Compare commits

...

9 Commits

Author SHA1 Message Date
ItzCrazyKns
df33229934 feat(custom-openai): use apiKey instead of openAIApiKey 2025-07-19 16:14:46 +05:30
ItzCrazyKns
49fafaa096 feat(metaSearchAgent): implement structured outputs 2025-07-19 16:10:04 +05:30
ItzCrazyKns
ca9b32a23b feat(ollama): use @langchain/ollama library 2025-07-19 16:09:46 +05:30
ItzCrazyKns
76e3ff4e02 feat(providers): switch to apiKey key 2025-07-19 16:09:21 +05:30
ItzCrazyKns
eabf3ca7d3 feat(modules): update langchain packages 2025-07-19 16:08:45 +05:30
ItzCrazyKns
94e6db10bb feat(weather): add other measurement units, closes #821 #790 2025-07-18 21:09:32 +05:30
ItzCrazyKns
26e1d5fec3 feat(routes): lint & beautify 2025-07-17 22:23:11 +05:30
ItzCrazyKns
66be87b688 Merge branch 'pr/827' 2025-07-17 22:22:50 +05:30
amoshydra
f7b4e32218 fix(discover): provide language when fetching
some engines provide empty response when no language is provided.

fix #618
2025-07-17 02:14:49 +08:00
20 changed files with 493 additions and 560 deletions

View File

@@ -15,11 +15,12 @@
"@headlessui/react": "^2.2.0", "@headlessui/react": "^2.2.0",
"@iarna/toml": "^2.2.5", "@iarna/toml": "^2.2.5",
"@icons-pack/react-simple-icons": "^12.3.0", "@icons-pack/react-simple-icons": "^12.3.0",
"@langchain/anthropic": "^0.3.15", "@langchain/anthropic": "^0.3.24",
"@langchain/community": "^0.3.36", "@langchain/community": "^0.3.49",
"@langchain/core": "^0.3.42", "@langchain/core": "^0.3.66",
"@langchain/google-genai": "^0.1.12", "@langchain/google-genai": "^0.2.15",
"@langchain/openai": "^0.0.25", "@langchain/ollama": "^0.2.3",
"@langchain/openai": "^0.6.2",
"@langchain/textsplitters": "^0.1.0", "@langchain/textsplitters": "^0.1.0",
"@tailwindcss/typography": "^0.5.12", "@tailwindcss/typography": "^0.5.12",
"@xenova/transformers": "^2.17.2", "@xenova/transformers": "^2.17.2",
@@ -31,7 +32,7 @@
"drizzle-orm": "^0.40.1", "drizzle-orm": "^0.40.1",
"html-to-text": "^9.0.5", "html-to-text": "^9.0.5",
"jspdf": "^3.0.1", "jspdf": "^3.0.1",
"langchain": "^0.1.30", "langchain": "^0.3.30",
"lucide-react": "^0.363.0", "lucide-react": "^0.363.0",
"mammoth": "^1.9.1", "mammoth": "^1.9.1",
"markdown-to-jsx": "^7.7.2", "markdown-to-jsx": "^7.7.2",

View File

@@ -223,7 +223,7 @@ export const POST = async (req: Request) => {
if (body.chatModel?.provider === 'custom_openai') { if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({ llm = new ChatOpenAI({
openAIApiKey: getCustomOpenaiApiKey(), apiKey: getCustomOpenaiApiKey(),
modelName: getCustomOpenaiModelName(), modelName: getCustomOpenaiModelName(),
temperature: 0.7, temperature: 0.7,
configuration: { configuration: {

