Files
Perplexica/src/app/api/chat/route.ts
Kushagra Srivastava d611ddaab9 Merge pull request #880 from ruturaj-rathod/fix/body-validation-579
validate the request body of api/chat to prevent malformed request body
2025-09-27 19:52:14 +05:30

359 lines
9.0 KiB
TypeScript

import crypto from 'crypto';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
import { EventEmitter } from 'stream';
import {
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '@/lib/providers';
import db from '@/lib/db';
import { chats, messages as messagesSchema } from '@/lib/db/schema';
import { and, eq, gt } from 'drizzle-orm';
import { getFileDetails } from '@/lib/utils/files';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { ChatOpenAI } from '@langchain/openai';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '@/lib/config';
import { searchHandlers } from '@/lib/search';
import { z } from 'zod';
export const runtime = 'nodejs';
export const dynamic = 'force-dynamic';
const messageSchema = z.object({
messageId: z.string().min(1, 'Message ID is required'),
chatId: z.string().min(1, 'Chat ID is required'),
content: z.string().min(1, 'Message content is required'),
});
const chatModelSchema = z.object({
provider: z.string().optional(),
name: z.string().optional(),
});
const embeddingModelSchema = z.object({
provider: z.string().optional(),
name: z.string().optional(),
});
const bodySchema = z.object({
message: messageSchema,
optimizationMode: z.enum(['speed', 'balanced', 'quality'], {
errorMap: () => ({
message: 'Optimization mode must be one of: speed, balanced, quality',
}),
}),
focusMode: z.string().min(1, 'Focus mode is required'),
history: z
.array(
z.tuple([z.string(), z.string()], {
errorMap: () => ({
message: 'History items must be tuples of two strings',
}),
}),
)
.optional()
.default([]),
files: z.array(z.string()).optional().default([]),
chatModel: chatModelSchema.optional().default({}),
embeddingModel: embeddingModelSchema.optional().default({}),
systemInstructions: z.string().nullable().optional().default(''),
});
type Message = z.infer<typeof messageSchema>;
type Body = z.infer<typeof bodySchema>;
const safeValidateBody = (data: unknown) => {
const result = bodySchema.safeParse(data);
if (!result.success) {
return {
success: false,
error: result.error.errors.map((e) => ({
path: e.path.join('.'),
message: e.message,
})),
};
}
return {
success: true,
data: result.data,
};
};
const handleEmitterEvents = async (
stream: EventEmitter,
writer: WritableStreamDefaultWriter,
encoder: TextEncoder,
chatId: string,
) => {
let recievedMessage = '';
const aiMessageId = crypto.randomBytes(7).toString('hex');
stream.on('data', (data) => {
const parsedData = JSON.parse(data);
if (parsedData.type === 'response') {
writer.write(
encoder.encode(
JSON.stringify({
type: 'message',
data: parsedData.data,
messageId: aiMessageId,
}) + '\n',
),
);
recievedMessage += parsedData.data;
} else if (parsedData.type === 'sources') {
writer.write(
encoder.encode(
JSON.stringify({
type: 'sources',
data: parsedData.data,
messageId: aiMessageId,
}) + '\n',
),
);
const sourceMessageId = crypto.randomBytes(7).toString('hex');
db.insert(messagesSchema)
.values({
chatId: chatId,
messageId: sourceMessageId,
role: 'source',
sources: parsedData.data,
createdAt: new Date().toString(),
})
.execute();
}
});
stream.on('end', () => {
writer.write(
encoder.encode(
JSON.stringify({
type: 'messageEnd',
}) + '\n',
),
);
writer.close();
db.insert(messagesSchema)
.values({
content: recievedMessage,
chatId: chatId,
messageId: aiMessageId,
role: 'assistant',
createdAt: new Date().toString(),
})
.execute();
});
stream.on('error', (data) => {
const parsedData = JSON.parse(data);
writer.write(
encoder.encode(
JSON.stringify({
type: 'error',
data: parsedData.data,
