mirror of
https://github.com/ejeanboris/MDAF.git
synced 2025-04-29 12:02:31 +00:00
testing the stats
This commit is contained in:
@ -2,7 +2,6 @@
|
||||
from os import path
|
||||
import importlib.util
|
||||
import multiprocessing
|
||||
import pathos.multiprocessing as mp
|
||||
import time
|
||||
import re
|
||||
from numpy import random as r
|
||||
@ -78,7 +77,7 @@ def measure(heuristicpath, heuristic_name, funcpath, funcname, objs, args, scale
|
||||
|
||||
|
||||
# Defining random initial points to start testing the algorithms
|
||||
initpoints = [[r.random() * scale, r.random() * scale] for run in range(3)] #update the inner as [r.random() * scale for i in range(testfuncDimmensions)]
|
||||
initpoints = [[r.random() * scale, r.random() * scale] for run in range(30)] #update the inner as [r.random() * scale for i in range(testfuncDimmensions)]
|
||||
# building the iterable arguments
|
||||
partfunc = partial(simulate, heuristic_name, heuristicpath, funcname, funcpath, objs, args)
|
||||
|
||||
@ -97,7 +96,7 @@ def measure(heuristicpath, heuristic_name, funcpath, funcname, objs, args, scale
|
||||
results['numCalls'] = array([statistics.mean(numCalls), statistics.stdev(numCalls)])
|
||||
results['convRate'] = array([statistics.mean(converged), statistics.stdev(converged)])
|
||||
|
||||
connection.send(results)
|
||||
connection.send((results,newRun))
|
||||
|
||||
def writerepresentation(funcpath, charas):
|
||||
# Save a backup copy of the function file
|
||||
@ -237,7 +236,6 @@ def representfunc(funcpath):
|
||||
|
||||
def doe(heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args, scale):
|
||||
|
||||
|
||||
# logic variables to deal with the processes
|
||||
proc = []
|
||||
connections = {}
|
||||
@ -271,10 +269,14 @@ def doe(heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args,
|
||||
failedfunctions[run] = process.exitcode
|
||||
connections[run][0].close()
|
||||
connections[run][1].close()
|
||||
|
||||
|
||||
|
||||
# display output
|
||||
print("\n\n||||| Responses: [mean,stdDev] |||||")
|
||||
for process in proc: print(process.name + "____\n" + str(responses[process.name]) + "\n_________________")
|
||||
for process in proc: print(process.name + "____\n" + str(responses[process.name][0]) + "\n_________________")
|
||||
|
||||
#return output
|
||||
return responses
|
||||
|
||||
if __name__ == '__main__':
|
||||
heuristicpath = "SampleAlgorithms/SimmulatedAnnealing.py"
|
||||
@ -288,8 +290,8 @@ if __name__ == '__main__':
|
||||
args = {"high": 200, "low": -200, "t": 1000, "p": 0.95}
|
||||
scale = 1
|
||||
|
||||
doe (heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args, scale)
|
||||
|
||||
data = doe (heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args, scale)
|
||||
print(data['Bukin2'][1][2])
|
||||
#representfunc("TestFunctions/Bukin6.py")
|
||||
|
||||
|
||||
|
@ -72,7 +72,7 @@ def main(func, obj, S, args):
|
||||
route.append(Best[:])
|
||||
print(route)
|
||||
|
||||
if t < 0 or Quality(Best,y,func) > 50:
|
||||
if t < 0 or Quality(Best,y,func) > 200:
|
||||
break
|
||||
#print('the Best Quality obtained was:{}'.format(Quality(Best,y)))
|
||||
print("Final Quality is: {}".format(Quality(Best,y,func)))
|
||||
|
Reference in New Issue
Block a user