Compare commits

..

11 Commits

14 changed files with 473 additions and 257 deletions

View File

@ -32,7 +32,8 @@ The API accepts a JSON object in the request body, where you define the focus mo
"history": [
["human", "Hi, how are you?"],
["assistant", "I am doing well, how can I help you today?"]
]
],
"stream": false
}
```
@ -71,11 +72,13 @@ The API accepts a JSON object in the request body, where you define the focus mo
]
```
- **`stream`** (boolean, optional): When set to `true`, enables streaming responses. Default is `false`.
### Response
The response from the API includes both the final message and the sources used to generate that message.
#### Example Response
#### Standard Response (stream: false)
```json
{
@ -100,6 +103,28 @@ The response from the API includes both the final message and the sources used t
}
```
#### Streaming Response (stream: true)
When streaming is enabled, the API returns a stream of newline-delimited JSON objects. Each line contains a complete, valid JSON object. The response has Content-Type: application/json.
Example of streamed response objects:
```
{"type":"init","data":"Stream connected"}
{"type":"sources","data":[{"pageContent":"...","metadata":{"title":"...","url":"..."}},...]}
{"type":"response","data":"Perplexica is an "}
{"type":"response","data":"innovative, open-source "}
{"type":"response","data":"AI-powered search engine..."}
{"type":"done"}
```
Clients should process each line as a separate JSON object. The different message types include:
- **`init`**: Initial connection message
- **`sources`**: All sources used for the response
- **`response`**: Chunks of the generated answer text
- **`done`**: Indicates the stream is complete
### Fields in the Response
- **`message`** (string): The search result, generated based on the query and focus mode.

View File

@ -1,6 +1,6 @@
{
"name": "perplexica-frontend",
"version": "1.10.0",
"version": "1.10.1",
"license": "MIT",
"author": "ItzCrazyKns",
"scripts": {
@ -15,8 +15,10 @@
"@headlessui/react": "^2.2.0",
"@iarna/toml": "^2.2.5",
"@icons-pack/react-simple-icons": "^12.3.0",
"@langchain/anthropic": "^0.3.15",
"@langchain/community": "^0.3.36",
"@langchain/core": "^0.3.42",
"@langchain/google-genai": "^0.1.12",
"@langchain/openai": "^0.0.25",
"@langchain/textsplitters": "^0.1.0",
"@tailwindcss/typography": "^0.5.12",

View File

@ -295,9 +295,9 @@ export const POST = async (req: Request) => {
},
});
} catch (err) {
console.error('An error ocurred while processing chat request:', err);
console.error('An error occurred while processing chat request:', err);
return Response.json(
{ message: 'An error ocurred while processing chat request' },
{ message: 'An error occurred while processing chat request' },
{ status: 500 },
);
}

View File

@ -59,9 +59,9 @@ export const GET = async (req: Request) => {
return Response.json({ ...config }, { status: 200 });
} catch (err) {
console.error('An error ocurred while getting config:', err);
console.error('An error occurred while getting config:', err);
return Response.json(
{ message: 'An error ocurred while getting config' },
{ message: 'An error occurred while getting config' },
{ status: 500 },
);
}
@ -100,9 +100,9 @@ export const POST = async (req: Request) => {
return Response.json({ message: 'Config updated' }, { status: 200 });
} catch (err) {
console.error('An error ocurred while updating config:', err);
console.error('An error occurred while updating config:', err);
return Response.json(
{ message: 'An error ocurred while updating config' },
{ message: 'An error occurred while updating config' },
{ status: 500 },
);
}

View File

@ -48,7 +48,7 @@ export const GET = async (req: Request) => {
},
);
} catch (err) {
console.error(`An error ocurred in discover route: ${err}`);
console.error(`An error occurred in discover route: ${err}`);
return Response.json(
{
message: 'An error has occurred',

View File

@ -74,9 +74,9 @@ export const POST = async (req: Request) => {
return Response.json({ images }, { status: 200 });
} catch (err) {
console.error(`An error ocurred while searching images: ${err}`);
console.error(`An error occurred while searching images: ${err}`);
return Response.json(
{ message: 'An error ocurred while searching images' },
{ message: 'An error occurred while searching images' },
{ status: 500 },
);
}

