Compare commits

..

24 Commits

Author SHA1 Message Date
OTYAK
e20d5ecc01 Merge branch 'ItzCrazyKns:master' into master 2025-04-11 16:05:41 +01:00
sjiampojamarn
41b258e4d8 Set speech message before return 2025-04-08 23:17:52 -07:00
OTYAK
18533d58c2 Merge branch 'ItzCrazyKns:master' into master 2025-04-08 10:41:33 +01:00
OTYAK
54c71e33e0 feat(Tavily): update sample configuration for Tavily integration 2025-04-08 10:41:00 +01:00
ItzCrazyKns
da1123d84b feat(groq): update model name 2025-04-07 23:30:51 +05:30
ItzCrazyKns
627775c430 feat(groq): remove maverick (not being run yet) 2025-04-07 23:29:51 +05:30
ItzCrazyKns
245573efca feat(groq): update model list 2025-04-07 23:23:18 +05:30
OTYAK
2c56aa3cb3 feat(tavily): integrate Tavily search engine with configuration and UI support 2025-04-07 16:41:54 +01:00
ItzCrazyKns
a85f762c58 feat(package): bump version 2025-04-07 10:27:04 +05:30
ItzCrazyKns
3ddcceda0a feat(gemini-provider): update embedding models 2025-04-07 10:26:29 +05:30
ItzCrazyKns
e226645bc7 feat(app): lint & beautify 2025-04-06 13:48:58 +05:30
ItzCrazyKns
5447530ece Merge branch 'feat/deepseek-provider' 2025-04-06 13:48:10 +05:30
ItzCrazyKns
ed6d46a440 Merge branch 'pr/719' 2025-04-06 13:47:57 +05:30
ItzCrazyKns
588e68e93e feat(providers): add deepseek provider 2025-04-06 13:37:43 +05:30
ItzCrazyKns
c4440327db Merge pull request #720 from OmarElKadri/master
feat(search): add optional systemInstructions to API request body
2025-04-06 10:34:29 +05:30
OTYAK
64e2d457cc feat(search): add optional systemInstructions to API request body 2025-04-05 19:06:18 +01:00
ItzCrazyKns
bf705afc21 feat(message-box): change styles, lint & beautify 2025-04-05 22:32:56 +05:30
singleparadox
2e4433a6b3 feat(message-box): support [1,2,3,4] citation format instead of just [1][2][3] 2025-04-05 15:24:45 +00:00
ItzCrazyKns
09661ae11d feat(prompts): fix typo, closes #715 2025-04-02 13:02:28 +05:30
ItzCrazyKns
a8d410bc2f Merge pull request #716 from ItzCrazyKns/feat/system-instructions
Feat/system instructions
2025-04-01 15:59:18 +05:30
ItzCrazyKns
7d52fbb368 feat(settings): add system instructions 2025-04-01 15:50:24 +05:30
ItzCrazyKns
4b8e0ea1aa feat(chat-window): handle system instructions 2025-04-01 15:50:05 +05:30
ItzCrazyKns
5b1055e8c9 feat(routes): add system instructions 2025-04-01 15:49:36 +05:30
ItzCrazyKns
4b2a7916fd feat(docker-build): fix image tag errors 2025-03-30 22:51:59 +05:30
27 changed files with 422 additions and 33 deletions

View File

@ -114,6 +114,11 @@ jobs:
username: ${{ secrets.DOCKER_USERNAME }} username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }} password: ${{ secrets.DOCKER_PASSWORD }}
- name: Extract version from release tag
if: github.event_name == 'release'
id: version
run: echo "RELEASE_VERSION=${GITHUB_REF#refs/tags/}" >> $GITHUB_ENV
- name: Create and push multi-arch manifest for main - name: Create and push multi-arch manifest for main
if: github.ref == 'refs/heads/master' && github.event_name == 'push' if: github.ref == 'refs/heads/master' && github.event_name == 'push'
run: | run: |

