mirror of
https://github.com/ItzCrazyKns/Perplexica.git
synced 2025-06-18 07:48:35 +00:00
Compare commits
30 Commits
feat/syste
...
bb21184ea2
Author | SHA1 | Date | |
---|---|---|---|
bb21184ea2 | |||
0c3740fdf2 | |||
701819d018 | |||
68e151b2bd | |||
06ff272541 | |||
4154d5e4b1 | |||
1862491496 | |||
073b5e897c | |||
9a332e79e4 | |||
72450b9217 | |||
7e1dc33a08 | |||
aa240009ab | |||
41b258e4d8 | |||
da1123d84b | |||
627775c430 | |||
245573efca | |||
28b9cca413 | |||
a85f762c58 | |||
3ddcceda0a | |||
e226645bc7 | |||
5447530ece | |||
ed6d46a440 | |||
588e68e93e | |||
c4440327db | |||
64e2d457cc | |||
bf705afc21 | |||
2e4433a6b3 | |||
09661ae11d | |||
a8d410bc2f | |||
8aaee2c40c |
@ -159,6 +159,7 @@ Perplexica runs on Next.js and handles all API requests. It works right away on
|
|||||||
|
|
||||||
[](https://usw.sealos.io/?openapp=system-template%3FtemplateName%3Dperplexica)
|
[](https://usw.sealos.io/?openapp=system-template%3FtemplateName%3Dperplexica)
|
||||||
[](https://repocloud.io/details/?app_id=267)
|
[](https://repocloud.io/details/?app_id=267)
|
||||||
|
[](https://template.run.claw.cloud/?referralCode=U11MRQ8U9RM4&openapp=system-fastdeploy%3FtemplateName%3Dperplexica)
|
||||||
|
|
||||||
## Upcoming Features
|
## Upcoming Features
|
||||||
|
|
||||||
|
@ -33,6 +33,7 @@ The API accepts a JSON object in the request body, where you define the focus mo
|
|||||||
["human", "Hi, how are you?"],
|
["human", "Hi, how are you?"],
|
||||||
["assistant", "I am doing well, how can I help you today?"]
|
["assistant", "I am doing well, how can I help you today?"]
|
||||||
],
|
],
|
||||||
|
"systemInstructions": "Focus on providing technical details about Perplexica's architecture.",
|
||||||
"stream": false
|
"stream": false
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
@ -63,6 +64,8 @@ The API accepts a JSON object in the request body, where you define the focus mo
|
|||||||
|
|
||||||
- **`query`** (string, required): The search query or question.
|
- **`query`** (string, required): The search query or question.
|
||||||
|
|
||||||
|
- **`systemInstructions`** (string, optional): Custom instructions provided by the user to guide the AI's response. These instructions are treated as user preferences and have lower priority than the system's core instructions. For example, you can specify a particular writing style, format, or focus area.
|
||||||
|
|
||||||
- **`history`** (array, optional): An array of message pairs representing the conversation history. Each pair consists of a role (either 'human' or 'assistant') and the message content. This allows the system to use the context of the conversation to refine results. Example:
|
- **`history`** (array, optional): An array of message pairs representing the conversation history. Each pair consists of a role (either 'human' or 'assistant') and the message content. This allows the system to use the context of the conversation to refine results. Example:
|
||||||
|
|
||||||
```json
|
```json
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "perplexica-frontend",
|
"name": "perplexica-frontend",
|
||||||
"version": "1.10.1",
|
"version": "1.10.2",
|
||||||
"license": "MIT",
|
"license": "MIT",
|
||||||
"author": "ItzCrazyKns",
|
"author": "ItzCrazyKns",
|
||||||
"scripts": {
|
"scripts": {
|
||||||
|
@ -22,5 +22,11 @@ MODEL_NAME = ""
|
|||||||
[MODELS.OLLAMA]
|
[MODELS.OLLAMA]
|
||||||
API_URL = "" # Ollama API URL - http://host.docker.internal:11434
|
API_URL = "" # Ollama API URL - http://host.docker.internal:11434
|
||||||
|
|
||||||
|
[MODELS.DEEPSEEK]
|
||||||
|
API_KEY = ""
|
||||||
|
|
||||||
|
[MODELS.LM_STUDIO]
|
||||||
|
API_URL = "" # LM Studio API URL - http://host.docker.internal:1234
|
||||||
|
|
||||||
[API_ENDPOINTS]
|
[API_ENDPOINTS]
|
||||||
SEARXNG = "" # SearxNG API URL - http://localhost:32768
|
SEARXNG = "" # SearxNG API URL - http://localhost:32768
|
||||||
|
@ -7,6 +7,8 @@ import {
|
|||||||
getGroqApiKey,
|
getGroqApiKey,
|
||||||
getOllamaApiEndpoint,
|
getOllamaApiEndpoint,
|
||||||
getOpenaiApiKey,
|
getOpenaiApiKey,
|
||||||
|
getDeepseekApiKey,
|
||||||
|
getLMStudioApiEndpoint,
|
||||||
updateConfig,
|
updateConfig,
|
||||||
} from '@/lib/config';
|
} from '@/lib/config';
|
||||||
import {
|
import {
|
||||||
@ -50,9 +52,11 @@ export const GET = async (req: Request) => {
|
|||||||
|
|
||||||
config['openaiApiKey'] = getOpenaiApiKey();
|
config['openaiApiKey'] = getOpenaiApiKey();
|
||||||
config['ollamaApiUrl'] = getOllamaApiEndpoint();
|