View File

@ -34,7 +34,7 @@ export const GET = async (req: Request) => {
},
);
} catch (err) {
console.error('An error ocurred while fetching models', err);
console.error('An error occurred while fetching models', err);
return Response.json(
{
message: 'An error has occurred.',

View File

@ -33,6 +33,7 @@ interface ChatRequestBody {
embeddingModel?: embeddingModel;
query: string;
history: Array<[string, string]>;
stream?: boolean;
}
export const POST = async (req: Request) => {
@ -48,6 +49,7 @@ export const POST = async (req: Request) => {
body.history = body.history || [];
body.optimizationMode = body.optimizationMode || 'balanced';
body.stream = body.stream || false;
const history: BaseMessage[] = body.history.map((msg) => {
return msg[0] === 'human'
@ -125,40 +127,137 @@ export const POST = async (req: Request) => {
[],
);
return new Promise(
(
resolve: (value: Response) => void,
reject: (value: Response) => void,
) => {
let message = '';
if (!body.stream) {
return new Promise(
(
resolve: (value: Response) => void,
reject: (value: Response) => void,
) => {
let message = '';
let sources: any[] = [];
emitter.on('data', (data: string) => {
try {
const parsedData = JSON.parse(data);
if (parsedData.type === 'response') {
message += parsedData.data;
} else if (parsedData.type === 'sources') {
sources = parsedData.data;
}
} catch (error) {
reject(
Response.json(
{ message: 'Error parsing data' },
{ status: 500 },
),
);
}
});
emitter.on('end', () => {
resolve(Response.json({ message, sources }, { status: 200 }));
});
emitter.on('error', (error: any) => {
reject(
Response.json(
{ message: 'Search error', error },
{ status: 500 },
),
);
});
},
);
}
const encoder = new TextEncoder();
const abortController = new AbortController();
const { signal } = abortController;
const stream = new ReadableStream({
start(controller) {
let sources: any[] = [];
emitter.on('data', (data) => {
controller.enqueue(
encoder.encode(
JSON.stringify({
type: 'init',
data: 'Stream connected',
}) + '\n',
),
);
signal.addEventListener('abort', () => {
emitter.removeAllListeners();
try {
controller.close();
} catch (error) {}
});
emitter.on('data', (data: string) => {
if (signal.aborted) return;
try {
const parsedData = JSON.parse(data);
if (parsedData.type === 'response') {
message += parsedData.data;
controller.enqueue(
encoder.encode(
JSON.stringify({
type: 'response',
data: parsedData.data,
}) + '\n',
),
);
} else if (parsedData.type === 'sources') {
sources = parsedData.data;
controller.enqueue(
encoder.encode(
JSON.stringify({
type: 'sources',
data: sources,
}) + '\n',
),
);
}
} catch (error) {
reject(
Response.json({ message: 'Error parsing data' }, { status: 500 }),
);
controller.error(error);
}
});
emitter.on('end', () => {
resolve(Response.json({ message, sources }, { status: 200 }));
if (signal.aborted) return;
controller.enqueue(
encoder.encode(
JSON.stringify({
type: 'done',
}) + '\n',
),
);
controller.close();
});
emitter.on('error', (error) => {
reject(
Response.json({ message: 'Search error', error }, { status: 500 }),
);
emitter.on('error', (error: any) => {
if (signal.aborted) return;
controller.error(error);
});
},
);
cancel() {
abortController.abort();
},
});
return new Response(stream, {
headers: {
'Content-Type': 'text/event-stream',
'Cache-Control': 'no-cache, no-transform',
Connection: 'keep-alive',
},
});
} catch (err: any) {
console.error(`Error in getting search results: ${err.message}`);
return Response.json(

View File

@ -72,9 +72,9 @@ export const POST = async (req: Request) => {
return Response.json({ suggestions }, { status: 200 });
} catch (err) {
console.error(`An error ocurred while generating suggestions: ${err}`);
console.error(`An error occurred while generating suggestions: ${err}`);
return Response.json(
{ message: 'An error ocurred while generating suggestions' },
{ message: 'An error occurred while generating suggestions' },
{ status: 500 },
);
}