View File

@ -33,6 +33,7 @@ The API accepts a JSON object in the request body, where you define the focus mo
["human", "Hi, how are you?"], ["human", "Hi, how are you?"],
["assistant", "I am doing well, how can I help you today?"] ["assistant", "I am doing well, how can I help you today?"]
], ],
"systemInstructions": "Focus on providing technical details about Perplexica's architecture.",
"stream": false "stream": false
} }
``` ```
@ -63,6 +64,8 @@ The API accepts a JSON object in the request body, where you define the focus mo
- **`query`** (string, required): The search query or question. - **`query`** (string, required): The search query or question.
- **`systemInstructions`** (string, optional): Custom instructions provided by the user to guide the AI's response. These instructions are treated as user preferences and have lower priority than the system's core instructions. For example, you can specify a particular writing style, format, or focus area.
- **`history`** (array, optional): An array of message pairs representing the conversation history. Each pair consists of a role (either 'human' or 'assistant') and the message content. This allows the system to use the context of the conversation to refine results. Example: - **`history`** (array, optional): An array of message pairs representing the conversation history. Each pair consists of a role (either 'human' or 'assistant') and the message content. This allows the system to use the context of the conversation to refine results. Example:
```json ```json

View File

@ -1,6 +1,6 @@
{ {
"name": "perplexica-frontend", "name": "perplexica-frontend",
"version": "1.10.1", "version": "1.10.2",
"license": "MIT", "license": "MIT",
"author": "ItzCrazyKns", "author": "ItzCrazyKns",
"scripts": { "scripts": {

View File

@ -22,5 +22,12 @@ MODEL_NAME = ""
[MODELS.OLLAMA] [MODELS.OLLAMA]
API_URL = "" # Ollama API URL - http://host.docker.internal:11434 API_URL = "" # Ollama API URL - http://host.docker.internal:11434
[MODELS.DEEPSEEK]
API_KEY = ""
[API_ENDPOINTS] [API_ENDPOINTS]
SEARXNG = "" # SearxNG API URL - http://localhost:32768 SEARXNG = "" # SearxNG API URL - http://localhost:32768
TAVILY = "" # Tavily API key
[SEARCH]
ENGINE = "searxng" # "searxng" or "tavily"

View File

@ -49,6 +49,7 @@ type Body = {
files: Array<string>; files: Array<string>;
chatModel: ChatModel; chatModel: ChatModel;
embeddingModel: EmbeddingModel; embeddingModel: EmbeddingModel;
systemInstructions: string;
}; };
const handleEmitterEvents = async ( const handleEmitterEvents = async (
@ -278,6 +279,7 @@ export const POST = async (req: Request) => {
embedding, embedding,
body.optimizationMode, body.optimizationMode,
body.files, body.files,
body.systemInstructions,
); );
const responseStream = new TransformStream(); const responseStream = new TransformStream();

View File

@ -7,6 +7,9 @@ import {
getGroqApiKey, getGroqApiKey,
getOllamaApiEndpoint, getOllamaApiEndpoint,
getOpenaiApiKey, getOpenaiApiKey,
getDeepseekApiKey,
getSearchEngine,
getTavilyApiKey,
updateConfig, updateConfig,
} from '@/lib/config'; } from '@/lib/config';
import { import {
@ -53,9 +56,12 @@ export const GET = async (req: Request) => {
config['anthropicApiKey'] = getAnthropicApiKey(); config['anthropicApiKey'] = getAnthropicApiKey();
config['groqApiKey'] = getGroqApiKey(); config['groqApiKey'] = getGroqApiKey();
config['geminiApiKey'] = getGeminiApiKey(); config['geminiApiKey'] = getGeminiApiKey();
config['deepseekApiKey'] = getDeepseekApiKey();
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl(); config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
config['customOpenaiApiKey'] = getCustomOpenaiApiKey(); config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
config['customOpenaiModelName'] = getCustomOpenaiModelName(); config['customOpenaiModelName'] = getCustomOpenaiModelName();
config['searchEngine'] = getSearchEngine();
config['tavilyApiKey'] = getTavilyApiKey();
return Response.json({ ...config }, { status: 200 }); return Response.json({ ...config }, { status: 200 });
} catch (err) { } catch (err) {
@ -88,12 +94,21 @@ export const POST = async (req: Request) => {
OLLAMA: { OLLAMA: {
API_URL: config.ollamaApiUrl, API_URL: config.ollamaApiUrl,
}, },
DEEPSEEK: {
API_KEY: config.deepseekApiKey,
},
CUSTOM_OPENAI: { CUSTOM_OPENAI: {
API_URL: config.customOpenaiApiUrl, API_URL: config.customOpenaiApiUrl,
API_KEY: config.customOpenaiApiKey, API_KEY: config.customOpenaiApiKey,
MODEL_NAME: config.customOpenaiModelName, MODEL_NAME: config.customOpenaiModelName,
}, },
}, },
SEARCH: {
ENGINE: config.searchEngine,
},
API_ENDPOINTS: {
TAVILY: config.tavilyApiKey || '',
},
}; };
updateConfig(updatedConfig); updateConfig(updatedConfig);

