Compare commits
61 Commits
v1.11.0-rc
...
0dc17286b9
Author | SHA1 | Date | |
---|---|---|---|
|
0dc17286b9 | ||
|
3edd7d44dd | ||
|
1132997108 | ||
|
eadbedb713 | ||
|
37cd6d3ab5 | ||
|
88be3a045b | ||
|
45b51ab156 | ||
|
3bee01cfa7 | ||
|
567c6a8758 | ||
|
81a91da743 | ||
|
70a61ee1eb | ||
|
9d89a4413b | ||
|
6ea17d54c6 | ||
|
11a828b073 | ||
|
37022fb11e | ||
|
dd50d4927b | ||
|
fdaf3af3af | ||
|
3f2a8f862c | ||
|
58c7be6e95 | ||
|
829b4e7134 | ||
|
77870b39cc | ||
|
8e0ae9b867 | ||
|
543f1df5ce | ||
|
341aae4587 | ||
|
7f62907385 | ||
|
7c4aa683a2 | ||
|
b48b0eeb0e | ||
|
cddc793915 | ||
|
94e6db10bb | ||
|
26e1d5fec3 | ||
|
66be87b688 | ||
|
f7b4e32218 | ||
|
57407112fb | ||
|
b280cc2e01 | ||
|
e6ebf892c5 | ||
|
b754641058 | ||
|
722f4f760e | ||
|
01e04a209f | ||
|
0299fd1ea0 | ||
|
cf8dec53ca | ||
|
d5c012d748 | ||
|
2ccbd9a44c | ||
|
ccd89d48d9 | ||
|
87d788ddef | ||
|
809b625a34 | ||
|
95c753a549 | ||
|
0bb8b7ec5c | ||
|
c6d084f5dc | ||
|
0024ce36c8 | ||
|
c44e746807 | ||
|
b1826066f4 | ||
|
b0b8acc45b | ||
|
e2b9ffc072 | ||
|
68c43ea372 | ||
|
3b46baca4f | ||
|
772e461c08 | ||
|
5c6018a0f9 | ||
|
0b7989c3d3 | ||
|
8cfcc3e39c | ||
|
9eba4b7373 | ||
|
91306dc0c7 |
0
.assets/manifest.json
Normal file
2
.gitignore
vendored
@@ -37,3 +37,5 @@ Thumbs.db
|
||||
# Db
|
||||
db.sqlite
|
||||
/searxng
|
||||
|
||||
certificates
|
@@ -16,7 +16,7 @@
|
||||
|
||||
<hr/>
|
||||
|
||||
[](https://discord.gg/26aArMy8tT)
|
||||
[](https://discord.gg/26aArMy8tT)
|
||||
|
||||

|
||||
|
||||
@@ -90,6 +90,9 @@ There are mainly 2 ways of installing Perplexica - With Docker, Without Docker.
|
||||
- `OLLAMA`: Your Ollama API URL. You should enter it as `http://host.docker.internal:PORT_NUMBER`. If you installed Ollama on port 11434, use `http://host.docker.internal:11434`. For other ports, adjust accordingly. **You need to fill this if you wish to use Ollama's models instead of OpenAI's**.
|
||||
- `GROQ`: Your Groq API key. **You only need to fill this if you wish to use Groq's hosted models**.
|
||||
- `ANTHROPIC`: Your Anthropic API key. **You only need to fill this if you wish to use Anthropic models**.
|
||||
- `Gemini`: Your Gemini API key. **You only need to fill this if you wish to use Google's models**.
|
||||
- `DEEPSEEK`: Your Deepseek API key. **Only needed if you want Deepseek models.**
|
||||
- `AIMLAPI`: Your AI/ML API key. **Only needed if you want to use AI/ML API models and embeddings.**
|
||||
|
||||
**Note**: You can change these after starting Perplexica from the settings dialog.
|
||||
|
||||
@@ -111,7 +114,7 @@ There are mainly 2 ways of installing Perplexica - With Docker, Without Docker.
|
||||
2. Clone the repository and rename the `sample.config.toml` file to `config.toml` in the root directory. Ensure you complete all required fields in this file.
|
||||
3. After populating the configuration run `npm i`.
|
||||
4. Install the dependencies and then execute `npm run build`.
|
||||
5. Finally, start the app by running `npm rum start`
|
||||
5. Finally, start the app by running `npm run start`
|
||||
|
||||
**Note**: Using Docker is recommended as it simplifies the setup process, especially for managing environment variables and dependencies.
|
||||
|
||||
@@ -132,7 +135,7 @@ If you're encountering an Ollama connection error, it is likely due to the backe
|
||||
|
||||
3. **Linux Users - Expose Ollama to Network:**
|
||||
|
||||
- Inside `/etc/systemd/system/ollama.service`, you need to add `Environment="OLLAMA_HOST=0.0.0.0"`. Then restart Ollama by `systemctl restart ollama`. For more information see [Ollama docs](https://github.com/ollama/ollama/blob/main/docs/faq.md#setting-environment-variables-on-linux)
|
||||
- Inside `/etc/systemd/system/ollama.service`, you need to add `Environment="OLLAMA_HOST=0.0.0.0:11434"`. (Change the port number if you are using a different one.) Then reload the systemd manager configuration with `systemctl daemon-reload`, and restart Ollama by `systemctl restart ollama`. For more information see [Ollama docs](https://github.com/ollama/ollama/blob/main/docs/faq.md#setting-environment-variables-on-linux)
|
||||
|
||||
- Ensure that the port (default is 11434) is not blocked by your firewall.
|
||||
|
||||
|
@@ -41,6 +41,6 @@ To update Perplexica to the latest version, follow these steps:
|
||||
3. Check for changes in the configuration files. If the `sample.config.toml` file contains new fields, delete your existing `config.toml` file, rename `sample.config.toml` to `config.toml`, and update the configuration accordingly.
