mirror of
https://github.com/ItzCrazyKns/Perplexica.git
synced 2025-06-18 15:58:31 +00:00
Compare commits
10 Commits
3b1362ebbd
...
feat/syste
Author | SHA1 | Date | |
---|---|---|---|
7d52fbb368 | |||
4b8e0ea1aa | |||
5b1055e8c9 | |||
4b2a7916fd | |||
97e64aa65e | |||
90e303f737 | |||
5d60ab1139 | |||
9095996356 | |||
191d1dc25f | |||
d3b2f8983d |
5
.github/workflows/docker-build.yaml
vendored
5
.github/workflows/docker-build.yaml
vendored
@ -114,6 +114,11 @@ jobs:
|
||||
username: ${{ secrets.DOCKER_USERNAME }}
|
||||
password: ${{ secrets.DOCKER_PASSWORD }}
|
||||
|
||||
- name: Extract version from release tag
|
||||
if: github.event_name == 'release'
|
||||
id: version
|
||||
run: echo "RELEASE_VERSION=${GITHUB_REF#refs/tags/}" >> $GITHUB_ENV
|
||||
|
||||
- name: Create and push multi-arch manifest for main
|
||||
if: github.ref == 'refs/heads/master' && github.event_name == 'push'
|
||||
run: |
|
||||
|
@ -32,7 +32,8 @@ The API accepts a JSON object in the request body, where you define the focus mo
|
||||
"history": [
|
||||
["human", "Hi, how are you?"],
|
||||
["assistant", "I am doing well, how can I help you today?"]
|
||||
]
|
||||
],
|
||||
"stream": false
|
||||
}
|
||||
```
|
||||
|
||||
@ -71,11 +72,13 @@ The API accepts a JSON object in the request body, where you define the focus mo
|
||||
]
|
||||
```
|
||||
|
||||
- **`stream`** (boolean, optional): When set to `true`, enables streaming responses. Default is `false`.
|
||||
|
||||
### Response
|
||||
|
||||
The response from the API includes both the final message and the sources used to generate that message.
|
||||
|
||||
#### Example Response
|
||||
#### Standard Response (stream: false)
|
||||
|
||||
```json
|
||||
{
|
||||
@ -100,6 +103,28 @@ The response from the API includes both the final message and the sources used t
|
||||
}
|
||||
```
|
||||
|
||||
#### Streaming Response (stream: true)
|
||||
|
||||
When streaming is enabled, the API returns a stream of newline-delimited JSON objects. Each line contains a complete, valid JSON object. The response has Content-Type: application/json.
|
||||
|
||||
Example of streamed response objects:
|
||||
|
||||
```
|
||||
{"type":"init","data":"Stream connected"}
|
||||
{"type":"sources","data":[{"pageContent":"...","metadata":{"title":"...","url":"..."}},...]}
|
||||
{"type":"response","data":"Perplexica is an "}
|
||||
{"type":"response","data":"innovative, open-source "}
|
||||
{"type":"response","data":"AI-powered search engine..."}
|
||||
{"type":"done"}
|
||||
```
|
||||
|
||||
Clients should process each line as a separate JSON object. The different message types include:
|
||||
|
||||
- **`init`**: Initial connection message
|
||||
- **`sources`**: All sources used for the response
|
||||
- **`response`**: Chunks of the generated answer text
|
||||
- **`done`**: Indicates the stream is complete
|
||||
|
||||
### Fields in the Response
|
||||
|
||||
- **`message`** (string): The search result, generated based on the query and focus mode.