View File

@ -74,9 +74,9 @@ export const POST = async (req: Request) => {
return Response.json({ videos }, { status: 200 });
} catch (err) {
console.error(`An error ocurred while searching videos: ${err}`);
console.error(`An error occurred while searching videos: ${err}`);
return Response.json(
{ message: 'An error ocurred while searching videos' },
{ message: 'An error occurred while searching videos' },
{ status: 500 },
);
}

View File

@ -1,4 +1,4 @@
import { ChatOpenAI } from '@langchain/openai';
import { ChatAnthropic } from '@langchain/anthropic';
import { ChatModel } from '.';
import { getAnthropicApiKey } from '../config';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
@ -45,13 +45,10 @@ export const loadAnthropicChatModels = async () => {
anthropicChatModels.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatOpenAI({
openAIApiKey: anthropicApiKey,
model: new ChatAnthropic({
apiKey: anthropicApiKey,
modelName: model.key,
temperature: 0.7,
configuration: {
baseURL: 'https://api.anthropic.com/v1/',
},
}) as unknown as BaseChatModel,
};
});

View File

@ -1,10 +1,17 @@
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
import {
ChatGoogleGenerativeAI,
GoogleGenerativeAIEmbeddings,
} from '@langchain/google-genai';
import { getGeminiApiKey } from '../config';
import { ChatModel, EmbeddingModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { Embeddings } from '@langchain/core/embeddings';
const geminiChatModels: Record<string, string>[] = [
{
displayName: 'Gemini 2.5 Pro Experimental',
key: 'gemini-2.5-pro-exp-03-25',
},
{
displayName: 'Gemini 2.0 Flash',
key: 'gemini-2.0-flash',
@ -14,8 +21,8 @@ const geminiChatModels: Record<string, string>[] = [
key: 'gemini-2.0-flash-lite',
},
{
displayName: 'Gemini 2.0 Pro Experimental',
key: 'gemini-2.0-pro-exp-02-05',
displayName: 'Gemini 2.0 Flash Thinking Experimental',
key: 'gemini-2.0-flash-thinking-exp-01-21',
},
{
displayName: 'Gemini 1.5 Flash',
@ -49,13 +56,10 @@ export const loadGeminiChatModels = async () => {
geminiChatModels.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatOpenAI({
openAIApiKey: geminiApiKey,
model: new ChatGoogleGenerativeAI({
apiKey: geminiApiKey,
modelName: model.key,
temperature: 0.7,
configuration: {
baseURL: 'https://generativelanguage.googleapis.com/v1beta/openai/',
},
}) as unknown as BaseChatModel,
};
});
@ -78,12 +82,9 @@ export const loadGeminiEmbeddingModels = async () => {
geminiEmbeddingModels.forEach((model) => {
embeddingModels[model.key] = {
displayName: model.displayName,
model: new OpenAIEmbeddings({
openAIApiKey: geminiApiKey,
model: new GoogleGenerativeAIEmbeddings({
apiKey: geminiApiKey,
modelName: model.key,
configuration: {
baseURL: 'https://generativelanguage.googleapis.com/v1beta/openai/',
},
}) as unknown as Embeddings,
};
});