|
||||
4. After populating the configuration run `npm i`.
|
||||
5. Install the dependencies and then execute `npm run build`.
|
||||
6. Finally, start the app by running `npm rum start`
|
||||
6. Finally, start the app by running `npm run start`
|
||||
|
||||
---
|
||||
|
16
package.json
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "perplexica-frontend",
|
||||
"version": "1.11.0-rc1",
|
||||
"version": "1.11.0-rc2",
|
||||
"license": "MIT",
|
||||
"author": "ItzCrazyKns",
|
||||
"scripts": {
|
||||
@@ -15,11 +15,13 @@
|
||||
"@headlessui/react": "^2.2.0",
|
||||
"@iarna/toml": "^2.2.5",
|
||||
"@icons-pack/react-simple-icons": "^12.3.0",
|
||||
"@langchain/anthropic": "^0.3.15",
|
||||
"@langchain/community": "^0.3.36",
|
||||
"@langchain/core": "^0.3.42",
|
||||
"@langchain/google-genai": "^0.1.12",
|
||||
"@langchain/openai": "^0.0.25",
|
||||
"@langchain/anthropic": "^0.3.24",
|
||||
"@langchain/community": "^0.3.49",
|
||||
"@langchain/core": "^0.3.66",
|
||||
"@langchain/google-genai": "^0.2.15",
|
||||
"@langchain/groq": "^0.2.3",
|
||||
"@langchain/ollama": "^0.2.3",
|
||||
"@langchain/openai": "^0.6.2",
|
||||
"@langchain/textsplitters": "^0.1.0",
|
||||
"@tailwindcss/typography": "^0.5.12",
|
||||
"@xenova/transformers": "^2.17.2",
|
||||
@@ -31,7 +33,7 @@
|
||||
"drizzle-orm": "^0.40.1",
|
||||
"html-to-text": "^9.0.5",
|
||||
"jspdf": "^3.0.1",
|
||||
"langchain": "^0.1.30",
|
||||
"langchain": "^0.3.30",
|
||||
"lucide-react": "^0.363.0",
|
||||
"mammoth": "^1.9.1",
|
||||
"markdown-to-jsx": "^7.7.2",
|
||||
|
BIN
public/icon-100.png
Normal file
After Width: | Height: | Size: 916 B |
BIN
public/icon-50.png
Normal file
After Width: | Height: | Size: 515 B |
BIN
public/icon.png
Normal file
After Width: | Height: | Size: 30 KiB |
BIN
public/screenshots/p1.png
Normal file
After Width: | Height: | Size: 183 KiB |
BIN
public/screenshots/p1_small.png
Normal file
After Width: | Height: | Size: 130 KiB |
BIN
public/screenshots/p2.png
Normal file
After Width: | Height: | Size: 627 KiB |
BIN
public/screenshots/p2_small.png
Normal file
After Width: | Height: | Size: 202 KiB |
@@ -25,6 +25,9 @@ API_URL = "" # Ollama API URL - http://host.docker.internal:11434
|
||||
[MODELS.DEEPSEEK]
|
||||
API_KEY = ""
|
||||
|
||||
[MODELS.AIMLAPI]
|
||||
API_KEY = "" # Required to use AI/ML API chat and embedding models
|
||||
|
||||
[MODELS.LM_STUDIO]
|
||||
API_URL = "" # LM Studio API URL - http://host.docker.internal:1234
|
||||
|
||||
|
@@ -223,7 +223,7 @@ export const POST = async (req: Request) => {
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
openAIApiKey: getCustomOpenaiApiKey(),
|
||||
apiKey: getCustomOpenaiApiKey(),
|
||||
modelName: getCustomOpenaiModelName(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
|
@@ -8,6 +8,7 @@ import {
|
||||
getOllamaApiEndpoint,
|
||||
getOpenaiApiKey,
|
||||
getDeepseekApiKey,
|
||||
getAimlApiKey,
|
||||
getLMStudioApiEndpoint,
|
||||
updateConfig,
|
||||
} from '@/lib/config';
|
||||
@@ -57,6 +58,7 @@ export const GET = async (req: Request) => {
|
||||
config['groqApiKey'] = getGroqApiKey();
|
||||
config['geminiApiKey'] = getGeminiApiKey();
|
||||
config['deepseekApiKey'] = getDeepseekApiKey();
|
||||
config['aimlApiKey'] = getAimlApiKey();
|
||||
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
|
||||
config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
|
||||
config['customOpenaiModelName'] = getCustomOpenaiModelName();
|
||||
@@ -95,6 +97,9 @@ export const POST = async (req: Request) => {
|
||||
DEEPSEEK: {
|
||||
API_KEY: config.deepseekApiKey,
|
||||
},
|
||||
AIMLAPI: {
|
||||
API_KEY: config.aimlApiKey,
|
||||
},
|
||||
LM_STUDIO: {
|
||||
API_URL: config.lmStudioApiUrl,
|
||||
},
|
||||
|
@@ -1,55 +1,77 @@
|
||||
import { searchSearxng } from '@/lib/searxng';
|
||||
|
||||
const articleWebsites = [
|
||||
'yahoo.com',
|
||||
'www.exchangewire.com',
|
||||
'businessinsider.com',
|
||||
/* 'wired.com',
|
||||
'mashable.com',
|
||||
'theverge.com',
|
||||
'gizmodo.com',
|
||||
'cnet.com',
|
||||
'venturebeat.com', */
|
||||
];
|
||||
const websitesForTopic = {
|
||||
tech: {
|
||||
query: ['technology news', 'latest tech', 'AI', 'science and innovation'],
|
||||
links: ['techcrunch.com', 'wired.com', 'theverge.com'],
|
||||
},
|
||||
finance: {
|
||||
query: ['finance news', 'economy', 'stock market', 'investing'],
|
||||
links: ['bloomberg.com', 'cnbc.com', 'marketwatch.com'],
|
||||
},
|
||||
art: {
|
||||
query: ['art news', 'culture', 'modern art', 'cultural events'],
|
||||
links: ['artnews.com', 'hyperallergic.com', 'theartnewspaper.com'],
|
||||
},
|
||||
sports: {
|
||||
query: ['sports news', 'latest sports', 'cricket football tennis'],
|
||||
links: ['espn.com', 'bbc.com/sport', 'skysports.com'],
|
||||
},
|
||||
entertainment: {
|
||||
query: ['entertainment news', 'movies', 'TV shows', 'celebrities'],
|
||||
links: ['hollywoodreporter.com', 'variety.com', 'deadline.com'],
|
||||
},
|
||||
};
|
||||
|
||||
const topics = ['AI', 'tech']; /* TODO: Add UI to customize this */
|
||||
type Topic = keyof typeof websitesForTopic;
|
||||
|
||||
export const GET = async (req: Request) => {
|
||||
try {
|
||||
const params = new URL(req.url).searchParams;
|
||||
|
||||
const mode: 'normal' | 'preview' =
|
||||
(params.get('mode') as 'normal' | 'preview') || 'normal';
|
||||
const topic: Topic = (params.get('topic') as Topic) || 'tech';
|
||||
|
||||
const selectedTopic = websitesForTopic[topic];
|
||||
|
||||
let data = [];
|
||||
|
||||
if (mode === 'normal') {
|
||||
const seenUrls = new Set();
|
||||
|
||||
data = (
|
||||
await Promise.all([
|
||||
...new Array(articleWebsites.length * topics.length)
|
||||
.fill(0)
|
||||
.map(async (_, i) => {
|
||||
await Promise.all(
|
||||
selectedTopic.links.flatMap((link) =>
|
||||
selectedTopic.query.map(async (query) => {
|
||||
return (
|
||||
await searchSearxng(
|
||||
`site:${articleWebsites[i % articleWebsites.length]} ${
|
||||
topics[i % topics.length]
|
||||
}`,
|
||||
{
|
||||
await searchSearxng(`site:${link} ${query}`, {
|
||||
engines: ['bing news'],
|
||||
pageno: 1,
|
||||
},
|
||||
)
|
||||
language: 'en',
|
||||
})
|
||||
).results;
|
||||
}),
|
||||
])
|
||||
),
|
||||
)
|
||||
)
|
||||
.map((result) => result)
|
||||
.flat()
|
||||
.filter((item) => {
|
||||
const url = item.url?.toLowerCase().trim();
|
||||
if (seenUrls.has(url)) return false;
|
||||
seenUrls.add(url);
|
||||
return true;
|
||||
})
|
||||
.sort(() => Math.random() - 0.5);
|
||||
} else {
|
||||
data = (
|
||||
await searchSearxng(
|
||||
`site:${articleWebsites[Math.floor(Math.random() * articleWebsites.length)]} ${topics[Math.floor(Math.random() * topics.length)]}`,
|
||||
{ engines: ['bing news'], pageno: 1 },
|
||||
`site:${selectedTopic.links[Math.floor(Math.random() * selectedTopic.links.length)]} ${selectedTopic.query[Math.floor(Math.random() * selectedTopic.query.length)]}`,