View File

@ -1,4 +1,4 @@
import { searchSearxng } from '@/lib/searxng'; import { searchSearxng } from '../../../lib/searchEngines/searxng';
const articleWebsites = [ const articleWebsites = [
'yahoo.com', 'yahoo.com',

View File

@ -34,6 +34,7 @@ interface ChatRequestBody {
query: string; query: string;
history: Array<[string, string]>; history: Array<[string, string]>;
stream?: boolean; stream?: boolean;
systemInstructions?: string;
} }
export const POST = async (req: Request) => { export const POST = async (req: Request) => {
@ -125,6 +126,7 @@ export const POST = async (req: Request) => {
embeddings, embeddings,
body.optimizationMode, body.optimizationMode,
[], [],
body.systemInstructions || '',
); );
if (!body.stream) { if (!body.stream) {

View File

@ -20,9 +20,12 @@ interface SettingsType {
anthropicApiKey: string; anthropicApiKey: string;
geminiApiKey: string; geminiApiKey: string;
ollamaApiUrl: string; ollamaApiUrl: string;
deepseekApiKey: string;
customOpenaiApiKey: string; customOpenaiApiKey: string;
customOpenaiApiUrl: string; customOpenaiApiUrl: string;
customOpenaiModelName: string; customOpenaiModelName: string;
searchEngine: string;
tavilyApiKey?: string;
} }
interface InputProps extends React.InputHTMLAttributes<HTMLInputElement> { interface InputProps extends React.InputHTMLAttributes<HTMLInputElement> {
@ -54,6 +57,38 @@ const Input = ({ className, isSaving, onSave, ...restProps }: InputProps) => {
); );
}; };
interface TextareaProps extends React.InputHTMLAttributes<HTMLTextAreaElement> {
isSaving?: boolean;
onSave?: (value: string) => void;
}
const Textarea = ({
className,
isSaving,
onSave,
...restProps
}: TextareaProps) => {
return (
<div className="relative">
<textarea
placeholder="Any special instructions for the LLM"
className="placeholder:text-sm text-sm w-full flex items-center justify-between p-3 bg-light-secondary dark:bg-dark-secondary rounded-lg hover:bg-light-200 dark:hover:bg-dark-200 transition-colors"
rows={4}
onBlur={(e) => onSave?.(e.target.value)}
{...restProps}
/>
{isSaving && (
<div className="absolute right-3 top-3">
<Loader2
size={16}
className="animate-spin text-black/70 dark:text-white/70"
/>
</div>
)}
</div>
);
};
const Select = ({ const Select = ({
className, className,
options, options,
@ -111,6 +146,8 @@ const Page = () => {
const [isLoading, setIsLoading] = useState(false); const [isLoading, setIsLoading] = useState(false);
const [automaticImageSearch, setAutomaticImageSearch] = useState(false); const [automaticImageSearch, setAutomaticImageSearch] = useState(false);
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false); const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
const [systemInstructions, setSystemInstructions] = useState<string>('');
const [searchEngine, setSearchEngine] = useState<string>('searxng');
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({}); const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
useEffect(() => { useEffect(() => {
@ -172,6 +209,9 @@ const Page = () => {
localStorage.getItem('autoVideoSearch') === 'true', localStorage.getItem('autoVideoSearch') === 'true',
); );
setSystemInstructions(localStorage.getItem('systemInstructions')!);
