',
email: result.email || contactInfo.email || '',
address: result.address || contactInfo.address || '',
rating: result.rating || 0,
website: result.website || result.url || '',
logo: '',
source: 'web',
description: result.content || contactInfo.description || '',
location: defaultCoords,
openingHours: contactInfo.openingHours
};
// Clean up the record using LLM
const cleanedBusiness = await CleanupService.cleanBusinessRecord(business);
// Get coordinates for cleaned address
if (cleanedBusiness.address) {
const addressGeo = await GeocodingService.geocode(cleanedBusiness.address);
if (addressGeo) {
cleanedBusiness.location = addressGeo;
}
}
// Only add if we have at least a name and either phone or address
if (cleanedBusiness.name && (cleanedBusiness.phone || cleanedBusiness.address)) {
processedResults.push(cleanedBusiness);
}
} catch (error) {
console.error(`Error processing result ${result.title}:`, error);
}
}
return processedResults;
}
// Helper functions
function cleanBusinessName(name: string): string {
// Remove common suffixes and prefixes
const cleanName = name
.replace(/^(The|A|An)\s+/i, '')
.replace(/\s+(-||—|:).*$/, '')
.replace(/\s*\([^)]*\)/g, '')
.trim();
return cleanName;
}
async function getLocationCoordinates(address: string): Promise<{lat: number, lng: number}> {
// Implement geocoding here
// For now, return default coordinates for Denver
return { lat: 39.7392, lng: -104.9903 };
}
async function searchAndUpdateInBackground(searchTerm: string, location: string) {
try {
const results = await performSearch(searchTerm, location, {});
console.log(`Updated ${results.length} businesses in background`);
} catch (error) {
console.error('Background search error:', error);
}
}
// ... rest of the file remains the same
return { results, suggestions };
};

View File

@@ -1,111 +0,0 @@
import axios from 'axios';
import * as cheerio from 'cheerio';
import { Cache } from '../utils/cache';
import { RateLimiter } from '../utils/rateLimiter';
interface CrawlResult {
mainContent: string;
contactInfo: string;
aboutInfo: string;
structuredData: any;
}
export class BusinessCrawler {
private cache: Cache<CrawlResult>;
private rateLimiter: RateLimiter;
constructor() {
this.cache = new Cache<CrawlResult>(60); // 1 hour cache
this.rateLimiter = new RateLimiter();
}
async crawlBusinessSite(url: string): Promise<CrawlResult> {
// Check cache first
const cached = this.cache.get(url);
if (cached) return cached;
await this.rateLimiter.waitForSlot();
try {
const mainPage = await this.fetchPage(url);
const $ = cheerio.load(mainPage);
// Get all important URLs
const contactUrl = this.findContactPage($, url);
const aboutUrl = this.findAboutPage($, url);
// Crawl additional pages
const [contactPage, aboutPage] = await Promise.all([
contactUrl ? this.fetchPage(contactUrl) : '',
aboutUrl ? this.fetchPage(aboutUrl) : ''
]);
// Extract structured data
const structuredData = this.extractStructuredData($);
const result = {
mainContent: $('body').text(),
contactInfo: contactPage,
aboutInfo: aboutPage,
structuredData
};
this.cache.set(url, result);
return result;
} catch (error) {
console.error(`Failed to crawl ${url}:`, error);
return {
mainContent: '',
contactInfo: '',
aboutInfo: '',
structuredData: {}
};
}
}
private async fetchPage(url: string): Promise<string> {
try {
const response = await axios.get(url, {
timeout: 10000,
headers: {
'User-Agent': 'Mozilla/5.0 (compatible; BizSearch/1.0; +http://localhost:3000/about)',
}
});
return response.data;
} catch (error) {
console.error(`Failed to fetch ${url}:`, error);
return '';
}
}
private findContactPage($: cheerio.CheerioAPI, baseUrl: string): string | null {
const contactLinks = $('a[href*="contact"], a:contains("Contact")');
if (contactLinks.length > 0) {
const href = contactLinks.first().attr('href');
return href ? new URL(href, baseUrl).toString() : null;
}
return null;
}
private findAboutPage($: cheerio.CheerioAPI, baseUrl: string): string | null {
const aboutLinks = $('a[href*="about"], a:contains("About")');
if (aboutLinks.length > 0) {
const href = aboutLinks.first().attr('href');
return href ? new URL(href, baseUrl).toString() : null;
}
return null;
}
private extractStructuredData($: cheerio.CheerioAPI): any {
const structuredData: any[] = [];
$('script[type="application/ld+json"]').each((_, element) => {
try {
const data = JSON.parse($(element).html() || '{}');
structuredData.push(data);
} catch (error) {
console.error('Failed to parse structured data:', error);
}
});
return structuredData;
}
}

Some files were not shown because too many files have changed in this diff Show More