View File

@ -6,6 +6,11 @@ import {
MessagesPlaceholder,
PromptTemplate,
} from '@langchain/core/prompts';
import {
RunnableLambda,
RunnableMap,
RunnableSequence,
} from '@langchain/core/runnables';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import LineListOutputParser from '../outputParsers/listLineOutputParser';
@ -19,7 +24,6 @@ import computeSimilarity from '../utils/computeSimilarity';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import { StreamEvent } from '@langchain/core/tracers/log_stream';
import { EventEmitter } from 'node:stream';
export interface MetaSearchAgentType {
searchAndAnswer: (
@ -42,7 +46,7 @@ interface Config {
activeEngines: string[];
}
type SearchInput = {
type BasicChainInput = {
chat_history: BaseMessage[];
query: string;
};
@ -55,240 +59,235 @@ class MetaSearchAgent implements MetaSearchAgentType {
this.config = config;
}
private async searchSources(
llm: BaseChatModel,
input: SearchInput,
emitter: EventEmitter,
) {
private async createSearchRetrieverChain(llm: BaseChatModel) {
(llm as unknown as ChatOpenAI).temperature = 0;
const chatPrompt = PromptTemplate.fromTemplate(
this.config.queryGeneratorPrompt,
);
return RunnableSequence.from([
PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt),
llm,
this.strParser,
RunnableLambda.from(async (input: string) => {
const linksOutputParser = new LineListOutputParser({
key: 'links',
});
const processedChatPrompt = await chatPrompt.invoke({
chat_history: formatChatHistoryAsString(input.chat_history),
query: input.query,
});
const questionOutputParser = new LineOutputParser({
key: 'question',
});
const llmRes = await llm.invoke(processedChatPrompt);
const messageStr = await this.strParser.invoke(llmRes);
const links = await linksOutputParser.parse(input);
let question = this.config.summarizer
? await questionOutputParser.parse(input)
: input;
const linksOutputParser = new LineListOutputParser({
key: 'links',
});
const questionOutputParser = new LineOutputParser({
key: 'question',
});
const links = await linksOutputParser.parse(messageStr);
let question = this.config.summarizer
? await questionOutputParser.parse(messageStr)
: messageStr;
if (question === 'not_needed') {
return { query: '', docs: [] };
}
if (links.length > 0) {
if (question.length === 0) {
question = 'summarize';
}
let docs: Document[] = [];
const linkDocs = await getDocumentsFromLinks({ links });
const docGroups: Document[] = [];
linkDocs.map((doc) => {
const URLDocExists = docGroups.find(
(d) =>
d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10,
);
if (!URLDocExists) {
docGroups.push({
...doc,
metadata: {
...doc.metadata,
totalDocs: 1,
},
});
if (question === 'not_needed') {
return { query: '', docs: [] };
}
const docIndex = docGroups.findIndex(
(d) =>
d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10,
);
if (links.length > 0) {
if (question.length === 0) {
question = 'summarize';
}
if (docIndex !== -1) {
docGroups[docIndex].pageContent =
docGroups[docIndex].pageContent + `\n\n` + doc.pageContent;
docGroups[docIndex].metadata.totalDocs += 1;
}
});
let docs: Document[] = [];
await Promise.all(
docGroups.map(async (doc) => {
const res = await llm.invoke(`
You are a web search summarizer, tasked with summarizing a piece of text retrieved from a web search. Your job is to summarize the
text into a detailed, 2-4 paragraph explanation that captures the main ideas and provides a comprehensive answer to the query.
If the query is \"summarize\", you should provide a detailed summary of the text. If the query is a specific question, you should answer it in the summary.
- **Journalistic tone**: The summary should sound professional and journalistic, not too casual or vague.
- **Thorough and detailed**: Ensure that every key point from the text is captured and that the summary directly answers the query.
- **Not too lengthy, but detailed**: The summary should be informative but not excessively long. Focus on providing detailed information in a concise format.
const linkDocs = await getDocumentsFromLinks({ links });
The text will be shared inside the \`text\` XML tag, and the query inside the \`query\` XML tag.
const docGroups: Document[] = [];
<example>
1. \`<text>
Docker is a set of platform-as-a-service products that use OS-level virtualization to deliver software in packages called containers.
It was first released in 2013 and is developed by Docker, Inc. Docker is designed to make it easier to create, deploy, and run applications
by using containers.
</text>
linkDocs.map((doc) => {
const URLDocExists = docGroups.find(
(d) =>
d.metadata.url === doc.metadata.url &&
d.metadata.totalDocs < 10,
);
<query>
What is Docker and how does it work?
</query>
if (!URLDocExists) {
docGroups.push({
...doc,
metadata: {
...doc.metadata,
totalDocs: 1,
},
});
}
Response:
Docker is a revolutionary platform-as-a-service product developed by Docker, Inc., that uses container technology to make application