config['ollamaApiUrl'] = getOllamaApiEndpoint();
|
||||||
|
config['lmStudioApiUrl'] = getLMStudioApiEndpoint();
|
||||||
config['anthropicApiKey'] = getAnthropicApiKey();
|
config['anthropicApiKey'] = getAnthropicApiKey();
|
||||||
config['groqApiKey'] = getGroqApiKey();
|
config['groqApiKey'] = getGroqApiKey();
|
||||||
config['geminiApiKey'] = getGeminiApiKey();
|
config['geminiApiKey'] = getGeminiApiKey();
|
||||||
|
config['deepseekApiKey'] = getDeepseekApiKey();
|
||||||
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
|
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
|
||||||
config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
|
config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
|
||||||
config['customOpenaiModelName'] = getCustomOpenaiModelName();
|
config['customOpenaiModelName'] = getCustomOpenaiModelName();
|
||||||
@ -88,6 +92,12 @@ export const POST = async (req: Request) => {
|
|||||||
OLLAMA: {
|
OLLAMA: {
|
||||||
API_URL: config.ollamaApiUrl,
|
API_URL: config.ollamaApiUrl,
|
||||||
},
|
},
|
||||||
|
DEEPSEEK: {
|
||||||
|
API_KEY: config.deepseekApiKey,
|
||||||
|
},
|
||||||
|
LM_STUDIO: {
|
||||||
|
API_URL: config.lmStudioApiUrl,
|
||||||
|
},
|
||||||
CUSTOM_OPENAI: {
|
CUSTOM_OPENAI: {
|
||||||
API_URL: config.customOpenaiApiUrl,
|
API_URL: config.customOpenaiApiUrl,
|
||||||
API_KEY: config.customOpenaiApiKey,
|
API_KEY: config.customOpenaiApiKey,
|
||||||
|
@ -34,6 +34,7 @@ interface ChatRequestBody {
|
|||||||
query: string;
|
query: string;
|
||||||
history: Array<[string, string]>;
|
history: Array<[string, string]>;
|
||||||
stream?: boolean;
|
stream?: boolean;
|
||||||
|
systemInstructions?: string;
|
||||||
}
|
}
|
||||||
|
|
||||||
export const POST = async (req: Request) => {
|
export const POST = async (req: Request) => {
|
||||||
@ -125,7 +126,7 @@ export const POST = async (req: Request) => {
|
|||||||
embeddings,
|
embeddings,
|
||||||
body.optimizationMode,
|
body.optimizationMode,
|
||||||
[],
|
[],
|
||||||
"",
|
body.systemInstructions || '',
|
||||||
);
|
);
|
||||||
|
|
||||||
if (!body.stream) {
|
if (!body.stream) {
|
||||||
|
@ -7,6 +7,7 @@ import { Switch } from '@headlessui/react';
|
|||||||
import ThemeSwitcher from '@/components/theme/Switcher';
|
import ThemeSwitcher from '@/components/theme/Switcher';
|
||||||
import { ImagesIcon, VideoIcon } from 'lucide-react';
|
import { ImagesIcon, VideoIcon } from 'lucide-react';
|
||||||
import Link from 'next/link';
|
import Link from 'next/link';
|
||||||
|
import { PROVIDER_METADATA } from '@/lib/providers';
|
||||||
|
|
||||||
interface SettingsType {
|
interface SettingsType {
|
||||||
chatModelProviders: {
|
chatModelProviders: {
|
||||||
@ -20,6 +21,8 @@ interface SettingsType {
|
|||||||
anthropicApiKey: string;
|
anthropicApiKey: string;
|
||||||
geminiApiKey: string;
|
geminiApiKey: string;
|
||||||
ollamaApiUrl: string;
|
ollamaApiUrl: string;
|
||||||
|
lmStudioApiUrl: string;
|
||||||
|
deepseekApiKey: string;
|
||||||
customOpenaiApiKey: string;
|
customOpenaiApiKey: string;
|
||||||
customOpenaiApiUrl: string;
|
customOpenaiApiUrl: string;
|
||||||
customOpenaiModelName: string;
|
customOpenaiModelName: string;
|
||||||
@ -140,7 +143,7 @@ const Page = () => {
|
|||||||
const [selectedEmbeddingModel, setSelectedEmbeddingModel] = useState<
|
const [selectedEmbeddingModel, setSelectedEmbeddingModel] = useState<
|
||||||
string | null
|
string | null
|
||||||
>(null);
|
>(null);
|
||||||
const [isLoading, setIsLoading] = useState(false);
|
const [isLoading, setIsLoading] = useState(true);
|
||||||
const [automaticImageSearch, setAutomaticImageSearch] = useState(false);
|
const [automaticImageSearch, setAutomaticImageSearch] = useState(false);
|
||||||
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
|
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
|
||||||
const [systemInstructions, setSystemInstructions] = useState<string>('');
|
const [systemInstructions, setSystemInstructions] = useState<string>('');
|
||||||
@ -148,7 +151,6 @@ const Page = () => {
|
|||||||
|
|
||||||
useEffect(() => {
|
useEffect(() => {
|
||||||
const fetchConfig = async () => {
|
const fetchConfig = async () => {
|
||||||
setIsLoading(true);
|
|
||||||
const res = await fetch(`/api/config`, {
|
const res = await fetch(`/api/config`, {
|
||||||
headers: {
|
headers: {
|
||||||
'Content-Type': 'application/json',
|
'Content-Type': 'application/json',
|
||||||
@ -547,8 +549,9 @@ const Page = () => {
|
|||||||
(provider) => ({
|
(provider) => ({
|
||||||