View File

@@ -36,6 +36,7 @@ export const GET = async (req: Request) => {
{ {
engines: ['bing news'], engines: ['bing news'],
pageno: 1, pageno: 1,
language: 'en',
}, },
) )
).results; ).results;
@@ -49,7 +50,11 @@ export const GET = async (req: Request) => {
data = ( data = (
await searchSearxng( await searchSearxng(
`site:${articleWebsites[Math.floor(Math.random() * articleWebsites.length)]} ${topics[Math.floor(Math.random() * topics.length)]}`, `site:${articleWebsites[Math.floor(Math.random() * articleWebsites.length)]} ${topics[Math.floor(Math.random() * topics.length)]}`,
{ engines: ['bing news'], pageno: 1 }, {
engines: ['bing news'],
pageno: 1,
language: 'en',
},
) )
).results; ).results;
} }

View File

@@ -49,7 +49,7 @@ export const POST = async (req: Request) => {
if (body.chatModel?.provider === 'custom_openai') { if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({ llm = new ChatOpenAI({
openAIApiKey: getCustomOpenaiApiKey(), apiKey: getCustomOpenaiApiKey(),
modelName: getCustomOpenaiModelName(), modelName: getCustomOpenaiModelName(),
temperature: 0.7, temperature: 0.7,
configuration: { configuration: {

View File

@@ -81,7 +81,7 @@ export const POST = async (req: Request) => {
if (body.chatModel?.provider === 'custom_openai') { if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({ llm = new ChatOpenAI({
modelName: body.chatModel?.name || getCustomOpenaiModelName(), modelName: body.chatModel?.name || getCustomOpenaiModelName(),
openAIApiKey: apiKey:
body.chatModel?.customOpenAIKey || getCustomOpenaiApiKey(), body.chatModel?.customOpenAIKey || getCustomOpenaiApiKey(),
temperature: 0.7, temperature: 0.7,
configuration: { configuration: {

View File

@@ -48,7 +48,7 @@ export const POST = async (req: Request) => {
if (body.chatModel?.provider === 'custom_openai') { if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({ llm = new ChatOpenAI({
openAIApiKey: getCustomOpenaiApiKey(), apiKey: getCustomOpenaiApiKey(),
modelName: getCustomOpenaiModelName(), modelName: getCustomOpenaiModelName(),
temperature: 0.7, temperature: 0.7,
configuration: { configuration: {

View File

@@ -49,7 +49,7 @@ export const POST = async (req: Request) => {
if (body.chatModel?.provider === 'custom_openai') { if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({ llm = new ChatOpenAI({
openAIApiKey: getCustomOpenaiApiKey(), apiKey: getCustomOpenaiApiKey(),
modelName: getCustomOpenaiModelName(), modelName: getCustomOpenaiModelName(),
temperature: 0.7, temperature: 0.7,
configuration: { configuration: {

View File

@@ -1,6 +1,7 @@
export const POST = async (req: Request) => { export const POST = async (req: Request) => {
try { try {
const body: { lat: number; lng: number } = await req.json(); const body: { lat: number; lng: number; temperatureUnit: 'C' | 'F' } =
await req.json();
if (!body.lat || !body.lng) { if (!body.lat || !body.lng) {
return Response.json( return Response.json(
@@ -12,7 +13,7 @@ export const POST = async (req: Request) => {
} }
const res = await fetch( const res = await fetch(
`https://api.open-meteo.com/v1/forecast?latitude=${body.lat}&longitude=${body.lng}&current=weather_code,temperature_2m,is_day,relative_humidity_2m,wind_speed_10m&timezone=auto`, `https://api.open-meteo.com/v1/forecast?latitude=${body.lat}&longitude=${body.lng}&current=weather_code,temperature_2m,is_day,relative_humidity_2m,wind_speed_10m&timezone=auto${body.temperatureUnit === 'C' ? '' : '&temperature_unit=fahrenheit'}`,
); );
const data = await res.json(); const data = await res.json();
@@ -33,12 +34,14 @@ export const POST = async (req: Request) => {
humidity: number; humidity: number;
windSpeed: number; windSpeed: number;
icon: string; icon: string;
temperatureUnit: 'C' | 'F';
} = { } = {
temperature: data.current.temperature_2m, temperature: data.current.temperature_2m,
condition: '', condition: '',
humidity: data.current.relative_humidity_2m, humidity: data.current.relative_humidity_2m,
windSpeed: data.current.wind_speed_10m, windSpeed: data.current.wind_speed_10m,
icon: '', icon: '',
temperatureUnit: body.temperatureUnit,
}; };
const code = data.current.weather_code; const code = data.current.weather_code;