setSearchEngine(localStorage.getItem('searchEngine') || 'searxng');
setIsLoading(false); setIsLoading(false);
}; };
@ -328,6 +368,12 @@ const Page = () => {
localStorage.setItem('embeddingModelProvider', value); localStorage.setItem('embeddingModelProvider', value);
} else if (key === 'embeddingModel') { } else if (key === 'embeddingModel') {
localStorage.setItem('embeddingModel', value); localStorage.setItem('embeddingModel', value);
} else if (key === 'systemInstructions') {
localStorage.setItem('systemInstructions', value);
} else if (key === 'searchEngine') {
localStorage.setItem('searchEngine', value);
} else if (key === 'tavilyApiKey') {
localStorage.setItem('tavilyApiKey', value);
} }
} catch (err) { } catch (err) {
console.error('Failed to save:', err); console.error('Failed to save:', err);
@ -470,6 +516,45 @@ const Page = () => {
/> />
</Switch> </Switch>
</div> </div>
<div className="flex flex-col space-y-1 mt-2">
<p className="text-black/70 dark:text-white/70 text-sm">
Search Engine
</p>
<Select
value={searchEngine}
onChange={(e) => {
const value = e.target.value;
setSearchEngine(value);
saveConfig('searchEngine', value);
}}
options={[
{ value: 'searxng', label: 'SearxNG' },
...(config.tavilyApiKey ? [{ value: 'tavily', label: 'Tavily' }] : []),
]}
/>
<p className="text-xs text-black/60 dark:text-white/60 mt-1">
Select which search engine to use for web searches
</p>
{searchEngine === 'tavily' && !config.tavilyApiKey && (
<p className="text-xs text-red-500 mt-1">
Tavily API key is required to use this search engine
</p>
)}
</div>
</div>
</SettingsSection>
<SettingsSection title="System Instructions">
<div className="flex flex-col space-y-4">
<Textarea
value={systemInstructions}
isSaving={savingStates['systemInstructions']}
onChange={(e) => {
setSystemInstructions(e.target.value);
}}
onSave={(value) => saveConfig('systemInstructions', value)}
/>
</div> </div>
</SettingsSection> </SettingsSection>
@ -788,6 +873,51 @@ const Page = () => {
onSave={(value) => saveConfig('geminiApiKey', value)} onSave={(value) => saveConfig('geminiApiKey', value)}
/> />
</div> </div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Deepseek API Key
</p>
<Input
type="text"
placeholder="Deepseek API Key"
value={config.deepseekApiKey}
isSaving={savingStates['deepseekApiKey']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
deepseekApiKey: e.target.value,
}));
}}
onSave={(value) => saveConfig('deepseekApiKey', value)}
/>
</div>
<div className="flex flex-col space-y-1 mt-4 pt-4 border-t border-light-200 dark:border-dark-200">
<p className="text-black/90 dark:text-white/90 font-medium">Search Engine API Keys</p>
<p className="text-sm text-black/60 dark:text-white/60 mt-0.5">
API keys for search engines used in the application
</p>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Tavily API Key
</p>
<Input
type="text"
placeholder="Tavily API key"
value={config.tavilyApiKey || ''}
isSaving={savingStates['tavilyApiKey']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
tavilyApiKey: e.target.value,
}));
}}
onSave={(value) => saveConfig('tavilyApiKey', value)}
/>
</div>
</div> </div>
</SettingsSection> </SettingsSection>
</div> </div>

