mirror of
https://github.com/ItzCrazyKns/Perplexica.git
synced 2025-09-15 14:01:31 +00:00
Compare commits
20 Commits
feat/struc
...
567c6a8758
Author | SHA1 | Date | |
---|---|---|---|
|
567c6a8758 | ||
|
81a91da743 | ||
|
70a61ee1eb | ||
|
9d89a4413b | ||
|
6ea17d54c6 | ||
|
11a828b073 | ||
|
37022fb11e | ||
|
dd50d4927b | ||
|
fdaf3af3af | ||
|
3f2a8f862c | ||
|
58c7be6e95 | ||
|
829b4e7134 | ||
|
77870b39cc | ||
|
8e0ae9b867 | ||
|
543f1df5ce | ||
|
341aae4587 | ||
|
7f62907385 | ||
|
7c4aa683a2 | ||
|
b48b0eeb0e | ||
|
cddc793915 |
13
package.json
13
package.json
@@ -15,11 +15,12 @@
|
|||||||
"@headlessui/react": "^2.2.0",
|
"@headlessui/react": "^2.2.0",
|
||||||
"@iarna/toml": "^2.2.5",
|
"@iarna/toml": "^2.2.5",
|
||||||
"@icons-pack/react-simple-icons": "^12.3.0",
|
"@icons-pack/react-simple-icons": "^12.3.0",
|
||||||
"@langchain/anthropic": "^0.3.15",
|
"@langchain/anthropic": "^0.3.24",
|
||||||
"@langchain/community": "^0.3.36",
|
"@langchain/community": "^0.3.49",
|
||||||
"@langchain/core": "^0.3.42",
|
"@langchain/core": "^0.3.66",
|
||||||
"@langchain/google-genai": "^0.1.12",
|
"@langchain/google-genai": "^0.2.15",
|
||||||
"@langchain/openai": "^0.0.25",
|
"@langchain/ollama": "^0.2.3",
|
||||||
|
"@langchain/openai": "^0.6.2",
|
||||||
"@langchain/textsplitters": "^0.1.0",
|
"@langchain/textsplitters": "^0.1.0",
|
||||||
"@tailwindcss/typography": "^0.5.12",
|
"@tailwindcss/typography": "^0.5.12",
|
||||||
"@xenova/transformers": "^2.17.2",
|
"@xenova/transformers": "^2.17.2",
|
||||||
@@ -31,7 +32,7 @@
|
|||||||
"drizzle-orm": "^0.40.1",
|
"drizzle-orm": "^0.40.1",
|
||||||
"html-to-text": "^9.0.5",
|
"html-to-text": "^9.0.5",
|
||||||
"jspdf": "^3.0.1",
|
"jspdf": "^3.0.1",
|
||||||
"langchain": "^0.1.30",
|
"langchain": "^0.3.30",
|
||||||
"lucide-react": "^0.363.0",
|
"lucide-react": "^0.363.0",
|
||||||
"mammoth": "^1.9.1",
|
"mammoth": "^1.9.1",
|
||||||
"markdown-to-jsx": "^7.7.2",
|
"markdown-to-jsx": "^7.7.2",
|
||||||
|
@@ -223,7 +223,7 @@ export const POST = async (req: Request) => {
|
|||||||
|
|
||||||
if (body.chatModel?.provider === 'custom_openai') {
|
if (body.chatModel?.provider === 'custom_openai') {
|
||||||
llm = new ChatOpenAI({
|
llm = new ChatOpenAI({
|
||||||
openAIApiKey: getCustomOpenaiApiKey(),
|
apiKey: getCustomOpenaiApiKey(),
|
||||||
modelName: getCustomOpenaiModelName(),
|
modelName: getCustomOpenaiModelName(),
|
||||||
temperature: 0.7,
|
temperature: 0.7,
|
||||||
configuration: {
|
configuration: {
|
||||||
|
@@ -49,7 +49,7 @@ export const POST = async (req: Request) => {
|
|||||||
|
|
||||||
if (body.chatModel?.provider === 'custom_openai') {
|
if (body.chatModel?.provider === 'custom_openai') {
|
||||||
llm = new ChatOpenAI({
|
llm = new ChatOpenAI({
|
||||||
openAIApiKey: getCustomOpenaiApiKey(),
|
apiKey: getCustomOpenaiApiKey(),
|
||||||
modelName: getCustomOpenaiModelName(),
|
modelName: getCustomOpenaiModelName(),
|
||||||
temperature: 0.7,
|
temperature: 0.7,
|
||||||
configuration: {
|
configuration: {
|
||||||
|
@@ -81,8 +81,7 @@ export const POST = async (req: Request) => {
|
|||||||
if (body.chatModel?.provider === 'custom_openai') {
|
if (body.chatModel?.provider === 'custom_openai') {
|
||||||
llm = new ChatOpenAI({
|
llm = new ChatOpenAI({
|
||||||
modelName: body.chatModel?.name || getCustomOpenaiModelName(),
|
modelName: body.chatModel?.name || getCustomOpenaiModelName(),
|
||||||
openAIApiKey:
|
apiKey: body.chatModel?.customOpenAIKey || getCustomOpenaiApiKey(),
|
||||||
body.chatModel?.customOpenAIKey || getCustomOpenaiApiKey(),
|
|
||||||
temperature: 0.7,
|
temperature: 0.7,
|
||||||
configuration: {
|
configuration: {
|
||||||
baseURL:
|
baseURL:
|
||||||
|
@@ -48,7 +48,7 @@ export const POST = async (req: Request) => {
|
|||||||
|
|
||||||
if (body.chatModel?.provider === 'custom_openai') {
|
if (body.chatModel?.provider === 'custom_openai') {
|
||||||
llm = new ChatOpenAI({
|
llm = new ChatOpenAI({
|
||||||