View File

@@ -148,6 +148,7 @@ const Page = () => {
const [automaticImageSearch, setAutomaticImageSearch] = useState(false); const [automaticImageSearch, setAutomaticImageSearch] = useState(false);
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false); const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
const [systemInstructions, setSystemInstructions] = useState<string>(''); const [systemInstructions, setSystemInstructions] = useState<string>('');
const [temperatureUnit, setTemperatureUnit] = useState<'C' | 'F'>('C');
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({}); const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
useEffect(() => { useEffect(() => {
@@ -210,6 +211,8 @@ const Page = () => {
setSystemInstructions(localStorage.getItem('systemInstructions')!); setSystemInstructions(localStorage.getItem('systemInstructions')!);
setTemperatureUnit(localStorage.getItem('temperatureUnit')! as 'C' | 'F');
setIsLoading(false); setIsLoading(false);
}; };
@@ -368,6 +371,8 @@ const Page = () => {
localStorage.setItem('embeddingModel', value); localStorage.setItem('embeddingModel', value);
} else if (key === 'systemInstructions') { } else if (key === 'systemInstructions') {
localStorage.setItem('systemInstructions', value); localStorage.setItem('systemInstructions', value);
} else if (key === 'temperatureUnit') {
localStorage.setItem('temperatureUnit', value.toString());
} }
} catch (err) { } catch (err) {
console.error('Failed to save:', err); console.error('Failed to save:', err);
@@ -416,13 +421,35 @@ const Page = () => {
) : ( ) : (
config && ( config && (
<div className="flex flex-col space-y-6 pb-28 lg:pb-8"> <div className="flex flex-col space-y-6 pb-28 lg:pb-8">
<SettingsSection title="Appearance"> <SettingsSection title="Preferences">
<div className="flex flex-col space-y-1"> <div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm"> <p className="text-black/70 dark:text-white/70 text-sm">
Theme Theme
</p> </p>
<ThemeSwitcher /> <ThemeSwitcher />
</div> </div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Temperature Unit
</p>
<Select
value={temperatureUnit ?? undefined}
onChange={(e) => {
setTemperatureUnit(e.target.value as 'C' | 'F');
saveConfig('temperatureUnit', e.target.value);
}}
options={[
{
label: 'Celsius',
value: 'C',
},
{
label: 'Fahrenheit',
value: 'F',
},
]}
/>
</div>
</SettingsSection> </SettingsSection>
<SettingsSection title="Automatic Search"> <SettingsSection title="Automatic Search">
@@ -516,7 +543,7 @@ const Page = () => {
<SettingsSection title="System Instructions"> <SettingsSection title="System Instructions">
<div className="flex flex-col space-y-4"> <div className="flex flex-col space-y-4">
<Textarea <Textarea
value={systemInstructions} value={systemInstructions ?? undefined}
isSaving={savingStates['systemInstructions']} isSaving={savingStates['systemInstructions']}
onChange={(e) => { onChange={(e) => {
setSystemInstructions(e.target.value); setSystemInstructions(e.target.value);