|
||||
|
@ -49,6 +49,7 @@ type Body = {
|
||||
files: Array<string>;
|
||||
chatModel: ChatModel;
|
||||
embeddingModel: EmbeddingModel;
|
||||
systemInstructions: string;
|
||||
};
|
||||
|
||||
const handleEmitterEvents = async (
|
||||
@ -278,6 +279,7 @@ export const POST = async (req: Request) => {
|
||||
embedding,
|
||||
body.optimizationMode,
|
||||
body.files,
|
||||
body.systemInstructions,
|
||||
);
|
||||
|
||||
const responseStream = new TransformStream();
|
||||
|
@ -33,6 +33,7 @@ interface ChatRequestBody {
|
||||
embeddingModel?: embeddingModel;
|
||||
query: string;
|
||||
history: Array<[string, string]>;
|
||||
stream?: boolean;
|
||||
}
|
||||
|
||||
export const POST = async (req: Request) => {
|
||||
@ -48,6 +49,7 @@ export const POST = async (req: Request) => {
|
||||
|
||||
body.history = body.history || [];
|
||||
body.optimizationMode = body.optimizationMode || 'balanced';
|
||||
body.stream = body.stream || false;
|
||||
|
||||
const history: BaseMessage[] = body.history.map((msg) => {
|
||||
return msg[0] === 'human'
|
||||
@ -123,42 +125,140 @@ export const POST = async (req: Request) => {
|
||||
embeddings,
|
||||
body.optimizationMode,
|
||||
[],
|
||||
"",
|
||||
);
|
||||
|
||||
return new Promise(
|
||||
(
|
||||
resolve: (value: Response) => void,
|
||||
reject: (value: Response) => void,
|
||||
) => {
|
||||
let message = '';
|
||||
if (!body.stream) {
|
||||
return new Promise(
|
||||
(
|
||||
resolve: (value: Response) => void,
|
||||
reject: (value: Response) => void,
|
||||
) => {
|
||||
let message = '';
|
||||
let sources: any[] = [];
|
||||
|
||||
emitter.on('data', (data: string) => {
|
||||
try {
|
||||
const parsedData = JSON.parse(data);
|
||||
if (parsedData.type === 'response') {
|
||||
message += parsedData.data;
|
||||
} else if (parsedData.type === 'sources') {
|
||||
sources = parsedData.data;
|
||||
}
|
||||
} catch (error) {
|
||||
reject(
|
||||
Response.json(
|
||||
{ message: 'Error parsing data' },
|
||||
{ status: 500 },
|
||||
),
|
||||
);
|
||||
}
|
||||
});
|
||||
|
||||
emitter.on('end', () => {
|
||||
resolve(Response.json({ message, sources }, { status: 200 }));
|
||||
});
|
||||
|
||||
emitter.on('error', (error: any) => {
|
||||
reject(
|
||||
Response.json(
|
||||
{ message: 'Search error', error },
|
||||
{ status: 500 },
|
||||
),
|
||||
);
|
||||
});
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
const encoder = new TextEncoder();
|
||||
|
||||
const abortController = new AbortController();
|
||||
const { signal } = abortController;
|
||||
|
||||
const stream = new ReadableStream({
|
||||
start(controller) {
|
||||
let sources: any[] = [];
|
||||
|
||||
emitter.on('data', (data) => {
|
||||
controller.enqueue(
|
||||
encoder.encode(
|
||||
JSON.stringify({
|
||||
type: 'init',
|
||||
data: 'Stream connected',
|
||||
}) + '\n',
|
||||
),
|
||||
);
|
||||
|
||||
signal.addEventListener('abort', () => {
|
||||
emitter.removeAllListeners();
|
||||
|
||||
try {
|
||||
controller.close();
|
||||
} catch (error) {}
|
||||
});
|
||||
|
||||
emitter.on('data', (data: string) => {
|
||||
if (signal.aborted) return;
|
||||
|
||||
try {
|
||||
const parsedData = JSON.parse(data);
|
||||
|
||||
if (parsedData.type === 'response') {
|
||||
message += parsedData.data;
|
||||
controller.enqueue(
|
||||
encoder.encode(
|
||||
JSON.stringify({
|
||||
type: 'response',
|
||||
data: parsedData.data,
|
||||
}) + '\n',
|
||||
),
|
||||
);
|
||||
} else if (parsedData.type === 'sources') {
|
||||
sources = parsedData.data;
|
||||
controller.enqueue(
|
||||
encoder.encode(
|
||||
JSON.stringify({
|
||||
type: 'sources',
|
||||
data: sources,
|
||||
}) + '\n',
|
||||
),
|
||||
);
|
||||
}
|
||||
} catch (error) {
|
||||
reject(
|
||||
Response.json({ message: 'Error parsing data' }, { status: 500 }),
|
||||
);
|
||||
controller.error(error);
|
||||
}
|
||||
});
|
||||
|
||||
emitter.on('end', () => {
|
||||
resolve(Response.json({ message, sources }, { status: 200 }));
|
||||
if (signal.aborted) return;
|
||||
|
||||
controller.enqueue(
|
||||
encoder.encode(
|
||||
JSON.stringify({
|
||||
type: 'done',
|
||||
}) + '\n',
|
||||
),
|
