mirror of
https://github.com/ItzCrazyKns/Perplexica.git
synced 2025-04-30 16:22:29 +00:00
148 lines
4.1 KiB
TypeScript
148 lines
4.1 KiB
TypeScript
import {
|
|
RunnableSequence,
|
|
RunnableMap,
|
|
RunnableLambda,
|
|
} from '@langchain/core/runnables';
|
|
import { PromptTemplate } from '@langchain/core/prompts';
|
|
import formatChatHistoryAsString from '../utils/formatHistory';
|
|
import { BaseMessage } from '@langchain/core/messages';
|
|
import { StringOutputParser } from '@langchain/core/output_parsers';
|
|
import { searchSearxng } from '../lib/searchEngines/searxng';
|
|
import { searchGooglePSE } from '../lib/searchEngines/google_pse';
|
|
import { searchBraveAPI } from '../lib/searchEngines/brave';
|
|
import { searchYaCy } from '../lib/searchEngines/yacy';
|
|
import { getSearchEngineBackend } from '../config';
|
|
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
|
|
|
const imageSearchChainPrompt = `
|
|
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search the web for images.
|
|
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
|
|
|
|
Example:
|
|
1. Follow up question: What is a cat?
|
|
Rephrased: A cat
|
|
|
|
2. Follow up question: What is a car? How does it works?
|
|
Rephrased: Car working
|
|
|
|
3. Follow up question: How does an AC work?
|
|
Rephrased: AC working
|
|
|
|
Conversation:
|
|
{chat_history}
|
|
|
|
Follow up question: {query}
|
|
Rephrased question:
|
|
`;
|
|
|
|
type ImageSearchChainInput = {
|
|
chat_history: BaseMessage[];
|
|
query: string;
|
|
};
|
|
|
|
async function performImageSearch(query: string) {
|
|
const searchEngine = getSearchEngineBackend();
|
|
let images = [];
|
|
|
|
switch (searchEngine) {
|
|
case 'google': {
|
|
const googleResult = await searchGooglePSE(query);
|
|
images = googleResult.results.map((result) => {
|
|
if (result.img_src && result.url && result.title) {
|
|
return {
|
|
img_src: result.img_src,
|
|
url: result.url,
|
|
title: result.title,
|
|
source: result.displayLink
|
|
};
|
|
}
|
|
}).filter(Boolean);
|
|
break;
|
|
}
|
|
|
|
case 'searxng': {
|
|
const searxResult = await searchSearxng(query, {
|
|
engines: ['google images', 'bing images'],
|
|
pageno: 1,
|
|
});
|
|
searxResult.results.forEach((result) => {
|
|
if (result.img_src && result.url && result.title) {
|
|
images.push({
|
|
img_src: result.img_src,
|
|
url: result.url,
|
|
title: result.title,
|
|
});
|
|
}
|
|
});
|
|
break;
|
|
}
|
|
|
|
case 'brave': {
|
|
const braveResult = await searchBraveAPI(query);
|
|
images = braveResult.results.map((result) => {
|
|
if (result.img_src && result.url && result.title) {
|
|
return {
|
|
img_src: result.img_src,
|
|
url: result.url,
|
|
title: result.title,
|
|
source: result.url
|
|
};
|
|
}
|
|
}).filter(Boolean);
|
|
break;
|
|
}
|
|
|
|
case 'yacy': {
|
|
const yacyResult = await searchYaCy(query);
|
|
images = yacyResult.results.map((result) => {
|
|
if (result.img_src && result.url && result.title) {
|
|
return {
|
|
img_src: result.img_src,
|
|
url: result.url,
|
|
title: result.title,
|
|
source: result.url
|
|
}
|
|
}
|
|
}).filter(Boolean);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
throw new Error(`Unknown search engine ${searchEngine}`);
|
|
}
|
|
|
|
return images;
|
|
}
|
|
|
|
const strParser = new StringOutputParser();
|
|
|
|
const createImageSearchChain = (llm: BaseChatModel) => {
|
|
return RunnableSequence.from([
|
|
RunnableMap.from({
|
|
chat_history: (input: ImageSearchChainInput) => {
|
|
return formatChatHistoryAsString(input.chat_history);
|
|
},
|
|
query: (input: ImageSearchChainInput) => {
|
|
return input.query;
|
|
},
|
|
}),
|
|
PromptTemplate.fromTemplate(imageSearchChainPrompt),
|
|
llm,
|
|
strParser,
|
|
RunnableLambda.from(async (input: string) => {
|
|
const images = await performImageSearch(input);
|
|
return images.slice(0, 10);
|
|
}),
|
|
]);
|
|
};
|
|
|
|
const handleImageSearch = (
|
|
input: ImageSearchChainInput,
|
|
llm: BaseChatModel,
|
|
) => {
|
|
const imageSearchChain = createImageSearchChain(llm);
|
|
return imageSearchChain.invoke(input);
|
|
};
|
|
|
|
export default handleImageSearch;
|