View File

@@ -9,7 +9,9 @@ const WeatherWidget = () => {
humidity: 0, humidity: 0,
windSpeed: 0, windSpeed: 0,
icon: '', icon: '',
temperatureUnit: 'C',
}); });
const [loading, setLoading] = useState(true); const [loading, setLoading] = useState(true);
useEffect(() => { useEffect(() => {
@@ -73,6 +75,7 @@ const WeatherWidget = () => {
body: JSON.stringify({ body: JSON.stringify({
lat: location.latitude, lat: location.latitude,
lng: location.longitude, lng: location.longitude,
temperatureUnit: localStorage.getItem('temperatureUnit') ?? 'C',
}), }),
}); });
@@ -91,6 +94,7 @@ const WeatherWidget = () => {
humidity: data.humidity, humidity: data.humidity,
windSpeed: data.windSpeed, windSpeed: data.windSpeed,
icon: data.icon, icon: data.icon,
temperatureUnit: data.temperatureUnit,
}); });
setLoading(false); setLoading(false);
}); });
@@ -125,7 +129,7 @@ const WeatherWidget = () => {
className="h-10 w-auto" className="h-10 w-auto"
/> />
<span className="text-base font-semibold text-black dark:text-white"> <span className="text-base font-semibold text-black dark:text-white">
{data.temperature}°C {data.temperature}°{data.temperatureUnit}
</span> </span>
</div> </div>
<div className="flex flex-col justify-between flex-1 h-full py-1"> <div className="flex flex-col justify-between flex-1 h-full py-1">

View File

@@ -1,63 +1,41 @@
export const webSearchRetrieverPrompt = ` export const webSearchRetrieverPrompt = `
You are an AI question rephraser. You will be given a conversation and a follow-up question, you will have to rephrase the follow up question so it is a standalone question and can be used by another LLM to search the web for information to answer it. You are an AI question rephraser. You will be given a conversation and a follow-up question; rephrase it into a standalone question that another LLM can use to search the web.
If it is a simple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block.
You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response.
There are several examples attached for your reference inside the below \`examples\` XML block Return ONLY a JSON object that matches this schema:
query: string // the standalone question (or "summarize")
links: string[] // URLs extracted from the user query (empty if none)
searchRequired: boolean // true if web search is needed, false for greetings/simple writing tasks
searchMode: "" | "normal" | "news" // "" when searchRequired is false; "news" if the user asks for news/articles, otherwise "normal"
<examples> Rules
1. Follow up question: What is the capital of France - Greetings / simple writing tasks → query:"", links:[], searchRequired:false, searchMode:""
Rephrased question:\` - Summarizing a URL → query:"summarize", links:[url...], searchRequired:true, searchMode:"normal"
<question> - Asking for news/articles → searchMode:"news"
Capital of france
</question> Examples
\` 1. Follow-up: What is the capital of France?
"query":"capital of France","links":[],"searchRequired":true,"searchMode":"normal"
2. Hi, how are you? 2. Hi, how are you?
Rephrased question\` "query":"","links":[],"searchRequired":false,"searchMode":""
<question>
not_needed
</question>
\`
3. Follow up question: What is Docker? 3. Follow-up: What is Docker?
Rephrased question: \` "query":"what is Docker","links":[],"searchRequired":true,"searchMode":"normal"
<question>
What is Docker
</question>
\`
4. Follow up question: Can you tell me what is X from https://example.com 4. Follow-up: Can you tell me what is X from https://example.com?
Rephrased question: \` "query":"what is X","links":["https://example.com"],"searchRequired":true,"searchMode":"normal"
<question>
Can you tell me what is X?
</question>
<links> 5. Follow-up: Summarize the content from https://example.com
https://example.com "query":"summarize","links":["https://example.com"],"searchRequired":true,"searchMode":"normal"
</links>
\`
5. Follow up question: Summarize the content from https://example.com 6. Follow-up: Latest news about AI
Rephrased question: \` "query":"latest news about AI","links":[],"searchRequired":true,"searchMode":"news"
<question>
summarize
</question>
<links>
https://example.com
</links>
\`
</examples>
Anything below is the part of the actual conversation and you need to use conversation and the follow-up question to rephrase the follow-up question as a standalone question based on the guidelines shared above.
<conversation> <conversation>
{chat_history} {chat_history}
</conversation> </conversation>
Follow up question: {query} Follow-up question: {query}
Rephrased question: Rephrased question:
`; `;