||||
);
|
||||
controller.close();
|
||||
});
|
||||
|
||||
emitter.on('error', (error) => {
|
||||
reject(
|
||||
Response.json({ message: 'Search error', error }, { status: 500 }),
|
||||
);
|
||||
emitter.on('error', (error: any) => {
|
||||
if (signal.aborted) return;
|
||||
|
||||
controller.error(error);
|
||||
});
|
||||
},
|
||||
);
|
||||
cancel() {
|
||||
abortController.abort();
|
||||
},
|
||||
});
|
||||
|
||||
return new Response(stream, {
|
||||
headers: {
|
||||
'Content-Type': 'text/event-stream',
|
||||
'Cache-Control': 'no-cache, no-transform',
|
||||
Connection: 'keep-alive',
|
||||
},
|
||||
});
|
||||
} catch (err: any) {
|
||||
console.error(`Error in getting search results: ${err.message}`);
|
||||
return Response.json(
|
||||
|
@ -54,6 +54,38 @@ const Input = ({ className, isSaving, onSave, ...restProps }: InputProps) => {
|
||||
);
|
||||
};
|
||||
|
||||
interface TextareaProps extends React.InputHTMLAttributes<HTMLTextAreaElement> {
|
||||
isSaving?: boolean;
|
||||
onSave?: (value: string) => void;
|
||||
}
|
||||
|
||||
const Textarea = ({
|
||||
className,
|
||||
isSaving,
|
||||
onSave,
|
||||
...restProps
|
||||
}: TextareaProps) => {
|
||||
return (
|
||||
<div className="relative">
|
||||
<textarea
|
||||
placeholder="Any special instructions for the LLM"
|
||||
className="placeholder:text-sm text-sm w-full flex items-center justify-between p-3 bg-light-secondary dark:bg-dark-secondary rounded-lg hover:bg-light-200 dark:hover:bg-dark-200 transition-colors"
|
||||
rows={4}
|
||||
onBlur={(e) => onSave?.(e.target.value)}
|
||||
{...restProps}
|
||||
/>
|
||||
{isSaving && (
|
||||
<div className="absolute right-3 top-3">
|
||||
<Loader2
|
||||
size={16}
|
||||
className="animate-spin text-black/70 dark:text-white/70"
|
||||
/>
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
);
|
||||
};
|
||||
|
||||
const Select = ({
|
||||
className,
|
||||
options,
|
||||
@ -111,6 +143,7 @@ const Page = () => {
|
||||
const [isLoading, setIsLoading] = useState(false);
|
||||
const [automaticImageSearch, setAutomaticImageSearch] = useState(false);
|
||||
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
|
||||
const [systemInstructions, setSystemInstructions] = useState<string>('');
|
||||
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
|
||||
|
||||
useEffect(() => {
|
||||
@ -172,6 +205,8 @@ const Page = () => {
|
||||
localStorage.getItem('autoVideoSearch') === 'true',
|
||||
);
|
||||
|
||||
setSystemInstructions(localStorage.getItem('systemInstructions')!);
|
||||
|
||||
setIsLoading(false);
|
||||
};
|
||||
|
||||
@ -328,6 +363,8 @@ const Page = () => {
|
||||
localStorage.setItem('embeddingModelProvider', value);
|
||||
} else if (key === 'embeddingModel') {
|
||||
localStorage.setItem('embeddingModel', value);
|
||||
} else if (key === 'systemInstructions') {
|
||||
localStorage.setItem('systemInstructions', value);
|
||||
}
|
||||
} catch (err) {
|
||||
console.error('Failed to save:', err);
|
||||
@ -473,6 +510,19 @@ const Page = () => {
|
||||
</div>
|
||||
</SettingsSection>
|
||||
|
||||
<SettingsSection title="System Instructions">
|
||||
<div className="flex flex-col space-y-4">
|
||||
<Textarea
|
||||
value={systemInstructions}
|
||||
isSaving={savingStates['systemInstructions']}
|
||||
onChange={(e) => {
|
||||
setSystemInstructions(e.target.value);
|
||||
}}
|
||||
onSave={(value) => saveConfig('systemInstructions', value)}
|
||||
/>
|
||||
</div>
|
||||
</SettingsSection>
|
||||
|
||||
<SettingsSection title="Model Settings">
|
||||
{config.chatModelProviders && (
|
||||
<div className="flex flex-col space-y-4">
|
||||
|
@ -480,6 +480,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
||||
name: embeddingModelProvider.name,
|
||||
provider: embeddingModelProvider.provider,
|
||||
},
|
||||
systemInstructions: localStorage.getItem('systemInstructions'),
|
||||
}),
|
||||
});
|
||||
|
||||
|
@ -51,6 +51,10 @@ export const academicSearchResponsePrompt = `
|
||||
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
|
||||
- You are set on focus mode 'Academic', this means you will be searching for academic papers and articles on the web.