openAIApiKey: getCustomOpenaiApiKey(),
|
apiKey: getCustomOpenaiApiKey(),
|
||||||
modelName: getCustomOpenaiModelName(),
|
modelName: getCustomOpenaiModelName(),
|
||||||
temperature: 0.7,
|
temperature: 0.7,
|
||||||
configuration: {
|
configuration: {
|
||||||
|
@@ -49,7 +49,7 @@ export const POST = async (req: Request) => {
|
|||||||
|
|
||||||
if (body.chatModel?.provider === 'custom_openai') {
|
if (body.chatModel?.provider === 'custom_openai') {
|
||||||
llm = new ChatOpenAI({
|
llm = new ChatOpenAI({
|
||||||
openAIApiKey: getCustomOpenaiApiKey(),
|
apiKey: getCustomOpenaiApiKey(),
|
||||||
modelName: getCustomOpenaiModelName(),
|
modelName: getCustomOpenaiModelName(),
|
||||||
temperature: 0.7,
|
temperature: 0.7,
|
||||||
configuration: {
|
configuration: {
|
||||||
|
@@ -1,7 +1,10 @@
|
|||||||
export const POST = async (req: Request) => {
|
export const POST = async (req: Request) => {
|
||||||
try {
|
try {
|
||||||
const body: { lat: number; lng: number; temperatureUnit: 'C' | 'F' } =
|
const body: {
|
||||||
await req.json();
|
lat: number;
|
||||||
|
lng: number;
|
||||||
|
measureUnit: 'Imperial' | 'Metric';
|
||||||
|
} = await req.json();
|
||||||
|
|
||||||
if (!body.lat || !body.lng) {
|
if (!body.lat || !body.lng) {
|
||||||
return Response.json(
|
return Response.json(
|
||||||
@@ -13,7 +16,9 @@ export const POST = async (req: Request) => {
|
|||||||
}
|
}
|
||||||
|
|
||||||
const res = await fetch(
|
const res = await fetch(
|
||||||
`https://api.open-meteo.com/v1/forecast?latitude=${body.lat}&longitude=${body.lng}¤t=weather_code,temperature_2m,is_day,relative_humidity_2m,wind_speed_10m&timezone=auto${body.temperatureUnit === 'C' ? '' : '&temperature_unit=fahrenheit'}`,
|
`https://api.open-meteo.com/v1/forecast?latitude=${body.lat}&longitude=${body.lng}¤t=weather_code,temperature_2m,is_day,relative_humidity_2m,wind_speed_10m&timezone=auto${
|
||||||
|
body.measureUnit === 'Metric' ? '' : '&temperature_unit=fahrenheit'
|
||||||
|
}${body.measureUnit === 'Metric' ? '' : '&wind_speed_unit=mph'}`,
|
||||||
);
|
);
|
||||||
|
|
||||||
const data = await res.json();
|
const data = await res.json();
|
||||||
@@ -35,13 +40,15 @@ export const POST = async (req: Request) => {
|
|||||||
windSpeed: number;
|
windSpeed: number;
|
||||||
icon: string;
|
icon: string;
|
||||||
temperatureUnit: 'C' | 'F';
|
temperatureUnit: 'C' | 'F';
|
||||||
|
windSpeedUnit: 'm/s' | 'mph';
|
||||||
} = {
|
} = {
|
||||||
temperature: data.current.temperature_2m,
|
temperature: data.current.temperature_2m,
|
||||||
condition: '',
|
condition: '',
|
||||||
humidity: data.current.relative_humidity_2m,
|
humidity: data.current.relative_humidity_2m,
|
||||||
windSpeed: data.current.wind_speed_10m,
|
windSpeed: data.current.wind_speed_10m,
|
||||||
icon: '',
|
icon: '',
|
||||||
temperatureUnit: body.temperatureUnit,
|
temperatureUnit: body.measureUnit === 'Metric' ? 'C' : 'F',
|
||||||
|
windSpeedUnit: body.measureUnit === 'Metric' ? 'm/s' : 'mph',
|
||||||
};
|
};
|
||||||
|
|
||||||
const code = data.current.weather_code;
|
const code = data.current.weather_code;
|
||||||
|
@@ -148,7 +148,9 @@ const Page = () => {
|
|||||||
const [automaticImageSearch, setAutomaticImageSearch] = useState(false);
|
const [automaticImageSearch, setAutomaticImageSearch] = useState(false);
|
||||||
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
|
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
|
||||||
const [systemInstructions, setSystemInstructions] = useState<string>('');
|
const [systemInstructions, setSystemInstructions] = useState<string>('');
|
||||||
const [temperatureUnit, setTemperatureUnit] = useState<'C' | 'F'>('C');
|
const [measureUnit, setMeasureUnit] = useState<'Imperial' | 'Metric'>(
|
||||||
|
'Metric',
|
||||||
|
);
|
||||||
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
|
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
|
||||||
|
|
||||||
useEffect(() => {
|
useEffect(() => {
|
||||||