value: provider,
|
value: provider,
|
||||||
label:
|
label:
|
||||||
|
(PROVIDER_METADATA as any)[provider]?.displayName ||
|
||||||
provider.charAt(0).toUpperCase() +
|
provider.charAt(0).toUpperCase() +
|
||||||
provider.slice(1),
|
provider.slice(1),
|
||||||
}),
|
}),
|
||||||
)}
|
)}
|
||||||
/>
|
/>
|
||||||
@ -689,8 +692,9 @@ const Page = () => {
|
|||||||
(provider) => ({
|
(provider) => ({
|
||||||
value: provider,
|
value: provider,
|
||||||
label:
|
label:
|
||||||
|
(PROVIDER_METADATA as any)[provider]?.displayName ||
|
||||||
provider.charAt(0).toUpperCase() +
|
provider.charAt(0).toUpperCase() +
|
||||||
provider.slice(1),
|
provider.slice(1),
|
||||||
}),
|
}),
|
||||||
)}
|
)}
|
||||||
/>
|
/>
|
||||||
@ -838,6 +842,44 @@ const Page = () => {
|
|||||||
onSave={(value) => saveConfig('geminiApiKey', value)}
|
onSave={(value) => saveConfig('geminiApiKey', value)}
|
||||||
/>
|
/>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
|
<div className="flex flex-col space-y-1">
|
||||||
|
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||||
|
Deepseek API Key
|
||||||
|
</p>
|
||||||
|
<Input
|
||||||
|
type="text"
|
||||||
|
placeholder="Deepseek API Key"
|
||||||
|
value={config.deepseekApiKey}
|
||||||
|
isSaving={savingStates['deepseekApiKey']}
|
||||||
|
onChange={(e) => {
|
||||||
|
setConfig((prev) => ({
|
||||||
|
...prev!,
|
||||||
|
deepseekApiKey: e.target.value,
|
||||||
|
}));
|
||||||
|
}}
|
||||||
|
onSave={(value) => saveConfig('deepseekApiKey', value)}
|
||||||
|
/>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<div className="flex flex-col space-y-1">
|
||||||
|
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||||
|
LM Studio API URL
|
||||||
|
</p>
|
||||||
|
<Input
|
||||||
|
type="text"
|
||||||
|
placeholder="LM Studio API URL"
|
||||||
|
value={config.lmStudioApiUrl}
|
||||||
|
isSaving={savingStates['lmStudioApiUrl']}
|
||||||
|
onChange={(e) => {
|
||||||
|
setConfig((prev) => ({
|
||||||
|
...prev!,
|
||||||
|
lmStudioApiUrl: e.target.value,
|
||||||
|
}));
|
||||||
|
}}
|
||||||
|
onSave={(value) => saveConfig('lmStudioApiUrl', value)}
|
||||||
|
/>
|
||||||
|
</div>
|
||||||
</div>
|
</div>
|
||||||
</SettingsSection>
|
</SettingsSection>
|
||||||
</div>
|
</div>
|
||||||
|
@ -48,6 +48,7 @@ const MessageBox = ({
|
|||||||
const [speechMessage, setSpeechMessage] = useState(message.content);
|
const [speechMessage, setSpeechMessage] = useState(message.content);
|
||||||
|
|
||||||
useEffect(() => {
|
useEffect(() => {
|
||||||
|
const citationRegex = /\[([^\]]+)\]/g;
|
||||||
const regex = /\[(\d+)\]/g;
|
const regex = /\[(\d+)\]/g;
|
||||||
let processedMessage = message.content;
|
let processedMessage = message.content;
|
||||||
|
|
||||||
@ -67,13 +68,36 @@ const MessageBox = ({
|
|||||||
) {
|
) {
|
||||||
setParsedMessage(
|
setParsedMessage(
|
||||||
processedMessage.replace(
|
processedMessage.replace(
|
||||||
regex,
|
citationRegex,
|
||||||
(_, number) =>
|
(_, capturedContent: string) => {
|
||||||
`<a href="${
|
const numbers = capturedContent
|
||||||
message.sources?.[number - 1]?.metadata?.url
|
.split(',')
|
||||||
}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${number}</a>`,
|
.map((numStr) => numStr.trim());
|
||||||
|
|
||||||
|
const linksHtml = numbers
|
||||||
|
.map((numStr) => {
|
||||||
|
const number = parseInt(numStr);
|
||||||
|
|
||||||
|
if (isNaN(number) || number <= 0) {
|
||||||
|
return `[${numStr}]`;
|
||||||
|
}
|
||||||
|
|
||||||
|
const source = message.sources?.[number - 1];
|
||||||
|
const url = source?.metadata?.url;
|
||||||
|
|
||||||
|
if (url) {
|
||||||
|
return `<a href="${url}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${numStr}</a>`;
|
||||||
|
} else {
|
||||||
|
return `[${numStr}]`;
|
||||||
|
}
|
||||||
|
})
|
||||||
|
.join('');
|
||||||
|
|
||||||
|
return linksHtml;
|
||||||
|
},
|
||||||
),
|
),
|
||||||
);
|
);
|
||||||
|
setSpeechMessage(message.content.replace(regex, ''));
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
import fs from 'fs';
|
|
||||||
import path from 'path';
|
|
||||||
import toml from '@iarna/toml';
|
import toml from '@iarna/toml';
|
||||||
|
|
||||||
|
// Use dynamic imports for Node.js modules to prevent client-side errors
|
||||||
|
let fs: any;
|
||||||
|
let path: any;
|
||||||
|
if (typeof window === 'undefined') {
|
||||||
|
// We're on the server
|
||||||
|
fs = require('fs');
|
||||||
|
path = require('path');
|
||||||
|
}
|
||||||
|
|
||||||
const configFileName = 'config.toml';
|