deployment more efficient. It allows developers to package their software with all necessary dependencies, making it easier to run in
any environment. Released in 2013, Docker has transformed the way applications are built, deployed, and managed.
\`
2. \`<text>
The theory of relativity, or simply relativity, encompasses two interrelated theories of Albert Einstein: special relativity and general
relativity. However, the word "relativity" is sometimes used in reference to Galilean invariance. The term "theory of relativity" was based
on the expression "relative theory" used by Max Planck in 1906. The theory of relativity usually encompasses two interrelated theories by
Albert Einstein: special relativity and general relativity. Special relativity applies to all physical phenomena in the absence of gravity.
General relativity explains the law of gravitation and its relation to other forces of nature. It applies to the cosmological and astrophysical
realm, including astronomy.
</text>
const docIndex = docGroups.findIndex(
(d) =>
d.metadata.url === doc.metadata.url &&
d.metadata.totalDocs < 10,
);
<query>
summarize
</query>
Response:
The theory of relativity, developed by Albert Einstein, encompasses two main theories: special relativity and general relativity. Special
relativity applies to all physical phenomena in the absence of gravity, while general relativity explains the law of gravitation and its
relation to other forces of nature. The theory of relativity is based on the concept of "relative theory," as introduced by Max Planck in
1906. It is a fundamental theory in physics that has revolutionized our understanding of the universe.
\`
</example>
Everything below is the actual data you will be working with. Good luck!
<query>
${question}
</query>
<text>
${doc.pageContent}
</text>
Make sure to answer the query in the summary.
`);
const document = new Document({
pageContent: res.content as string,
metadata: {
title: doc.metadata.title,
url: doc.metadata.url,
},
if (docIndex !== -1) {
docGroups[docIndex].pageContent =
docGroups[docIndex].pageContent + `\n\n` + doc.pageContent;
docGroups[docIndex].metadata.totalDocs += 1;
}
});
docs.push(document);
}),
);
await Promise.all(
docGroups.map(async (doc) => {
const res = await llm.invoke(`
You are a web search summarizer, tasked with summarizing a piece of text retrieved from a web search. Your job is to summarize the
text into a detailed, 2-4 paragraph explanation that captures the main ideas and provides a comprehensive answer to the query.
If the query is \"summarize\", you should provide a detailed summary of the text. If the query is a specific question, you should answer it in the summary.
- **Journalistic tone**: The summary should sound professional and journalistic, not too casual or vague.
- **Thorough and detailed**: Ensure that every key point from the text is captured and that the summary directly answers the query.
- **Not too lengthy, but detailed**: The summary should be informative but not excessively long. Focus on providing detailed information in a concise format.
return { query: question, docs: docs };
} else {
question = question.replace(/<think>.*?<\/think>/g, '');
The text will be shared inside the \`text\` XML tag, and the query inside the \`query\` XML tag.
const res = await searchSearxng(question, {
language: 'en',
engines: this.config.activeEngines,
});
<example>
1. \`<text>
Docker is a set of platform-as-a-service products that use OS-level virtualization to deliver software in packages called containers.
It was first released in 2013 and is developed by Docker, Inc. Docker is designed to make it easier to create, deploy, and run applications
by using containers.
</text>
const documents = res.results.map(
(result) =>
new Document({
pageContent:
result.content ||
(this.config.activeEngines.includes('youtube')
? result.title
: '') /* Todo: Implement transcript grabbing using Youtubei (source: https://www.npmjs.com/package/youtubei) */,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
<query>
What is Docker and how does it work?
</query>
return { query: question, docs: documents };
}
Response:
Docker is a revolutionary platform-as-a-service product developed by Docker, Inc., that uses container technology to make application
deployment more efficient. It allows developers to package their software with all necessary dependencies, making it easier to run in
any environment. Released in 2013, Docker has transformed the way applications are built, deployed, and managed.
\`
2. \`<text>
The theory of relativity, or simply relativity, encompasses two interrelated theories of Albert Einstein: special relativity and general
relativity. However, the word "relativity" is sometimes used in reference to Galilean invariance. The term "theory of relativity" was based
on the expression "relative theory" used by Max Planck in 1906. The theory of relativity usually encompasses two interrelated theories by