View File

@@ -38,7 +38,7 @@ export const loadAimlApiChatModels = async () => {
chatModels[model.id] = { chatModels[model.id] = {
displayName: model.name || model.id, displayName: model.name || model.id,
model: new ChatOpenAI({ model: new ChatOpenAI({
openAIApiKey: apiKey, apiKey: apiKey,
modelName: model.id, modelName: model.id,
temperature: 0.7, temperature: 0.7,
configuration: { configuration: {
@@ -76,7 +76,7 @@ export const loadAimlApiEmbeddingModels = async () => {
embeddingModels[model.id] = { embeddingModels[model.id] = {
displayName: model.name || model.id, displayName: model.name || model.id,
model: new OpenAIEmbeddings({ model: new OpenAIEmbeddings({
openAIApiKey: apiKey, apiKey: apiKey,
modelName: model.id, modelName: model.id,
configuration: { configuration: {
baseURL: API_URL, baseURL: API_URL,

View File

@@ -31,7 +31,7 @@ export const loadDeepseekChatModels = async () => {
chatModels[model.key] = { chatModels[model.key] = {
displayName: model.displayName, displayName: model.displayName,
model: new ChatOpenAI({ model: new ChatOpenAI({
openAIApiKey: deepseekApiKey, apiKey: deepseekApiKey,
modelName: model.key, modelName: model.key,
temperature: 0.7, temperature: 0.7,
configuration: { configuration: {

View File

@@ -29,12 +29,15 @@ export const loadGroqChatModels = async () => {
chatModels[model.id] = { chatModels[model.id] = {
displayName: model.id, displayName: model.id,
model: new ChatOpenAI({ model: new ChatOpenAI({
openAIApiKey: groqApiKey, apiKey: groqApiKey,
modelName: model.id, modelName: model.id,
temperature: 0.7, temperature: 0.7,
configuration: { configuration: {
baseURL: 'https://api.groq.com/openai/v1', baseURL: 'https://api.groq.com/openai/v1',
}, },
metadata: {
'model-type': 'groq',
},
}) as unknown as BaseChatModel, }) as unknown as BaseChatModel,
}; };
}); });

View File

@@ -118,7 +118,7 @@ export const getAvailableChatModelProviders = async () => {
[customOpenAiModelName]: { [customOpenAiModelName]: {
displayName: customOpenAiModelName, displayName: customOpenAiModelName,
model: new ChatOpenAI({ model: new ChatOpenAI({
openAIApiKey: customOpenAiApiKey, apiKey: customOpenAiApiKey,
modelName: customOpenAiModelName, modelName: customOpenAiModelName,
temperature: 0.7, temperature: 0.7,
configuration: { configuration: {

View File

@@ -47,7 +47,7 @@ export const loadLMStudioChatModels = async () => {
chatModels[model.id] = { chatModels[model.id] = {
displayName: model.name || model.id, displayName: model.name || model.id,
model: new ChatOpenAI({ model: new ChatOpenAI({
openAIApiKey: 'lm-studio', apiKey: 'lm-studio',
configuration: { configuration: {
baseURL: ensureV1Endpoint(endpoint), baseURL: ensureV1Endpoint(endpoint),
}, },
@@ -83,7 +83,7 @@ export const loadLMStudioEmbeddingsModels = async () => {
embeddingsModels[model.id] = { embeddingsModels[model.id] = {
displayName: model.name || model.id, displayName: model.name || model.id,
model: new OpenAIEmbeddings({ model: new OpenAIEmbeddings({
openAIApiKey: 'lm-studio', apiKey: 'lm-studio',
configuration: { configuration: {
baseURL: ensureV1Endpoint(endpoint), baseURL: ensureV1Endpoint(endpoint),
}, },

View File

@@ -6,8 +6,8 @@ export const PROVIDER_INFO = {
key: 'ollama', key: 'ollama',
displayName: 'Ollama', displayName: 'Ollama',
}; };
import { ChatOllama } from '@langchain/community/chat_models/ollama'; import { ChatOllama } from '@langchain/ollama';
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama'; import { OllamaEmbeddings } from '@langchain/ollama';
export const loadOllamaChatModels = async () => { export const loadOllamaChatModels = async () => {
const ollamaApiEndpoint = getOllamaApiEndpoint(); const ollamaApiEndpoint = getOllamaApiEndpoint();