@@ -211,7 +213,9 @@ const Page = () => {
|
|||||||
|
|
||||||
setSystemInstructions(localStorage.getItem('systemInstructions')!);
|
setSystemInstructions(localStorage.getItem('systemInstructions')!);
|
||||||
|
|
||||||
setTemperatureUnit(localStorage.getItem('temperatureUnit')! as 'C' | 'F');
|
setMeasureUnit(
|
||||||
|
localStorage.getItem('measureUnit')! as 'Imperial' | 'Metric',
|
||||||
|
);
|
||||||
|
|
||||||
setIsLoading(false);
|
setIsLoading(false);
|
||||||
};
|
};
|
||||||
@@ -371,8 +375,8 @@ const Page = () => {
|
|||||||
localStorage.setItem('embeddingModel', value);
|
localStorage.setItem('embeddingModel', value);
|
||||||
} else if (key === 'systemInstructions') {
|
} else if (key === 'systemInstructions') {
|
||||||
localStorage.setItem('systemInstructions', value);
|
localStorage.setItem('systemInstructions', value);
|
||||||
} else if (key === 'temperatureUnit') {
|
} else if (key === 'measureUnit') {
|
||||||
localStorage.setItem('temperatureUnit', value.toString());
|
localStorage.setItem('measureUnit', value.toString());
|
||||||
}
|
}
|
||||||
} catch (err) {
|
} catch (err) {
|
||||||
console.error('Failed to save:', err);
|
console.error('Failed to save:', err);
|
||||||
@@ -430,22 +434,22 @@ const Page = () => {
|
|||||||
</div>
|
</div>
|
||||||
<div className="flex flex-col space-y-1">
|
<div className="flex flex-col space-y-1">
|
||||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||||
Temperature Unit
|
Measurement Units
|
||||||
</p>
|
</p>
|
||||||
<Select
|
<Select
|
||||||
value={temperatureUnit ?? undefined}
|
value={measureUnit ?? undefined}
|
||||||
onChange={(e) => {
|
onChange={(e) => {
|
||||||
setTemperatureUnit(e.target.value as 'C' | 'F');
|
setMeasureUnit(e.target.value as 'Imperial' | 'Metric');
|
||||||
saveConfig('temperatureUnit', e.target.value);
|
saveConfig('measureUnit', e.target.value);
|
||||||
}}
|
}}
|
||||||
options={[
|
options={[
|
||||||
{
|
{
|
||||||
label: 'Celsius',
|
label: 'Metric',
|
||||||
value: 'C',
|
value: 'Metric',
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
label: 'Fahrenheit',
|
label: 'Imperial',
|
||||||
value: 'F',
|
value: 'Imperial',
|
||||||
},
|
},
|
||||||
]}
|
]}
|
||||||
/>
|
/>
|
||||||
|
@@ -354,7 +354,11 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
|||||||
}
|
}
|
||||||
}, [isMessagesLoaded, isConfigReady]);
|
}, [isMessagesLoaded, isConfigReady]);
|
||||||
|
|
||||||
const sendMessage = async (message: string, messageId?: string) => {
|
const sendMessage = async (
|
||||||
|
message: string,
|
||||||
|
messageId?: string,
|
||||||
|
rewrite = false,
|
||||||
|
) => {
|
||||||
if (loading) return;
|
if (loading) return;
|
||||||
if (!isConfigReady) {
|
if (!isConfigReady) {
|
||||||
toast.error('Cannot send message before the configuration is ready');
|
toast.error('Cannot send message before the configuration is ready');
|
||||||
@@ -482,6 +486,8 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
const messageIndex = messages.findIndex((m) => m.messageId === messageId);
|
||||||
|
|
||||||
const res = await fetch('/api/chat', {
|
const res = await fetch('/api/chat', {
|
||||||
method: 'POST',
|
method: 'POST',
|
||||||
headers: {
|
headers: {
|
||||||
@@ -498,7 +504,9 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
|||||||
files: fileIds,
|
files: fileIds,
|
||||||
focusMode: focusMode,
|
focusMode: focusMode,
|
||||||
optimizationMode: optimizationMode,
|
optimizationMode: optimizationMode,
|
||||||
history: chatHistory,
|
history: rewrite
|
||||||
|
? chatHistory.slice(0, messageIndex === -1 ? undefined : messageIndex)
|
||||||
|
: chatHistory,
|
||||||
chatModel: {
|
chatModel: {
|
||||||
name: chatModelProvider.name,
|
name: chatModelProvider.name,
|
||||||
provider: chatModelProvider.provider,
|
provider: chatModelProvider.provider,
|
||||||
@@ -552,7 +560,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
|||||||
return [...prev.slice(0, messages.length > 2 ? index - 1 : 0)];
|