const configFileName = 'config.toml';
|
||||||
|
|
||||||
interface Config {
|
interface Config {
|
||||||
@ -25,6 +32,12 @@ interface Config {
|
|||||||
OLLAMA: {
|
OLLAMA: {
|
||||||
API_URL: string;
|
API_URL: string;
|
||||||
};
|
};
|
||||||
|
DEEPSEEK: {
|
||||||
|
API_KEY: string;
|
||||||
|
};
|
||||||
|
LM_STUDIO: {
|
||||||
|
API_URL: string;
|
||||||
|
};
|
||||||
CUSTOM_OPENAI: {
|
CUSTOM_OPENAI: {
|
||||||
API_URL: string;
|
API_URL: string;
|
||||||
API_KEY: string;
|
API_KEY: string;
|
||||||
@ -40,10 +53,17 @@ type RecursivePartial<T> = {
|
|||||||
[P in keyof T]?: RecursivePartial<T[P]>;
|
[P in keyof T]?: RecursivePartial<T[P]>;
|
||||||
};
|
};
|
||||||
|
|
||||||
const loadConfig = () =>
|
const loadConfig = () => {
|
||||||
toml.parse(
|
// Server-side only
|
||||||
fs.readFileSync(path.join(process.cwd(), `${configFileName}`), 'utf-8'),
|
if (typeof window === 'undefined') {
|
||||||
) as any as Config;
|
return toml.parse(
|
||||||
|
fs.readFileSync(path.join(process.cwd(), `${configFileName}`), 'utf-8'),
|
||||||
|
) as any as Config;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Client-side fallback - settings will be loaded via API
|
||||||
|
return {} as Config;
|
||||||
|
};
|
||||||
|
|
||||||
export const getSimilarityMeasure = () =>
|
export const getSimilarityMeasure = () =>
|
||||||
loadConfig().GENERAL.SIMILARITY_MEASURE;
|
loadConfig().GENERAL.SIMILARITY_MEASURE;
|
||||||
@ -63,6 +83,8 @@ export const getSearxngApiEndpoint = () =>
|
|||||||
|
|
||||||
export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL;
|
export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL;
|
||||||
|
|
||||||
|
export const getDeepseekApiKey = () => loadConfig().MODELS.DEEPSEEK.API_KEY;
|
||||||
|
|
||||||
export const getCustomOpenaiApiKey = () =>
|
export const getCustomOpenaiApiKey = () =>
|
||||||
loadConfig().MODELS.CUSTOM_OPENAI.API_KEY;
|
loadConfig().MODELS.CUSTOM_OPENAI.API_KEY;
|
||||||
|
|
||||||
@ -72,6 +94,9 @@ export const getCustomOpenaiApiUrl = () =>
|
|||||||
export const getCustomOpenaiModelName = () =>
|
export const getCustomOpenaiModelName = () =>
|
||||||
loadConfig().MODELS.CUSTOM_OPENAI.MODEL_NAME;
|
loadConfig().MODELS.CUSTOM_OPENAI.MODEL_NAME;
|
||||||
|
|
||||||
|
export const getLMStudioApiEndpoint = () =>
|
||||||
|
loadConfig().MODELS.LM_STUDIO.API_URL;
|
||||||
|
|
||||||
const mergeConfigs = (current: any, update: any): any => {
|
const mergeConfigs = (current: any, update: any): any => {
|
||||||
if (update === null || update === undefined) {
|
if (update === null || update === undefined) {
|
||||||
return current;
|
return current;
|
||||||
@ -104,10 +129,13 @@ const mergeConfigs = (current: any, update: any): any => {
|
|||||||
};
|
};
|
||||||
|
|
||||||
export const updateConfig = (config: RecursivePartial<Config>) => {
|
export const updateConfig = (config: RecursivePartial<Config>) => {
|
||||||
const currentConfig = loadConfig();
|
// Server-side only
|
||||||
const mergedConfig = mergeConfigs(currentConfig, config);
|
if (typeof window === 'undefined') {
|
||||||
fs.writeFileSync(
|
const currentConfig = loadConfig();
|
||||||
path.join(path.join(process.cwd(), `${configFileName}`)),
|
const mergedConfig = mergeConfigs(currentConfig, config);
|
||||||
toml.stringify(mergedConfig),
|
fs.writeFileSync(
|
||||||
);
|
path.join(path.join(process.cwd(), `${configFileName}`)),
|
||||||
|
toml.stringify(mergedConfig),
|
||||||
|
);
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
export const webSearchRetrieverPrompt = `
|
export const webSearchRetrieverPrompt = `
|
||||||
You are an AI question rephraser. You will be given a conversation and a follow-up question, you will have to rephrase the follow up question so it is a standalone question and can be used by another LLM to search the web for information to answer it.
|
You are an AI question rephraser. You will be given a conversation and a follow-up question, you will have to rephrase the follow up question so it is a standalone question and can be used by another LLM to search the web for information to answer it.
|
||||||
If it is a smple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
|
If it is a simple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
|
||||||
If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block.
|
If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block.
|
||||||
You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response.
|
You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response.
