mirror of
https://github.com/ItzCrazyKns/Perplexica.git
synced 2025-11-24 05:58:15 +00:00
feat(agents): update media agents
This commit is contained in:
@@ -1,21 +1,17 @@
|
||||
/* I don't think can be classified as agents but to keep the structure consistent i guess ill keep it here */
|
||||
|
||||
import {
|
||||
RunnableSequence,
|
||||
RunnableMap,
|
||||
RunnableLambda,
|
||||
} from '@langchain/core/runnables';
|
||||
import { ChatPromptTemplate } from '@langchain/core/prompts';
|
||||
import formatChatHistoryAsString from '@/lib/utils/formatHistory';
|
||||
import { BaseMessage, HumanMessage, SystemMessage } from '@langchain/core/messages';
|
||||
import { StringOutputParser } from '@langchain/core/output_parsers';
|
||||
import { searchSearxng } from '@/lib/searxng';
|
||||
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import LineOutputParser from '@/lib/outputParsers/lineOutputParser';
|
||||
import { imageSearchFewShots, imageSearchPrompt } from '@/lib/prompts/media/image';
|
||||
import {
|
||||
imageSearchFewShots,
|
||||
imageSearchPrompt,
|
||||
} from '@/lib/prompts/media/image';
|
||||
import BaseLLM from '@/lib/models/base/llm';
|
||||
import z from 'zod';
|
||||
import { ChatTurnMessage } from '@/lib/types';
|
||||
import formatChatHistoryAsString from '@/lib/utils/formatHistory';
|
||||
|
||||
type ImageSearchChainInput = {
|
||||
chatHistory: BaseMessage[];
|
||||
chatHistory: ChatTurnMessage[];
|
||||
query: string;
|
||||
};
|
||||
|
||||
@@ -23,27 +19,32 @@ type ImageSearchResult = {
|
||||
img_src: string;
|
||||
url: string;
|
||||
title: string;
|
||||
}
|
||||
|
||||
const outputParser = new LineOutputParser({
|
||||
key: 'query',
|
||||
})
|
||||
};
|
||||
|
||||
const searchImages = async (
|
||||
input: ImageSearchChainInput,
|
||||
llm: BaseChatModel,
|
||||
llm: BaseLLM<any>,
|
||||
) => {
|
||||
const chatPrompt = await ChatPromptTemplate.fromMessages([
|
||||
new SystemMessage(imageSearchPrompt),
|
||||
...imageSearchFewShots,
|
||||
new HumanMessage(`<conversation>\n${formatChatHistoryAsString(input.chatHistory)}\n</conversation>\n<follow_up>\n${input.query}\n</follow_up>`)
|
||||
]).formatMessages({})
|
||||
const schema = z.object({
|
||||
query: z.string().describe('The image search query.'),
|
||||
});
|
||||
|
||||
const res = await llm.invoke(chatPrompt)
|
||||
const res = await llm.generateObject<z.infer<typeof schema>>({
|
||||
messages: [
|
||||
{
|
||||
role: 'system',
|
||||
content: imageSearchPrompt,
|
||||
},
|
||||
...imageSearchFewShots,
|
||||
{
|
||||
role: 'user',
|
||||
content: `<conversation>\n${formatChatHistoryAsString(input.chatHistory)}\n</conversation>\n<follow_up>\n${input.query}\n</follow_up>`,
|
||||
},
|
||||
],
|
||||
schema: schema,
|
||||
});
|
||||
|
||||
const query = await outputParser.invoke(res)
|
||||
|
||||
const searchRes = await searchSearxng(query!, {
|
||||
const searchRes = await searchSearxng(res.query, {
|
||||
engines: ['bing images', 'google images'],
|
||||
});
|
||||
|
||||
@@ -62,4 +63,4 @@ const searchImages = async (
|
||||
return images.slice(0, 10);
|
||||
};
|
||||
|
||||
export default searchImages;
|
||||
export default searchImages;
|
||||
|
||||
@@ -1,13 +1,15 @@
|
||||
import { ChatPromptTemplate } from '@langchain/core/prompts';
|
||||
import formatChatHistoryAsString from '@/lib/utils/formatHistory';
|
||||