View File

@ -480,6 +480,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
name: embeddingModelProvider.name, name: embeddingModelProvider.name,
provider: embeddingModelProvider.provider, provider: embeddingModelProvider.provider,
}, },
systemInstructions: localStorage.getItem('systemInstructions'),
}), }),
}); });

View File

@ -48,6 +48,7 @@ const MessageBox = ({
const [speechMessage, setSpeechMessage] = useState(message.content); const [speechMessage, setSpeechMessage] = useState(message.content);
useEffect(() => { useEffect(() => {
const citationRegex = /\[([^\]]+)\]/g;
const regex = /\[(\d+)\]/g; const regex = /\[(\d+)\]/g;
let processedMessage = message.content; let processedMessage = message.content;
@ -67,13 +68,36 @@ const MessageBox = ({
) { ) {
setParsedMessage( setParsedMessage(
processedMessage.replace( processedMessage.replace(
regex, citationRegex,
(_, number) => (_, capturedContent: string) => {
`<a href="${ const numbers = capturedContent
message.sources?.[number - 1]?.metadata?.url .split(',')
}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${number}</a>`, .map((numStr) => numStr.trim());
const linksHtml = numbers
.map((numStr) => {
const number = parseInt(numStr);
if (isNaN(number) || number <= 0) {
return `[${numStr}]`;
}
const source = message.sources?.[number - 1];
const url = source?.metadata?.url;
if (url) {
return `<a href="${url}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${numStr}</a>`;
} else {
return `[${numStr}]`;
}
})
.join('');
return linksHtml;
},
), ),
); );
setSpeechMessage(message.content.replace(regex, ''));
return; return;
} }

View File

@ -7,7 +7,7 @@ import { PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory'; import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages'; import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers'; import { StringOutputParser } from '@langchain/core/output_parsers';
import { searchSearxng } from '../searxng'; import { searchSearxng } from '../searchEngines/searxng';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models'; import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
const imageSearchChainPrompt = ` const imageSearchChainPrompt = `

View File

@ -7,7 +7,7 @@ import { PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory'; import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages'; import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers'; import { StringOutputParser } from '@langchain/core/output_parsers';
import { searchSearxng } from '../searxng'; import { searchSearxng } from '../searchEngines/searxng';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models'; import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
const VideoSearchChainPrompt = ` const VideoSearchChainPrompt = `

View File

@ -25,6 +25,9 @@ interface Config {
OLLAMA: { OLLAMA: {
API_URL: string; API_URL: string;
}; };
DEEPSEEK: {
API_KEY: string;
};
CUSTOM_OPENAI: { CUSTOM_OPENAI: {
API_URL: string; API_URL: string;
API_KEY: string; API_KEY: string;
@ -33,6 +36,10 @@ interface Config {
}; };
API_ENDPOINTS: { API_ENDPOINTS: {
SEARXNG: string; SEARXNG: string;
TAVILY: string;
};
SEARCH: {
ENGINE: string;
}; };
} }
@ -61,8 +68,16 @@ export const getGeminiApiKey = () => loadConfig().MODELS.GEMINI.API_KEY;
export const getSearxngApiEndpoint = () => export const getSearxngApiEndpoint = () =>
process.env.SEARXNG_API_URL || loadConfig().API_ENDPOINTS.SEARXNG; process.env.SEARXNG_API_URL || loadConfig().API_ENDPOINTS.SEARXNG;
export const getTavilyApiKey = () =>
process.env.TAVILY_API_KEY || loadConfig().API_ENDPOINTS.TAVILY;
export const getSearchEngine = () =>
process.env.SEARCH_ENGINE || loadConfig().SEARCH?.ENGINE || 'searxng';
export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL; export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL;
export const getDeepseekApiKey = () => loadConfig().MODELS.DEEPSEEK.API_KEY;
export const getCustomOpenaiApiKey = () => export const getCustomOpenaiApiKey = () =>
loadConfig().MODELS.CUSTOM_OPENAI.API_KEY; loadConfig().MODELS.CUSTOM_OPENAI.API_KEY;

View File

@ -51,6 +51,10 @@ export const academicSearchResponsePrompt = `
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query. - If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Academic', this means you will be searching for academic papers and articles on the web. - You are set on focus mode 'Academic', this means you will be searching for academic papers and articles on the web.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output ### Example Output
- Begin with a brief introduction summarizing the event or query topic. - Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible. - Follow with detailed sections under clear headings, covering all aspects of the query if possible.

