Files
Perplexica/src/lib/models/providers/aiml.ts
2025-10-20 16:35:44 +05:30

153 lines
3.8 KiB
TypeScript

import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { Model, ModelList, ProviderMetadata } from '../types';
import BaseModelProvider from './baseProvider';
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
import { Embeddings } from '@langchain/core/embeddings';
import { UIConfigField } from '@/lib/config/types';
import { getConfiguredModelProviderById } from '@/lib/config/serverRegistry';
interface AimlConfig {
apiKey: string;
}
const providerConfigFields: UIConfigField[] = [
{
type: 'password',
name: 'API Key',
key: 'apiKey',
description: 'Your AI/ML API key',
required: true,
placeholder: 'AI/ML API Key',
env: 'AIML_API_KEY',
scope: 'server',
},
];
class AimlProvider extends BaseModelProvider<AimlConfig> {
constructor(id: string, name: string, config: AimlConfig) {
super(id, name, config);
}
async getDefaultModels(): Promise<ModelList> {
try {
const res = await fetch('https://api.aimlapi.com/models', {
method: 'GET',
headers: {
'Content-Type': 'application/json',
Authorization: `Bearer ${this.config.apiKey}`,
},
});
const data = await res.json();
const chatModels: Model[] = data.data
.filter((m: any) => m.type === 'chat-completion')
.map((m: any) => {
return {
name: m.id,
key: m.id,
};
});
const embeddingModels: Model[] = data.data
.filter((m: any) => m.type === 'embedding')
.map((m: any) => {
return {
name: m.id,
key: m.id,
};
});
return {
embedding: embeddingModels,
chat: chatModels,
};
} catch (err) {
if (err instanceof TypeError) {
throw new Error(
'Error connecting to AI/ML API. Please ensure your API key is correct and the service is available.',
);
}
throw err;
}
}
async getModelList(): Promise<ModelList> {
const defaultModels = await this.getDefaultModels();
const configProvider = getConfiguredModelProviderById(this.id)!;
return {
embedding: [
...defaultModels.embedding,
...configProvider.embeddingModels,
],
chat: [...defaultModels.chat, ...configProvider.chatModels],
};
}
async loadChatModel(key: string): Promise<BaseChatModel> {
const modelList = await this.getModelList();
const exists = modelList.chat.find((m) => m.key === key);
if (!exists) {
throw new Error(
'Error Loading AI/ML API Chat Model. Invalid Model Selected',
);
}
return new ChatOpenAI({
apiKey: this.config.apiKey,
temperature: 0.7,
model: key,
configuration: {
baseURL: 'https://api.aimlapi.com',
},
});
}
async loadEmbeddingModel(key: string): Promise<Embeddings> {
const modelList = await this.getModelList();
const exists = modelList.embedding.find((m) => m.key === key);
if (!exists) {
throw new Error(
'Error Loading AI/ML API Embedding Model. Invalid Model Selected.',
);
}
return new OpenAIEmbeddings({
apiKey: this.config.apiKey,
model: key,
configuration: {
baseURL: 'https://api.aimlapi.com',
},
});
}
static parseAndValidate(raw: any): AimlConfig {
if (!raw || typeof raw !== 'object')
throw new Error('Invalid config provided. Expected object');
if (!raw.apiKey)
throw new Error('Invalid config provided. API key must be provided');
return {
apiKey: String(raw.apiKey),
};
}
static getProviderConfigFields(): UIConfigField[] {
return providerConfigFields;
}
static getProviderMetadata(): ProviderMetadata {
return {
key: 'aiml',
name: 'AI/ML API',
};
}
}
export default AimlProvider;