Compare commits

...

18 Commits

Author SHA1 Message Date
OTYAK
18533d58c2 Merge branch 'ItzCrazyKns:master' into master 2025-04-08 10:41:33 +01:00
OTYAK
54c71e33e0 feat(Tavily): update sample configuration for Tavily integration 2025-04-08 10:41:00 +01:00
ItzCrazyKns
da1123d84b feat(groq): update model name 2025-04-07 23:30:51 +05:30
ItzCrazyKns
627775c430 feat(groq): remove maverick (not being run yet) 2025-04-07 23:29:51 +05:30
ItzCrazyKns
245573efca feat(groq): update model list 2025-04-07 23:23:18 +05:30
OTYAK
2c56aa3cb3 feat(tavily): integrate Tavily search engine with configuration and UI support 2025-04-07 16:41:54 +01:00
ItzCrazyKns
a85f762c58 feat(package): bump version 2025-04-07 10:27:04 +05:30
ItzCrazyKns
3ddcceda0a feat(gemini-provider): update embedding models 2025-04-07 10:26:29 +05:30
ItzCrazyKns
e226645bc7 feat(app): lint & beautify 2025-04-06 13:48:58 +05:30
ItzCrazyKns
5447530ece Merge branch 'feat/deepseek-provider' 2025-04-06 13:48:10 +05:30
ItzCrazyKns
ed6d46a440 Merge branch 'pr/719' 2025-04-06 13:47:57 +05:30
ItzCrazyKns
588e68e93e feat(providers): add deepseek provider 2025-04-06 13:37:43 +05:30
ItzCrazyKns
c4440327db Merge pull request #720 from OmarElKadri/master
feat(search): add optional systemInstructions to API request body
2025-04-06 10:34:29 +05:30
OTYAK
64e2d457cc feat(search): add optional systemInstructions to API request body 2025-04-05 19:06:18 +01:00
ItzCrazyKns
bf705afc21 feat(message-box): change styles, lint & beautify 2025-04-05 22:32:56 +05:30
singleparadox
2e4433a6b3 feat(message-box): support [1,2,3,4] citation format instead of just [1][2][3] 2025-04-05 15:24:45 +00:00
ItzCrazyKns
09661ae11d feat(prompts): fix typo, closes #715 2025-04-02 13:02:28 +05:30
ItzCrazyKns
a8d410bc2f Merge pull request #716 from ItzCrazyKns/feat/system-instructions
Feat/system instructions
2025-04-01 15:59:18 +05:30
19 changed files with 334 additions and 34 deletions

View File

@ -33,6 +33,7 @@ The API accepts a JSON object in the request body, where you define the focus mo
["human", "Hi, how are you?"],
["assistant", "I am doing well, how can I help you today?"]
],
"systemInstructions": "Focus on providing technical details about Perplexica's architecture.",
"stream": false
}
```
@ -63,6 +64,8 @@ The API accepts a JSON object in the request body, where you define the focus mo
- **`query`** (string, required): The search query or question.
- **`systemInstructions`** (string, optional): Custom instructions provided by the user to guide the AI's response. These instructions are treated as user preferences and have lower priority than the system's core instructions. For example, you can specify a particular writing style, format, or focus area.
- **`history`** (array, optional): An array of message pairs representing the conversation history. Each pair consists of a role (either 'human' or 'assistant') and the message content. This allows the system to use the context of the conversation to refine results. Example:
```json

View File

@ -1,6 +1,6 @@
{
"name": "perplexica-frontend",
"version": "1.10.1",
"version": "1.10.2",
"license": "MIT",
"author": "ItzCrazyKns",
"scripts": {

View File

@ -22,5 +22,12 @@ MODEL_NAME = ""
[MODELS.OLLAMA]
API_URL = "" # Ollama API URL - http://host.docker.internal:11434
[MODELS.DEEPSEEK]
API_KEY = ""
[API_ENDPOINTS]
SEARXNG = "" # SearxNG API URL - http://localhost:32768
TAVILY = "" # Tavily API key
[SEARCH]
ENGINE = "searxng" # "searxng" or "tavily"