|
||||
|
||||
### User instructions
|
||||
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
|
||||
{systemInstructions}
|
||||
|
||||
### Example Output
|
||||
- Begin with a brief introduction summarizing the event or query topic.
|
||||
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
|
||||
|
@ -51,6 +51,10 @@ export const redditSearchResponsePrompt = `
|
||||
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
|
||||
- You are set on focus mode 'Reddit', this means you will be searching for information, opinions and discussions on the web using Reddit.
|
||||
|
||||
### User instructions
|
||||
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
|
||||
{systemInstructions}
|
||||
|
||||
### Example Output
|
||||
- Begin with a brief introduction summarizing the event or query topic.
|
||||
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
|
||||
|
@ -92,6 +92,10 @@ export const webSearchResponsePrompt = `
|
||||
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
|
||||
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
|
||||
|
||||
### User instructions
|
||||
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
|
||||
{systemInstructions}
|
||||
|
||||
### Example Output
|
||||
- Begin with a brief introduction summarizing the event or query topic.
|
||||
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
|
||||
|
@ -51,6 +51,10 @@ export const wolframAlphaSearchResponsePrompt = `
|
||||
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
|
||||
- You are set on focus mode 'Wolfram Alpha', this means you will be searching for information on the web using Wolfram Alpha. It is a computational knowledge engine that can answer factual queries and perform computations.
|
||||
|
||||
### User instructions
|
||||
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
|
||||
{systemInstructions}
|
||||
|
||||
### Example Output
|
||||
- Begin with a brief introduction summarizing the event or query topic.
|
||||
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
|
||||
|
@ -7,6 +7,10 @@ You have to cite the answer using [number] notation. You must cite the sentences
|
||||
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
|
||||
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
|
||||
|
||||
### User instructions
|
||||
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
|
||||
{systemInstructions}
|
||||
|
||||
<context>
|
||||
{context}
|
||||
</context>
|
||||
|
@ -51,6 +51,10 @@ export const youtubeSearchResponsePrompt = `
|
||||
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
|
||||
- You are set on focus mode 'Youtube', this means you will be searching for videos on the web using Youtube and providing information based on the video's transcrip
|
||||
|
||||
### User instructions
|
||||
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
|
||||
{systemInstructions}
|
||||
|
||||
### Example Output
|
||||
- Begin with a brief introduction summarizing the event or query topic.
|
||||
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
|
||||
|
@ -33,6 +33,7 @@ export interface MetaSearchAgentType {
|
||||
embeddings: Embeddings,
|
||||
optimizationMode: 'speed' | 'balanced' | 'quality',
|
||||
fileIds: string[],
|
||||
systemInstructions: string,
|
||||
) => Promise<eventEmitter>;
|
||||
}
|
||||
|
||||
@ -236,9 +237,11 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
fileIds: string[],
|
||||
embeddings: Embeddings,
|
||||
optimizationMode: 'speed' | 'balanced' | 'quality',
|
||||
systemInstructions: string,
|
||||
) {
|
||||
return RunnableSequence.from([
|
||||
RunnableMap.from({
|
||||
systemInstructions: () => systemInstructions,
|
||||
query: (input: BasicChainInput) => input.query,
|
||||
chat_history: (input: BasicChainInput) => input.chat_history,
|
||||
date: () => new Date().toISOString(),
|
||||
@ -468,6 +471,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
embeddings: Embeddings,
|
||||
optimizationMode: 'speed' | 'balanced' | 'quality',
|
||||
fileIds: string[],
|
||||
systemInstructions: string,
|
||||
) {
|
||||
const emitter = new eventEmitter();
|
||||
|
||||
@ -476,6 +480,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
||||
fileIds,
|
||||
embeddings,
|
||||
optimizationMode,
|
||||
systemInstructions,
|
||||
);
|
||||
|
||||
const stream = answeringChain.streamEvents(
|
||||
|
Reference in New Issue
Block a user