|
||||||
|
|
||||||
|
@ -1,6 +1,11 @@
|
|||||||
import { ChatAnthropic } from '@langchain/anthropic';
|
import { ChatAnthropic } from '@langchain/anthropic';
|
||||||
import { ChatModel } from '.';
|
import { ChatModel } from '.';
|
||||||
import { getAnthropicApiKey } from '../config';
|
import { getAnthropicApiKey } from '../config';
|
||||||
|
|
||||||
|
export const PROVIDER_INFO = {
|
||||||
|
key: 'anthropic',
|
||||||
|
displayName: 'Anthropic',
|
||||||
|
};
|
||||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||||
|
|
||||||
const anthropicChatModels: Record<string, string>[] = [
|
const anthropicChatModels: Record<string, string>[] = [
|
||||||
|
49
src/lib/providers/deepseek.ts
Normal file
49
src/lib/providers/deepseek.ts
Normal file
@ -0,0 +1,49 @@
|
|||||||
|
import { ChatOpenAI } from '@langchain/openai';
|
||||||
|
import { getDeepseekApiKey } from '../config';
|
||||||
|
import { ChatModel } from '.';
|
||||||
|
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||||
|
|
||||||
|
export const PROVIDER_INFO = {
|
||||||
|
key: 'deepseek',
|
||||||
|
displayName: 'Deepseek AI',
|
||||||
|
};
|
||||||
|
|
||||||
|
const deepseekChatModels: Record<string, string>[] = [
|
||||||
|
{
|
||||||
|
displayName: 'Deepseek Chat (Deepseek V3)',
|
||||||
|
key: 'deepseek-chat',
|
||||||
|
},
|
||||||
|
{
|
||||||
|
displayName: 'Deepseek Reasoner (Deepseek R1)',
|
||||||
|
key: 'deepseek-reasoner',
|
||||||
|
},
|
||||||
|
];
|
||||||
|
|
||||||
|
export const loadDeepseekChatModels = async () => {
|
||||||
|
const deepseekApiKey = getDeepseekApiKey();
|
||||||
|
|
||||||
|
if (!deepseekApiKey) return {};
|
||||||
|
|
||||||
|
try {
|
||||||
|
const chatModels: Record<string, ChatModel> = {};
|
||||||
|
|
||||||
|
deepseekChatModels.forEach((model) => {
|
||||||
|
chatModels[model.key] = {
|
||||||
|
displayName: model.displayName,
|
||||||
|
model: new ChatOpenAI({
|
||||||
|
openAIApiKey: deepseekApiKey,
|
||||||
|
modelName: model.key,
|
||||||
|
temperature: 0.7,
|
||||||
|
configuration: {
|
||||||
|
baseURL: 'https://api.deepseek.com',
|
||||||
|
},
|
||||||
|
}) as unknown as BaseChatModel,
|
||||||
|
};
|
||||||
|
});
|
||||||
|
|
||||||
|
return chatModels;
|
||||||
|
} catch (err) {
|
||||||
|
console.error(`Error loading Deepseek models: ${err}`);
|
||||||
|
return {};
|
||||||
|
}
|
||||||
|
};
|
@ -4,6 +4,11 @@ import {
|
|||||||
} from '@langchain/google-genai';
|
} from '@langchain/google-genai';
|
||||||
import { getGeminiApiKey } from '../config';
|
import { getGeminiApiKey } from '../config';
|
||||||
import { ChatModel, EmbeddingModel } from '.';
|
import { ChatModel, EmbeddingModel } from '.';
|
||||||
|
|
||||||
|
export const PROVIDER_INFO = {
|
||||||
|
key: 'gemini',
|
||||||
|
displayName: 'Google Gemini',
|
||||||
|
};
|
||||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||||
import { Embeddings } from '@langchain/core/embeddings';
|
import { Embeddings } from '@langchain/core/embeddings';
|
||||||
|
|
||||||
@ -40,8 +45,12 @@ const geminiChatModels: Record<string, string>[] = [
|
|||||||
|
|
||||||
const geminiEmbeddingModels: Record<string, string>[] = [
|
const geminiEmbeddingModels: Record<string, string>[] = [
|
||||||
{
|
{
|
||||||
displayName: 'Gemini Embedding',
|
displayName: 'Text Embedding 004',
|
||||||
key: 'gemini-embedding-exp',
|
key: 'models/text-embedding-004',
|
||||||
|
},
|
||||||
|
{
|
||||||
|
displayName: 'Embedding 001',
|
||||||
|
key: 'models/embedding-001',
|
||||||
},
|
},
|
||||||
];
|
];
|
||||||
|
|
||||||
|
@ -1,93 +1,36 @@
|
|||||||
import { ChatOpenAI } from '@langchain/openai';
|
import { ChatOpenAI } from '@langchain/openai';
|
||||||
import { getGroqApiKey } from '../config';
|
import { getGroqApiKey } from '../config';
|
||||||
import { ChatModel } from '.';
|
import { ChatModel } from '.';
|
||||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
|
||||||
|
|
||||||
const groqChatModels: Record<string, string>[] = [
|
export const PROVIDER_INFO = {
|
||||||
{
|
key: 'groq',
|
||||||
displayName: 'Gemma2 9B IT',
|
displayName: 'Groq',
|
||||||
key: 'gemma2-9b-it',
|
};
|
||||||
},
|
|
||||||
{
|
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||||
displayName: 'Llama 3.3 70B Versatile',
|
|
||||||
key: 'llama-3.3-70b-versatile',
|
|
||||||
},
|
|
||||||
{
|
|
||||||
displayName: 'Llama 3.1 8B Instant',
|
|
||||||
key: 'llama-3.1-8b-instant',
|
|
||||||
},
|
|
||||||
{
|
|
||||||
displayName: 'Llama3 70B 8192',
|
|
||||||
key: 'llama3-70b-8192',
|
|
||||||
},
|
|
||||||
{
|
|
||||||