View File

@ -7,6 +7,9 @@ import {
getGroqApiKey,
getOllamaApiEndpoint,
getOpenaiApiKey,
getDeepseekApiKey,
getSearchEngine,
getTavilyApiKey,
updateConfig,
} from '@/lib/config';
import {
@ -53,9 +56,12 @@ export const GET = async (req: Request) => {
config['anthropicApiKey'] = getAnthropicApiKey();
config['groqApiKey'] = getGroqApiKey();
config['geminiApiKey'] = getGeminiApiKey();
config['deepseekApiKey'] = getDeepseekApiKey();
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
config['customOpenaiModelName'] = getCustomOpenaiModelName();
config['searchEngine'] = getSearchEngine();
config['tavilyApiKey'] = getTavilyApiKey();
return Response.json({ ...config }, { status: 200 });
} catch (err) {
@ -88,12 +94,21 @@ export const POST = async (req: Request) => {
OLLAMA: {
API_URL: config.ollamaApiUrl,
},
DEEPSEEK: {
API_KEY: config.deepseekApiKey,
},
CUSTOM_OPENAI: {
API_URL: config.customOpenaiApiUrl,
API_KEY: config.customOpenaiApiKey,
MODEL_NAME: config.customOpenaiModelName,
},
},
SEARCH: {
ENGINE: config.searchEngine,
},
API_ENDPOINTS: {
TAVILY: config.tavilyApiKey || '',
},
};
updateConfig(updatedConfig);

View File

@ -1,4 +1,4 @@
import { searchSearxng } from '@/lib/searxng';
import { searchSearxng } from '../../../lib/searchEngines/searxng';
const articleWebsites = [
'yahoo.com',

View File

@ -34,6 +34,7 @@ interface ChatRequestBody {
query: string;
history: Array<[string, string]>;
stream?: boolean;
systemInstructions?: string;
}
export const POST = async (req: Request) => {
@ -125,7 +126,7 @@ export const POST = async (req: Request) => {
embeddings,
body.optimizationMode,
[],
"",
body.systemInstructions || '',
);
if (!body.stream) {

View File

@ -20,9 +20,12 @@ interface SettingsType {
anthropicApiKey: string;
geminiApiKey: string;
ollamaApiUrl: string;
deepseekApiKey: string;
customOpenaiApiKey: string;
customOpenaiApiUrl: string;
customOpenaiModelName: string;
searchEngine: string;
tavilyApiKey?: string;
}
interface InputProps extends React.InputHTMLAttributes<HTMLInputElement> {
@ -144,6 +147,7 @@ const Page = () => {
const [automaticImageSearch, setAutomaticImageSearch] = useState(false);
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
const [systemInstructions, setSystemInstructions] = useState<string>('');
const [searchEngine, setSearchEngine] = useState<string>('searxng');
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
useEffect(() => {
@ -206,6 +210,7 @@ const Page = () => {
);
setSystemInstructions(localStorage.getItem('systemInstructions')!);
setSearchEngine(localStorage.getItem('searchEngine') || 'searxng');
setIsLoading(false);
};
@ -365,6 +370,10 @@ const Page = () => {
localStorage.setItem('embeddingModel', value);
} else if (key === 'systemInstructions') {
localStorage.setItem('systemInstructions', value);
} else if (key === 'searchEngine') {
localStorage.setItem('searchEngine', value);
} else if (key === 'tavilyApiKey') {
localStorage.setItem('tavilyApiKey', value);
}
} catch (err) {
console.error('Failed to save:', err);
@ -507,6 +516,32 @@ const Page = () => {
/>
</Switch>
</div>
<div className="flex flex-col space-y-1 mt-2">
<p className="text-black/70 dark:text-white/70 text-sm">
Search Engine
</p>
<Select
value={searchEngine}
onChange={(e) => {
const value = e.target.value;
setSearchEngine(value);
saveConfig('searchEngine', value);
}}
options={[
{ value: 'searxng', label: 'SearxNG' },
...(config.tavilyApiKey ? [{ value: 'tavily', label: 'Tavily' }] : []),
]}
/>
<p className="text-xs text-black/60 dark:text-white/60 mt-1">
Select which search engine to use for web searches
</p>
{searchEngine === 'tavily' && !config.tavilyApiKey && (
<p className="text-xs text-red-500 mt-1">
Tavily API key is required to use this search engine
</p>
)}
</div>
</div>
</SettingsSection>
@ -838,6 +873,51 @@ const Page = () => {
onSave={(value) => saveConfig('geminiApiKey', value)}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Deepseek API Key
</p>
<Input
type="text"
placeholder="Deepseek API Key"
value={config.deepseekApiKey}
isSaving={savingStates['deepseekApiKey']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
deepseekApiKey: e.target.value,
}));
}}
onSave={(value) => saveConfig('deepseekApiKey', value)}
/>
</div>
<div className="flex flex-col space-y-1 mt-4 pt-4 border-t border-light-200 dark:border-dark-200">
<p className="text-black/90 dark:text-white/90 font-medium">Search Engine API Keys</p>
<p className="text-sm text-black/60 dark:text-white/60 mt-0.5">
API keys for search engines used in the application
</p>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Tavily API Key
</p>
<Input
type="text"
placeholder="Tavily API key"
value={config.tavilyApiKey || ''}
isSaving={savingStates['tavilyApiKey']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
tavilyApiKey: e.target.value,
}));
}}
onSave={(value) => saveConfig('tavilyApiKey', value)}
/>
</div>
</div>
</SettingsSection>
</div>