View File

@ -51,6 +51,10 @@ export const redditSearchResponsePrompt = `
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query. - If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Reddit', this means you will be searching for information, opinions and discussions on the web using Reddit. - You are set on focus mode 'Reddit', this means you will be searching for information, opinions and discussions on the web using Reddit.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output ### Example Output
- Begin with a brief introduction summarizing the event or query topic. - Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible. - Follow with detailed sections under clear headings, covering all aspects of the query if possible.

View File

@ -1,6 +1,6 @@
export const webSearchRetrieverPrompt = ` export const webSearchRetrieverPrompt = `
You are an AI question rephraser. You will be given a conversation and a follow-up question, you will have to rephrase the follow up question so it is a standalone question and can be used by another LLM to search the web for information to answer it. You are an AI question rephraser. You will be given a conversation and a follow-up question, you will have to rephrase the follow up question so it is a standalone question and can be used by another LLM to search the web for information to answer it.
If it is a smple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic). If it is a simple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block. If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block.
You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response. You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response.
@ -92,6 +92,10 @@ export const webSearchResponsePrompt = `
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search. - If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query. - If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output ### Example Output
- Begin with a brief introduction summarizing the event or query topic. - Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible. - Follow with detailed sections under clear headings, covering all aspects of the query if possible.

View File

@ -51,6 +51,10 @@ export const wolframAlphaSearchResponsePrompt = `
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query. - If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Wolfram Alpha', this means you will be searching for information on the web using Wolfram Alpha. It is a computational knowledge engine that can answer factual queries and perform computations. - You are set on focus mode 'Wolfram Alpha', this means you will be searching for information on the web using Wolfram Alpha. It is a computational knowledge engine that can answer factual queries and perform computations.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output ### Example Output
- Begin with a brief introduction summarizing the event or query topic. - Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible. - Follow with detailed sections under clear headings, covering all aspects of the query if possible.

View File

@ -7,6 +7,10 @@ You have to cite the answer using [number] notation. You must cite the sentences
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2]. Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer. However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
<context> <context>
{context} {context}
</context> </context>

View File

@ -51,6 +51,10 @@ export const youtubeSearchResponsePrompt = `
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query. - If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Youtube', this means you will be searching for videos on the web using Youtube and providing information based on the video's transcrip - You are set on focus mode 'Youtube', this means you will be searching for videos on the web using Youtube and providing information based on the video's transcrip
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output ### Example Output
- Begin with a brief introduction summarizing the event or query topic. - Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible. - Follow with detailed sections under clear headings, covering all aspects of the query if possible.

View File

@ -0,0 +1,44 @@
import { ChatOpenAI } from '@langchain/openai';
import { getDeepseekApiKey } from '../config';
import { ChatModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const deepseekChatModels: Record<string, string>[] = [
{
displayName: 'Deepseek Chat (Deepseek V3)',
key: 'deepseek-chat',
},
{
displayName: 'Deepseek Reasoner (Deepseek R1)',
key: 'deepseek-reasoner',
},
];
export const loadDeepseekChatModels = async () => {
const deepseekApiKey = getDeepseekApiKey();
if (!deepseekApiKey) return {};
try {
const chatModels: Record<string, ChatModel> = {};
deepseekChatModels.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatOpenAI({
openAIApiKey: deepseekApiKey,
modelName: model.key,
temperature: 0.7,
configuration: {
baseURL: 'https://api.deepseek.com',
},
}) as unknown as BaseChatModel,
};
});
return chatModels;
} catch (err) {
console.error(`Error loading Deepseek models: ${err}`);
return {};
}
};