import { BaseMessage, HumanMessage, SystemMessage } from '@langchain/core/messages';
|
||||
import { searchSearxng } from '@/lib/searxng';
|
||||
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import LineOutputParser from '@/lib/outputParsers/lineOutputParser';
|
||||
import { videoSearchFewShots, videoSearchPrompt } from '@/lib/prompts/media/videos';
|
||||
import {
|
||||
videoSearchFewShots,
|
||||
videoSearchPrompt,
|
||||
} from '@/lib/prompts/media/videos';
|
||||
import { ChatTurnMessage } from '@/lib/types';
|
||||
import BaseLLM from '@/lib/models/base/llm';
|
||||
import z from 'zod';
|
||||
|
||||
type VideoSearchChainInput = {
|
||||
chatHistory: BaseMessage[];
|
||||
chatHistory: ChatTurnMessage[];
|
||||
query: string;
|
||||
};
|
||||
|
||||
@@ -16,39 +18,39 @@ type VideoSearchResult = {
|
||||
url: string;
|
||||
title: string;
|
||||
iframe_src: string;
|
||||
}
|
||||
|
||||
const outputParser = new LineOutputParser({
|
||||
key: 'query',
|
||||
});
|
||||
};
|
||||
|
||||
const searchVideos = async (
|
||||
input: VideoSearchChainInput,
|
||||
llm: BaseChatModel,
|
||||
llm: BaseLLM<any>,
|
||||
) => {
|
||||
const chatPrompt = await ChatPromptTemplate.fromMessages([
|
||||
new SystemMessage(videoSearchPrompt),
|
||||
...videoSearchFewShots,
|
||||
new HumanMessage(`<conversation>${formatChatHistoryAsString(input.chatHistory)}\n</conversation>\n<follow_up>\n${input.query}\n</follow_up>`)
|
||||
]).formatMessages({})
|
||||
const schema = z.object({
|
||||
query: z.string().describe('The video search query.'),
|
||||
});
|
||||
|
||||
const res = await llm.invoke(chatPrompt)
|
||||
const res = await llm.generateObject<z.infer<typeof schema>>({
|
||||
messages: [
|
||||
{
|
||||
role: 'system',
|
||||
content: videoSearchPrompt,
|
||||
},
|
||||
...videoSearchFewShots,
|
||||
{
|
||||
role: 'user',
|
||||
content: `<conversation>\n${formatChatHistoryAsString(input.chatHistory)}\n</conversation>\n<follow_up>\n${input.query}\n</follow_up>`,
|
||||
},
|
||||
],
|
||||
schema: schema,
|
||||
});
|
||||
|
||||
const query = await outputParser.invoke(res)
|
||||
|
||||
const searchRes = await searchSearxng(query!, {
|
||||
const searchRes = await searchSearxng(res.query, {
|
||||
engines: ['youtube'],
|
||||
});
|
||||
|
||||
const videos: VideoSearchResult[] = [];
|
||||
|
||||
searchRes.results.forEach((result) => {
|
||||
if (
|
||||
result.thumbnail &&
|
||||
result.url &&
|
||||
result.title &&
|
||||
result.iframe_src
|
||||
) {
|
||||
if (result.thumbnail && result.url && result.title && result.iframe_src) {
|
||||
videos.push({
|
||||
img_src: result.thumbnail,
|
||||
url: result.url,
|
||||
@@ -59,7 +61,6 @@ const searchVideos = async (
|
||||
});
|
||||
|
||||
return videos.slice(0, 10);
|
||||
|
||||
};
|
||||
|
||||
export default searchVideos;
|
||||
|
||||
@@ -1,26 +1,29 @@
|
||||
import { BaseMessageLike } from "@langchain/core/messages";
|
||||
import { ChatTurnMessage } from '@/lib/types';
|
||||
|
||||
export const imageSearchPrompt = `
|
||||
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search the web for images.
|
||||
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
|
||||
Output only the rephrased query wrapped in an XML <query> element. Do not include any explanation or additional text.
|
||||
Output only the rephrased query in query key JSON format. Do not include any explanation or additional text.