View File

@@ -67,7 +67,7 @@ export const loadOpenAIChatModels = async () => {
chatModels[model.key] = { chatModels[model.key] = {
displayName: model.displayName, displayName: model.displayName,
model: new ChatOpenAI({ model: new ChatOpenAI({
openAIApiKey: openaiApiKey, apiKey: openaiApiKey,
modelName: model.key, modelName: model.key,
temperature: 0.7, temperature: 0.7,
}) as unknown as BaseChatModel, }) as unknown as BaseChatModel,
@@ -93,7 +93,7 @@ export const loadOpenAIEmbeddingModels = async () => {
embeddingModels[model.key] = { embeddingModels[model.key] = {
displayName: model.displayName, displayName: model.displayName,
model: new OpenAIEmbeddings({ model: new OpenAIEmbeddings({
openAIApiKey: openaiApiKey, apiKey: openaiApiKey,
modelName: model.key, modelName: model.key,
}) as unknown as Embeddings, }) as unknown as Embeddings,
}; };

View File

@@ -24,6 +24,7 @@ import computeSimilarity from '../utils/computeSimilarity';
import formatChatHistoryAsString from '../utils/formatHistory'; import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events'; import eventEmitter from 'events';
import { StreamEvent } from '@langchain/core/tracers/log_stream'; import { StreamEvent } from '@langchain/core/tracers/log_stream';
import { z } from 'zod';
export interface MetaSearchAgentType { export interface MetaSearchAgentType {
searchAndAnswer: ( searchAndAnswer: (
@@ -52,6 +53,17 @@ type BasicChainInput = {
query: string; query: string;
}; };
const retrieverLLMOutputSchema = z.object({
query: z.string().describe('The query to search the web for.'),
links: z
.array(z.string())
.describe('The links to search/summarize if present'),
searchRequired: z
.boolean()
.describe('Wether there is a need to search the web'),
searchMode: z.enum(['', 'normal', 'news']).describe('The search mode.'),
});
class MetaSearchAgent implements MetaSearchAgentType { class MetaSearchAgent implements MetaSearchAgentType {
private config: Config; private config: Config;
private strParser = new StringOutputParser(); private strParser = new StringOutputParser();
@@ -62,73 +74,71 @@ class MetaSearchAgent implements MetaSearchAgentType {
private async createSearchRetrieverChain(llm: BaseChatModel) { private async createSearchRetrieverChain(llm: BaseChatModel) {
(llm as unknown as ChatOpenAI).temperature = 0; (llm as unknown as ChatOpenAI).temperature = 0;
return RunnableSequence.from([ return RunnableSequence.from([
PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt), PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt),
llm, Object.assign(
this.strParser, Object.create(Object.getPrototypeOf(llm)),
RunnableLambda.from(async (input: string) => { llm,
const linksOutputParser = new LineListOutputParser({ ).withStructuredOutput(retrieverLLMOutputSchema, {
key: 'links', ...(llm.metadata?.['model-type'] === 'groq'
}); ? {
method: 'json-object',
}
: {}),
}),
RunnableLambda.from(
async (input: z.infer<typeof retrieverLLMOutputSchema>) => {
let question = input.query;
const links = input.links;
const questionOutputParser = new LineOutputParser({ if (!input.searchRequired) {
key: 'question', return { query: '', docs: [] };
});
const links = await linksOutputParser.parse(input);
let question = this.config.summarizer
? await questionOutputParser.parse(input)
: input;
if (question === 'not_needed') {
return { query: '', docs: [] };
}
if (links.length > 0) {
if (question.length === 0) {
question = 'summarize';
} }
let docs: Document[] = []; if (links.length > 0) {
if (question.length === 0) {
const linkDocs = await getDocumentsFromLinks({ links }); question = 'summarize';
const docGroups: Document[] = [];
linkDocs.map((doc) => {
const URLDocExists = docGroups.find(
(d) =>
d.metadata.url === doc.metadata.url &&
d.metadata.totalDocs < 10,
);
if (!URLDocExists) {
