Compare commits

..

21 Commits

Author SHA1 Message Date
ItzCrazyKns
83f1c6ce12 Merge pull request #736 from ItzCrazyKns/master
Merge master into feat/deep-research
2025-04-08 12:28:46 +05:30
ItzCrazyKns
fd6c58734d feat(metaSearchAgent): add quality optimization mode 2025-04-08 12:27:48 +05:30
ItzCrazyKns
da1123d84b feat(groq): update model name 2025-04-07 23:30:51 +05:30
ItzCrazyKns
627775c430 feat(groq): remove maverick (not being run yet) 2025-04-07 23:29:51 +05:30
ItzCrazyKns
245573efca feat(groq): update model list 2025-04-07 23:23:18 +05:30
ItzCrazyKns
a85f762c58 feat(package): bump version 2025-04-07 10:27:04 +05:30
ItzCrazyKns
3ddcceda0a feat(gemini-provider): update embedding models 2025-04-07 10:26:29 +05:30
ItzCrazyKns
114a7aa09d Merge pull request #728 from ItzCrazyKns/master-deep-research
Merge master into feat/deep-research
2025-04-07 10:21:34 +05:30
ItzCrazyKns
d0ba8c9038 Merge branch 'feat/deep-research' into master-deep-research 2025-04-07 10:21:22 +05:30
ItzCrazyKns
934fb0a23b Update metaSearchAgent.ts 2025-04-07 10:18:11 +05:30
ItzCrazyKns
e226645bc7 feat(app): lint & beautify 2025-04-06 13:48:58 +05:30
ItzCrazyKns
5447530ece Merge branch 'feat/deepseek-provider' 2025-04-06 13:48:10 +05:30
ItzCrazyKns
ed6d46a440 Merge branch 'pr/719' 2025-04-06 13:47:57 +05:30
ItzCrazyKns
588e68e93e feat(providers): add deepseek provider 2025-04-06 13:37:43 +05:30
ItzCrazyKns
c4440327db Merge pull request #720 from OmarElKadri/master
feat(search): add optional systemInstructions to API request body
2025-04-06 10:34:29 +05:30
OTYAK
64e2d457cc feat(search): add optional systemInstructions to API request body 2025-04-05 19:06:18 +01:00
ItzCrazyKns
bf705afc21 feat(message-box): change styles, lint & beautify 2025-04-05 22:32:56 +05:30
singleparadox
2e4433a6b3 feat(message-box): support [1,2,3,4] citation format instead of just [1][2][3] 2025-04-05 15:24:45 +00:00
ItzCrazyKns
8ecf3b4e99 feat(chat-window): update message handling 2025-04-02 13:02:45 +05:30
ItzCrazyKns
b5ee8386e7 Merge pull request #714 from ItzCrazyKns/master
Merge master into feat/deep-research
2025-04-01 14:16:45 +05:30
ItzCrazyKns
0fcd598ff7 feat(metaSearchAgent): eliminate runnables 2025-03-24 17:27:54 +05:30
22 changed files with 788 additions and 616 deletions

1
data/.gitignore vendored
View File

@@ -1,3 +1,2 @@
* *
!models.json
!.gitignore !.gitignore

View File

@@ -1,157 +0,0 @@
{
"_comment": "Ollama models are fetched from the Ollama API, so they are not included here.",
"chatModels": {
"openai": [
{
"displayName": "GPT-3.5 Turbo",
"key": "gpt-3.5-turbo"
},
{
"displayName": "GPT-4",
"key": "gpt-4"
},
{
"displayName": "GPT-4 Turbo",
"key": "gpt-4-turbo"
},
{
"displayName": "GPT-4 Omni",
"key": "gpt-4o"
},
{
"displayName": "GPT-4 Omni Mini",
"key": "gpt-4o-mini"
}
],
"groq": [
{
"displayName": "Gemma2 9B IT",
"key": "gemma2-9b-it"
},
{
"displayName": "Llama 3.3 70B Versatile",
"key": "llama-3.3-70b-versatile"
},
{
"displayName": "Llama 3.1 8B Instant",
"key": "llama-3.1-8b-instant"
},
{
"displayName": "Llama3 70B 8192",
"key": "llama3-70b-8192"
},
{
"displayName": "Llama3 8B 8192",
"key": "llama3-8b-8192"
},
{
"displayName": "Mixtral 8x7B 32768",
"key": "mixtral-8x7b-32768"
},
{
"displayName": "Qwen QWQ 32B (Preview)",
"key": "qwen-qwq-32b"
},
{
"displayName": "Mistral Saba 24B (Preview)",
"key": "mistral-saba-24b"
},
{
"displayName": "DeepSeek R1 Distill Llama 70B (Preview)",
"key": "deepseek-r1-distill-llama-70b"
}
],
"gemini": [
{
"displayName": "Gemini 2.5 Pro Experimental",
"key": "gemini-2.5-pro-exp-03-25"
},
{
"displayName": "Gemini 2.0 Flash",
"key": "gemini-2.0-flash"
},
{
"displayName": "Gemini 2.0 Flash-Lite",
"key": "gemini-2.0-flash-lite"
},
{
"displayName": "Gemini 2.0 Flash Thinking Experimental",
"key": "gemini-2.0-flash-thinking-exp-01-21"
},
{
"displayName": "Gemini 1.5 Flash",
"key": "gemini-1.5-flash"
},
{
"displayName": "Gemini 1.5 Flash-8B",
"key": "gemini-1.5-flash-8b"
},
{
"displayName": "Gemini 1.5 Pro",
"key": "gemini-1.5-pro"
}
],
"anthropic": [
{
"displayName": "Claude 3.7 Sonnet",
"key": "claude-3-7-sonnet-20250219"
},
{
"displayName": "Claude 3.5 Haiku",
"key": "claude-3-5-haiku-20241022"
},
{
"displayName": "Claude 3.5 Sonnet v2",
"key": "claude-3-5-sonnet-20241022"
},
{
"displayName": "Claude 3.5 Sonnet",
"key": "claude-3-5-sonnet-20240620"
},
{
"displayName": "Claude 3 Opus",
"key": "claude-3-opus-20240229"
},
{
"displayName": "Claude 3 Sonnet",
"key": "claude-3-sonnet-20240229"
},
{
"displayName": "Claude 3 Haiku",
"key": "claude-3-haiku-20240307"
}
]
},
"embeddingModels": {
"openai": [
{
"displayName": "Text Embedding 3 Large",
"key": "text-embedding-3-large"
},
{
"displayName": "Text Embedding 3 Small",
"key": "text-embedding-3-small"
}
],
"gemini": [
{
"displayName": "Gemini Embedding",
"key": "gemini-embedding-exp"
}
],
"transformers": [
{
"displayName": "BGE Small",
"key": "xenova-bge-small-en-v1.5"
},
{
"displayName": "GTE Small",
"key": "xenova-gte-small"
},
{
"displayName": "Bert Multilingual",
"key": "xenova-bert-base-multilingual-uncased"
}
]
}
}