View File

@ -40,8 +40,12 @@ const geminiChatModels: Record<string, string>[] = [
const geminiEmbeddingModels: Record<string, string>[] = [ const geminiEmbeddingModels: Record<string, string>[] = [
{ {
displayName: 'Gemini Embedding', displayName: 'Text Embedding 004',
key: 'gemini-embedding-exp', key: 'models/text-embedding-004',
},
{
displayName: 'Embedding 001',
key: 'models/embedding-001',
}, },
]; ];

View File

@ -72,6 +72,14 @@ const groqChatModels: Record<string, string>[] = [
displayName: 'Llama 3.2 90B Vision Preview (Preview)', displayName: 'Llama 3.2 90B Vision Preview (Preview)',
key: 'llama-3.2-90b-vision-preview', key: 'llama-3.2-90b-vision-preview',
}, },
/* {
displayName: 'Llama 4 Maverick 17B 128E Instruct (Preview)',
key: 'meta-llama/llama-4-maverick-17b-128e-instruct',
}, */
{
displayName: 'Llama 4 Scout 17B 16E Instruct (Preview)',
key: 'meta-llama/llama-4-scout-17b-16e-instruct',
},
]; ];
export const loadGroqChatModels = async () => { export const loadGroqChatModels = async () => {

View File

@ -12,6 +12,7 @@ import { loadGroqChatModels } from './groq';
import { loadAnthropicChatModels } from './anthropic'; import { loadAnthropicChatModels } from './anthropic';
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini'; import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini';
import { loadTransformersEmbeddingsModels } from './transformers'; import { loadTransformersEmbeddingsModels } from './transformers';
import { loadDeepseekChatModels } from './deepseek';
export interface ChatModel { export interface ChatModel {
displayName: string; displayName: string;
@ -32,6 +33,7 @@ export const chatModelProviders: Record<
groq: loadGroqChatModels, groq: loadGroqChatModels,
anthropic: loadAnthropicChatModels, anthropic: loadAnthropicChatModels,
gemini: loadGeminiChatModels, gemini: loadGeminiChatModels,
deepseek: loadDeepseekChatModels,
}; };
export const embeddingModelProviders: Record< export const embeddingModelProviders: Record<