docGroups.push({
...doc,
metadata: {
...doc.metadata,
totalDocs: 1,
},
});
} }
const docIndex = docGroups.findIndex( let docs: Document[] = [];
(d) =>
d.metadata.url === doc.metadata.url &&
d.metadata.totalDocs < 10,
);
if (docIndex !== -1) { const linkDocs = await getDocumentsFromLinks({ links });
docGroups[docIndex].pageContent =
docGroups[docIndex].pageContent + `\n\n` + doc.pageContent;
docGroups[docIndex].metadata.totalDocs += 1;
}
});
await Promise.all( const docGroups: Document[] = [];
docGroups.map(async (doc) => {
const res = await llm.invoke(` linkDocs.map((doc) => {
const URLDocExists = docGroups.find(
(d) =>
d.metadata.url === doc.metadata.url &&
d.metadata.totalDocs < 10,
);
if (!URLDocExists) {
docGroups.push({
...doc,
metadata: {
...doc.metadata,
totalDocs: 1,
},
});
}
const docIndex = docGroups.findIndex(
(d) =>
d.metadata.url === doc.metadata.url &&
d.metadata.totalDocs < 10,
);
if (docIndex !== -1) {
docGroups[docIndex].pageContent =
docGroups[docIndex].pageContent + `\n\n` + doc.pageContent;
docGroups[docIndex].metadata.totalDocs += 1;
}
});
await Promise.all(
docGroups.map(async (doc) => {
const res = await llm.invoke(`
You are a web search summarizer, tasked with summarizing a piece of text retrieved from a web search. Your job is to summarize the You are a web search summarizer, tasked with summarizing a piece of text retrieved from a web search. Your job is to summarize the
text into a detailed, 2-4 paragraph explanation that captures the main ideas and provides a comprehensive answer to the query. text into a detailed, 2-4 paragraph explanation that captures the main ideas and provides a comprehensive answer to the query.
If the query is \"summarize\", you should provide a detailed summary of the text. If the query is a specific question, you should answer it in the summary. If the query is \"summarize\", you should provide a detailed summary of the text. If the query is a specific question, you should answer it in the summary.
@@ -189,46 +199,50 @@ class MetaSearchAgent implements MetaSearchAgentType {
Make sure to answer the query in the summary. Make sure to answer the query in the summary.
`); `);
const document = new Document({ const document = new Document({
pageContent: res.content as string, pageContent: res.content as string,
metadata: { metadata: {
title: doc.metadata.title, title: doc.metadata.title,
url: doc.metadata.url, url: doc.metadata.url,
}, },
}); });
docs.push(document); docs.push(document);
}),
);
return { query: question, docs: docs };
} else {
question = question.replace(/<think>.*?<\/think>/g, '');
const res = await searchSearxng(question, {
language: 'en',
engines: this.config.activeEngines,
});
const documents = res.results.map(
(result) =>
new Document({
pageContent:
result.content ||
(this.config.activeEngines.includes('youtube')
? result.title
: '') /* Todo: Implement transcript grabbing using Youtubei (source: https://www.npmjs.com/package/youtubei) */,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}), }),
); );
return { query: question, docs: documents }; return { query: question, docs: docs };
} } else {
}), question = question.replace(/<think>.*?<\/think>/g, '');
const res = await searchSearxng(question, {
language: 'en',
engines:
input.searchMode === 'normal'
? this.config.activeEngines
: ['bing news'],
});
const documents = res.results.map(
(result) =>
new Document({
pageContent:
result.content ||
(this.config.activeEngines.includes('youtube')
? result.title
: '') /* Todo: Implement transcript grabbing using Youtubei (source: https://www.npmjs.com/package/youtubei) */,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: question, docs: documents };
}
},
),
]); ]);
} }

680
yarn.lock

File diff suppressed because it is too large Load Diff