displayName: 'Llama3 8B 8192',
|
|
||||||
key: 'llama3-8b-8192',
|
|
||||||
},
|
|
||||||
{
|
|
||||||
displayName: 'Mixtral 8x7B 32768',
|
|
||||||
key: 'mixtral-8x7b-32768',
|
|
||||||
},
|
|
||||||
{
|
|
||||||
displayName: 'Qwen QWQ 32B (Preview)',
|
|
||||||
key: 'qwen-qwq-32b',
|
|
||||||
},
|
|
||||||
{
|
|
||||||
displayName: 'Mistral Saba 24B (Preview)',
|
|
||||||
key: 'mistral-saba-24b',
|
|
||||||
},
|
|
||||||
{
|
|
||||||
displayName: 'Qwen 2.5 Coder 32B (Preview)',
|
|
||||||
key: 'qwen-2.5-coder-32b',
|
|
||||||
},
|
|
||||||
{
|
|
||||||
displayName: 'Qwen 2.5 32B (Preview)',
|
|
||||||
key: 'qwen-2.5-32b',
|
|
||||||
},
|
|
||||||
{
|
|
||||||
displayName: 'DeepSeek R1 Distill Qwen 32B (Preview)',
|
|
||||||
key: 'deepseek-r1-distill-qwen-32b',
|
|
||||||
},
|
|
||||||
{
|
|
||||||
displayName: 'DeepSeek R1 Distill Llama 70B (Preview)',
|
|
||||||
key: 'deepseek-r1-distill-llama-70b',
|
|
||||||
},
|
|
||||||
{
|
|
||||||
displayName: 'Llama 3.3 70B SpecDec (Preview)',
|
|
||||||
key: 'llama-3.3-70b-specdec',
|
|
||||||
},
|
|
||||||
{
|
|
||||||
displayName: 'Llama 3.2 1B Preview (Preview)',
|
|
||||||
key: 'llama-3.2-1b-preview',
|
|
||||||
},
|
|
||||||
{
|
|
||||||
displayName: 'Llama 3.2 3B Preview (Preview)',
|
|
||||||
key: 'llama-3.2-3b-preview',
|
|
||||||
},
|
|
||||||
{
|
|
||||||
displayName: 'Llama 3.2 11B Vision Preview (Preview)',
|
|
||||||
key: 'llama-3.2-11b-vision-preview',
|
|
||||||
},
|
|
||||||
{
|
|
||||||
displayName: 'Llama 3.2 90B Vision Preview (Preview)',
|
|
||||||
key: 'llama-3.2-90b-vision-preview',
|
|
||||||
},
|
|
||||||
];
|
|
||||||
|
|
||||||
export const loadGroqChatModels = async () => {
|
export const loadGroqChatModels = async () => {
|
||||||
const groqApiKey = getGroqApiKey();
|
const groqApiKey = getGroqApiKey();
|
||||||
|
|
||||||
if (!groqApiKey) return {};
|
if (!groqApiKey) return {};
|
||||||
|
|
||||||
try {
|
try {
|
||||||
|
const res = await fetch('https://api.groq.com/openai/v1/models', {
|
||||||
|
method: 'GET',
|
||||||
|
headers: {
|
||||||
|
Authorization: `bearer ${groqApiKey}`,
|
||||||
|
'Content-Type': 'application/json',
|
||||||
|
},
|
||||||
|
});
|
||||||
|
|
||||||
|
const groqChatModels = (await res.json()).data;
|
||||||
const chatModels: Record<string, ChatModel> = {};
|
const chatModels: Record<string, ChatModel> = {};
|
||||||
|
|
||||||
groqChatModels.forEach((model) => {
|
groqChatModels.forEach((model: any) => {
|
||||||
chatModels[model.key] = {
|
chatModels[model.id] = {
|
||||||
displayName: model.displayName,
|
displayName: model.id,
|
||||||
model: new ChatOpenAI({
|
model: new ChatOpenAI({
|
||||||
openAIApiKey: groqApiKey,
|
openAIApiKey: groqApiKey,
|
||||||
modelName: model.key,
|
modelName: model.id,
|
||||||
temperature: 0.7,
|
temperature: 0.7,
|
||||||
configuration: {
|
configuration: {
|
||||||
baseURL: 'https://api.groq.com/openai/v1',
|
baseURL: 'https://api.groq.com/openai/v1',
|
||||||
|
@ -1,17 +1,60 @@
|
|||||||
import { Embeddings } from '@langchain/core/embeddings';
|
import { Embeddings } from '@langchain/core/embeddings';
|
||||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||||
import { loadOpenAIChatModels, loadOpenAIEmbeddingModels } from './openai';
|
import {
|
||||||
|
loadOpenAIChatModels,
|
||||||
|
loadOpenAIEmbeddingModels,
|
||||||
|
PROVIDER_INFO as OpenAIInfo,
|
||||||
|
PROVIDER_INFO,
|
||||||
|
} from './openai';
|
||||||
import {
|
import {
|
||||||
getCustomOpenaiApiKey,
|
getCustomOpenaiApiKey,
|
||||||
getCustomOpenaiApiUrl,
|
getCustomOpenaiApiUrl,
|
||||||
getCustomOpenaiModelName,
|
getCustomOpenaiModelName,
|
||||||
} from '../config';
|
} from '../config';
|
||||||
import { ChatOpenAI } from '@langchain/openai';
|
import { ChatOpenAI } from '@langchain/openai';
|
||||||
import { loadOllamaChatModels, loadOllamaEmbeddingModels } from './ollama';
|
import {
|
||||||
import { loadGroqChatModels } from './groq';
|
loadOllamaChatModels,
|
||||||
import { loadAnthropicChatModels } from './anthropic';
|
loadOllamaEmbeddingModels,
|
||||||
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini';
|
PROVIDER_INFO as OllamaInfo,
|
||||||
import { loadTransformersEmbeddingsModels } from './transformers';
|
} from './ollama';
|
||||||
|
import { loadGroqChatModels, PROVIDER_INFO as GroqInfo } from './groq';
|
||||||
|
import {
|
||||||
|
loadAnthropicChatModels,
|
||||||
|
PROVIDER_INFO as AnthropicInfo,
|
||||||
|
} from './anthropic';
|
||||||
|
import {
|
||||||
|
loadGeminiChatModels,
|
||||||
|
loadGeminiEmbeddingModels,
|