|
||||
{
|
||||
engines: ['bing news'],
|
||||
pageno: 1,
|
||||
language: 'en',
|
||||
},
|
||||
)
|
||||
).results;
|
||||
}
|
||||
|
@@ -49,7 +49,7 @@ export const POST = async (req: Request) => {
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
openAIApiKey: getCustomOpenaiApiKey(),
|
||||
apiKey: getCustomOpenaiApiKey(),
|
||||
modelName: getCustomOpenaiModelName(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
|
@@ -81,8 +81,7 @@ export const POST = async (req: Request) => {
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
modelName: body.chatModel?.name || getCustomOpenaiModelName(),
|
||||
openAIApiKey:
|
||||
body.chatModel?.customOpenAIKey || getCustomOpenaiApiKey(),
|
||||
apiKey: body.chatModel?.customOpenAIKey || getCustomOpenaiApiKey(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
baseURL:
|
||||
|
@@ -48,7 +48,7 @@ export const POST = async (req: Request) => {
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
openAIApiKey: getCustomOpenaiApiKey(),
|
||||
apiKey: getCustomOpenaiApiKey(),
|
||||
modelName: getCustomOpenaiModelName(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
|
@@ -49,7 +49,7 @@ export const POST = async (req: Request) => {
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
openAIApiKey: getCustomOpenaiApiKey(),
|
||||
apiKey: getCustomOpenaiApiKey(),
|
||||
modelName: getCustomOpenaiModelName(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
|
@@ -1,6 +1,10 @@
|
||||
export const POST = async (req: Request) => {
|
||||
try {
|
||||
const body: { lat: number; lng: number } = await req.json();
|
||||
const body: {
|
||||
lat: number;
|
||||
lng: number;
|
||||
measureUnit: 'Imperial' | 'Metric';
|
||||
} = await req.json();
|
||||
|
||||
if (!body.lat || !body.lng) {
|
||||
return Response.json(
|
||||
@@ -12,7 +16,9 @@ export const POST = async (req: Request) => {
|
||||
}
|
||||
|
||||
const res = await fetch(
|
||||
`https://api.open-meteo.com/v1/forecast?latitude=${body.lat}&longitude=${body.lng}¤t=weather_code,temperature_2m,is_day,relative_humidity_2m,wind_speed_10m&timezone=auto`,
|
||||
`https://api.open-meteo.com/v1/forecast?latitude=${body.lat}&longitude=${body.lng}¤t=weather_code,temperature_2m,is_day,relative_humidity_2m,wind_speed_10m&timezone=auto${
|
||||
body.measureUnit === 'Metric' ? '' : '&temperature_unit=fahrenheit'
|
||||
}${body.measureUnit === 'Metric' ? '' : '&wind_speed_unit=mph'}`,
|
||||
);
|
||||
|
||||
const data = await res.json();
|
||||
@@ -33,12 +39,16 @@ export const POST = async (req: Request) => {
|
||||
humidity: number;
|
||||
windSpeed: number;
|
||||
icon: string;
|
||||
temperatureUnit: 'C' | 'F';
|
||||
windSpeedUnit: 'm/s' | 'mph';
|
||||
} = {
|
||||
temperature: data.current.temperature_2m,
|
||||
condition: '',
|
||||
humidity: data.current.relative_humidity_2m,
|
||||
windSpeed: data.current.wind_speed_10m,
|
||||
icon: '',
|
||||
temperatureUnit: body.measureUnit === 'Metric' ? 'C' : 'F',
|
||||
windSpeedUnit: body.measureUnit === 'Metric' ? 'm/s' : 'mph',
|
||||
};
|
||||
|
||||
const code = data.current.weather_code;
|
||||
|
@@ -4,6 +4,7 @@ import { Search } from 'lucide-react';
|
||||
import { useEffect, useState } from 'react';
|
||||
import Link from 'next/link';
|
||||
import { toast } from 'sonner';
|
||||
import { cn } from '@/lib/utils';
|
||||
|
||||
interface Discover {
|
||||
title: string;
|
||||
@@ -12,14 +13,38 @@ interface Discover {
|
||||
thumbnail: string;
|
||||
}
|
||||
|
||||
const topics: { key: string; display: string }[] = [
|
||||
{
|
||||
display: 'Tech & Science',
|
||||
key: 'tech',
|
||||
},
|
||||
{
|
||||
display: 'Finance',
|
||||
key: 'finance',
|
||||
},
|
||||
{
|
||||
display: 'Art & Culture',
|
||||
key: 'art',
|
||||
},
|
||||
{
|
||||
display: 'Sports',
|
||||
key: 'sports',
|
||||
},
|
||||
{
|
||||
display: 'Entertainment',
|
||||
key: 'entertainment',
|
||||
},
|
||||
];
|
||||
|
||||
const Page = () => {
|
||||
const [discover, setDiscover] = useState<Discover[] | null>(null);
|
||||
const [loading, setLoading] = useState(true);
|
||||
const [activeTopic, setActiveTopic] = useState<string>(topics[0].key);
|
||||
|
||||
useEffect(() => {
|
||||
const fetchData = async () => {
|
||||
const fetchArticles = async (topic: string) => {
|
||||
setLoading(true);
|
||||
try {
|
||||
const res = await fetch(`/api/discover`, {
|
||||
const res = await fetch(`/api/discover?topic=${topic}`, {
|
||||
method: 'GET',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
@@ -43,10 +68,39 @@ const Page = () => {
|
||||
}
|
||||
};
|
||||
|
||||
fetchData();
|
||||
}, []);
|
||||
useEffect(() => {
|
||||
fetchArticles(activeTopic);
|
||||
}, [activeTopic]);
|
||||
|
||||
return loading ? (
|
||||
return (
|
||||
<>
|
||||
<div>
|
||||
<div className="flex flex-col pt-4">
|
||||
<div className="flex items-center">
|
||||
<Search />
|
||||
<h1 className="text-3xl font-medium p-2">Discover</h1>
|
||||
</div>
|
||||
<hr className="border-t border-[#2B2C2C] my-4 w-full" />
|
||||
</div>
|
||||
|
||||
<div className="flex flex-row items-center space-x-2 overflow-x-auto">
|
||||
{topics.map((t, i) => (
|
||||
<div
|
||||
key={i}
|
||||
className={cn(
|
||||
'border-[0.1px] rounded-full text-sm px-3 py-1 text-nowrap transition duration-200 cursor-pointer',
|
||||
activeTopic === t.key
|
||||
? 'text-cyan-300 bg-cyan-300/30 border-cyan-300/60'
|
||||
: 'border-white/30 text-white/70 hover:text-white hover:border-white/40 hover:bg-white/5',
|
||||
)}
|
||||
onClick={() => setActiveTopic(t.key)}
|
||||
>
|
||||
<span>{t.display}</span>
|
||||
</div>
|
||||
))}
|
||||
</div>
|
||||
|
||||
{loading ? (
|
||||
<div className="flex flex-row items-center justify-center min-h-screen">
|
||||
<svg
|
||||
aria-hidden="true"
|
||||
@@ -66,17 +120,7 @@ const Page = () => {
|
||||
</svg>
|
||||
</div>
|
||||
) : (
|
||||
<>
|
||||
<div>
|
||||
<div className="flex flex-col pt-4">
|
||||
<div className="flex items-center">
|
||||
<Search />
|
||||
<h1 className="text-3xl font-medium p-2">Discover</h1>
|
||||
</div>
|
||||
<hr className="border-t border-[#2B2C2C] my-4 w-full" />
|
||||
</div>
|
||||
|
||||
<div className="grid lg:grid-cols-3 sm:grid-cols-2 grid-cols-1 gap-4 pb-28 lg:pb-8 w-full justify-items-center lg:justify-items-start">
|
||||
<div className="grid lg:grid-cols-3 sm:grid-cols-2 grid-cols-1 gap-4 pb-28 pt-5 lg:pb-8 w-full justify-items-center lg:justify-items-start">
|
||||
{discover &&
|
||||
discover?.map((item, i) => (
|
||||
<Link
|
||||
@@ -105,6 +149,7 @@ const Page = () => {
|
||||
</Link>
|
||||
))}
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
</>
|
||||
);
|
||||
|
@@ -11,3 +11,11 @@
|
||||
display: none;
|
||||
}
|
||||
}
|
||||
|
||||
@media screen and (-webkit-min-device-pixel-ratio: 0) {
