setting it up

This commit is contained in:
2021-05-14 23:49:40 -04:00
parent 9b39b73fca
commit bb60d49e33
11 changed files with 155 additions and 8 deletions

5
.vscode/extensions.json vendored Normal file
View File

@ -0,0 +1,5 @@
{
"recommendations": [
"magicstack.magicpython"
]
}

19
.vscode/launch.json vendored Normal file
View File

@ -0,0 +1,19 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"name": "Python: Current File",
"type": "python",
"request": "launch",
"program": "${file}",
"console": "integratedTerminal",
"cwd": "${fileDirname}"
}
]
}

9
.vscode/settings.json vendored Normal file
View File

@ -0,0 +1,9 @@
{
"python.pythonPath": "/usr/bin/python3.8",
"python.testing.pytestArgs": [
"Sample codes"
],
"python.testing.unittestEnabled": false,
"python.testing.nosetestsEnabled": false,
"python.testing.pytestEnabled": true
}

View File

@ -20,6 +20,8 @@ from scipy import signal, misc, ndimage
def measure(heuristicpath, heuristic_name, funcpath, funcname, objs, args, scale, connection):
'''
This function runs each optimization process of the heuristic with one test function
@ -126,8 +128,8 @@ def representfunc(funcpath):
# Valleys and Bassins
# Alternative filter used for calculating derivatives
derfilt = array([1.0, -2, 1.0], dtype=float32)
alpha = signal.sepfir2d(ck, derfilt, [1]) + signal.sepfir2d(ck, [1], derfilt)
#derfilt = array([1.0, -2, 1.0], dtype=float32)
#alpha = signal.sepfir2d(ck, derfilt, [1]) + signal.sepfir2d(ck, [1], derfilt)
# Currently used filter for Valley detection
hor = array([[0,1,1],[-1,0,1], [-1,-1,0]])
@ -169,16 +171,16 @@ def representfunc(funcpath):
# Noisyness: use the previously generated DOE and calculate a noisyness factor; average of derivative
# Displaying the plots for development purposes
img1 = plt.figure()
ax2 = img1.add_subplot(111)
ax2.imshow(alpha)
#img1 = plt.figure()
#ax2 = img1.add_subplot(111)
#ax2.imshow(alpha)
img2 = plt.figure()
ax3 = img2.add_subplot(111)
ax3.imshow(beta)
plt.show()
print("should be plotted")
# Writing the calculated representation into the test function file
# results['Represented'] = True
@ -242,7 +244,9 @@ if __name__ == '__main__':
args = {"high": 200, "low": -200, "t": 1000, "p": 0.95}
scale = 1
doe (heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args, scale)
#doe (heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args, scale)
#representfunc("/home/remi/Documents/MDAF-GitLAB/SourceCode/TestFunctions/Bukin6.py")
representfunc("TestFunctions/Bukin6.py")
# %%

View File

@ -59,6 +59,30 @@ def main(args):
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# Valleys: True
#_# dimmensions: 2.0
#_# Valleys: True
#_# dimmensions: 2.0
#_# Valleys: True
#_# dimmensions: 2.0
#_# Valleys: True
#_# dimmensions: 2.0
#_# Valleys: True
#_# dimmensions: 2.0
#_# Valleys: True
#_# dimmensions: 2.0
#_# Valleys: True
#_# dimmensions: 2.0
#_# Valleys: True
#_# dimmensions: 2.0
#_# Valleys: True
'''

View File

@ -0,0 +1,86 @@
from math import sqrt, fabs
def main(args):
'''
#_# dimmensions: 2
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# Valleys: True
#_# dimmensions: 2.0
#_# Valleys: True
#_# dimmensions: 2.0
#_# Valleys: True
#_# dimmensions: 2.0
#_# Valleys: True
#_# dimmensions: 2.0
#_# Valleys: True
#_# dimmensions: 2.0
#_# Valleys: True
#_# dimmensions: 2.0
#_# Valleys: True
#_# dimmensions: 2.0
#_# Valleys: True
'''
return 100*sqrt(fabs(args[1]-0.01*args[0]**2))+0.01*fabs(args[0]+10)