mirror of
https://github.com/ejeanboris/MDAF.git
synced 2025-04-29 12:02:31 +00:00
the suboprocesses are running and the algorithm is functionning to optimize the function it is given
This commit is contained in:
File diff suppressed because one or more lines are too long
BIN
References/TestFunctions.pdf
Normal file
BIN
References/TestFunctions.pdf
Normal file
Binary file not shown.
File diff suppressed because one or more lines are too long
@ -10428,7 +10428,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.2"
|
||||
"version": "3.9.2"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
40
SourceCode/AlgorithmAnalyser.py
Normal file
40
SourceCode/AlgorithmAnalyser.py
Normal file
@ -0,0 +1,40 @@
|
||||
# directly running the DOE because existing surrogates can be explored with another workflow
|
||||
|
||||
from numpy import random as r
|
||||
import time
|
||||
import importlib.util
|
||||
import multiprocessing
|
||||
|
||||
|
||||
# initialise the logic helpers
|
||||
r.seed(int(time.time()))
|
||||
|
||||
heuristicpath = "/home/remi/Documents/MDAF-GitLAB/SourceCode/SampleAlgorithms/SimmulatedAnnealing.py"
|
||||
heuristic_name = "SimmulatedAnnealing"
|
||||
testfunctionpaths = ["/home/remi/Documents/MDAF-GitLAB/SourceCode/TestFunctions/Bukin2.py"]
|
||||
funcnames = ["Bukin2"]
|
||||
objs = 0
|
||||
args = {"high": 200, "low": -200, "t": 0.01, "p": 0.8}
|
||||
scale = 62
|
||||
|
||||
|
||||
def doe(heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args, scale):
|
||||
spec = importlib.util.spec_from_file_location(heuristic_name, heuristicpath)
|
||||
heuristic = importlib.util.module_from_spec(spec)
|
||||
spec.loader.exec_module(heuristic)
|
||||
proc = list()
|
||||
#heuristic.MyClass()
|
||||
for idx, funcpath in enumerate(testfunctionpaths):
|
||||
testspec = importlib.util.spec_from_file_location(funcnames[idx], funcpath)
|
||||
func = importlib.util.module_from_spec(testspec)
|
||||
testspec.loader.exec_module(func)
|
||||
#func.MyClass()
|
||||
initpoint = [r.random() * scale, r.random() * scale]
|
||||
proc.append(multiprocessing.Process(target=heuristic.main, name=funcnames[idx], args=(func, objs, initpoint, args)))
|
||||
best = proc[idx].run()
|
||||
print("started :" + str(initpoint) + "\nEnded :" + str(best))
|
||||
|
||||
# simulatedAnnealing(S = [9.00,4.00],y = 0,high = 10,low = -8,t =0.01,p = 0.8)
|
||||
# proc = subprocess.call(["python", heuristic, "arg-15", "arg2", "argN"])
|
||||
|
||||
doe (heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args, scale)
|
70
SourceCode/Analyse_folders_and_description.ipynb
Normal file
70
SourceCode/Analyse_folders_and_description.ipynb
Normal file
@ -0,0 +1,70 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "abstract-broad",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Program to read through folders in a file-path and spit out description"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "similar-algeria",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def find_algorithm():\n",
|
||||
" import os # To enable you walk through the OS directory\n",
|
||||
" import re # To enable pattern recognition\n",
|
||||
" \n",
|
||||
" \n",
|
||||
" # Take file-path and extract names of files in file-path as list data type\n",
|
||||
" check_folder = input(\"Please enter the file-path of the folder: \\n\")\n",
|
||||
" found_items = os.listdir(check_folder)\n",
|
||||
" \n",
|
||||
" \n",
|
||||
" # Initialize what the pattern to be searched for should look like\n",
|
||||
" pattern = \"\\W\\W\\W\"\n",
|
||||
" \n",
|
||||