|
||||
select,
|
||||
textarea,
|
||||
input {
|
||||
font-size: 16px !important;
|
||||
}
|
||||
}
|
||||
|
54
src/app/manifest.ts
Normal file
@@ -0,0 +1,54 @@
|
||||
import type { MetadataRoute } from 'next';
|
||||
|
||||
export default function manifest(): MetadataRoute.Manifest {
|
||||
return {
|
||||
name: 'Perplexica - Chat with the internet',
|
||||
short_name: 'Perplexica',
|
||||
description:
|
||||
'Perplexica is an AI powered chatbot that is connected to the internet.',
|
||||
start_url: '/',
|
||||
display: 'standalone',
|
||||
background_color: '#0a0a0a',
|
||||
theme_color: '#0a0a0a',
|
||||
screenshots: [
|
||||
{
|
||||
src: '/screenshots/p1.png',
|
||||
form_factor: 'wide',
|
||||
sizes: '2560x1600',
|
||||
},
|
||||
{
|
||||
src: '/screenshots/p2.png',
|
||||
form_factor: 'wide',
|
||||
sizes: '2560x1600',
|
||||
},
|
||||
{
|
||||
src: '/screenshots/p1_small.png',
|
||||
form_factor: 'narrow',
|
||||
sizes: '828x1792',
|
||||
},
|
||||
{
|
||||
src: '/screenshots/p2_small.png',
|
||||
form_factor: 'narrow',
|
||||
sizes: '828x1792',
|
||||
},
|
||||
],
|
||||
icons: [
|
||||
{
|
||||
src: '/icon-50.png',
|
||||
sizes: '50x50',
|
||||
type: 'image/png' as const,
|
||||
},
|
||||
{
|
||||
src: '/icon-100.png',
|
||||
sizes: '100x100',
|
||||
type: 'image/png',
|
||||
},
|
||||
{
|
||||
src: '/icon.png',
|
||||
sizes: '440x440',
|
||||
type: 'image/png',
|
||||
purpose: 'any',
|
||||
},
|
||||
],
|
||||
};
|
||||
}
|
@@ -23,6 +23,7 @@ interface SettingsType {
|
||||
ollamaApiUrl: string;
|
||||
lmStudioApiUrl: string;
|
||||
deepseekApiKey: string;
|
||||
aimlApiKey: string;
|
||||
customOpenaiApiKey: string;
|
||||
customOpenaiApiUrl: string;
|
||||
customOpenaiModelName: string;
|
||||
@@ -147,6 +148,9 @@ const Page = () => {
|
||||
const [automaticImageSearch, setAutomaticImageSearch] = useState(false);
|
||||
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
|
||||
const [systemInstructions, setSystemInstructions] = useState<string>('');
|
||||
const [measureUnit, setMeasureUnit] = useState<'Imperial' | 'Metric'>(
|
||||
'Metric',
|
||||
);
|
||||
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
|
||||
|
||||
useEffect(() => {
|
||||
@@ -209,6 +213,10 @@ const Page = () => {
|
||||
|
||||
setSystemInstructions(localStorage.getItem('systemInstructions')!);
|
||||
|
||||
setMeasureUnit(
|
||||
localStorage.getItem('measureUnit')! as 'Imperial' | 'Metric',
|
||||
);
|
||||
|
||||
setIsLoading(false);
|
||||
};
|
||||
|
||||
@@ -367,6 +375,8 @@ const Page = () => {
|
||||
localStorage.setItem('embeddingModel', value);
|
||||
} else if (key === 'systemInstructions') {
|
||||
localStorage.setItem('systemInstructions', value);
|
||||
} else if (key === 'measureUnit') {
|
||||
localStorage.setItem('measureUnit', value.toString());
|
||||
}
|
||||
} catch (err) {
|
||||
console.error('Failed to save:', err);
|
||||
@@ -415,13 +425,35 @@ const Page = () => {
|
||||
) : (
|
||||
config && (
|
||||
<div className="flex flex-col space-y-6 pb-28 lg:pb-8">
|
||||
<SettingsSection title="Appearance">
|
||||
<SettingsSection title="Preferences">
|
||||
<div className="flex flex-col space-y-1">
|
||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||
Theme
|
||||
</p>
|
||||
<ThemeSwitcher />
|
||||
</div>
|
||||
<div className="flex flex-col space-y-1">
|
||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||
Measurement Units
|
||||
</p>
|
||||
<Select
|
||||
value={measureUnit ?? undefined}
|
||||
onChange={(e) => {
|
||||
setMeasureUnit(e.target.value as 'Imperial' | 'Metric');
|
||||
saveConfig('measureUnit', e.target.value);
|
||||
}}
|
||||
options={[
|
||||
{
|
||||
label: 'Metric',
|
||||
value: 'Metric',
|
||||
},
|
||||
{
|
||||
label: 'Imperial',
|
||||
value: 'Imperial',
|
||||
},
|
||||
]}
|
||||
/>
|
||||
</div>
|
||||
</SettingsSection>
|
||||
|
||||
<SettingsSection title="Automatic Search">
|
||||
@@ -515,7 +547,7 @@ const Page = () => {
|
||||
<SettingsSection title="System Instructions">
|
||||
<div className="flex flex-col space-y-4">
|
||||
<Textarea
|
||||
value={systemInstructions}
|
||||
value={systemInstructions ?? undefined}
|
||||
isSaving={savingStates['systemInstructions']}
|
||||
onChange={(e) => {
|
||||
setSystemInstructions(e.target.value);
|
||||
@@ -862,6 +894,25 @@ const Page = () => {
|
||||
/>
|
||||
</div>
|
||||
|
||||
<div className="flex flex-col space-y-1">
|
||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||
AI/ML API Key
|
||||
</p>
|
||||
<Input
|
||||
type="text"
|
||||
placeholder="AI/ML API Key"
|
||||
value={config.aimlApiKey}
|
||||
isSaving={savingStates['aimlApiKey']}
|
||||
onChange={(e) => {
|
||||
setConfig((prev) => ({
|
||||
...prev!,
|
||||
aimlApiKey: e.target.value,
|
||||
}));
|
||||
}}
|
||||
onSave={(value) => saveConfig('aimlApiKey', value)}
|
||||
/>
|
||||
</div>
|
||||
|
||||
<div className="flex flex-col space-y-1">
|
||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||
LM Studio API URL
|
||||
|
@@ -82,14 +82,29 @@ const checkConfig = async (
|
||||
) {
|
||||
if (!chatModel || !chatModelProvider) {
|
||||
const chatModelProviders = providers.chatModelProviders;
|
||||
const chatModelProvidersKeys = Object.keys(chatModelProviders);
|
||||
|
||||
if (!chatModelProviders || chatModelProvidersKeys.length === 0) {
|
||||
return toast.error('No chat models available');
|
||||
} else {
|
||||
chatModelProvider =
|
||||
chatModelProvider || Object.keys(chatModelProviders)[0];
|
||||
chatModelProvidersKeys.find(
|
||||
(provider) =>
|
||||
Object.keys(chatModelProviders[provider]).length > 0,
|
||||
) || chatModelProvidersKeys[0];
|
||||
}
|
||||
|
||||
if (
|
||||
chatModelProvider === 'custom_openai' &&
|
||||
Object.keys(chatModelProviders[chatModelProvider]).length === 0
|
||||
) {
|
||||
toast.error(
|
||||
"Looks like you haven't configured any chat model providers. Please configure them from the settings page or the config file.",
|
||||
);
|
||||
return setHasError(true);
|
||||
}
|
||||
|
||||
chatModel = Object.keys(chatModelProviders[chatModelProvider])[0];
|
||||
|
||||
if (!chatModelProviders || Object.keys(chatModelProviders).length === 0)
|
||||
return toast.error('No chat models available');
|
||||
}
|
||||
|
||||
if (!embeddingModel || !embeddingModelProvider) {
|
||||
@@ -117,7 +132,8 @@ const checkConfig = async (
|
||||
|
||||
if (
|
||||
Object.keys(chatModelProviders).length > 0 &&
|
||||
!chatModelProviders[chatModelProvider]
|
||||
(!chatModelProviders[chatModelProvider] ||
|
||||
Object.keys(chatModelProviders[chatModelProvider]).length === 0)
|
||||
) {
|
||||
const chatModelProvidersKeys = Object.keys(chatModelProviders);
|
||||
chatModelProvider =
|
||||
@@ -132,6 +148,16 @@ const checkConfig = async (
|
||||
chatModelProvider &&
|
||||
!chatModelProviders[chatModelProvider][chatModel]
|
||||