return [...prev.slice(0, messages.length > 2 ? index - 1 : 0)];
|
||||||
});
|
});
|
||||||
|
|
||||||
sendMessage(message.content, message.messageId);
|
sendMessage(message.content, message.messageId, true);
|
||||||
};
|
};
|
||||||
|
|
||||||
useEffect(() => {
|
useEffect(() => {
|
||||||
|
@@ -21,8 +21,16 @@ import SearchVideos from './SearchVideos';
|
|||||||
import { useSpeech } from 'react-text-to-speech';
|
import { useSpeech } from 'react-text-to-speech';
|
||||||
import ThinkBox from './ThinkBox';
|
import ThinkBox from './ThinkBox';
|
||||||
|
|
||||||
const ThinkTagProcessor = ({ children }: { children: React.ReactNode }) => {
|
const ThinkTagProcessor = ({
|
||||||
return <ThinkBox content={children as string} />;
|
children,
|
||||||
|
thinkingEnded,
|
||||||
|
}: {
|
||||||
|
children: React.ReactNode;
|
||||||
|
thinkingEnded: boolean;
|
||||||
|
}) => {
|
||||||
|
return (
|
||||||
|
<ThinkBox content={children as string} thinkingEnded={thinkingEnded} />
|
||||||
|
);
|
||||||
};
|
};
|
||||||
|
|
||||||
const MessageBox = ({
|
const MessageBox = ({
|
||||||
@@ -46,6 +54,7 @@ const MessageBox = ({
|
|||||||
}) => {
|
}) => {
|
||||||
const [parsedMessage, setParsedMessage] = useState(message.content);
|
const [parsedMessage, setParsedMessage] = useState(message.content);
|
||||||
const [speechMessage, setSpeechMessage] = useState(message.content);
|
const [speechMessage, setSpeechMessage] = useState(message.content);
|
||||||
|
const [thinkingEnded, setThinkingEnded] = useState(false);
|
||||||
|
|
||||||
useEffect(() => {
|
useEffect(() => {
|
||||||
const citationRegex = /\[([^\]]+)\]/g;
|
const citationRegex = /\[([^\]]+)\]/g;
|
||||||
@@ -61,6 +70,10 @@ const MessageBox = ({
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (message.role === 'assistant' && message.content.includes('</think>')) {
|
||||||
|
setThinkingEnded(true);
|
||||||
|
}
|
||||||
|
|
||||||
if (
|
if (
|
||||||
message.role === 'assistant' &&
|
message.role === 'assistant' &&
|
||||||
message?.sources &&
|
message?.sources &&
|
||||||
@@ -88,7 +101,7 @@ const MessageBox = ({
|
|||||||
if (url) {
|
if (url) {
|
||||||
return `<a href="${url}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${numStr}</a>`;
|
return `<a href="${url}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${numStr}</a>`;
|
||||||
} else {
|
} else {
|
||||||
return `[${numStr}]`;
|
return ``;
|
||||||
}
|
}
|
||||||
})
|
})
|
||||||
.join('');
|
.join('');
|
||||||
@@ -99,6 +112,14 @@ const MessageBox = ({
|
|||||||
);
|
);
|
||||||
setSpeechMessage(message.content.replace(regex, ''));
|
setSpeechMessage(message.content.replace(regex, ''));
|
||||||
return;
|
return;
|
||||||
|
} else if (
|
||||||
|
message.role === 'assistant' &&
|
||||||
|
message?.sources &&
|
||||||
|
message.sources.length === 0
|
||||||
|
) {
|
||||||
|
setParsedMessage(processedMessage.replace(regex, ''));
|
||||||
|
setSpeechMessage(message.content.replace(regex, ''));
|
||||||
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
setSpeechMessage(message.content.replace(regex, ''));
|
setSpeechMessage(message.content.replace(regex, ''));
|
||||||
@@ -111,6 +132,9 @@ const MessageBox = ({
|
|||||||
overrides: {
|
overrides: {
|
||||||
think: {
|
think: {
|
||||||
component: ThinkTagProcessor,
|
component: ThinkTagProcessor,
|
||||||
|
props: {
|
||||||
|
thinkingEnded: thinkingEnded,
|
||||||
|
},
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
};
|
};
|
||||||
|
@@ -1,15 +1,23 @@
|
|||||||
'use client';
|
'use client';
|
||||||
|
|
||||||
import { useState } from 'react';
|
import { useEffect, useState } from 'react';
|
||||||
import { cn } from '@/lib/utils';
|
|
||||||
import { ChevronDown, ChevronUp, BrainCircuit } from 'lucide-react';
|
import { ChevronDown, ChevronUp, BrainCircuit } from 'lucide-react';
|
||||||
|
|
||||||
interface ThinkBoxProps {
|
interface ThinkBoxProps {
|
||||||
content: string;
|
content: string;
|
||||||
|
thinkingEnded: boolean;