View File

@@ -33,6 +33,7 @@ The API accepts a JSON object in the request body, where you define the focus mo
["human", "Hi, how are you?"], ["human", "Hi, how are you?"],
["assistant", "I am doing well, how can I help you today?"] ["assistant", "I am doing well, how can I help you today?"]
], ],
"systemInstructions": "Focus on providing technical details about Perplexica's architecture.",
"stream": false "stream": false
} }
``` ```
@@ -63,6 +64,8 @@ The API accepts a JSON object in the request body, where you define the focus mo
- **`query`** (string, required): The search query or question. - **`query`** (string, required): The search query or question.
- **`systemInstructions`** (string, optional): Custom instructions provided by the user to guide the AI's response. These instructions are treated as user preferences and have lower priority than the system's core instructions. For example, you can specify a particular writing style, format, or focus area.
- **`history`** (array, optional): An array of message pairs representing the conversation history. Each pair consists of a role (either 'human' or 'assistant') and the message content. This allows the system to use the context of the conversation to refine results. Example: - **`history`** (array, optional): An array of message pairs representing the conversation history. Each pair consists of a role (either 'human' or 'assistant') and the message content. This allows the system to use the context of the conversation to refine results. Example:
```json ```json

View File

@@ -1,6 +1,6 @@
{ {
"name": "perplexica-frontend", "name": "perplexica-frontend",
"version": "1.10.1", "version": "1.10.2",
"license": "MIT", "license": "MIT",
"author": "ItzCrazyKns", "author": "ItzCrazyKns",
"scripts": { "scripts": {

View File

@@ -22,5 +22,8 @@ MODEL_NAME = ""
[MODELS.OLLAMA] [MODELS.OLLAMA]
API_URL = "" # Ollama API URL - http://host.docker.internal:11434 API_URL = "" # Ollama API URL - http://host.docker.internal:11434
[MODELS.DEEPSEEK]
API_KEY = ""
[API_ENDPOINTS] [API_ENDPOINTS]
SEARXNG = "" # SearxNG API URL - http://localhost:32768 SEARXNG = "" # SearxNG API URL - http://localhost:32768

View File

@@ -7,6 +7,7 @@ import {
getGroqApiKey, getGroqApiKey,
getOllamaApiEndpoint, getOllamaApiEndpoint,
getOpenaiApiKey, getOpenaiApiKey,
getDeepseekApiKey,
updateConfig, updateConfig,
} from '@/lib/config'; } from '@/lib/config';
import { import {
@@ -53,6 +54,7 @@ export const GET = async (req: Request) => {
config['anthropicApiKey'] = getAnthropicApiKey(); config['anthropicApiKey'] = getAnthropicApiKey();
config['groqApiKey'] = getGroqApiKey(); config['groqApiKey'] = getGroqApiKey();
config['geminiApiKey'] = getGeminiApiKey(); config['geminiApiKey'] = getGeminiApiKey();
config['deepseekApiKey'] = getDeepseekApiKey();
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl(); config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
config['customOpenaiApiKey'] = getCustomOpenaiApiKey(); config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
config['customOpenaiModelName'] = getCustomOpenaiModelName(); config['customOpenaiModelName'] = getCustomOpenaiModelName();
@@ -88,6 +90,9 @@ export const POST = async (req: Request) => {
OLLAMA: { OLLAMA: {
API_URL: config.ollamaApiUrl, API_URL: config.ollamaApiUrl,
}, },
DEEPSEEK: {
API_KEY: config.deepseekApiKey,
},
CUSTOM_OPENAI: { CUSTOM_OPENAI: {
API_URL: config.customOpenaiApiUrl, API_URL: config.customOpenaiApiUrl,
API_KEY: config.customOpenaiApiKey, API_KEY: config.customOpenaiApiKey,

View File

@@ -34,6 +34,7 @@ interface ChatRequestBody {
query: string; query: string;
history: Array<[string, string]>; history: Array<[string, string]>;
stream?: boolean; stream?: boolean;
systemInstructions?: string;
} }
export const POST = async (req: Request) => { export const POST = async (req: Request) => {
@@ -125,7 +126,7 @@ export const POST = async (req: Request) => {
embeddings, embeddings,
body.optimizationMode, body.optimizationMode,
[], [],
'', body.systemInstructions || '',
); );
if (!body.stream) { if (!body.stream) {

View File

@@ -20,6 +20,7 @@ interface SettingsType {
anthropicApiKey: string; anthropicApiKey: string;
geminiApiKey: string; geminiApiKey: string;
ollamaApiUrl: string; ollamaApiUrl: string;
deepseekApiKey: string;
customOpenaiApiKey: string; customOpenaiApiKey: string;
customOpenaiApiUrl: string; customOpenaiApiUrl: string;
customOpenaiModelName: string; customOpenaiModelName: string;
@@ -838,6 +839,25 @@ const Page = () => {
onSave={(value) => saveConfig('geminiApiKey', value)} onSave={(value) => saveConfig('geminiApiKey', value)}
/> />
</div> </div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Deepseek API Key
</p>
<Input
type="text"
placeholder="Deepseek API Key"
value={config.deepseekApiKey}
isSaving={savingStates['deepseekApiKey']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
deepseekApiKey: e.target.value,
}));
}}
onSave={(value) => saveConfig('deepseekApiKey', value)}
/>
</div>
</div> </div>
</SettingsSection> </SettingsSection>
</div> </div>

View File

@@ -363,7 +363,6 @@ const ChatWindow = ({ id }: { id?: string }) => {
if (data.type === 'sources') { if (data.type === 'sources') {
sources = data.data; sources = data.data;
if (!added) {
setMessages((prevMessages) => [ setMessages((prevMessages) => [
...prevMessages, ...prevMessages,
{ {
@@ -376,7 +375,6 @@ const ChatWindow = ({ id }: { id?: string }) => {
}, },
]); ]);
added = true; added = true;
}
setMessageAppeared(true); setMessageAppeared(true);
} }
@@ -394,8 +392,8 @@ const ChatWindow = ({ id }: { id?: string }) => {
}, },
]); ]);
added = true; added = true;
} setMessageAppeared(true);
} else {
setMessages((prev) => setMessages((prev) =>
prev.map((message) => { prev.map((message) => {
if (message.messageId === data.messageId) { if (message.messageId === data.messageId) {
@@ -405,9 +403,9 @@ const ChatWindow = ({ id }: { id?: string }) => {
return message; return message;
}), }),
); );
}
recievedMessage += data.data; recievedMessage += data.data;
setMessageAppeared(true);
} }
if (data.type === 'messageEnd') { if (data.type === 'messageEnd') {