View File

@ -48,6 +48,7 @@ const MessageBox = ({
const [speechMessage, setSpeechMessage] = useState(message.content);
useEffect(() => {
const citationRegex = /\[([^\]]+)\]/g;
const regex = /\[(\d+)\]/g;
let processedMessage = message.content;
@ -67,11 +68,33 @@ const MessageBox = ({
) {
setParsedMessage(
processedMessage.replace(
regex,
(_, number) =>
`<a href="${
message.sources?.[number - 1]?.metadata?.url
}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${number}</a>`,
citationRegex,
(_, capturedContent: string) => {
const numbers = capturedContent
.split(',')
.map((numStr) => numStr.trim());
const linksHtml = numbers
.map((numStr) => {
const number = parseInt(numStr);
if (isNaN(number) || number <= 0) {
return `[${numStr}]`;
}
const source = message.sources?.[number - 1];
const url = source?.metadata?.url;
if (url) {
return `<a href="${url}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${numStr}</a>`;
} else {
return `[${numStr}]`;
}
})
.join('');
return linksHtml;
},
),
);
return;

View File

@ -7,7 +7,7 @@ import { PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { searchSearxng } from '../searxng';
import { searchSearxng } from '../searchEngines/searxng';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
const imageSearchChainPrompt = `

View File

@ -7,7 +7,7 @@ import { PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { searchSearxng } from '../searxng';
import { searchSearxng } from '../searchEngines/searxng';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
const VideoSearchChainPrompt = `

View File

@ -25,6 +25,9 @@ interface Config {
OLLAMA: {
API_URL: string;
};
DEEPSEEK: {
API_KEY: string;
};
CUSTOM_OPENAI: {
API_URL: string;
API_KEY: string;
@ -33,6 +36,10 @@ interface Config {
};
API_ENDPOINTS: {
SEARXNG: string;
TAVILY: string;
};
SEARCH: {
ENGINE: string;
};
}
@ -61,8 +68,16 @@ export const getGeminiApiKey = () => loadConfig().MODELS.GEMINI.API_KEY;
export const getSearxngApiEndpoint = () =>
process.env.SEARXNG_API_URL || loadConfig().API_ENDPOINTS.SEARXNG;
export const getTavilyApiKey = () =>
process.env.TAVILY_API_KEY || loadConfig().API_ENDPOINTS.TAVILY;
export const getSearchEngine = () =>
process.env.SEARCH_ENGINE || loadConfig().SEARCH?.ENGINE || 'searxng';
export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL;
export const getDeepseekApiKey = () => loadConfig().MODELS.DEEPSEEK.API_KEY;
export const getCustomOpenaiApiKey = () =>
loadConfig().MODELS.CUSTOM_OPENAI.API_KEY;

View File

@ -1,6 +1,6 @@
export const webSearchRetrieverPrompt = `
You are an AI question rephraser. You will be given a conversation and a follow-up question, you will have to rephrase the follow up question so it is a standalone question and can be used by another LLM to search the web for information to answer it.
If it is a smple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
If it is a simple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block.
You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response.

View File

@ -0,0 +1,44 @@
import { ChatOpenAI } from '@langchain/openai';
import { getDeepseekApiKey } from '../config';
import { ChatModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const deepseekChatModels: Record<string, string>[] = [
{
displayName: 'Deepseek Chat (Deepseek V3)',
key: 'deepseek-chat',
},
{
displayName: 'Deepseek Reasoner (Deepseek R1)',
key: 'deepseek-reasoner',
},
];
export const loadDeepseekChatModels = async () => {
const deepseekApiKey = getDeepseekApiKey();
if (!deepseekApiKey) return {};
try {
const chatModels: Record<string, ChatModel> = {};
deepseekChatModels.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatOpenAI({
openAIApiKey: deepseekApiKey,
modelName: model.key,
temperature: 0.7,
configuration: {
baseURL: 'https://api.deepseek.com',
},
}) as unknown as BaseChatModel,
};
});
return chatModels;
} catch (err) {
console.error(`Error loading Deepseek models: ${err}`);
return {};
}
};

View File

@ -40,8 +40,12 @@ const geminiChatModels: Record<string, string>[] = [
const geminiEmbeddingModels: Record<string, string>[] = [
{
displayName: 'Gemini Embedding',
key: 'gemini-embedding-exp',
displayName: 'Text Embedding 004',
key: 'models/text-embedding-004',
},
{
displayName: 'Embedding 001',
key: 'models/embedding-001',
},
];