|
||||||
}
|
}
|
||||||
|
|
||||||
const ThinkBox = ({ content }: ThinkBoxProps) => {
|
const ThinkBox = ({ content, thinkingEnded }: ThinkBoxProps) => {
|
||||||
const [isExpanded, setIsExpanded] = useState(false);
|
const [isExpanded, setIsExpanded] = useState(true);
|
||||||
|
|
||||||
|
useEffect(() => {
|
||||||
|
if (thinkingEnded) {
|
||||||
|
setIsExpanded(false);
|
||||||
|
} else {
|
||||||
|
setIsExpanded(true);
|
||||||
|
}
|
||||||
|
}, [thinkingEnded]);
|
||||||
|
|
||||||
return (
|
return (
|
||||||
<div className="my-4 bg-light-secondary/50 dark:bg-dark-secondary/50 rounded-xl border border-light-200 dark:border-dark-200 overflow-hidden">
|
<div className="my-4 bg-light-secondary/50 dark:bg-dark-secondary/50 rounded-xl border border-light-200 dark:border-dark-200 overflow-hidden">
|
||||||
|
@@ -10,6 +10,7 @@ const WeatherWidget = () => {
|
|||||||
windSpeed: 0,
|
windSpeed: 0,
|
||||||
icon: '',
|
icon: '',
|
||||||
temperatureUnit: 'C',
|
temperatureUnit: 'C',
|
||||||
|
windSpeedUnit: 'm/s',
|
||||||
});
|
});
|
||||||
|
|
||||||
const [loading, setLoading] = useState(true);
|
const [loading, setLoading] = useState(true);
|
||||||
@@ -75,7 +76,7 @@ const WeatherWidget = () => {
|
|||||||
body: JSON.stringify({
|
body: JSON.stringify({
|
||||||
lat: location.latitude,
|
lat: location.latitude,
|
||||||
lng: location.longitude,
|
lng: location.longitude,
|
||||||
temperatureUnit: localStorage.getItem('temperatureUnit') ?? 'C',
|
measureUnit: localStorage.getItem('measureUnit') ?? 'Metric',
|
||||||
}),
|
}),
|
||||||
});
|
});
|
||||||
|
|
||||||
@@ -95,6 +96,7 @@ const WeatherWidget = () => {
|
|||||||
windSpeed: data.windSpeed,
|
windSpeed: data.windSpeed,
|
||||||
icon: data.icon,
|
icon: data.icon,
|
||||||
temperatureUnit: data.temperatureUnit,
|
temperatureUnit: data.temperatureUnit,
|
||||||
|
windSpeedUnit: data.windSpeedUnit,
|
||||||
});
|
});
|
||||||
setLoading(false);
|
setLoading(false);
|
||||||
});
|
});
|
||||||
@@ -139,7 +141,7 @@ const WeatherWidget = () => {
|
|||||||
</span>
|
</span>
|
||||||
<span className="flex items-center text-xs text-black/60 dark:text-white/60">
|
<span className="flex items-center text-xs text-black/60 dark:text-white/60">
|
||||||
<Wind className="w-3 h-3 mr-1" />
|
<Wind className="w-3 h-3 mr-1" />
|
||||||
{data.windSpeed} km/h
|
{data.windSpeed} {data.windSpeedUnit}
|
||||||
</span>
|
</span>
|
||||||
</div>
|
</div>
|
||||||
<span className="text-xs text-black/60 dark:text-white/60 mt-1">
|
<span className="text-xs text-black/60 dark:text-white/60 mt-1">
|
||||||
|
@@ -3,32 +3,18 @@ import {
|
|||||||
RunnableMap,
|
RunnableMap,
|
||||||
RunnableLambda,
|
RunnableLambda,
|
||||||
} from '@langchain/core/runnables';
|
} from '@langchain/core/runnables';
|
||||||
import { PromptTemplate } from '@langchain/core/prompts';
|
import { ChatPromptTemplate } from '@langchain/core/prompts';
|
||||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||||
import { BaseMessage } from '@langchain/core/messages';
|
import { BaseMessage } from '@langchain/core/messages';
|
||||||
import { StringOutputParser } from '@langchain/core/output_parsers';
|
import { StringOutputParser } from '@langchain/core/output_parsers';
|
||||||
import { searchSearxng } from '../searxng';
|
import { searchSearxng } from '../searxng';
|
||||||
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||||
|
import LineOutputParser from '../outputParsers/lineOutputParser';
|
||||||
|
|
||||||
const imageSearchChainPrompt = `
|
const imageSearchChainPrompt = `
|
||||||
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search the web for images.
|
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search the web for images.
|
||||||
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
|
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
|
||||||
|
Output only the rephrased query wrapped in an XML <query> element. Do not include any explanation or additional text.