) {
|
||||
if (
|
||||
chatModelProvider === 'custom_openai' &&
|
||||
Object.keys(chatModelProviders[chatModelProvider]).length === 0
|
||||
) {
|
||||
toast.error(
|
||||
"Looks like you haven't configured any chat model providers. Please configure them from the settings page or the config file.",
|
||||
);
|
||||
return setHasError(true);
|
||||
}
|
||||
|
||||
chatModel = Object.keys(
|
||||
chatModelProviders[
|
||||
Object.keys(chatModelProviders[chatModelProvider]).length > 0
|
||||
@@ -139,6 +165,7 @@ const checkConfig = async (
|
||||
: Object.keys(chatModelProviders)[0]
|
||||
],
|
||||
)[0];
|
||||
|
||||
localStorage.setItem('chatModel', chatModel);
|
||||
}
|
||||
|
||||
@@ -327,7 +354,11 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
||||
}
|
||||
}, [isMessagesLoaded, isConfigReady]);
|
||||
|
||||
const sendMessage = async (message: string, messageId?: string) => {
|
||||
const sendMessage = async (
|
||||
message: string,
|
||||
messageId?: string,
|
||||
rewrite = false,
|
||||
) => {
|
||||
if (loading) return;
|
||||
if (!isConfigReady) {
|
||||
toast.error('Cannot send message before the configuration is ready');
|
||||
@@ -455,6 +486,8 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
||||
}
|
||||
};
|
||||
|
||||
const messageIndex = messages.findIndex((m) => m.messageId === messageId);
|
||||
|
||||
const res = await fetch('/api/chat', {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
@@ -471,7 +504,9 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
||||
files: fileIds,
|
||||
focusMode: focusMode,
|
||||
optimizationMode: optimizationMode,
|
||||
history: chatHistory,
|
||||
history: rewrite
|
||||
? chatHistory.slice(0, messageIndex === -1 ? undefined : messageIndex)
|
||||
: chatHistory,
|
||||
chatModel: {
|
||||
name: chatModelProvider.name,
|
||||
provider: chatModelProvider.provider,
|
||||
@@ -525,7 +560,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
||||
return [...prev.slice(0, messages.length > 2 ? index - 1 : 0)];
|
||||
});
|
||||
|
||||
sendMessage(message.content, message.messageId);
|
||||
sendMessage(message.content, message.messageId, true);
|
||||
};
|
||||
|
||||
useEffect(() => {
|
||||
|
@@ -1,6 +1,5 @@
|
||||
import { Settings } from 'lucide-react';
|
||||
import EmptyChatMessageInput from './EmptyChatMessageInput';
|
||||
import { useEffect, useState } from 'react';
|
||||
import { File } from './ChatWindow';
|
||||
import Link from 'next/link';
|
||||
import WeatherWidget from './WeatherWidget';
|
||||
@@ -34,7 +33,8 @@ const EmptyChat = ({
|
||||
<Settings className="cursor-pointer lg:hidden" />
|
||||
</Link>
|
||||
</div>
|
||||
<div className="flex flex-col items-center justify-center min-h-screen max-w-screen-sm mx-auto p-2 space-y-8">
|
||||
<div className="flex flex-col items-center justify-center min-h-screen max-w-screen-sm mx-auto p-2 space-y-4">
|
||||
<div className="flex flex-col items-center justify-center w-full space-y-8">
|
||||
<h2 className="text-black/70 dark:text-white/70 text-3xl font-medium -mt-8">
|
||||
Research begins here.
|
||||
</h2>
|
||||
@@ -49,11 +49,12 @@ const EmptyChat = ({
|
||||
files={files}
|
||||
setFiles={setFiles}
|
||||
/>
|
||||
</div>
|
||||
<div className="flex flex-col w-full gap-4 mt-2 sm:flex-row sm:justify-center">
|
||||
<div className="flex-1 max-w-xs">
|
||||
<div className="flex-1 w-full">
|
||||
<WeatherWidget />
|
||||
</div>
|
||||
<div className="flex-1 max-w-xs">
|
||||
<div className="flex-1 w-full">
|
||||
<NewsArticleWidget />
|
||||
</div>
|
||||
</div>
|
||||
|
@@ -21,8 +21,16 @@ import SearchVideos from './SearchVideos';
|
||||
import { useSpeech } from 'react-text-to-speech';
|
||||
import ThinkBox from './ThinkBox';
|
||||
|
||||
const ThinkTagProcessor = ({ children }: { children: React.ReactNode }) => {
|
||||
return <ThinkBox content={children as string} />;
|
||||
const ThinkTagProcessor = ({
|
||||
children,
|
||||
thinkingEnded,
|
||||
}: {
|
||||
children: React.ReactNode;
|
||||
thinkingEnded: boolean;
|
||||
}) => {
|
||||
return (
|
||||
<ThinkBox content={children as string} thinkingEnded={thinkingEnded} />
|
||||
);
|
||||
};
|
||||
|
||||
const MessageBox = ({
|
||||
@@ -46,6 +54,7 @@ const MessageBox = ({
|
||||
}) => {
|
||||
const [parsedMessage, setParsedMessage] = useState(message.content);
|
||||
const [speechMessage, setSpeechMessage] = useState(message.content);
|
||||
const [thinkingEnded, setThinkingEnded] = useState(false);
|
||||
|
||||
useEffect(() => {
|
||||
const citationRegex = /\[([^\]]+)\]/g;
|
||||
@@ -61,6 +70,10 @@ const MessageBox = ({
|
||||
}
|
||||
}
|
||||
|
||||
if (message.role === 'assistant' && message.content.includes('</think>')) {
|
||||
setThinkingEnded(true);
|
||||
}
|
||||
|
||||
if (
|
||||
message.role === 'assistant' &&
|
||||
message?.sources &&
|
||||
@@ -88,7 +101,7 @@ const MessageBox = ({
|
||||
if (url) {
|
||||
return `<a href="${url}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${numStr}</a>`;
|
||||
} else {
|
||||
return `[${numStr}]`;
|
||||
return ``;
|
||||
}
|
||||
})
|
||||
.join('');
|
||||
@@ -99,6 +112,14 @@ const MessageBox = ({
|
||||
);
|
||||
setSpeechMessage(message.content.replace(regex, ''));
|
||||
return;
|
||||
} else if (
|
||||
message.role === 'assistant' &&
|
||||
message?.sources &&
|
||||
message.sources.length === 0
|
||||
) {
|
||||
setParsedMessage(processedMessage.replace(regex, ''));
|
||||
setSpeechMessage(message.content.replace(regex, ''));
|
||||
return;
|
||||
}
|
||||
|
||||
setSpeechMessage(message.content.replace(regex, ''));
|
||||
@@ -111,6 +132,9 @@ const MessageBox = ({
|
||||
overrides: {
|
||||
think: {
|
||||
component: ThinkTagProcessor,
|
||||
props: {
|
||||
thinkingEnded: thinkingEnded,
|
||||
},
|
||||
},
|
||||
},
|
||||
};
|
||||
|
@@ -1,15 +1,23 @@
|
||||
'use client';
|
||||
|
||||
import { useState } from 'react';
|
||||
import { cn } from '@/lib/utils';
|
||||
import { useEffect, useState } from 'react';
|
||||
import { ChevronDown, ChevronUp, BrainCircuit } from 'lucide-react';
|
||||
|
||||
interface ThinkBoxProps {
|
||||
content: string;
|
||||
thinkingEnded: boolean;
|
||||
}
|
||||
|
||||
const ThinkBox = ({ content }: ThinkBoxProps) => {
|
||||
const [isExpanded, setIsExpanded] = useState(false);
|
||||
const ThinkBox = ({ content, thinkingEnded }: ThinkBoxProps) => {
|
||||
const [isExpanded, setIsExpanded] = useState(true);
|
||||
|
||||
useEffect(() => {
|
||||
if (thinkingEnded) {
|
||||
setIsExpanded(false);
|
||||
} else {
|
||||
setIsExpanded(true);
|
||||
}
|
||||
}, [thinkingEnded]);
|
||||
|
||||
return (
|
||||
<div className="my-4 bg-light-secondary/50 dark:bg-dark-secondary/50 rounded-xl border border-light-200 dark:border-dark-200 overflow-hidden">
|
||||
|
@@ -9,7 +9,10 @@ const WeatherWidget = () => {
|
||||
humidity: 0,
|
