the suboprocesses are running and the algorithm is functionning to optimize the function it is given

This commit is contained in:
Remi Ehounou
2021-04-04 16:57:59 -04:00
parent 0139c4c359
commit 58030d90ab
10 changed files with 10643 additions and 2 deletions

File diff suppressed because one or more lines are too long

Binary file not shown.

File diff suppressed because one or more lines are too long

View File

@ -10428,7 +10428,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.2"
"version": "3.9.2"
}
},
"nbformat": 4,

View File

@ -0,0 +1,40 @@
# directly running the DOE because existing surrogates can be explored with another workflow
from numpy import random as r
import time
import importlib.util
import multiprocessing
# initialise the logic helpers
r.seed(int(time.time()))
heuristicpath = "/home/remi/Documents/MDAF-GitLAB/SourceCode/SampleAlgorithms/SimmulatedAnnealing.py"
heuristic_name = "SimmulatedAnnealing"
testfunctionpaths = ["/home/remi/Documents/MDAF-GitLAB/SourceCode/TestFunctions/Bukin2.py"]
funcnames = ["Bukin2"]
objs = 0
args = {"high": 200, "low": -200, "t": 0.01, "p": 0.8}
scale = 62
def doe(heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args, scale):
spec = importlib.util.spec_from_file_location(heuristic_name, heuristicpath)
heuristic = importlib.util.module_from_spec(spec)
spec.loader.exec_module(heuristic)
proc = list()
#heuristic.MyClass()
for idx, funcpath in enumerate(testfunctionpaths):
testspec = importlib.util.spec_from_file_location(funcnames[idx], funcpath)
func = importlib.util.module_from_spec(testspec)
testspec.loader.exec_module(func)
#func.MyClass()
initpoint = [r.random() * scale, r.random() * scale]
proc.append(multiprocessing.Process(target=heuristic.main, name=funcnames[idx], args=(func, objs, initpoint, args)))
best = proc[idx].run()
print("started :" + str(initpoint) + "\nEnded :" + str(best))
# simulatedAnnealing(S = [9.00,4.00],y = 0,high = 10,low = -8,t =0.01,p = 0.8)
# proc = subprocess.call(["python", heuristic, "arg-15", "arg2", "argN"])
doe (heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args, scale)

View File

@ -0,0 +1,70 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "abstract-broad",
"metadata": {},
"source": [
"# Program to read through folders in a file-path and spit out description"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "similar-algeria",
"metadata": {},
"outputs": [],
"source": [
"def find_algorithm():\n",
" import os # To enable you walk through the OS directory\n",
" import re # To enable pattern recognition\n",
" \n",
" \n",
" # Take file-path and extract names of files in file-path as list data type\n",
" check_folder = input(\"Please enter the file-path of the folder: \\n\")\n",
" found_items = os.listdir(check_folder)\n",
" \n",
" \n",
" # Initialize what the pattern to be searched for should look like\n",
" pattern = \"\\W\\W\\W\"\n",
" \n",
" # Look into the individual txt files and extraxt the description \n",
" for items in range(0, len(found_items)):\n",
" print(f\"\\n({items + 1}): I found the file named: {found_items[items]}\")\n",
" inside_file = check_folder + '\\\\' + found_items[items]\n",
" \n",
" with open(inside_file, mode ='r', encoding = 'utf-8') as myfile:\n",
" print(\"Inside the file, I found this description: \\n \")\n",
" contents = myfile.readlines()\n",
" \n",
" for indexing in range(0, len(contents)):\n",
" if re.search(pattern, contents[indexing]):\n",
" print(contents[indexing+1])\n",
" break\n",
" \n",
" print(\"\\n\\n\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,81 @@
import math as m
import numpy as np
from numpy import random as r
import time
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
import copy as cp
#def func(Sc):
# x1 = Sc[0]
# x2 = Sc[1]
# return m.sqrt(x1**2+x2**2)
def tweak(St,p,sigma,high,low):
for i in range(len(St)):
if p > r.random():
while True:
n = r.normal(loc=0, scale=sigma)
if (high > St[i]+n) and (low < St[i]+n):
St[i]+=n
break
return St
def Quality(Sc,objective,func):
func_output = func.main(Sc)
if type(func_output) == list:
error = [func_output[i]-objective[i] for i in range(len(func_output))]
else:
error = func_output - objective
return 1/abs(error)
def main(func,obj,S,args):
r.seed(int(time.time()))
route = list()
#Parsing arguments
y = obj
high = args["high"]
low = args["low"]
t = args["t"]
p = args["p"]
Best = list()
Best[:] = cp.deepcopy(S)
sigma = 0.1
route.append(Best[:])
while True:
print('\n\n\n')
R = tweak(cp.deepcopy(S),p,sigma,high,low)
print(R)
print(S)
Qr = Quality(R,y,func)
Qs = Quality(S,y,func)
try:
P = m.e**((Qr-Qs)/t)
except:
pass
print('QUALITY_R///{}'.format(Qr))
print('QUALITY_S///{}'.format(Qs))
print('fraction is:{}'.format(P))
if (Qr > Qs) or (r.random() < P):
print('NEW_S')
S[:] = R[:]
if t > 0.01:
t-= t/10
print('t = {}'.format(t))
if (Quality(S,y,func) > Quality(Best,y,func)):
print('new Best****:{}'.format(Best))
Best[:] = S[:]
route.append(Best[:])
print(route)
if t < 0 or Quality(Best,y,func) > 200:
break
#print('the Best Quality obtained was:{}'.format(Quality(Best,y)))
return Best

View File

@ -0,0 +1,6 @@
{
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -0,0 +1,2 @@
def main(args):
return 100*(args[1]-0.01*args[0]**2+1)+0.01*(args[0]+10)**2

View File

@ -0,0 +1,6 @@
{
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 4
}