View File

@@ -48,6 +48,7 @@ const MessageBox = ({
const [speechMessage, setSpeechMessage] = useState(message.content); const [speechMessage, setSpeechMessage] = useState(message.content);
useEffect(() => { useEffect(() => {
const citationRegex = /\[([^\]]+)\]/g;
const regex = /\[(\d+)\]/g; const regex = /\[(\d+)\]/g;
let processedMessage = message.content; let processedMessage = message.content;
@@ -67,11 +68,33 @@ const MessageBox = ({
) { ) {
setParsedMessage( setParsedMessage(
processedMessage.replace( processedMessage.replace(
regex, citationRegex,
(_, number) => (_, capturedContent: string) => {
`<a href="${ const numbers = capturedContent
message.sources?.[number - 1]?.metadata?.url .split(',')
}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${number}</a>`, .map((numStr) => numStr.trim());
const linksHtml = numbers
.map((numStr) => {
const number = parseInt(numStr);
if (isNaN(number) || number <= 0) {
return `[${numStr}]`;
}
const source = message.sources?.[number - 1];
const url = source?.metadata?.url;
if (url) {
return `<a href="${url}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${numStr}</a>`;
} else {
return `[${numStr}]`;
}
})
.join('');
return linksHtml;
},
), ),
); );
return; return;

View File

@@ -76,13 +76,11 @@ const Optimization = ({
<PopoverButton <PopoverButton
onClick={() => setOptimizationMode(mode.key)} onClick={() => setOptimizationMode(mode.key)}
key={i} key={i}
disabled={mode.key === 'quality'}
className={cn( className={cn(
'p-2 rounded-lg flex flex-col items-start justify-start text-start space-y-1 duration-200 cursor-pointer transition', 'p-2 rounded-lg flex flex-col items-start justify-start text-start space-y-1 duration-200 cursor-pointer transition',
optimizationMode === mode.key optimizationMode === mode.key
? 'bg-light-secondary dark:bg-dark-secondary' ? 'bg-light-secondary dark:bg-dark-secondary'
: 'hover:bg-light-secondary dark:hover:bg-dark-secondary', : 'hover:bg-light-secondary dark:hover:bg-dark-secondary',
mode.key === 'quality' && 'opacity-50 cursor-not-allowed',
)} )}
> >
<div className="flex flex-row items-center space-x-1 text-black dark:text-white"> <div className="flex flex-row items-center space-x-1 text-black dark:text-white">

View File

@@ -25,6 +25,9 @@ interface Config {
OLLAMA: { OLLAMA: {
API_URL: string; API_URL: string;
}; };
DEEPSEEK: {
API_KEY: string;
};
CUSTOM_OPENAI: { CUSTOM_OPENAI: {
API_URL: string; API_URL: string;
API_KEY: string; API_KEY: string;
@@ -63,6 +66,8 @@ export const getSearxngApiEndpoint = () =>
export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL; export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL;
export const getDeepseekApiKey = () => loadConfig().MODELS.DEEPSEEK.API_KEY;
export const getCustomOpenaiApiKey = () => export const getCustomOpenaiApiKey = () =>
loadConfig().MODELS.CUSTOM_OPENAI.API_KEY; loadConfig().MODELS.CUSTOM_OPENAI.API_KEY;

View File

@@ -1,22 +1,48 @@
import { ChatAnthropic } from '@langchain/anthropic'; import { ChatAnthropic } from '@langchain/anthropic';
import { ChatModel, getModelsList, RawModel } from '.'; import { ChatModel } from '.';
import { getAnthropicApiKey } from '../config'; import { getAnthropicApiKey } from '../config';
import { BaseChatModel } from '@langchain/core/language_models/chat_models'; import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const loadModels = () => { const anthropicChatModels: Record<string, string>[] = [
return getModelsList()?.['chatModels']['anthropic'] as unknown as RawModel[] {
} displayName: 'Claude 3.7 Sonnet',
key: 'claude-3-7-sonnet-20250219',
},
{
displayName: 'Claude 3.5 Haiku',
key: 'claude-3-5-haiku-20241022',
},
{
displayName: 'Claude 3.5 Sonnet v2',
key: 'claude-3-5-sonnet-20241022',
},
{
displayName: 'Claude 3.5 Sonnet',
key: 'claude-3-5-sonnet-20240620',
},
{
displayName: 'Claude 3 Opus',
key: 'claude-3-opus-20240229',
},
{
displayName: 'Claude 3 Sonnet',
key: 'claude-3-sonnet-20240229',
},
{
displayName: 'Claude 3 Haiku',
key: 'claude-3-haiku-20240307',
},
];
export const loadAnthropicChatModels = async () => { export const loadAnthropicChatModels = async () => {
const anthropicApiKey = getAnthropicApiKey(); const anthropicApiKey = getAnthropicApiKey();
if (!anthropicApiKey) return {};
const models = loadModels() if (!anthropicApiKey) return {};
try { try {
const chatModels: Record<string, ChatModel> = {}; const chatModels: Record<string, ChatModel> = {};
models.forEach((model) => { anthropicChatModels.forEach((model) => {
chatModels[model.key] = { chatModels[model.key] = {
displayName: model.displayName, displayName: model.displayName,
model: new ChatAnthropic({ model: new ChatAnthropic({

View File

@@ -0,0 +1,44 @@
import { ChatOpenAI } from '@langchain/openai';
import { getDeepseekApiKey } from '../config';
import { ChatModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const deepseekChatModels: Record<string, string>[] = [
{
displayName: 'Deepseek Chat (Deepseek V3)',
key: 'deepseek-chat',
},
{
displayName: 'Deepseek Reasoner (Deepseek R1)',
key: 'deepseek-reasoner',
},
];
export const loadDeepseekChatModels = async () => {
const deepseekApiKey = getDeepseekApiKey();
if (!deepseekApiKey) return {};
try {
const chatModels: Record<string, ChatModel> = {};
deepseekChatModels.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatOpenAI({
openAIApiKey: deepseekApiKey,
modelName: model.key,
temperature: 0.7,
configuration: {
baseURL: 'https://api.deepseek.com',
},
}) as unknown as BaseChatModel,
};
});
return chatModels;
} catch (err) {
console.error(`Error loading Deepseek models: ${err}`);
return {};
}
};