||||
windSpeed: 0,
|
||||
icon: '',
|
||||
temperatureUnit: 'C',
|
||||
windSpeedUnit: 'm/s',
|
||||
});
|
||||
|
||||
const [loading, setLoading] = useState(true);
|
||||
|
||||
useEffect(() => {
|
||||
@@ -31,30 +34,40 @@ const WeatherWidget = () => {
|
||||
city: string;
|
||||
}) => void,
|
||||
) => {
|
||||
/*
|
||||
// Geolocation doesn't give city so we'll country using ipapi for now
|
||||
if (navigator.geolocation) {
|
||||
const result = await navigator.permissions.query({
|
||||
name: 'geolocation',
|
||||
})
|
||||
});
|
||||
|
||||
if (result.state === 'granted') {
|
||||
navigator.geolocation.getCurrentPosition(position => {
|
||||
navigator.geolocation.getCurrentPosition(async (position) => {
|
||||
const res = await fetch(
|
||||
`https://api-bdc.io/data/reverse-geocode-client?latitude=${position.coords.latitude}&longitude=${position.coords.longitude}&localityLanguage=en`,
|
||||
{
|
||||
method: 'GET',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
},
|
||||
);
|
||||
|
||||
const data = await res.json();
|
||||
|
||||
callback({
|
||||
latitude: position.coords.latitude,
|
||||
longitude: position.coords.longitude,
|
||||
})
|
||||
})
|
||||
city: data.locality,
|
||||
});
|
||||
});
|
||||
} else if (result.state === 'prompt') {
|
||||
callback(await getApproxLocation())
|
||||
navigator.geolocation.getCurrentPosition(position => {})
|
||||
callback(await getApproxLocation());
|
||||
navigator.geolocation.getCurrentPosition((position) => {});
|
||||
} else if (result.state === 'denied') {
|
||||
callback(await getApproxLocation())
|
||||
callback(await getApproxLocation());
|
||||
}
|
||||
} else {
|
||||
callback(await getApproxLocation())
|
||||
} */
|
||||
callback(await getApproxLocation());
|
||||
}
|
||||
};
|
||||
|
||||
getLocation(async (location) => {
|
||||
@@ -63,6 +76,7 @@ const WeatherWidget = () => {
|
||||
body: JSON.stringify({
|
||||
lat: location.latitude,
|
||||
lng: location.longitude,
|
||||
measureUnit: localStorage.getItem('measureUnit') ?? 'Metric',
|
||||
}),
|
||||
});
|
||||
|
||||
@@ -81,6 +95,8 @@ const WeatherWidget = () => {
|
||||
humidity: data.humidity,
|
||||
windSpeed: data.windSpeed,
|
||||
icon: data.icon,
|
||||
temperatureUnit: data.temperatureUnit,
|
||||
windSpeedUnit: data.windSpeedUnit,
|
||||
});
|
||||
setLoading(false);
|
||||
});
|
||||
@@ -115,7 +131,7 @@ const WeatherWidget = () => {
|
||||
className="h-10 w-auto"
|
||||
/>
|
||||
<span className="text-base font-semibold text-black dark:text-white">
|
||||
{data.temperature}°C
|
||||
{data.temperature}°{data.temperatureUnit}
|
||||
</span>
|
||||
</div>
|
||||
<div className="flex flex-col justify-between flex-1 h-full py-1">
|
||||
@@ -125,7 +141,7 @@ const WeatherWidget = () => {
|
||||
</span>
|
||||
<span className="flex items-center text-xs text-black/60 dark:text-white/60">
|
||||
<Wind className="w-3 h-3 mr-1" />
|
||||
{data.windSpeed} km/h
|
||||
{data.windSpeed} {data.windSpeedUnit}
|
||||
</span>
|
||||
</div>
|
||||
<span className="text-xs text-black/60 dark:text-white/60 mt-1">
|
||||
|
@@ -3,32 +3,18 @@ import {
|
||||
RunnableMap,
|
||||
RunnableLambda,
|
||||
} from '@langchain/core/runnables';
|
||||
import { PromptTemplate } from '@langchain/core/prompts';
|
||||
import { ChatPromptTemplate } from '@langchain/core/prompts';
|
||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||
import { BaseMessage } from '@langchain/core/messages';
|
||||
import { StringOutputParser } from '@langchain/core/output_parsers';
|
||||
import { searchSearxng } from '../searxng';
|
||||
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import LineOutputParser from '../outputParsers/lineOutputParser';
|
||||
|
||||
const imageSearchChainPrompt = `
|
||||
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search the web for images.
|
||||
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
|
||||
|
||||
Example:
|
||||
1. Follow up question: What is a cat?
|
||||
Rephrased: A cat
|
||||
|
||||
2. Follow up question: What is a car? How does it works?
|
||||
Rephrased: Car working
|
||||
|
||||
3. Follow up question: How does an AC work?
|
||||
Rephrased: AC working
|
||||
|
||||
Conversation:
|
||||
{chat_history}
|
||||
|
||||
Follow up question: {query}
|
||||
Rephrased question:
|
||||
Output only the rephrased query wrapped in an XML <query> element. Do not include any explanation or additional text.
|
||||
`;
|
||||
|
||||
type ImageSearchChainInput = {
|
||||
@@ -54,12 +40,39 @@ const createImageSearchChain = (llm: BaseChatModel) => {
|
||||
return input.query;
|
||||
},
|
||||
}),
|
||||
PromptTemplate.fromTemplate(imageSearchChainPrompt),
|
||||
ChatPromptTemplate.fromMessages([
|
||||
['system', imageSearchChainPrompt],
|
||||
[
|
||||
'user',
|
||||
'<conversation>\n</conversation>\n<follow_up>\nWhat is a cat?\n</follow_up>',
|
||||
],
|
||||
['assistant', '<query>A cat</query>'],
|
||||
|
||||
[
|
||||
'user',
|
||||
'<conversation>\n</conversation>\n<follow_up>\nWhat is a car? How does it work?\n</follow_up>',
|
||||
],
|
||||
['assistant', '<query>Car working</query>'],
|
||||
[
|
||||
'user',
|
||||
'<conversation>\n</conversation>\n<follow_up>\nHow does an AC work?\n</follow_up>',
|
||||
],
|
||||
['assistant', '<query>AC working</query>'],
|
||||
[
|
||||
'user',
|
||||
'<conversation>{chat_history}</conversation>\n<follow_up>\n{query}\n</follow_up>',
|
||||
],
|
||||
]),
|
||||
llm,
|
||||
strParser,
|
||||
RunnableLambda.from(async (input: string) => {
|
||||
input = input.replace(/<think>.*?<\/think>/g, '');
|
||||
const queryParser = new LineOutputParser({
|
||||
key: 'query',
|
||||
});
|
||||
|
||||
return await queryParser.parse(input);
|
||||
}),
|
||||
RunnableLambda.from(async (input: string) => {
|
||||
const res = await searchSearxng(input, {
|
||||
engines: ['bing images', 'google images'],
|
||||
});
|
||||
|
@@ -3,32 +3,18 @@ import {
|
||||
RunnableMap,
|
||||
RunnableLambda,
|
||||
} from '@langchain/core/runnables';
|
||||
import { PromptTemplate } from '@langchain/core/prompts';
|
||||
import { ChatPromptTemplate } from '@langchain/core/prompts';
|
||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||
import { BaseMessage } from '@langchain/core/messages';
|
||||
import { StringOutputParser } from '@langchain/core/output_parsers';
|
||||
import { searchSearxng } from '../searxng';
|
||||
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import LineOutputParser from '../outputParsers/lineOutputParser';
|
||||
|
||||
const VideoSearchChainPrompt = `
|
||||
const videoSearchChainPrompt = `
|
||||
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search Youtube for videos.
|
||||
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
|
||||
|
||||
Example:
|
||||
1. Follow up question: How does a car work?
|
||||
Rephrased: How does a car work?