" # Look into the individual txt files and extraxt the description \n",
|
||||
" for items in range(0, len(found_items)):\n",
|
||||
" print(f\"\\n({items + 1}): I found the file named: {found_items[items]}\")\n",
|
||||
" inside_file = check_folder + '\\\\' + found_items[items]\n",
|
||||
" \n",
|
||||
" with open(inside_file, mode ='r', encoding = 'utf-8') as myfile:\n",
|
||||
" print(\"Inside the file, I found this description: \\n \")\n",
|
||||
" contents = myfile.readlines()\n",
|
||||
" \n",
|
||||
" for indexing in range(0, len(contents)):\n",
|
||||
" if re.search(pattern, contents[indexing]):\n",
|
||||
" print(contents[indexing+1])\n",
|
||||
" break\n",
|
||||
" \n",
|
||||
" print(\"\\n\\n\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.2"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
81
SourceCode/SampleAlgorithms/SimmulatedAnnealing.py
Normal file
81
SourceCode/SampleAlgorithms/SimmulatedAnnealing.py
Normal file
@ -0,0 +1,81 @@
|
||||
import math as m
|
||||
import numpy as np
|
||||
from numpy import random as r
|
||||
import time
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits import mplot3d
|
||||
import copy as cp
|
||||
|
||||
|
||||
#def func(Sc):
|
||||
# x1 = Sc[0]
|
||||
# x2 = Sc[1]
|
||||
# return m.sqrt(x1**2+x2**2)
|
||||
|
||||
def tweak(St,p,sigma,high,low):
|
||||
for i in range(len(St)):
|
||||
if p > r.random():
|
||||
while True:
|
||||
n = r.normal(loc=0, scale=sigma)
|
||||
if (high > St[i]+n) and (low < St[i]+n):
|
||||
St[i]+=n
|
||||
break
|
||||
return St
|
||||
|
||||
def Quality(Sc,objective,func):
|
||||
func_output = func.main(Sc)
|
||||
if type(func_output) == list:
|
||||
error = [func_output[i]-objective[i] for i in range(len(func_output))]
|
||||
else:
|
||||
error = func_output - objective
|
||||
return 1/abs(error)
|
||||
|
||||
def main(func,obj,S,args):
|
||||
r.seed(int(time.time()))
|
||||
route = list()
|
||||
#Parsing arguments
|
||||
y = obj
|
||||
high = args["high"]
|
||||
low = args["low"]
|
||||
t = args["t"]
|
||||
p = args["p"]
|
||||
|
||||
Best = list()
|
||||
Best[:] = cp.deepcopy(S)
|
||||
sigma = 0.1
|
||||
route.append(Best[:])
|
||||
while True:
|
||||
print('\n\n\n')
|
||||
R = tweak(cp.deepcopy(S),p,sigma,high,low)
|
||||
print(R)
|
||||
print(S)
|
||||
Qr = Quality(R,y,func)
|
||||
Qs = Quality(S,y,func)
|
||||
try:
|
||||
P = m.e**((Qr-Qs)/t)
|
||||
except:
|
||||
pass
|
||||
print('QUALITY_R///{}'.format(Qr))
|
||||
print('QUALITY_S///{}'.format(Qs))
|
||||
print('fraction is:{}'.format(P))
|
||||
if (Qr > Qs) or (r.random() < P):
|
||||
print('NEW_S')
|
||||
S[:] = R[:]
|
||||
if t > 0.01:
|
||||
t-= t/10
|
||||
print('t = {}'.format(t))
|
||||
|
||||
if (Quality(S,y,func) > Quality(Best,y,func)):
|
||||
print('new Best****:{}'.format(Best))
|
||||
Best[:] = S[:]
|
||||
route.append(Best[:])
|
||||
print(route)
|
||||
|
||||
if t < 0 or Quality(Best,y,func) > 200:
|
||||
break
|
||||
#print('the Best Quality obtained was:{}'.format(Quality(Best,y)))
|
||||
return Best
|
||||
|
||||
|
||||
|
||||
|
@ -0,0 +1,6 @@
|
||||
{
|
||||
"cells": [],
|
||||
"metadata": {},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
2
SourceCode/TestFunctions/Bukin2.py
Normal file
2
SourceCode/TestFunctions/Bukin2.py
Normal file
@ -0,0 +1,2 @@
|
||||
def main(args):
|
||||
return 100*(args[1]-0.01*args[0]**2+1)+0.01*(args[0]+10)**2
|
6
SourceCode/TestFunctions/Untitled.ipynb
Normal file
6
SourceCode/TestFunctions/Untitled.ipynb
Normal file
@ -0,0 +1,6 @@
|
||||
{
|
||||
"cells": [],
|
||||
"metadata": {},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
Reference in New Issue
Block a user