View File

@@ -3,24 +3,61 @@ import {
GoogleGenerativeAIEmbeddings, GoogleGenerativeAIEmbeddings,
} from '@langchain/google-genai'; } from '@langchain/google-genai';
import { getGeminiApiKey } from '../config'; import { getGeminiApiKey } from '../config';
import { ChatModel, EmbeddingModel, getModelsList, RawModel } from '.'; import { ChatModel, EmbeddingModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models'; import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { Embeddings } from '@langchain/core/embeddings'; import { Embeddings } from '@langchain/core/embeddings';
const loadModels = (modelType: 'chat' | 'embedding') => { const geminiChatModels: Record<string, string>[] = [
return getModelsList()?.[modelType === 'chat' ? 'chatModels' : 'embeddingModels']['gemini'] as unknown as RawModel[] {
} displayName: 'Gemini 2.5 Pro Experimental',
key: 'gemini-2.5-pro-exp-03-25',
},
{
displayName: 'Gemini 2.0 Flash',
key: 'gemini-2.0-flash',
},
{
displayName: 'Gemini 2.0 Flash-Lite',
key: 'gemini-2.0-flash-lite',
},
{
displayName: 'Gemini 2.0 Flash Thinking Experimental',
key: 'gemini-2.0-flash-thinking-exp-01-21',
},
{
displayName: 'Gemini 1.5 Flash',
key: 'gemini-1.5-flash',
},
{
displayName: 'Gemini 1.5 Flash-8B',
key: 'gemini-1.5-flash-8b',
},
{
displayName: 'Gemini 1.5 Pro',
key: 'gemini-1.5-pro',
},
];
const geminiEmbeddingModels: Record<string, string>[] = [
{
displayName: 'Text Embedding 004',
key: 'models/text-embedding-004',
},
{
displayName: 'Embedding 001',
key: 'models/embedding-001',
},
];
export const loadGeminiChatModels = async () => { export const loadGeminiChatModels = async () => {
const geminiApiKey = getGeminiApiKey(); const geminiApiKey = getGeminiApiKey();
if (!geminiApiKey) return {};
const models = loadModels('chat'); if (!geminiApiKey) return {};
try { try {
const chatModels: Record<string, ChatModel> = {}; const chatModels: Record<string, ChatModel> = {};
models.forEach((model) => { geminiChatModels.forEach((model) => {
chatModels[model.key] = { chatModels[model.key] = {
displayName: model.displayName, displayName: model.displayName,
model: new ChatGoogleGenerativeAI({ model: new ChatGoogleGenerativeAI({
@@ -40,14 +77,13 @@ export const loadGeminiChatModels = async () => {
export const loadGeminiEmbeddingModels = async () => { export const loadGeminiEmbeddingModels = async () => {
const geminiApiKey = getGeminiApiKey(); const geminiApiKey = getGeminiApiKey();
if (!geminiApiKey) return {};
const models = loadModels('embedding'); if (!geminiApiKey) return {};
try { try {
const embeddingModels: Record<string, EmbeddingModel> = {}; const embeddingModels: Record<string, EmbeddingModel> = {};
models.forEach((model) => { geminiEmbeddingModels.forEach((model) => {
embeddingModels[model.key] = { embeddingModels[model.key] = {
displayName: model.displayName, displayName: model.displayName,
model: new GoogleGenerativeAIEmbeddings({ model: new GoogleGenerativeAIEmbeddings({

View File

@@ -1,22 +1,96 @@
import { ChatOpenAI } from '@langchain/openai'; import { ChatOpenAI } from '@langchain/openai';
import { getGroqApiKey } from '../config'; import { getGroqApiKey } from '../config';
import { ChatModel, getModelsList, RawModel } from '.'; import { ChatModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models'; import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const loadModels = () => { const groqChatModels: Record<string, string>[] = [
return getModelsList()?.chatModels['groq'] as unknown as RawModel[] {
} displayName: 'Gemma2 9B IT',
key: 'gemma2-9b-it',
},
{
displayName: 'Llama 3.3 70B Versatile',
key: 'llama-3.3-70b-versatile',
},
{
displayName: 'Llama 3.1 8B Instant',
key: 'llama-3.1-8b-instant',
},
{
displayName: 'Llama3 70B 8192',
key: 'llama3-70b-8192',
},
{
displayName: 'Llama3 8B 8192',
key: 'llama3-8b-8192',
},
{
displayName: 'Mixtral 8x7B 32768',
key: 'mixtral-8x7b-32768',
},
{
displayName: 'Qwen QWQ 32B (Preview)',
key: 'qwen-qwq-32b',
},
{
displayName: 'Mistral Saba 24B (Preview)',
key: 'mistral-saba-24b',
},
{
displayName: 'Qwen 2.5 Coder 32B (Preview)',
key: 'qwen-2.5-coder-32b',
},
{
displayName: 'Qwen 2.5 32B (Preview)',
key: 'qwen-2.5-32b',
},
{
displayName: 'DeepSeek R1 Distill Qwen 32B (Preview)',
key: 'deepseek-r1-distill-qwen-32b',
},
{
displayName: 'DeepSeek R1 Distill Llama 70B (Preview)',
key: 'deepseek-r1-distill-llama-70b',
},
{
displayName: 'Llama 3.3 70B SpecDec (Preview)',
key: 'llama-3.3-70b-specdec',
},
{
displayName: 'Llama 3.2 1B Preview (Preview)',
key: 'llama-3.2-1b-preview',
},
{
displayName: 'Llama 3.2 3B Preview (Preview)',
key: 'llama-3.2-3b-preview',
},
{
displayName: 'Llama 3.2 11B Vision Preview (Preview)',
key: 'llama-3.2-11b-vision-preview',
},
{
displayName: 'Llama 3.2 90B Vision Preview (Preview)',
key: 'llama-3.2-90b-vision-preview',
},
/* {
displayName: 'Llama 4 Maverick 17B 128E Instruct (Preview)',
key: 'meta-llama/llama-4-maverick-17b-128e-instruct',
}, */
{
displayName: 'Llama 4 Scout 17B 16E Instruct (Preview)',
key: 'meta-llama/llama-4-scout-17b-16e-instruct',
},
];
export const loadGroqChatModels = async () => { export const loadGroqChatModels = async () => {
const groqApiKey = getGroqApiKey(); const groqApiKey = getGroqApiKey();
if (!groqApiKey) return {};
const models = loadModels() if (!groqApiKey) return {};
try { try {
const chatModels: Record<string, ChatModel> = {}; const chatModels: Record<string, ChatModel> = {};
models.forEach((model) => { groqChatModels.forEach((model) => {
chatModels[model.key] = { chatModels[model.key] = {
displayName: model.displayName, displayName: model.displayName,
model: new ChatOpenAI({ model: new ChatOpenAI({