|
||||
|
||||
2. Follow up question: What is the theory of relativity?
|
||||
Rephrased: What is theory of relativity
|
||||
|
||||
3. Follow up question: How does an AC work?
|
||||
Rephrased: How does an AC work
|
||||
|
||||
Conversation:
|
||||
{chat_history}
|
||||
|
||||
Follow up question: {query}
|
||||
Rephrased question:
|
||||
Output only the rephrased query wrapped in an XML <query> element. Do not include any explanation or additional text.
|
||||
`;
|
||||
|
||||
type VideoSearchChainInput = {
|
||||
@@ -55,12 +41,37 @@ const createVideoSearchChain = (llm: BaseChatModel) => {
|
||||
return input.query;
|
||||
},
|
||||
}),
|
||||
PromptTemplate.fromTemplate(VideoSearchChainPrompt),
|
||||
ChatPromptTemplate.fromMessages([
|
||||
['system', videoSearchChainPrompt],
|
||||
[
|
||||
'user',
|
||||
'<conversation>\n</conversation>\n<follow_up>\nHow does a car work?\n</follow_up>',
|
||||
],
|
||||
['assistant', '<query>How does a car work?</query>'],
|
||||
[
|
||||
'user',
|
||||
'<conversation>\n</conversation>\n<follow_up>\nWhat is the theory of relativity?\n</follow_up>',
|
||||
],
|
||||
['assistant', '<query>Theory of relativity</query>'],
|
||||
[
|
||||
'user',
|
||||
'<conversation>\n</conversation>\n<follow_up>\nHow does an AC work?\n</follow_up>',
|
||||
],
|
||||
['assistant', '<query>AC working</query>'],
|
||||
[
|
||||
'user',
|
||||
'<conversation>{chat_history}</conversation>\n<follow_up>\n{query}\n</follow_up>',
|
||||
],
|
||||
]),
|
||||
llm,
|
||||
strParser,
|
||||
RunnableLambda.from(async (input: string) => {
|
||||
input = input.replace(/<think>.*?<\/think>/g, '');
|
||||
|
||||
const queryParser = new LineOutputParser({
|
||||
key: 'query',
|
||||
});
|
||||
return await queryParser.parse(input);
|
||||
}),
|
||||
RunnableLambda.from(async (input: string) => {
|
||||
const res = await searchSearxng(input, {
|
||||
engines: ['youtube'],
|
||||
});
|
||||
@@ -92,8 +103,8 @@ const handleVideoSearch = (
|
||||
input: VideoSearchChainInput,
|
||||
llm: BaseChatModel,
|
||||
) => {
|
||||
const VideoSearchChain = createVideoSearchChain(llm);
|
||||
return VideoSearchChain.invoke(input);
|
||||
const videoSearchChain = createVideoSearchChain(llm);
|
||||
return videoSearchChain.invoke(input);
|
||||
};
|
||||
|
||||
export default handleVideoSearch;
|
||||
|
@@ -35,6 +35,9 @@ interface Config {
|
||||
DEEPSEEK: {
|
||||
API_KEY: string;
|
||||
};
|
||||
AIMLAPI: {
|
||||
API_KEY: string;
|
||||
};
|
||||
LM_STUDIO: {
|
||||
API_URL: string;
|
||||
};
|
||||
@@ -85,6 +88,8 @@ export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL;
|
||||
|
||||
export const getDeepseekApiKey = () => loadConfig().MODELS.DEEPSEEK.API_KEY;
|
||||
|
||||
export const getAimlApiKey = () => loadConfig().MODELS.AIMLAPI.API_KEY;
|
||||
|
||||
export const getCustomOpenaiApiKey = () =>
|
||||
loadConfig().MODELS.CUSTOM_OPENAI.API_KEY;
|
||||
|
||||
|
94
src/lib/providers/aimlapi.ts
Normal file
@@ -0,0 +1,94 @@
|
||||
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
|
||||
import { getAimlApiKey } from '../config';
|
||||
import { ChatModel, EmbeddingModel } from '.';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { Embeddings } from '@langchain/core/embeddings';
|
||||
import axios from 'axios';
|
||||
|
||||
export const PROVIDER_INFO = {
|
||||
key: 'aimlapi',
|
||||
displayName: 'AI/ML API',
|
||||
};
|
||||
|
||||
interface AimlApiModel {
|
||||
id: string;
|
||||
name?: string;
|
||||
type?: string;
|
||||
}
|
||||
|
||||
const API_URL = 'https://api.aimlapi.com';
|
||||
|
||||
export const loadAimlApiChatModels = async () => {
|
||||
const apiKey = getAimlApiKey();
|
||||
|
||||
if (!apiKey) return {};
|
||||
|
||||
try {
|
||||
const response = await axios.get(`${API_URL}/models`, {
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
Authorization: `Bearer ${apiKey}`,
|
||||
},
|
||||
});
|
||||
|
||||
const chatModels: Record<string, ChatModel> = {};
|
||||
|
||||
response.data.data.forEach((model: AimlApiModel) => {
|
||||
if (model.type === 'chat-completion') {
|
||||
chatModels[model.id] = {
|
||||
displayName: model.name || model.id,
|
||||
model: new ChatOpenAI({
|
||||
apiKey: apiKey,
|
||||
modelName: model.id,
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
baseURL: API_URL,
|
||||
},
|
||||
}) as unknown as BaseChatModel,
|
||||
};
|
||||
}
|
||||
});
|
||||
|
||||
return chatModels;
|
||||
} catch (err) {
|
||||
console.error(`Error loading AI/ML API models: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
||||
|
||||
export const loadAimlApiEmbeddingModels = async () => {
|
||||
const apiKey = getAimlApiKey();
|
||||
|
||||
if (!apiKey) return {};
|
||||
|
||||
try {
|
||||
const response = await axios.get(`${API_URL}/models`, {
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
Authorization: `Bearer ${apiKey}`,
|
||||
},
|
||||
});
|
||||
|
||||
const embeddingModels: Record<string, EmbeddingModel> = {};
|
||||
|
||||
response.data.data.forEach((model: AimlApiModel) => {
|
||||
if (model.type === 'embedding') {
|
||||
embeddingModels[model.id] = {
|
||||
displayName: model.name || model.id,
|
||||
model: new OpenAIEmbeddings({
|
||||
apiKey: apiKey,
|
||||
modelName: model.id,
|
||||
configuration: {
|
||||
baseURL: API_URL,
|
||||
},
|
||||
}) as unknown as Embeddings,
|
||||
};
|
||||
}
|
||||
});
|
||||
|
||||
return embeddingModels;
|
||||
} catch (err) {
|
||||
console.error(`Error loading AI/ML API embeddings models: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
@@ -9,6 +9,18 @@ export const PROVIDER_INFO = {
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
|
||||
const anthropicChatModels: Record<string, string>[] = [
|
||||
{
|
||||
displayName: 'Claude 4.1 Opus',
|
||||
key: 'claude-opus-4-1-20250805',
|
||||
},
|
||||
{
|
||||
displayName: 'Claude 4 Opus',
|
||||
key: 'claude-opus-4-20250514',
|
||||
},
|
||||
{
|
||||
displayName: 'Claude 4 Sonnet',
|
||||
key: 'claude-sonnet-4-20250514',
|
||||
},
|
||||
{
|
||||
displayName: 'Claude 3.7 Sonnet',
|
||||
key: 'claude-3-7-sonnet-20250219',
|
||||
|
@@ -31,7 +31,7 @@ export const loadDeepseekChatModels = async () => {
|
||||
chatModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey: deepseekApiKey,
|
||||
apiKey: deepseekApiKey,
|
||||
modelName: model.key,
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
|