|
||||||
Example:
|
|
||||||
1. Follow up question: What is a cat?
|
|
||||||
Rephrased: A cat
|
|
||||||
|
|
||||||
2. Follow up question: What is a car? How does it works?
|
|
||||||
Rephrased: Car working
|
|
||||||
|
|
||||||
3. Follow up question: How does an AC work?
|
|
||||||
Rephrased: AC working
|
|
||||||
|
|
||||||
Conversation:
|
|
||||||
{chat_history}
|
|
||||||
|
|
||||||
Follow up question: {query}
|
|
||||||
Rephrased question:
|
|
||||||
`;
|
`;
|
||||||
|
|
||||||
type ImageSearchChainInput = {
|
type ImageSearchChainInput = {
|
||||||
@@ -54,12 +40,39 @@ const createImageSearchChain = (llm: BaseChatModel) => {
|
|||||||
return input.query;
|
return input.query;
|
||||||
},
|
},
|
||||||
}),
|
}),
|
||||||
PromptTemplate.fromTemplate(imageSearchChainPrompt),
|
ChatPromptTemplate.fromMessages([
|
||||||
|
['system', imageSearchChainPrompt],
|
||||||
|
[
|
||||||
|
'user',
|
||||||
|
'<conversation>\n</conversation>\n<follow_up>\nWhat is a cat?\n</follow_up>',
|
||||||
|
],
|
||||||
|
['assistant', '<query>A cat</query>'],
|
||||||
|
|
||||||
|
[
|
||||||
|
'user',
|
||||||
|
'<conversation>\n</conversation>\n<follow_up>\nWhat is a car? How does it work?\n</follow_up>',
|
||||||
|
],
|
||||||
|
['assistant', '<query>Car working</query>'],
|
||||||
|
[
|
||||||
|
'user',
|
||||||
|
'<conversation>\n</conversation>\n<follow_up>\nHow does an AC work?\n</follow_up>',
|
||||||
|
],
|
||||||
|
['assistant', '<query>AC working</query>'],
|
||||||
|
[
|
||||||
|
'user',
|
||||||
|
'<conversation>{chat_history}</conversation>\n<follow_up>\n{query}\n</follow_up>',
|
||||||
|
],
|
||||||
|
]),
|
||||||
llm,
|
llm,
|
||||||
strParser,
|
strParser,
|
||||||
RunnableLambda.from(async (input: string) => {
|
RunnableLambda.from(async (input: string) => {
|
||||||
input = input.replace(/<think>.*?<\/think>/g, '');
|
const queryParser = new LineOutputParser({
|
||||||
|
key: 'query',
|
||||||
|
});
|
||||||
|
|
||||||
|
return await queryParser.parse(input);
|
||||||
|
}),
|
||||||
|
RunnableLambda.from(async (input: string) => {
|
||||||
const res = await searchSearxng(input, {
|
const res = await searchSearxng(input, {
|
||||||
engines: ['bing images', 'google images'],
|
engines: ['bing images', 'google images'],
|
||||||
});
|
});
|
||||||
|
@@ -3,33 +3,19 @@ import {
|
|||||||
RunnableMap,
|
RunnableMap,
|
||||||
RunnableLambda,
|
RunnableLambda,
|
||||||
} from '@langchain/core/runnables';
|
} from '@langchain/core/runnables';
|
||||||
import { PromptTemplate } from '@langchain/core/prompts';
|
import { ChatPromptTemplate } from '@langchain/core/prompts';
|
||||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||||
import { BaseMessage } from '@langchain/core/messages';
|
import { BaseMessage } from '@langchain/core/messages';
|
||||||
import { StringOutputParser } from '@langchain/core/output_parsers';
|
import { StringOutputParser } from '@langchain/core/output_parsers';
|
||||||
import { searchSearxng } from '../searxng';
|
import { searchSearxng } from '../searxng';
|
||||||
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||||
|
import LineOutputParser from '../outputParsers/lineOutputParser';
|
||||||
|
|
||||||
const VideoSearchChainPrompt = `
|
const videoSearchChainPrompt = `
|
||||||
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search Youtube for videos.
|
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search Youtube for videos.
|
||||||
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
|
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
|
||||||
|
Output only the rephrased query wrapped in an XML <query> element. Do not include any explanation or additional text.
|
||||||
Example:
|
`;
|
||||||
1. Follow up question: How does a car work?
|
|
||||||
Rephrased: How does a car work?