View File

@@ -1,39 +1,27 @@
import { Embeddings } from '@langchain/core/embeddings' import { Embeddings } from '@langchain/core/embeddings';
import { BaseChatModel } from '@langchain/core/language_models/chat_models' import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { loadOpenAIChatModels, loadOpenAIEmbeddingModels } from './openai' import { loadOpenAIChatModels, loadOpenAIEmbeddingModels } from './openai';
import { import {
getCustomOpenaiApiKey, getCustomOpenaiApiKey,
getCustomOpenaiApiUrl, getCustomOpenaiApiUrl,
getCustomOpenaiModelName, getCustomOpenaiModelName,
} from '../config' } from '../config';
import { ChatOpenAI } from '@langchain/openai' import { ChatOpenAI } from '@langchain/openai';
import { loadOllamaChatModels, loadOllamaEmbeddingModels } from './ollama' import { loadOllamaChatModels, loadOllamaEmbeddingModels } from './ollama';
import { loadGroqChatModels } from './groq' import { loadGroqChatModels } from './groq';
import { loadAnthropicChatModels } from './anthropic' import { loadAnthropicChatModels } from './anthropic';
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini' import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini';
import { loadTransformersEmbeddingsModels } from './transformers' import { loadTransformersEmbeddingsModels } from './transformers';
import path from 'path' import { loadDeepseekChatModels } from './deepseek';
import fs from 'fs'
export interface ChatModel { export interface ChatModel {
displayName: string displayName: string;
model: BaseChatModel model: BaseChatModel;
} }
export interface EmbeddingModel { export interface EmbeddingModel {
displayName: string displayName: string;
model: Embeddings model: Embeddings;
}
export type RawModel = {
displayName: string
key: string
}
type ModelsList = {
[key in "chatModels" | "embeddingModels"]: {
[key: string]: RawModel[]
}
} }
export const chatModelProviders: Record< export const chatModelProviders: Record<
@@ -45,7 +33,8 @@ export const chatModelProviders: Record<
groq: loadGroqChatModels, groq: loadGroqChatModels,
anthropic: loadAnthropicChatModels, anthropic: loadAnthropicChatModels,
gemini: loadGeminiChatModels, gemini: loadGeminiChatModels,
} deepseek: loadDeepseekChatModels,
};
export const embeddingModelProviders: Record< export const embeddingModelProviders: Record<
string, string,
@@ -55,43 +44,21 @@ export const embeddingModelProviders: Record<
ollama: loadOllamaEmbeddingModels, ollama: loadOllamaEmbeddingModels,
gemini: loadGeminiEmbeddingModels, gemini: loadGeminiEmbeddingModels,
transformers: loadTransformersEmbeddingsModels, transformers: loadTransformersEmbeddingsModels,
} };
export const getModelsList = (): ModelsList | null => {
const modelFile = path.join(process.cwd(), 'data/models.json')
try {
const content = fs.readFileSync(modelFile, 'utf-8')
return JSON.parse(content) as ModelsList
} catch (err) {
console.error(`Error reading models file: ${err}`)
return null
}
}
export const updateModelsList = (models: ModelsList) => {
try {
const modelFile = path.join(process.cwd(), 'data/models.json')
const content = JSON.stringify(models, null, 2)
fs.writeFileSync(modelFile, content, 'utf-8')
} catch(err) {
console.error(`Error updating models file: ${err}`)
}
}
export const getAvailableChatModelProviders = async () => { export const getAvailableChatModelProviders = async () => {
const models: Record<string, Record<string, ChatModel>> = {} const models: Record<string, Record<string, ChatModel>> = {};
for (const provider in chatModelProviders) { for (const provider in chatModelProviders) {
const providerModels = await chatModelProviders[provider]() const providerModels = await chatModelProviders[provider]();
if (Object.keys(providerModels).length > 0) { if (Object.keys(providerModels).length > 0) {
models[provider] = providerModels models[provider] = providerModels;
} }
} }
const customOpenAiApiKey = getCustomOpenaiApiKey() const customOpenAiApiKey = getCustomOpenaiApiKey();
const customOpenAiApiUrl = getCustomOpenaiApiUrl() const customOpenAiApiUrl = getCustomOpenaiApiUrl();
const customOpenAiModelName = getCustomOpenaiModelName() const customOpenAiModelName = getCustomOpenaiModelName();
models['custom_openai'] = { models['custom_openai'] = {
...(customOpenAiApiKey && customOpenAiApiUrl && customOpenAiModelName ...(customOpenAiApiKey && customOpenAiApiUrl && customOpenAiModelName
@@ -109,20 +76,20 @@ export const getAvailableChatModelProviders = async () => {
}, },
} }
: {}), : {}),
} };
return models return models;
} };
export const getAvailableEmbeddingModelProviders = async () => { export const getAvailableEmbeddingModelProviders = async () => {
const models: Record<string, Record<string, EmbeddingModel>> = {} const models: Record<string, Record<string, EmbeddingModel>> = {};
for (const provider in embeddingModelProviders) { for (const provider in embeddingModelProviders) {
const providerModels = await embeddingModelProviders[provider]() const providerModels = await embeddingModelProviders[provider]();
if (Object.keys(providerModels).length > 0) { if (Object.keys(providerModels).length > 0) {
models[provider] = providerModels models[provider] = providerModels;
} }
} }
return models return models;
} };