||||||
|
PROVIDER_INFO as GeminiInfo,
|
||||||
|
} from './gemini';
|
||||||
|
import {
|
||||||
|
loadTransformersEmbeddingsModels,
|
||||||
|
PROVIDER_INFO as TransformersInfo,
|
||||||
|
} from './transformers';
|
||||||
|
import {
|
||||||
|
loadDeepseekChatModels,
|
||||||
|
PROVIDER_INFO as DeepseekInfo,
|
||||||
|
} from './deepseek';
|
||||||
|
import {
|
||||||
|
loadLMStudioChatModels,
|
||||||
|
loadLMStudioEmbeddingsModels,
|
||||||
|
PROVIDER_INFO as LMStudioInfo,
|
||||||
|
} from './lmstudio';
|
||||||
|
|
||||||
|
export const PROVIDER_METADATA = {
|
||||||
|
openai: OpenAIInfo,
|
||||||
|
ollama: OllamaInfo,
|
||||||
|
groq: GroqInfo,
|
||||||
|
anthropic: AnthropicInfo,
|
||||||
|
gemini: GeminiInfo,
|
||||||
|
transformers: TransformersInfo,
|
||||||
|
deepseek: DeepseekInfo,
|
||||||
|
lmstudio: LMStudioInfo,
|
||||||
|
custom_openai: {
|
||||||
|
key: 'custom_openai',
|
||||||
|
displayName: 'Custom OpenAI',
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
export interface ChatModel {
|
export interface ChatModel {
|
||||||
displayName: string;
|
displayName: string;
|
||||||
@ -32,6 +75,8 @@ export const chatModelProviders: Record<
|
|||||||
groq: loadGroqChatModels,
|
groq: loadGroqChatModels,
|
||||||
anthropic: loadAnthropicChatModels,
|
anthropic: loadAnthropicChatModels,
|
||||||
gemini: loadGeminiChatModels,
|
gemini: loadGeminiChatModels,
|
||||||
|
deepseek: loadDeepseekChatModels,
|
||||||
|
lmstudio: loadLMStudioChatModels,
|
||||||
};
|
};
|
||||||
|
|
||||||
export const embeddingModelProviders: Record<
|
export const embeddingModelProviders: Record<
|
||||||
@ -42,6 +87,7 @@ export const embeddingModelProviders: Record<
|
|||||||
ollama: loadOllamaEmbeddingModels,
|
ollama: loadOllamaEmbeddingModels,
|
||||||
gemini: loadGeminiEmbeddingModels,
|
gemini: loadGeminiEmbeddingModels,
|
||||||
transformers: loadTransformersEmbeddingsModels,
|
transformers: loadTransformersEmbeddingsModels,
|
||||||
|
lmstudio: loadLMStudioEmbeddingsModels,
|
||||||
};
|
};
|
||||||
|
|
||||||
export const getAvailableChatModelProviders = async () => {
|
export const getAvailableChatModelProviders = async () => {
|
||||||
|
100
src/lib/providers/lmstudio.ts
Normal file
100
src/lib/providers/lmstudio.ts
Normal file
@ -0,0 +1,100 @@
|
|||||||
|
import { getKeepAlive, getLMStudioApiEndpoint } from '../config';
|
||||||
|
import axios from 'axios';
|
||||||
|
import { ChatModel, EmbeddingModel } from '.';
|
||||||
|
|
||||||
|
export const PROVIDER_INFO = {
|
||||||
|
key: 'lmstudio',
|
||||||
|
displayName: 'LM Studio',
|
||||||
|
};
|
||||||
|
import { ChatOpenAI } from '@langchain/openai';
|
||||||
|
import { OpenAIEmbeddings } from '@langchain/openai';
|
||||||
|
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||||
|
import { Embeddings } from '@langchain/core/embeddings';
|
||||||
|
|
||||||
|
interface LMStudioModel {
|
||||||
|
id: string;
|
||||||
|
name?: string;
|
||||||
|
}
|
||||||
|
|
||||||
|
const ensureV1Endpoint = (endpoint: string): string =>
|
||||||
|
endpoint.endsWith('/v1') ? endpoint : `${endpoint}/v1`;
|
||||||
|
|
||||||
|
const checkServerAvailability = async (endpoint: string): Promise<boolean> => {
|
||||||
|
try {
|
||||||
|
await axios.get(`${ensureV1Endpoint(endpoint)}/models`, {
|
||||||
|
headers: { 'Content-Type': 'application/json' },
|
||||||
|
});
|
||||||
|
return true;
|
||||||
|
} catch {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
export const loadLMStudioChatModels = async () => {
|
||||||
|
const endpoint = getLMStudioApiEndpoint();
|
||||||
|
|
||||||
|
if (!endpoint) return {};
|
||||||
|
if (!(await checkServerAvailability(endpoint))) return {};
|
||||||
|
|
||||||
|
try {
|
||||||
|
const response = await axios.get(`${ensureV1Endpoint(endpoint)}/models`, {
|
||||||
|
headers: { 'Content-Type': 'application/json' },
|
||||||
|
});
|
||||||
|
|
||||||
|
const chatModels: Record<string, ChatModel> = {};
|
||||||
|
|
||||||
|
response.data.data.forEach((model: LMStudioModel) => {
|
||||||
|
chatModels[model.id] = {
|
||||||
|
displayName: model.name || model.id,
|
||||||
|
model: new ChatOpenAI({
|
||||||
|
openAIApiKey: 'lm-studio',
|
||||||
|
configuration: {
|
||||||
|
baseURL: ensureV1Endpoint(endpoint),
|
||||||
|
},
|
||||||
|
modelName: model.id,
|
||||||
|
temperature: 0.7,
|
||||||
|
streaming: true,
|
||||||
|
maxRetries: 3,
|
||||||
|
}) as unknown as BaseChatModel,
|
||||||
|
};
|
||||||
|
});
|
||||||
|
|
||||||
|
return chatModels;
|
||||||
|
} catch (err) {
|
||||||
|