}),
),
);
writer.close();
});
};
const handleHistorySave = async (
message: Message,
humanMessageId: string,
focusMode: string,
files: string[],
) => {
const chat = await db.query.chats.findFirst({
where: eq(chats.id, message.chatId),
});
const fileData = files.map(getFileDetails);
if (!chat) {
await db
.insert(chats)
.values({
id: message.chatId,
title: message.content,
createdAt: new Date().toString(),
focusMode: focusMode,
files: fileData,
})
.execute();
} else if (JSON.stringify(chat.files ?? []) != JSON.stringify(fileData)) {
db.update(chats)
.set({
files: files.map(getFileDetails),
})
.where(eq(chats.id, message.chatId));
}
const messageExists = await db.query.messages.findFirst({
where: eq(messagesSchema.messageId, humanMessageId),
});
if (!messageExists) {
await db
.insert(messagesSchema)
.values({
content: message.content,
chatId: message.chatId,
messageId: humanMessageId,
role: 'user',
createdAt: new Date().toString(),
})
.execute();
} else {
await db
.delete(messagesSchema)
.where(
and(
gt(messagesSchema.id, messageExists.id),
eq(messagesSchema.chatId, message.chatId),
),
)
.execute();
}
};
export const POST = async (req: Request) => {
try {
const reqBody = (await req.json()) as Body;
const parseBody = safeValidateBody(reqBody);
if (!parseBody.success) {
return Response.json(
{ message: 'Invalid request body', error: parseBody.error },
{ status: 400 },
);
}
const body = parseBody.data as Body;
const { message } = body;
if (message.content === '') {
return Response.json(
{
message: 'Please provide a message to process',
},
{ status: 400 },
);
}
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
const chatModelProvider =
chatModelProviders[
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
];
const chatModel =
chatModelProvider[
body.chatModel?.name || Object.keys(chatModelProvider)[0]
];
const embeddingProvider =
embeddingModelProviders[
body.embeddingModel?.provider || Object.keys(embeddingModelProviders)[0]
];
const embeddingModel =
embeddingProvider[
body.embeddingModel?.name || Object.keys(embeddingProvider)[0]
];
let llm: BaseChatModel | undefined;
let embedding = embeddingModel.model;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
apiKey: getCustomOpenaiApiKey(),
modelName: getCustomOpenaiModelName(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (chatModelProvider && chatModel) {
llm = chatModel.model;
}
if (!llm) {
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
}
if (!embedding) {
return Response.json(
{ error: 'Invalid embedding model' },
{ status: 400 },
);
}
const humanMessageId =
message.messageId ?? crypto.randomBytes(7).toString('hex');
const history: BaseMessage[] = body.history.map((msg) => {
if (msg[0] === 'human') {
return new HumanMessage({
content: msg[1],
});
} else {
return new AIMessage({
content: msg[1],
});
}
});
const handler = searchHandlers[body.focusMode];
if (!handler) {
return Response.json(
{
message: 'Invalid focus mode',
},
{ status: 400 },
);
}
const stream = await handler.searchAndAnswer(
message.content,
history,
llm,
embedding,
body.optimizationMode,
body.files,
body.systemInstructions as string,
);
const responseStream = new TransformStream();
const writer = responseStream.writable.getWriter();
const encoder = new TextEncoder();
handleEmitterEvents(stream, writer, encoder, message.chatId);
handleHistorySave(message, humanMessageId, body.focusMode, body.files);
return new Response(responseStream.readable, {
headers: {
'Content-Type': 'text/event-stream',
Connection: 'keep-alive',
'Cache-Control': 'no-cache, no-transform',
},
});
} catch (err) {
console.error('An error occurred while processing chat request:', err);
return Response.json(
{ message: 'An error occurred while processing chat request' },
{ status: 500 },
);
}
};