View File

@@ -1,39 +1,24 @@
import axios from 'axios' import axios from 'axios';
import { getKeepAlive, getOllamaApiEndpoint } from '../config' import { getKeepAlive, getOllamaApiEndpoint } from '../config';
import { ChatModel, EmbeddingModel } from '.' import { ChatModel, EmbeddingModel } from '.';
import { ChatOllama } from '@langchain/community/chat_models/ollama' import { ChatOllama } from '@langchain/community/chat_models/ollama';
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama' import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
export const loadOllamaChatModels = async () => {
const ollamaApiEndpoint = getOllamaApiEndpoint();
if (!ollamaApiEndpoint) return {};
const loadModels = async (apiURL: string) => {
try { try {
const res = await axios.get(`${apiURL}/api/tags`, { const res = await axios.get(`${ollamaApiEndpoint}/api/tags`, {
headers: { headers: {
'Content-Type': 'application/json', 'Content-Type': 'application/json',
}, },
}) });
if (res.status !== 200) { const { models } = res.data;
console.error(`Failed to load Ollama models: ${res.data}`)
return []
}
const { models } = res.data const chatModels: Record<string, ChatModel> = {};
return models
} catch (err) {
console.error(`Error loading Ollama models: ${err}`)
return []
}
}
export const loadOllamaChatModels = async () => {
const ollamaApiEndpoint = getOllamaApiEndpoint()
if (!ollamaApiEndpoint) return {}
const models = await loadModels(ollamaApiEndpoint)
try {
const chatModels: Record<string, ChatModel> = {}
models.forEach((model: any) => { models.forEach((model: any) => {
chatModels[model.model] = { chatModels[model.model] = {
@@ -44,24 +29,31 @@ export const loadOllamaChatModels = async () => {
temperature: 0.7, temperature: 0.7,
keepAlive: getKeepAlive(), keepAlive: getKeepAlive(),
}), }),
} };
}) });
return chatModels return chatModels;
} catch (err) { } catch (err) {
console.error(`Error loading Ollama models: ${err}`) console.error(`Error loading Ollama models: ${err}`);
return {} return {};
} }
} };
export const loadOllamaEmbeddingModels = async () => { export const loadOllamaEmbeddingModels = async () => {
const ollamaApiEndpoint = getOllamaApiEndpoint() const ollamaApiEndpoint = getOllamaApiEndpoint();
if (!ollamaApiEndpoint) return {}
const models = await loadModels(ollamaApiEndpoint) if (!ollamaApiEndpoint) return {};
try { try {
const embeddingModels: Record<string, EmbeddingModel> = {} const res = await axios.get(`${ollamaApiEndpoint}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
const { models } = res.data;
const embeddingModels: Record<string, EmbeddingModel> = {};
models.forEach((model: any) => { models.forEach((model: any) => {
embeddingModels[model.model] = { embeddingModels[model.model] = {
@@ -70,12 +62,12 @@ export const loadOllamaEmbeddingModels = async () => {
baseUrl: ollamaApiEndpoint, baseUrl: ollamaApiEndpoint,
model: model.model, model: model.model,
}), }),
} };
}) });
return embeddingModels return embeddingModels;
} catch (err) { } catch (err) {
console.error(`Error loading Ollama embeddings models: ${err}`) console.error(`Error loading Ollama embeddings models: ${err}`);
return {} return {};
} }
} };

View File

@@ -1,23 +1,52 @@
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai'; import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
import { getOpenaiApiKey } from '../config'; import { getOpenaiApiKey } from '../config';
import { ChatModel, EmbeddingModel, getModelsList, RawModel } from '.'; import { ChatModel, EmbeddingModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models'; import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { Embeddings } from '@langchain/core/embeddings'; import { Embeddings } from '@langchain/core/embeddings';
const loadModels = (modelType: 'chat' | 'embedding') => { const openaiChatModels: Record<string, string>[] = [
return getModelsList()?.[modelType === 'chat' ? 'chatModels' : 'embeddingModels']['openai'] as unknown as RawModel[] {
} displayName: 'GPT-3.5 Turbo',
key: 'gpt-3.5-turbo',
},
{
displayName: 'GPT-4',
key: 'gpt-4',
},
{
displayName: 'GPT-4 turbo',
key: 'gpt-4-turbo',
},
{
displayName: 'GPT-4 omni',
key: 'gpt-4o',
},
{
displayName: 'GPT-4 omni mini',
key: 'gpt-4o-mini',
},
];
const openaiEmbeddingModels: Record<string, string>[] = [
{
displayName: 'Text Embedding 3 Small',
key: 'text-embedding-3-small',
},
{
displayName: 'Text Embedding 3 Large',
key: 'text-embedding-3-large',
},
];
export const loadOpenAIChatModels = async () => { export const loadOpenAIChatModels = async () => {
const openaiApiKey = getOpenaiApiKey(); const openaiApiKey = getOpenaiApiKey();
const models = loadModels('chat');
if (!openaiApiKey || !models) return {}; if (!openaiApiKey) return {};
try { try {
const chatModels: Record<string, ChatModel> = {}; const chatModels: Record<string, ChatModel> = {};
models.forEach((model) => { openaiChatModels.forEach((model) => {
chatModels[model.key] = { chatModels[model.key] = {
displayName: model.displayName, displayName: model.displayName,
model: new ChatOpenAI({ model: new ChatOpenAI({
@@ -37,14 +66,13 @@ export const loadOpenAIChatModels = async () => {
export const loadOpenAIEmbeddingModels = async () => { export const loadOpenAIEmbeddingModels = async () => {
const openaiApiKey = getOpenaiApiKey(); const openaiApiKey = getOpenaiApiKey();
const models = loadModels('embedding');
if (!openaiApiKey || !models) return {}; if (!openaiApiKey) return {};
try { try {
const embeddingModels: Record<string, EmbeddingModel> = {}; const embeddingModels: Record<string, EmbeddingModel> = {};
models.forEach((model) => { openaiEmbeddingModels.forEach((model) => {
embeddingModels[model.key] = { embeddingModels[model.key] = {
displayName: model.displayName, displayName: model.displayName,
model: new OpenAIEmbeddings({ model: new OpenAIEmbeddings({

View File

@@ -1,30 +1,31 @@
import { EmbeddingModel, getModelsList, RawModel } from '.' import { HuggingFaceTransformersEmbeddings } from '../huggingfaceTransformer';
import { HuggingFaceTransformersEmbeddings } from '../huggingfaceTransformer'
const loadModels = () => {
return getModelsList()?.embeddingModels[
'transformers'
] as unknown as RawModel[]
}
export const loadTransformersEmbeddingsModels = async () => { export const loadTransformersEmbeddingsModels = async () => {
try { try {
const models = loadModels() const embeddingModels = {
'xenova-bge-small-en-v1.5': {
const embeddingModels: Record<string, EmbeddingModel> = {} displayName: 'BGE Small',
models.forEach(model => {
embeddingModels[model.key] = {
displayName: model.displayName,
model: new HuggingFaceTransformersEmbeddings({ model: new HuggingFaceTransformersEmbeddings({
modelName: model.key, modelName: 'Xenova/bge-small-en-v1.5',
}), }),
} },
}) 'xenova-gte-small': {
displayName: 'GTE Small',
model: new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/gte-small',
}),
},
'xenova-bert-base-multilingual-uncased': {
displayName: 'Bert Multilingual',
model: new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/bert-base-multilingual-uncased',
}),
},
};
return embeddingModels return embeddingModels;
} catch (err) { } catch (err) {
console.error(`Error loading Transformers embeddings model: ${err}`) console.error(`Error loading Transformers embeddings model: ${err}`);
return {} return {};
} }
} };