|
|
||||||
|
|
||||||
2. Follow up question: What is the theory of relativity?
|
|
||||||
Rephrased: What is theory of relativity
|
|
||||||
|
|
||||||
3. Follow up question: How does an AC work?
|
|
||||||
Rephrased: How does an AC work
|
|
||||||
|
|
||||||
Conversation:
|
|
||||||
{chat_history}
|
|
||||||
|
|
||||||
Follow up question: {query}
|
|
||||||
Rephrased question:
|
|
||||||
`;
|
|
||||||
|
|
||||||
type VideoSearchChainInput = {
|
type VideoSearchChainInput = {
|
||||||
chat_history: BaseMessage[];
|
chat_history: BaseMessage[];
|
||||||
@@ -55,12 +41,37 @@ const createVideoSearchChain = (llm: BaseChatModel) => {
|
|||||||
return input.query;
|
return input.query;
|
||||||
},
|
},
|
||||||
}),
|
}),
|
||||||
PromptTemplate.fromTemplate(VideoSearchChainPrompt),
|
ChatPromptTemplate.fromMessages([
|
||||||
|
['system', videoSearchChainPrompt],
|
||||||
|
[
|
||||||
|
'user',
|
||||||
|
'<conversation>\n</conversation>\n<follow_up>\nHow does a car work?\n</follow_up>',
|
||||||
|
],
|
||||||
|
['assistant', '<query>How does a car work?</query>'],
|
||||||
|
[
|
||||||
|
'user',
|
||||||
|
'<conversation>\n</conversation>\n<follow_up>\nWhat is the theory of relativity?\n</follow_up>',
|
||||||
|
],
|
||||||
|
['assistant', '<query>Theory of relativity</query>'],
|
||||||
|
[
|
||||||
|
'user',
|
||||||
|
'<conversation>\n</conversation>\n<follow_up>\nHow does an AC work?\n</follow_up>',
|
||||||
|
],
|
||||||
|
['assistant', '<query>AC working</query>'],
|
||||||
|
[
|
||||||
|
'user',
|
||||||
|
'<conversation>{chat_history}</conversation>\n<follow_up>\n{query}\n</follow_up>',
|
||||||
|
],
|
||||||
|
]),
|
||||||
llm,
|
llm,
|
||||||
strParser,
|
strParser,
|
||||||
RunnableLambda.from(async (input: string) => {
|
RunnableLambda.from(async (input: string) => {
|
||||||
input = input.replace(/<think>.*?<\/think>/g, '');
|
const queryParser = new LineOutputParser({
|
||||||
|
key: 'query',
|
||||||
|
});
|
||||||
|
return await queryParser.parse(input);
|
||||||
|
}),
|
||||||
|
RunnableLambda.from(async (input: string) => {
|
||||||
const res = await searchSearxng(input, {
|
const res = await searchSearxng(input, {
|
||||||
engines: ['youtube'],
|
engines: ['youtube'],
|
||||||
});
|
});
|
||||||
@@ -92,8 +103,8 @@ const handleVideoSearch = (
|
|||||||
input: VideoSearchChainInput,
|
input: VideoSearchChainInput,
|
||||||
llm: BaseChatModel,
|
llm: BaseChatModel,
|
||||||
) => {
|
) => {
|
||||||
const VideoSearchChain = createVideoSearchChain(llm);
|
const videoSearchChain = createVideoSearchChain(llm);
|
||||||
return VideoSearchChain.invoke(input);
|
return videoSearchChain.invoke(input);
|
||||||
};
|
};
|
||||||
|
|
||||||
export default handleVideoSearch;
|
export default handleVideoSearch;
|
||||||
|
@@ -38,7 +38,7 @@ export const loadAimlApiChatModels = async () => {
|
|||||||
chatModels[model.id] = {
|
chatModels[model.id] = {
|
||||||
displayName: model.name || model.id,
|
displayName: model.name || model.id,
|
||||||
model: new ChatOpenAI({
|
model: new ChatOpenAI({
|
||||||
openAIApiKey: apiKey,
|
apiKey: apiKey,
|
||||||
modelName: model.id,
|
modelName: model.id,
|
||||||
temperature: 0.7,
|
temperature: 0.7,
|
||||||
configuration: {
|
configuration: {
|
||||||
@@ -76,7 +76,7 @@ export const loadAimlApiEmbeddingModels = async () => {
|
|||||||
embeddingModels[model.id] = {
|
embeddingModels[model.id] = {
|
||||||
displayName: model.name || model.id,
|
displayName: model.name || model.id,
|
||||||
model: new OpenAIEmbeddings({
|
model: new OpenAIEmbeddings({
|
||||||
openAIApiKey: apiKey,
|
apiKey: apiKey,
|
||||||
modelName: model.id,
|
modelName: model.id,
|
||||||
configuration: {
|
configuration: {
|
||||||
baseURL: API_URL,
|
baseURL: API_URL,
|
||||||
|
@@ -31,7 +31,7 @@ export const loadDeepseekChatModels = async () => {
|
|||||||
chatModels[model.key] = {
|
chatModels[model.key] = {
|
||||||
displayName: model.displayName,
|
displayName: model.displayName,
|
||||||
model: new ChatOpenAI({
|
model: new ChatOpenAI({
|
||||||
openAIApiKey: deepseekApiKey,
|
apiKey: deepseekApiKey,
|
||||||
modelName: model.key,
|
modelName: model.key,
|
||||||
temperature: 0.7,
|
temperature: 0.7,
|
||||||
configuration: {
|
configuration: {
|
||||||
|
@@ -14,16 +14,12 @@ import { Embeddings } from '@langchain/core/embeddings';
|
|||||||
|
|