Albert Einstein: special relativity and general relativity. Special relativity applies to all physical phenomena in the absence of gravity.
General relativity explains the law of gravitation and its relation to other forces of nature. It applies to the cosmological and astrophysical
realm, including astronomy.
</text>
<query>
summarize
</query>
Response:
The theory of relativity, developed by Albert Einstein, encompasses two main theories: special relativity and general relativity. Special
relativity applies to all physical phenomena in the absence of gravity, while general relativity explains the law of gravitation and its
relation to other forces of nature. The theory of relativity is based on the concept of "relative theory," as introduced by Max Planck in
1906. It is a fundamental theory in physics that has revolutionized our understanding of the universe.
\`
</example>
Everything below is the actual data you will be working with. Good luck!
<query>
${question}
</query>
<text>
${doc.pageContent}
</text>
Make sure to answer the query in the summary.
`);
const document = new Document({
pageContent: res.content as string,
metadata: {
title: doc.metadata.title,
url: doc.metadata.url,
},
});
docs.push(document);
}),
);
return { query: question, docs: docs };
} else {
question = question.replace(/<think>.*?<\/think>/g, '');
const res = await searchSearxng(question, {
language: 'en',
engines: this.config.activeEngines,
});
const documents = res.results.map(
(result) =>
new Document({
pageContent:
result.content ||
(this.config.activeEngines.includes('youtube')
? result.title
: '') /* Todo: Implement transcript grabbing using Youtubei (source: https://www.npmjs.com/package/youtubei) */,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: question, docs: documents };
}
}),
]);
}
private async streamAnswer(
private async createAnsweringChain(
llm: BaseChatModel,
fileIds: string[],
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
input: SearchInput,
emitter: EventEmitter,
) {
const chatPrompt = ChatPromptTemplate.fromMessages([
['system', this.config.responsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]);
return RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
date: () => new Date().toISOString(),
context: RunnableLambda.from(async (input: BasicChainInput) => {
const processedHistory = formatChatHistoryAsString(
input.chat_history,
);
let docs: Document[] | null = null;
let query = input.query;
let docs: Document[] | null = null;
let query = input.query;
if (this.config.searchWeb) {
const searchResults = await this.searchSources(llm, input, emitter);
if (this.config.searchWeb) {
const searchRetrieverChain =
await this.createSearchRetrieverChain(llm);
query = searchResults.query;
docs = searchResults.docs;
}
const searchRetrieverResult = await searchRetrieverChain.invoke({
chat_history: processedHistory,
query,
});
const sortedDocs = await this.rerankDocs(
query,
docs ?? [],
fileIds,
embeddings,
optimizationMode,
);
query = searchRetrieverResult.query;
docs = searchRetrieverResult.docs;
}
emitter.emit('data', JSON.stringify({ type: 'sources', data: sortedDocs }));
const sortedDocs = await this.rerankDocs(
query,
docs ?? [],
fileIds,
embeddings,
optimizationMode,
);
const context = this.processDocs(sortedDocs);
const formattedChatPrompt = await chatPrompt.invoke({
query: input.query,
chat_history: input.chat_history,
date: new Date().toISOString(),
context: context,
return sortedDocs;
})
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(this.processDocs),
}),
ChatPromptTemplate.fromMessages([
['system', this.config.responsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
llm,
this.strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
const llmRes = await llm.stream(formattedChatPrompt);
for await (const data of llmRes) {
const messageStr = await this.strParser.invoke(data);
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: messageStr }),
);
}
emitter.emit('end');
}
private async rerankDocs(
@ -429,6 +428,39 @@ class MetaSearchAgent implements MetaSearchAgentType {
.join('\n');
}
private async handleStream(
stream: AsyncGenerator<StreamEvent, any, any>,
emitter: eventEmitter,
) {
for await (const event of stream) {
if (
event.event === 'on_chain_end' &&
event.name === 'FinalSourceRetriever'
) {
``;
emitter.emit(
'data',
JSON.stringify({ type: 'sources', data: event.data.output }),
);
}
if (
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
);
}
if (
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit('end');
}
}
}
async searchAndAnswer(
message: string,
history: BaseMessage[],
@ -439,18 +471,25 @@ class MetaSearchAgent implements MetaSearchAgentType {
) {
const emitter = new eventEmitter();
this.streamAnswer(
const answeringChain = await this.createAnsweringChain(
llm,
fileIds,
embeddings,
optimizationMode,
);
const stream = answeringChain.streamEvents(
{
chat_history: history,
query: message,
},
emitter,
{
version: 'v1',
},
);
this.handleStream(stream, emitter);
return emitter;
}
}