View File

@@ -6,24 +6,20 @@ import {
MessagesPlaceholder, MessagesPlaceholder,
PromptTemplate, PromptTemplate,
} from '@langchain/core/prompts'; } from '@langchain/core/prompts';
import {
RunnableLambda,
RunnableMap,
RunnableSequence,
} from '@langchain/core/runnables';
import { BaseMessage } from '@langchain/core/messages'; import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers'; import { StringOutputParser } from '@langchain/core/output_parsers';
import LineListOutputParser from '../outputParsers/listLineOutputParser'; import LineListOutputParser from '../outputParsers/listLineOutputParser';
import LineOutputParser from '../outputParsers/lineOutputParser'; import LineOutputParser from '../outputParsers/lineOutputParser';
import { getDocumentsFromLinks } from '../utils/documents'; import { getDocumentsFromLinks } from '../utils/documents';
import { Document } from 'langchain/document'; import { Document } from 'langchain/document';
import { searchSearxng } from '../searxng'; import { searchSearxng, SearxngSearchResult } from '../searxng';
import path from 'node:path'; import path from 'node:path';
import fs from 'node:fs'; import fs from 'node:fs';
import computeSimilarity from '../utils/computeSimilarity'; import computeSimilarity from '../utils/computeSimilarity';
import formatChatHistoryAsString from '../utils/formatHistory'; import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events'; import eventEmitter from 'events';
import { StreamEvent } from '@langchain/core/tracers/log_stream'; import { StreamEvent } from '@langchain/core/tracers/log_stream';
import { EventEmitter } from 'node:stream';
export interface MetaSearchAgentType { export interface MetaSearchAgentType {
searchAndAnswer: ( searchAndAnswer: (
@@ -47,7 +43,7 @@ interface Config {
activeEngines: string[]; activeEngines: string[];
} }
type BasicChainInput = { type SearchInput = {
chat_history: BaseMessage[]; chat_history: BaseMessage[];
query: string; query: string;
}; };
@@ -60,14 +56,25 @@ class MetaSearchAgent implements MetaSearchAgentType {
this.config = config; this.config = config;
} }
private async createSearchRetrieverChain(llm: BaseChatModel) { private async searchSources(
llm: BaseChatModel,
input: SearchInput,
emitter: EventEmitter,
) {
(llm as unknown as ChatOpenAI).temperature = 0; (llm as unknown as ChatOpenAI).temperature = 0;
return RunnableSequence.from([ const chatPrompt = PromptTemplate.fromTemplate(
PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt), this.config.queryGeneratorPrompt,
llm, );
this.strParser,
RunnableLambda.from(async (input: string) => { const processedChatPrompt = await chatPrompt.invoke({
chat_history: formatChatHistoryAsString(input.chat_history),
query: input.query,
});
const llmRes = await llm.invoke(processedChatPrompt);
const messageStr = await this.strParser.invoke(llmRes);
const linksOutputParser = new LineListOutputParser({ const linksOutputParser = new LineListOutputParser({
key: 'links', key: 'links',
}); });
@@ -76,10 +83,10 @@ class MetaSearchAgent implements MetaSearchAgentType {
key: 'question', key: 'question',
}); });
const links = await linksOutputParser.parse(input); const links = await linksOutputParser.parse(messageStr);
let question = this.config.summarizer let question = this.config.summarizer
? await questionOutputParser.parse(input) ? await questionOutputParser.parse(messageStr)
: input; : messageStr;
if (question === 'not_needed') { if (question === 'not_needed') {
return { query: '', docs: [] }; return { query: '', docs: [] };
@@ -99,8 +106,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
linkDocs.map((doc) => { linkDocs.map((doc) => {
const URLDocExists = docGroups.find( const URLDocExists = docGroups.find(
(d) => (d) =>
d.metadata.url === doc.metadata.url && d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10,
d.metadata.totalDocs < 10,
); );
if (!URLDocExists) { if (!URLDocExists) {
@@ -115,8 +121,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
const docIndex = docGroups.findIndex( const docIndex = docGroups.findIndex(
(d) => (d) =>
d.metadata.url === doc.metadata.url && d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10,
d.metadata.totalDocs < 10,
); );
if (docIndex !== -1) { if (docIndex !== -1) {
@@ -228,42 +233,162 @@ class MetaSearchAgent implements MetaSearchAgentType {
return { query: question, docs: documents }; return { query: question, docs: documents };
} }
}),
]);
} }
private async createAnsweringChain( private async performDeepResearch(
llm: BaseChatModel,
input: SearchInput,
emitter: EventEmitter,
) {
(llm as unknown as ChatOpenAI).temperature = 0;
const queryGenPrompt = PromptTemplate.fromTemplate(
this.config.queryGeneratorPrompt,
);
const formattedChatPrompt = await queryGenPrompt.invoke({
chat_history: formatChatHistoryAsString(input.chat_history),
query: input.query,
});
let i = 0;
let currentQuery = await this.strParser.invoke(
await llm.invoke(formattedChatPrompt),
);
const originalQuery = currentQuery;
const pastQueries: string[] = [];
const results: SearxngSearchResult[] = [];
while (i < 10) {
const res = await searchSearxng(currentQuery, {
language: 'en',
engines: this.config.activeEngines,
});
results.push(...res.results);
const reflectorPrompt = PromptTemplate.fromTemplate(`
You are an LLM that is tasked with reflecting on the results of a search query.
## Goal
You will be given question of the user, a list of search results collected from the web to answer that question along with past queries made to collect those results. You have to analyze the results based on user's question and do the following:
1. Identify unexplored areas or areas with less detailed information in the results and generate a new query that focuses on those areas. The new queries should be more specific and a similar query shall not exist in past queries which will be provided to you. Make sure to include keywords that you're looking for because the new query will be used to search the web for information on that topic. Make sure the query contains only 1 question and is not too long to ensure it is Search Engine friendly.
2. You'll have to generate a description explaining what you are doing for example "I am looking for more information about X" or "Understanding how X works" etc. The description should be short and concise.
## Output format
You need to output in XML format and do not generate any other text. ake sure to not include any other text in the output or start a conversation in the output. The output should be in the following format:
<query>(query)</query>
<description>(description)</description>
## Example
Say the user asked "What is Llama 4 by Meta?" and let search results contain information about Llama 4 being an LLM and very little information about its features. You can output:
<query>Llama 4 features</query> // Generate queries that capture keywords for SEO and not making words like "How", "What", "Why" etc.
<description>Looking for new features in Llama 4</description>
or something like
<query>How is Llama 4 better than its previous generation models</query>
<description>Understanding the difference between Llama 4 and previous generation models.</description>
## BELOW IS THE ACTUAL DATA YOU WILL BE WORKING WITH. IT IS NOT A PART OF EXAMPLES. YOU'LL HAVE TO GENERATE YOUR ANSWER BASED ON THIS DATA.
<user_question>\n{question}\n</user_question>
<search_results>\n{search_results}\n</search_results>
<past_queries>\n{past_queries}\n</past_queries>
Response:
`);
const formattedReflectorPrompt = await reflectorPrompt.invoke({
question: originalQuery,
search_results: results
.map(
(result) => `<result>${result.title} - ${result.content}</result>`,
)
.join('\n'),
past_queries: pastQueries.map((q) => `<query>${q}</query>`).join('\n'),
});
const feedback = await this.strParser.invoke(
await llm.invoke(formattedReflectorPrompt),
);
console.log(`Feedback: ${feedback}`);
const queryOutputParser = new LineOutputParser({
key: 'query',
});
const descriptionOutputParser = new LineOutputParser({
key: 'description',
});
currentQuery = await queryOutputParser.parse(feedback);
const description = await descriptionOutputParser.parse(feedback);
console.log(`Query: ${currentQuery}`);
console.log(`Description: ${description}`);
pastQueries.push(currentQuery);
++i;
}
const uniqueResults: SearxngSearchResult[] = [];
results.forEach((res) => {
const exists = uniqueResults.find((r) => r.url === res.url);
if (!exists) {
uniqueResults.push(res);
} else {
exists.content += `\n\n` + res.content;
}
});
const documents = uniqueResults /* .slice(0, 50) */
.map(
(r) =>
new Document({
pageContent: r.content || '',
metadata: {
title: r.title,
url: r.url,
...(r.img_src && { img_src: r.img_src }),
},
}),
);
return documents;
}
private async streamAnswer(
llm: BaseChatModel, llm: BaseChatModel,
fileIds: string[], fileIds: string[],
embeddings: Embeddings, embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality', optimizationMode: 'speed' | 'balanced' | 'quality',
systemInstructions: string, systemInstructions: string,
input: SearchInput,
emitter: EventEmitter,
) { ) {
return RunnableSequence.from([ const chatPrompt = ChatPromptTemplate.fromMessages([
RunnableMap.from({ ['system', this.config.responsePrompt],
systemInstructions: () => systemInstructions, new MessagesPlaceholder('chat_history'),
query: (input: BasicChainInput) => input.query, ['user', '{query}'],
chat_history: (input: BasicChainInput) => input.chat_history, ]);
date: () => new Date().toISOString(),
context: RunnableLambda.from(async (input: BasicChainInput) => {
const processedHistory = formatChatHistoryAsString(
input.chat_history,
);
let context = '';
if (optimizationMode === 'speed' || optimizationMode === 'balanced') {
let docs: Document[] | null = null; let docs: Document[] | null = null;
let query = input.query; let query = input.query;
if (this.config.searchWeb) { if (this.config.searchWeb) {
const searchRetrieverChain = const searchResults = await this.searchSources(llm, input, emitter);
await this.createSearchRetrieverChain(llm);
const searchRetrieverResult = await searchRetrieverChain.invoke({ query = searchResults.query;
chat_history: processedHistory, docs = searchResults.docs;
query,
});
query = searchRetrieverResult.query;
docs = searchRetrieverResult.docs;
} }
const sortedDocs = await this.rerankDocs( const sortedDocs = await this.rerankDocs(
@@ -274,23 +399,42 @@ class MetaSearchAgent implements MetaSearchAgentType {
optimizationMode, optimizationMode,
); );
return sortedDocs; emitter.emit(
}) 'data',
.withConfig({ JSON.stringify({ type: 'sources', data: sortedDocs }),
runName: 'FinalSourceRetriever', );
})
.pipe(this.processDocs), context = this.processDocs(sortedDocs);
}), } else if (optimizationMode === 'quality') {
ChatPromptTemplate.fromMessages([ let docs: Document[] = [];
['system', this.config.responsePrompt],
new MessagesPlaceholder('chat_history'), docs = await this.performDeepResearch(llm, input, emitter);
['user', '{query}'],
]), emitter.emit('data', JSON.stringify({ type: 'sources', data: docs }));
llm,
this.strParser, context = this.processDocs(docs);
]).withConfig({ }
runName: 'FinalResponseGenerator',
const formattedChatPrompt = await chatPrompt.invoke({
query: input.query,
chat_history: input.chat_history,
date: new Date().toISOString(),
context: context,
systemInstructions: systemInstructions,
}); });
const llmRes = await llm.stream(formattedChatPrompt);
for await (const data of llmRes) {
const messageStr = await this.strParser.invoke(data);
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: messageStr }),
);
}
emitter.emit('end');
} }
private async rerankDocs( private async rerankDocs(
@@ -426,44 +570,13 @@ class MetaSearchAgent implements MetaSearchAgentType {
return docs return docs
.map( .map(
(_, index) => (_, index) =>
`${index + 1}. ${docs[index].metadata.title} ${docs[index].pageContent}`, `${index + 1}. ${docs[index].metadata.title} ${
docs[index].pageContent
}`,
) )
.join('\n'); .join('\n');
} }
private async handleStream(
stream: AsyncGenerator<StreamEvent, any, any>,
emitter: eventEmitter,
) {
for await (const event of stream) {
if (
event.event === 'on_chain_end' &&
event.name === 'FinalSourceRetriever'
) {
``;
emitter.emit(
'data',
JSON.stringify({ type: 'sources', data: event.data.output }),
);
}
if (
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
);
}
if (
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit('end');
}
}
}
async searchAndAnswer( async searchAndAnswer(
message: string, message: string,
history: BaseMessage[], history: BaseMessage[],
@@ -475,26 +588,19 @@ class MetaSearchAgent implements MetaSearchAgentType {
) { ) {
const emitter = new eventEmitter(); const emitter = new eventEmitter();
const answeringChain = await this.createAnsweringChain( this.streamAnswer(
llm, llm,
fileIds, fileIds,
embeddings, embeddings,
optimizationMode, optimizationMode,
systemInstructions, systemInstructions,
);
const stream = answeringChain.streamEvents(
{ {
chat_history: history, chat_history: history,
query: message, query: message,
}, },
{ emitter,
version: 'v1',
},
); );
this.handleStream(stream, emitter);
return emitter; return emitter;
} }
} }

View File

@@ -8,7 +8,7 @@ interface SearxngSearchOptions {
pageno?: number; pageno?: number;
} }
interface SearxngSearchResult { export interface SearxngSearchResult {
title: string; title: string;
url: string; url: string;
img_src?: string; img_src?: string;