|
||||
`;
|
||||
|
||||
export const imageSearchFewShots: BaseMessageLike[] = [
|
||||
[
|
||||
'user',
|
||||
'<conversation>\n</conversation>\n<follow_up>\nWhat is a cat?\n</follow_up>',
|
||||
],
|
||||
['assistant', '<query>A cat</query>'],
|
||||
export const imageSearchFewShots: ChatTurnMessage[] = [
|
||||
{
|
||||
role: 'user',
|
||||
content:
|
||||
'<conversation>\n</conversation>\n<follow_up>\nWhat is a cat?\n</follow_up>',
|
||||
},
|
||||
{ role: 'assistant', content: '{"query":"A cat"}' },
|
||||
|
||||
[
|
||||
'user',
|
||||
'<conversation>\n</conversation>\n<follow_up>\nWhat is a car? How does it work?\n</follow_up>',
|
||||
],
|
||||
['assistant', '<query>Car working</query>'],
|
||||
[
|
||||
'user',
|
||||
'<conversation>\n</conversation>\n<follow_up>\nHow does an AC work?\n</follow_up>',
|
||||
],
|
||||
['assistant', '<query>AC working</query>']
|
||||
]
|
||||
{
|
||||
role: 'user',
|
||||
content:
|
||||
'<conversation>\n</conversation>\n<follow_up>\nWhat is a car? How does it work?\n</follow_up>',
|
||||
},
|
||||
{ role: 'assistant', content: '{"query":"Car working"}' },
|
||||
{
|
||||
role: 'user',
|
||||
content:
|
||||
'<conversation>\n</conversation>\n<follow_up>\nHow does an AC work?\n</follow_up>',
|
||||
},
|
||||
{ role: 'assistant', content: '{"query":"AC working"}' },
|
||||
];
|
||||
|
||||
@@ -1,25 +1,28 @@
|
||||
import { BaseMessageLike } from "@langchain/core/messages";
|
||||
import { ChatTurnMessage } from '@/lib/types';
|
||||
|
||||
export const videoSearchPrompt = `
|
||||
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search Youtube for videos.
|
||||
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
|
||||
Output only the rephrased query wrapped in an XML <query> element. Do not include any explanation or additional text.
|
||||
Output only the rephrased query in query key JSON format. Do not include any explanation or additional text.
|
||||
`;
|
||||
|
||||
export const videoSearchFewShots: BaseMessageLike[] = [
|
||||
[
|
||||
'user',
|
||||
'<conversation>\n</conversation>\n<follow_up>\nHow does a car work?\n</follow_up>',
|
||||
],
|
||||
['assistant', '<query>How does a car work?</query>'],
|
||||
[
|
||||
'user',
|
||||
'<conversation>\n</conversation>\n<follow_up>\nWhat is the theory of relativity?\n</follow_up>',
|
||||
],
|
||||
['assistant', '<query>Theory of relativity</query>'],
|
||||
[
|
||||
'user',
|
||||
'<conversation>\n</conversation>\n<follow_up>\nHow does an AC work?\n</follow_up>',
|
||||
],
|
||||
['assistant', '<query>AC working</query>'],
|
||||
]
|
||||
export const videoSearchFewShots: ChatTurnMessage[] = [
|
||||
{
|
||||
role: 'user',
|
||||
content:
|
||||
'<conversation>\n</conversation>\n<follow_up>\nHow does a car work?\n</follow_up>',
|
||||
},
|
||||
{ role: 'assistant', content: '{"query":"How does a car work?"}' },
|
||||
{
|
||||
role: 'user',
|
||||
content:
|
||||
'<conversation>\n</conversation>\n<follow_up>\nWhat is the theory of relativity?\n</follow_up>',
|
||||
},
|
||||
{ role: 'assistant', content: '{"query":"Theory of relativity"}' },
|
||||
{
|
||||
role: 'user',
|
||||
content:
|
||||
'<conversation>\n</conversation>\n<follow_up>\nHow does an AC work?\n</follow_up>',
|
||||
},
|
||||
{ role: 'assistant', content: '{"query":"AC working"}' },
|
||||
];
|
||||
|
||||
Reference in New Issue
Block a user