View File

@ -12,6 +12,19 @@
resolved "https://registry.yarnpkg.com/@alloc/quick-lru/-/quick-lru-5.2.0.tgz#7bf68b20c0a350f936915fcae06f58e32007ce30"
integrity sha512-UrcABB+4bUrFABwbluTIBErXwvbsU/V7TZWfmbgJfbkwiBuziS9gxdODUyuiecfdGQ85jglMW6juS3+z5TsKLw==
"@anthropic-ai/sdk@^0.37.0":
version "0.37.0"
resolved "https://registry.yarnpkg.com/@anthropic-ai/sdk/-/sdk-0.37.0.tgz#0018127404ecb9b8a12968068e0c4b3e8bbd6386"
integrity sha512-tHjX2YbkUBwEgg0JZU3EFSSAQPoK4qQR/NFYa8Vtzd5UAyXzZksCw2In69Rml4R/TyHPBfRYaLK35XiOe33pjw==
dependencies:
"@types/node" "^18.11.18"
"@types/node-fetch" "^2.6.4"
abort-controller "^3.0.0"
agentkeepalive "^4.2.1"
form-data-encoder "1.7.2"
formdata-node "^4.3.2"
node-fetch "^2.6.7"
"@anthropic-ai/sdk@^0.9.1":
version "0.9.1"
resolved "https://registry.yarnpkg.com/@anthropic-ai/sdk/-/sdk-0.9.1.tgz#b2d2b7bf05c90dce502c9a2e869066870f69ba88"
@ -374,6 +387,11 @@
resolved "https://registry.yarnpkg.com/@floating-ui/utils/-/utils-0.2.8.tgz#21a907684723bbbaa5f0974cf7730bd797eb8e62"
integrity sha512-kym7SodPp8/wloecOpcmSnWJsK7M0E5Wg8UcFA+uO4B9s5d0ywXOEro/8HM9x0rW+TljRzul/14UYz3TleT3ig==
"@google/generative-ai@^0.24.0":
version "0.24.0"
resolved "https://registry.yarnpkg.com/@google/generative-ai/-/generative-ai-0.24.0.tgz#4d27af7d944c924a27a593c17ad1336535d53846"
integrity sha512-fnEITCGEB7NdX0BhoYZ/cq/7WPZ1QS5IzJJfC3Tg/OwkvBetMiVJciyaan297OvE4B9Jg1xvo0zIazX/9sGu1Q==
"@headlessui/react@^2.2.0":
version "2.2.0"
resolved "https://registry.yarnpkg.com/@headlessui/react/-/react-2.2.0.tgz#a8e32f0899862849a1ce1615fa280e7891431ab7"
@ -575,6 +593,16 @@
"@jridgewell/resolve-uri" "^3.1.0"
"@jridgewell/sourcemap-codec" "^1.4.14"
"@langchain/anthropic@^0.3.15":
version "0.3.15"
resolved "https://registry.yarnpkg.com/@langchain/anthropic/-/anthropic-0.3.15.tgz#0244cdb345cb492eb40aedd681881ebadfbb73f2"
integrity sha512-Ar2viYcZ64idgV7EtCBCb36tIkNtPAhQRxSaMTWPHGspFgMfvwRoleVri9e90sCpjpS9xhlHsIQ0LlUS/Atsrw==
dependencies:
"@anthropic-ai/sdk" "^0.37.0"
fast-xml-parser "^4.4.1"
zod "^3.22.4"
zod-to-json-schema "^3.22.4"
"@langchain/community@^0.3.36":
version "0.3.36"
resolved "https://registry.yarnpkg.com/@langchain/community/-/community-0.3.36.tgz#e4c13b8f928b17e0f9257395f43be2246dfada40"
@ -640,6 +668,14 @@
zod "^3.22.4"
zod-to-json-schema "^3.22.3"
"@langchain/google-genai@^0.1.12":
version "0.1.12"
resolved "https://registry.yarnpkg.com/@langchain/google-genai/-/google-genai-0.1.12.tgz#6727253bda6f0d87cd74cf0bb6b1e0f398f60f32"