View File

@ -17,7 +17,9 @@ import LineListOutputParser from '../outputParsers/listLineOutputParser';
import LineOutputParser from '../outputParsers/lineOutputParser'; import LineOutputParser from '../outputParsers/lineOutputParser';
import { getDocumentsFromLinks } from '../utils/documents'; import { getDocumentsFromLinks } from '../utils/documents';
import { Document } from 'langchain/document'; import { Document } from 'langchain/document';
import { searchSearxng } from '../searxng'; import { searchTavily } from '../searchEngines/tavily';
import { searchSearxng } from '../searchEngines/searxng';
import { getSearchEngine } from '../config';
import path from 'node:path'; import path from 'node:path';
import fs from 'node:fs'; import fs from 'node:fs';
import computeSimilarity from '../utils/computeSimilarity'; import computeSimilarity from '../utils/computeSimilarity';
@ -33,6 +35,7 @@ export interface MetaSearchAgentType {
embeddings: Embeddings, embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality', optimizationMode: 'speed' | 'balanced' | 'quality',
fileIds: string[], fileIds: string[],
systemInstructions: string,
) => Promise<eventEmitter>; ) => Promise<eventEmitter>;
} }
@ -204,25 +207,42 @@ class MetaSearchAgent implements MetaSearchAgentType {
} else { } else {
question = question.replace(/<think>.*?<\/think>/g, ''); question = question.replace(/<think>.*?<\/think>/g, '');
const res = await searchSearxng(question, { const searchEngine = getSearchEngine();
let res;
if (searchEngine === 'tavily') {
res = await searchTavily(question, {
search_depth: 'basic',
max_results: 15,
include_images: true,
});
} else {
// Default to SearxNG
res = await searchSearxng(question, {
language: 'en', language: 'en',
engines: this.config.activeEngines, engines: this.config.activeEngines,
}); });
}
const documents = res.results.map( let documents: Document[] = [];
documents = documents.concat(
res.results.map(
(result) => (result) =>
new Document({ new Document({
pageContent: pageContent:
result.content || result.content ||
(this.config.activeEngines.includes('youtube') (this.config.activeEngines.includes('youtube')
? result.title ? result.title
: '') /* Todo: Implement transcript grabbing using Youtubei (source: https://www.npmjs.com/package/youtubei) */, : ''),
metadata: { metadata: {
title: result.title, title: result.title,
url: result.url, url: result.url,
...(result.img_src && { img_src: result.img_src }), ...(result.img_src ? { img_src: result.img_src } : {}),
}, },
}), }),
)
); );
return { query: question, docs: documents }; return { query: question, docs: documents };
@ -236,9 +256,11 @@ class MetaSearchAgent implements MetaSearchAgentType {
fileIds: string[], fileIds: string[],
embeddings: Embeddings, embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality', optimizationMode: 'speed' | 'balanced' | 'quality',
systemInstructions: string,
) { ) {
return RunnableSequence.from([ return RunnableSequence.from([
RunnableMap.from({ RunnableMap.from({
systemInstructions: () => systemInstructions,
query: (input: BasicChainInput) => input.query, query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history, chat_history: (input: BasicChainInput) => input.chat_history,
date: () => new Date().toISOString(), date: () => new Date().toISOString(),
@ -468,6 +490,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
embeddings: Embeddings, embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality', optimizationMode: 'speed' | 'balanced' | 'quality',
fileIds: string[], fileIds: string[],
systemInstructions: string,
) { ) {
const emitter = new eventEmitter(); const emitter = new eventEmitter();
@ -476,6 +499,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
fileIds, fileIds,
embeddings, embeddings,
optimizationMode, optimizationMode,
systemInstructions,
); );
const stream = answeringChain.streamEvents( const stream = answeringChain.streamEvents(

View File

@ -1,5 +1,5 @@
import axios from 'axios'; import axios from 'axios';
import { getSearxngApiEndpoint } from './config'; import { getSearxngApiEndpoint } from '../config';
interface SearxngSearchOptions { interface SearxngSearchOptions {
categories?: string[]; categories?: string[];

View File

@ -0,0 +1,79 @@
import axios from 'axios';
import { getTavilyApiKey } from '../config';
interface TavilySearchOptions {
topic?: 'general' | 'news';
search_depth?: 'basic' | 'advanced';
chunks_per_source?: number;
max_results?: number;
time_range?: 'day' | 'week' | 'month' | 'year' | 'd' | 'w' | 'm' | 'y';
days?: number;
include_answer?: boolean | 'basic' | 'advanced';
include_raw_content?: boolean;
include_images?: boolean;
include_image_descriptions?: boolean;
include_domains?: string[];
exclude_domains?: string[];
}
interface TavilySearchResult {
title: string;
url: string;
content: string;
score: number;
raw_content?: string;
}
interface TavilySearchResponse {
query: string;
answer?: string;
images?: Array<{
url: string;
description?: string;
}>;
results: TavilySearchResult[];
response_time: string;
}
export const searchTavily = async (
query: string,
opts?: TavilySearchOptions,
) => {
const tavilyApiKey = getTavilyApiKey();
if (!tavilyApiKey) {
throw new Error('Tavily API key is not configured');
}
const url = 'https://api.tavily.com/search';
const response = await axios.post<TavilySearchResponse>(
url,
{
query,
...opts,
},
{
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${tavilyApiKey}`,
},
}
);
const results = response.data.results;
// Convert Tavily results to match the format expected by the rest of the application
const formattedResults = results.map(result => ({
title: result.title,
url: result.url,
content: result.content,
img_src: undefined, // Tavily doesn't provide image URLs in the standard response
}));
return {
results: formattedResults,
suggestions: [], // Tavily doesn't provide suggestions, so return empty array
answer: response.data.answer, // Include the AI-generated answer if available
};
};