@@ -14,8 +14,16 @@ import { Embeddings } from '@langchain/core/embeddings';
|
||||
|
||||
const geminiChatModels: Record<string, string>[] = [
|
||||
{
|
||||
displayName: 'Gemini 2.5 Pro Experimental',
|
||||
key: 'gemini-2.5-pro-exp-03-25',
|
||||
displayName: 'Gemini 2.5 Flash',
|
||||
key: 'gemini-2.5-flash',
|
||||
},
|
||||
{
|
||||
displayName: 'Gemini 2.5 Flash-Lite',
|
||||
key: 'gemini-2.5-flash-lite',
|
||||
},
|
||||
{
|
||||
displayName: 'Gemini 2.5 Pro',
|
||||
key: 'gemini-2.5-pro',
|
||||
},
|
||||
{
|
||||
displayName: 'Gemini 2.0 Flash',
|
||||
@@ -67,7 +75,7 @@ export const loadGeminiChatModels = async () => {
|
||||
displayName: model.displayName,
|
||||
model: new ChatGoogleGenerativeAI({
|
||||
apiKey: geminiApiKey,
|
||||
modelName: model.key,
|
||||
model: model.key,
|
||||
temperature: 0.7,
|
||||
}) as unknown as BaseChatModel,
|
||||
};
|
||||
@@ -100,7 +108,7 @@ export const loadGeminiEmbeddingModels = async () => {
|
||||
|
||||
return embeddingModels;
|
||||
} catch (err) {
|
||||
console.error(`Error loading OpenAI embeddings models: ${err}`);
|
||||
console.error(`Error loading Gemini embeddings models: ${err}`);
|
||||
return {};
|
||||
}
|
||||
};
|
||||
|
@@ -1,4 +1,4 @@
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
import { ChatGroq } from '@langchain/groq';
|
||||
import { getGroqApiKey } from '../config';
|
||||
import { ChatModel } from '.';
|
||||
|
||||
@@ -28,13 +28,10 @@ export const loadGroqChatModels = async () => {
|
||||
groqChatModels.forEach((model: any) => {
|
||||
chatModels[model.id] = {
|
||||
displayName: model.id,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey: groqApiKey,
|
||||
modelName: model.id,
|
||||
model: new ChatGroq({
|
||||
apiKey: groqApiKey,
|
||||
model: model.id,
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
baseURL: 'https://api.groq.com/openai/v1',
|
||||
},
|
||||
}) as unknown as BaseChatModel,
|
||||
};
|
||||
});
|
||||
|
@@ -35,6 +35,11 @@ import {
|
||||
loadDeepseekChatModels,
|
||||
PROVIDER_INFO as DeepseekInfo,
|
||||
} from './deepseek';
|
||||
import {
|
||||
loadAimlApiChatModels,
|
||||
loadAimlApiEmbeddingModels,
|
||||
PROVIDER_INFO as AimlApiInfo,
|
||||
} from './aimlapi';
|
||||
import {
|
||||
loadLMStudioChatModels,
|
||||
loadLMStudioEmbeddingsModels,
|
||||
@@ -49,6 +54,7 @@ export const PROVIDER_METADATA = {
|
||||
gemini: GeminiInfo,
|
||||
transformers: TransformersInfo,
|
||||
deepseek: DeepseekInfo,
|
||||
aimlapi: AimlApiInfo,
|
||||
lmstudio: LMStudioInfo,
|
||||
custom_openai: {
|
||||
key: 'custom_openai',
|
||||
@@ -76,6 +82,7 @@ export const chatModelProviders: Record<
|
||||
anthropic: loadAnthropicChatModels,
|
||||
gemini: loadGeminiChatModels,
|
||||
deepseek: loadDeepseekChatModels,
|
||||
aimlapi: loadAimlApiChatModels,
|
||||
lmstudio: loadLMStudioChatModels,
|
||||
};
|
||||
|
||||
@@ -87,6 +94,7 @@ export const embeddingModelProviders: Record<
|
||||
ollama: loadOllamaEmbeddingModels,
|
||||
gemini: loadGeminiEmbeddingModels,
|
||||
transformers: loadTransformersEmbeddingsModels,
|
||||
aimlapi: loadAimlApiEmbeddingModels,
|
||||
lmstudio: loadLMStudioEmbeddingsModels,
|
||||
};
|
||||
|
||||
@@ -110,7 +118,7 @@ export const getAvailableChatModelProviders = async () => {
|
||||
[customOpenAiModelName]: {
|
||||
displayName: customOpenAiModelName,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey: customOpenAiApiKey,
|
||||
apiKey: customOpenAiApiKey,
|
||||
modelName: customOpenAiModelName,
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
|
@@ -47,7 +47,7 @@ export const loadLMStudioChatModels = async () => {
|
||||
chatModels[model.id] = {
|
||||
displayName: model.name || model.id,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey: 'lm-studio',
|
||||
apiKey: 'lm-studio',
|
||||
configuration: {
|
||||
baseURL: ensureV1Endpoint(endpoint),
|
||||
},
|
||||
@@ -83,7 +83,7 @@ export const loadLMStudioEmbeddingsModels = async () => {
|
||||
embeddingsModels[model.id] = {
|
||||
displayName: model.name || model.id,
|
||||
model: new OpenAIEmbeddings({
|
||||
openAIApiKey: 'lm-studio',
|
||||
apiKey: 'lm-studio',
|
||||
configuration: {
|
||||
baseURL: ensureV1Endpoint(endpoint),
|
||||
},
|
||||
|
@@ -6,8 +6,8 @@ export const PROVIDER_INFO = {
|
||||
key: 'ollama',
|
||||
displayName: 'Ollama',
|
||||
};
|
||||
import { ChatOllama } from '@langchain/community/chat_models/ollama';
|
||||
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
|
||||
import { ChatOllama } from '@langchain/ollama';
|
||||
import { OllamaEmbeddings } from '@langchain/ollama';
|
||||
|
||||
export const loadOllamaChatModels = async () => {
|
||||
const ollamaApiEndpoint = getOllamaApiEndpoint();
|
||||
|
@@ -42,6 +42,18 @@ const openaiChatModels: Record<string, string>[] = [
|
||||
displayName: 'GPT 4.1',
|
||||
key: 'gpt-4.1',
|
||||
},
|
||||
{
|
||||
displayName: 'GPT 5 nano',
|
||||
key: 'gpt-5-nano',
|
||||
},
|
||||
{
|
||||
displayName: 'GPT 5 mini',
|
||||
key: 'gpt-5-mini',
|
||||
},
|
||||
{
|
||||
displayName: 'GPT 5',
|
||||
key: 'gpt-5',
|
||||
},
|
||||
];
|
||||
|
||||
const openaiEmbeddingModels: Record<string, string>[] = [
|
||||
@@ -67,9 +79,9 @@ export const loadOpenAIChatModels = async () => {
|
||||
chatModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new ChatOpenAI({
|
||||
openAIApiKey: openaiApiKey,
|
||||
apiKey: openaiApiKey,
|
||||
modelName: model.key,
|
||||
temperature: 0.7,
|
||||
temperature: model.key.includes('gpt-5') ? 1 : 0.7,
|
||||
}) as unknown as BaseChatModel,
|
||||
};
|
||||
});
|
||||
@@ -93,7 +105,7 @@ export const loadOpenAIEmbeddingModels = async () => {
|
||||
embeddingModels[model.key] = {
|
||||
displayName: model.displayName,
|
||||
model: new OpenAIEmbeddings({
|
||||
openAIApiKey: openaiApiKey,
|
||||
apiKey: openaiApiKey,
|
||||
modelName: model.key,
|
||||
}) as unknown as Embeddings,
|
||||
};
|
||||
|
@@ -1,8 +1,11 @@
|
||||
import { BaseMessage } from '@langchain/core/messages';
|
||||
import { BaseMessage, isAIMessage } from '@langchain/core/messages';
|
||||
|
||||
const formatChatHistoryAsString = (history: BaseMessage[]) => {
|
||||
return history
|
||||
.map((message) => `${message._getType()}: ${message.content}`)
|
||||
.map(
|
||||
(message) =>
|
||||
`${isAIMessage(message) ? 'AI' : 'User'}: ${message.content}`,
|
||||
)
|
||||
.join('\n');
|
||||
};
|
||||
|
||||
|