View File

@ -72,6 +72,14 @@ const groqChatModels: Record<string, string>[] = [
displayName: 'Llama 3.2 90B Vision Preview (Preview)',
key: 'llama-3.2-90b-vision-preview',
},
/* {
displayName: 'Llama 4 Maverick 17B 128E Instruct (Preview)',
key: 'meta-llama/llama-4-maverick-17b-128e-instruct',
}, */
{
displayName: 'Llama 4 Scout 17B 16E Instruct (Preview)',
key: 'meta-llama/llama-4-scout-17b-16e-instruct',
},
];
export const loadGroqChatModels = async () => {

View File

@ -12,6 +12,7 @@ import { loadGroqChatModels } from './groq';
import { loadAnthropicChatModels } from './anthropic';
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini';
import { loadTransformersEmbeddingsModels } from './transformers';
import { loadDeepseekChatModels } from './deepseek';
export interface ChatModel {
displayName: string;
@ -32,6 +33,7 @@ export const chatModelProviders: Record<
groq: loadGroqChatModels,
anthropic: loadAnthropicChatModels,
gemini: loadGeminiChatModels,
deepseek: loadDeepseekChatModels,
};
export const embeddingModelProviders: Record<

View File

@ -17,7 +17,9 @@ import LineListOutputParser from '../outputParsers/listLineOutputParser';
import LineOutputParser from '../outputParsers/lineOutputParser';
import { getDocumentsFromLinks } from '../utils/documents';
import { Document } from 'langchain/document';
import { searchSearxng } from '../searxng';
import { searchTavily } from '../searchEngines/tavily';
import { searchSearxng } from '../searchEngines/searxng';
import { getSearchEngine } from '../config';
import path from 'node:path';
import fs from 'node:fs';
import computeSimilarity from '../utils/computeSimilarity';
@ -205,25 +207,42 @@ class MetaSearchAgent implements MetaSearchAgentType {
} else {
question = question.replace(/<think>.*?<\/think>/g, '');
const res = await searchSearxng(question, {
const searchEngine = getSearchEngine();
let res;
if (searchEngine === 'tavily') {
res = await searchTavily(question, {
search_depth: 'basic',
max_results: 15,
include_images: true,
});
} else {
// Default to SearxNG
res = await searchSearxng(question, {
language: 'en',
engines: this.config.activeEngines,
});
}
const documents = res.results.map(
let documents: Document[] = [];
documents = documents.concat(
res.results.map(
(result) =>
new Document({
pageContent:
result.content ||
(this.config.activeEngines.includes('youtube')
? result.title
: '') /* Todo: Implement transcript grabbing using Youtubei (source: https://www.npmjs.com/package/youtubei) */,
: ''),
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
...(result.img_src ? { img_src: result.img_src } : {}),
},
}),
)
);
return { query: question, docs: documents };

View File

@ -1,5 +1,5 @@
import axios from 'axios';
import { getSearxngApiEndpoint } from './config';
import { getSearxngApiEndpoint } from '../config';
interface SearxngSearchOptions {
categories?: string[];

View File

@ -0,0 +1,79 @@
import axios from 'axios';
import { getTavilyApiKey } from '../config';
interface TavilySearchOptions {
topic?: 'general' | 'news';
search_depth?: 'basic' | 'advanced';
chunks_per_source?: number;
max_results?: number;
time_range?: 'day' | 'week' | 'month' | 'year' | 'd' | 'w' | 'm' | 'y';
days?: number;
include_answer?: boolean | 'basic' | 'advanced';
include_raw_content?: boolean;
include_images?: boolean;
include_image_descriptions?: boolean;
include_domains?: string[];
exclude_domains?: string[];
}
interface TavilySearchResult {
title: string;
url: string;
content: string;
score: number;
raw_content?: string;
}
interface TavilySearchResponse {
query: string;
answer?: string;
images?: Array<{
url: string;
description?: string;
}>;
results: TavilySearchResult[];
response_time: string;
}
export const searchTavily = async (
query: string,
opts?: TavilySearchOptions,
) => {
const tavilyApiKey = getTavilyApiKey();
if (!tavilyApiKey) {
throw new Error('Tavily API key is not configured');
}
const url = 'https://api.tavily.com/search';
const response = await axios.post<TavilySearchResponse>(
url,
{
query,
...opts,
},
{
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${tavilyApiKey}`,
},
}
);
const results = response.data.results;
// Convert Tavily results to match the format expected by the rest of the application
const formattedResults = results.map(result => ({
title: result.title,
url: result.url,
content: result.content,
img_src: undefined, // Tavily doesn't provide image URLs in the standard response
}));
return {
results: formattedResults,
suggestions: [], // Tavily doesn't provide suggestions, so return empty array
answer: response.data.answer, // Include the AI-generated answer if available
};
};