integrity sha512-0Ea0E2g63ejCuormVxbuoyJQ5BYN53i2/fb6WP8bMKzyh+y43R13V8JqOtr3e/GmgNyv3ou/VeaZjx7KAvu/0g==
dependencies:
"@google/generative-ai" "^0.24.0"
zod-to-json-schema "^3.22.4"
"@langchain/openai@>=0.1.0 <0.5.0", "@langchain/openai@>=0.2.0 <0.5.0":
version "0.4.5"
resolved "https://registry.yarnpkg.com/@langchain/openai/-/openai-0.4.5.tgz#d18e207c3ec3f2ecaa4698a5a5888092f643da52"
@ -2369,6 +2405,13 @@ fast-levenshtein@^2.0.6:
resolved "https://registry.yarnpkg.com/fast-levenshtein/-/fast-levenshtein-2.0.6.tgz#3d8a5c66883a16a30ca8643e851f19baa7797917"
integrity sha512-DCXu6Ifhqcks7TZKY3Hxp3y6qphY5SJZmrWMDrKcERSOXWQdMhU9Ig/PYrzyw/ul9jOIyh0N4M0tbC5hodg8dw==
fast-xml-parser@^4.4.1:
version "4.5.3"
resolved "https://registry.yarnpkg.com/fast-xml-parser/-/fast-xml-parser-4.5.3.tgz#c54d6b35aa0f23dc1ea60b6c884340c006dc6efb"
integrity sha512-RKihhV+SHsIUGXObeVy9AXiBbFwkVk7Syp8XgwN5U3JV416+Gwp/GO9i0JYKmikykgz/UHRrrV4ROuZEo/T0ig==
dependencies:
strnum "^1.1.1"
fastq@^1.6.0:
version "1.17.1"
resolved "https://registry.yarnpkg.com/fastq/-/fastq-1.17.1.tgz#2a523f07a4e7b1e81a42b91b8bf2254107753b47"
@ -4458,6 +4501,11 @@ strip-json-comments@~2.0.1:
resolved "https://registry.yarnpkg.com/strip-json-comments/-/strip-json-comments-2.0.1.tgz#3c531942e908c2697c0ec344858c286c7ca0a60a"
integrity sha512-4gB8na07fecVVkOI6Rs4e7T6NOTki5EmL7TUduTs6bu3EdnSycntVJ4re8kgZA+wx9IueI2Y11bfbgwtzuE0KQ==
strnum@^1.1.1:
version "1.1.2"
resolved "https://registry.yarnpkg.com/strnum/-/strnum-1.1.2.tgz#57bca4fbaa6f271081715dbc9ed7cee5493e28e4"
integrity sha512-vrN+B7DBIoTTZjnPNewwhx6cBA/H+IS7rfW68n7XxC1y7uoiGQBxaKzqucGUgavX15dJgiGztLJ8vxuEzwqBdA==
styled-jsx@5.1.6:
version "5.1.6"
resolved "https://registry.yarnpkg.com/styled-jsx/-/styled-jsx-5.1.6.tgz#83b90c077e6c6a80f7f5e8781d0f311b2fe41499"
@ -4955,6 +5003,11 @@ zod-to-json-schema@^3.22.3, zod-to-json-schema@^3.22.5:
resolved "https://registry.yarnpkg.com/zod-to-json-schema/-/zod-to-json-schema-3.22.5.tgz#3646e81cfc318dbad2a22519e5ce661615418673"
integrity sha512-+akaPo6a0zpVCCseDed504KBJUQpEW5QZw7RMneNmKw+fGaML1Z9tUNLnHHAC8x6dzVRO1eB2oEMyZRnuBZg7Q==
zod-to-json-schema@^3.22.4:
version "3.24.5"
resolved "https://registry.yarnpkg.com/zod-to-json-schema/-/zod-to-json-schema-3.24.5.tgz#d1095440b147fb7c2093812a53c54df8d5df50a3"
integrity sha512-/AuWwMP+YqiPbsJx5D6TfgRTc4kTLjsh5SOcd4bLsfUg2RcEXrFMJl1DGgdHy2aCfsIA/cr/1JM0xcB2GZji8g==
zod@^3.22.3, zod@^3.22.4:
version "3.22.4"
resolved "https://registry.yarnpkg.com/zod/-/zod-3.22.4.tgz#f31c3a9386f61b1f228af56faa9255e845cf3fff"