console.error(`Error loading LM Studio models: ${err}`);
|
||||||
|
return {};
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
export const loadLMStudioEmbeddingsModels = async () => {
|
||||||
|
const endpoint = getLMStudioApiEndpoint();
|
||||||
|
|
||||||
|
if (!endpoint) return {};
|
||||||
|
if (!(await checkServerAvailability(endpoint))) return {};
|
||||||
|
|
||||||
|
try {
|
||||||
|
const response = await axios.get(`${ensureV1Endpoint(endpoint)}/models`, {
|
||||||
|
headers: { 'Content-Type': 'application/json' },
|
||||||
|
});
|
||||||
|
|
||||||
|
const embeddingsModels: Record<string, EmbeddingModel> = {};
|
||||||
|
|
||||||
|
response.data.data.forEach((model: LMStudioModel) => {
|
||||||
|
embeddingsModels[model.id] = {
|
||||||
|
displayName: model.name || model.id,
|
||||||
|
model: new OpenAIEmbeddings({
|
||||||
|
openAIApiKey: 'lm-studio',
|
||||||
|
configuration: {
|
||||||
|
baseURL: ensureV1Endpoint(endpoint),
|
||||||
|
},
|
||||||
|
modelName: model.id,
|
||||||
|
}) as unknown as Embeddings,
|
||||||
|
};
|
||||||
|
});
|
||||||
|
|
||||||
|
return embeddingsModels;
|
||||||
|
} catch (err) {
|
||||||
|
console.error(`Error loading LM Studio embeddings model: ${err}`);
|
||||||
|
return {};
|
||||||
|
}
|
||||||
|
};
|
@ -1,6 +1,11 @@
|
|||||||
import axios from 'axios';
|
import axios from 'axios';
|
||||||
import { getKeepAlive, getOllamaApiEndpoint } from '../config';
|
import { getKeepAlive, getOllamaApiEndpoint } from '../config';
|
||||||
import { ChatModel, EmbeddingModel } from '.';
|
import { ChatModel, EmbeddingModel } from '.';
|
||||||
|
|
||||||
|
export const PROVIDER_INFO = {
|
||||||
|
key: 'ollama',
|
||||||
|
displayName: 'Ollama',
|
||||||
|
};
|
||||||
import { ChatOllama } from '@langchain/community/chat_models/ollama';
|
import { ChatOllama } from '@langchain/community/chat_models/ollama';
|
||||||
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
|
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
|
||||||
|
|
||||||
|
@ -1,6 +1,11 @@
|
|||||||
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
|
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
|
||||||
import { getOpenaiApiKey } from '../config';
|
import { getOpenaiApiKey } from '../config';
|
||||||
import { ChatModel, EmbeddingModel } from '.';
|
import { ChatModel, EmbeddingModel } from '.';
|
||||||
|
|
||||||
|
export const PROVIDER_INFO = {
|
||||||
|
key: 'openai',
|
||||||
|
displayName: 'OpenAI',
|
||||||
|
};
|
||||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||||
import { Embeddings } from '@langchain/core/embeddings';
|
import { Embeddings } from '@langchain/core/embeddings';
|
||||||
|
|
||||||
@ -25,6 +30,18 @@ const openaiChatModels: Record<string, string>[] = [
|
|||||||
displayName: 'GPT-4 omni mini',
|
displayName: 'GPT-4 omni mini',
|
||||||
key: 'gpt-4o-mini',
|
key: 'gpt-4o-mini',
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
displayName: 'GPT 4.1 nano',
|
||||||
|
key: 'gpt-4.1-nano',
|
||||||
|
},
|
||||||
|
{
|
||||||
|
displayName: 'GPT 4.1 mini',
|
||||||
|
key: 'gpt-4.1-mini',
|
||||||
|
},
|
||||||
|
{
|
||||||
|
displayName: 'GPT 4.1',
|
||||||
|
key: 'gpt-4.1',
|
||||||
|
},
|
||||||
];
|
];
|
||||||
|
|
||||||
const openaiEmbeddingModels: Record<string, string>[] = [
|
const openaiEmbeddingModels: Record<string, string>[] = [
|
||||||
|
@ -1,5 +1,10 @@
|
|||||||
import { HuggingFaceTransformersEmbeddings } from '../huggingfaceTransformer';
|
import { HuggingFaceTransformersEmbeddings } from '../huggingfaceTransformer';
|
||||||
|
|
||||||
|
export const PROVIDER_INFO = {
|
||||||
|
key: 'transformers',
|
||||||
|
displayName: 'Hugging Face',
|
||||||
|
};
|
||||||
|
|
||||||
export const loadTransformersEmbeddingsModels = async () => {
|
export const loadTransformersEmbeddingsModels = async () => {
|
||||||
try {
|
try {
|
||||||
const embeddingModels = {
|
const embeddingModels = {
|
||||||
|
@ -64,7 +64,7 @@ export const getDocumentsFromLinks = async ({ links }: { links: string[] }) => {
|
|||||||
const splittedText = await splitter.splitText(parsedText);
|
const splittedText = await splitter.splitText(parsedText);
|
||||||
const title = res.data
|
const title = res.data
|
||||||
.toString('utf8')
|
.toString('utf8')
|
||||||
.match(/<title>(.*?)<\/title>/)?.[1];
|
.match(/<title.*>(.*?)<\/title>/)?.[1];
|
||||||
|
|
||||||
const linkDocs = splittedText.map((text) => {
|
const linkDocs = splittedText.map((text) => {
|
||||||
return new Document({
|
return new Document({
|
||||||
|
Reference in New Issue
Block a user