||||||
const geminiChatModels: Record<string, string>[] = [
|
const geminiChatModels: Record<string, string>[] = [
|
||||||
{
|
{
|
||||||
displayName: 'Gemini 2.5 Flash Preview 05-20',
|
displayName: 'Gemini 2.5 Flash',
|
||||||
key: 'gemini-2.5-flash-preview-05-20',
|
key: 'gemini-2.5-flash',
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
displayName: 'Gemini 2.5 Pro Preview',
|
displayName: 'Gemini 2.5 Pro',
|
||||||
key: 'gemini-2.5-pro-preview-05-06',
|
key: 'gemini-2.5-pro',
|
||||||
},
|
|
||||||
{
|
|
||||||
displayName: 'Gemini 2.5 Pro Experimental',
|
|
||||||
key: 'gemini-2.5-pro-preview-05-06',
|
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
displayName: 'Gemini 2.0 Flash',
|
displayName: 'Gemini 2.0 Flash',
|
||||||
@@ -75,7 +71,7 @@ export const loadGeminiChatModels = async () => {
|
|||||||
displayName: model.displayName,
|
displayName: model.displayName,
|
||||||
model: new ChatGoogleGenerativeAI({
|
model: new ChatGoogleGenerativeAI({
|
||||||
apiKey: geminiApiKey,
|
apiKey: geminiApiKey,
|
||||||
modelName: model.key,
|
model: model.key,
|
||||||
temperature: 0.7,
|
temperature: 0.7,
|
||||||
}) as unknown as BaseChatModel,
|
}) as unknown as BaseChatModel,
|
||||||
};
|
};
|
||||||
@@ -108,7 +104,7 @@ export const loadGeminiEmbeddingModels = async () => {
|
|||||||
|
|
||||||
return embeddingModels;
|
return embeddingModels;
|
||||||
} catch (err) {
|
} catch (err) {
|
||||||
console.error(`Error loading OpenAI embeddings models: ${err}`);
|
console.error(`Error loading Gemini embeddings models: ${err}`);
|
||||||
return {};
|
return {};
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
@@ -29,12 +29,15 @@ export const loadGroqChatModels = async () => {
|
|||||||
chatModels[model.id] = {
|
chatModels[model.id] = {
|
||||||
displayName: model.id,
|
displayName: model.id,
|
||||||
model: new ChatOpenAI({
|
model: new ChatOpenAI({
|
||||||
openAIApiKey: groqApiKey,
|
apiKey: groqApiKey,
|
||||||
modelName: model.id,
|
modelName: model.id,
|
||||||
temperature: 0.7,
|
temperature: 0.7,
|
||||||
configuration: {
|
configuration: {
|
||||||
baseURL: 'https://api.groq.com/openai/v1',
|
baseURL: 'https://api.groq.com/openai/v1',
|
||||||
},
|
},
|
||||||
|
metadata: {
|
||||||
|
'model-type': 'groq',
|
||||||
|
},
|
||||||
}) as unknown as BaseChatModel,
|
}) as unknown as BaseChatModel,
|
||||||
};
|
};
|
||||||
});
|
});
|
||||||
|
@@ -118,7 +118,7 @@ export const getAvailableChatModelProviders = async () => {
|
|||||||
[customOpenAiModelName]: {
|
[customOpenAiModelName]: {
|
||||||
displayName: customOpenAiModelName,
|
displayName: customOpenAiModelName,
|
||||||
model: new ChatOpenAI({
|
model: new ChatOpenAI({
|
||||||
openAIApiKey: customOpenAiApiKey,
|
apiKey: customOpenAiApiKey,
|
||||||
modelName: customOpenAiModelName,
|
modelName: customOpenAiModelName,
|
||||||
temperature: 0.7,
|
temperature: 0.7,
|
||||||
configuration: {
|
configuration: {
|
||||||
|
@@ -47,7 +47,7 @@ export const loadLMStudioChatModels = async () => {
|
|||||||
chatModels[model.id] = {
|
chatModels[model.id] = {
|
||||||
displayName: model.name || model.id,
|
displayName: model.name || model.id,
|
||||||
model: new ChatOpenAI({
|
model: new ChatOpenAI({
|
||||||
openAIApiKey: 'lm-studio',
|
apiKey: 'lm-studio',
|
||||||
configuration: {
|
configuration: {
|
||||||
baseURL: ensureV1Endpoint(endpoint),
|
baseURL: ensureV1Endpoint(endpoint),
|
||||||
},
|
},
|
||||||
@@ -83,7 +83,7 @@ export const loadLMStudioEmbeddingsModels = async () => {
|
|||||||
embeddingsModels[model.id] = {
|
embeddingsModels[model.id] = {
|
||||||
displayName: model.name || model.id,
|
displayName: model.name || model.id,
|
||||||
model: new OpenAIEmbeddings({
|
model: new OpenAIEmbeddings({
|
||||||
openAIApiKey: 'lm-studio',
|
apiKey: 'lm-studio',
|
||||||
configuration: {
|
configuration: {
|
||||||
baseURL: ensureV1Endpoint(endpoint),
|
baseURL: ensureV1Endpoint(endpoint),
|
||||||
},
|
},
|
||||||
|
@@ -6,8 +6,8 @@ export const PROVIDER_INFO = {
|
|||||||
key: 'ollama',
|
key: 'ollama',
|
||||||
displayName: 'Ollama',
|
displayName: 'Ollama',
|
||||||
};
|
};
|
||||||
import { ChatOllama } from '@langchain/community/chat_models/ollama';
|
import { ChatOllama } from '@langchain/ollama';
|
||||||
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
|
import { OllamaEmbeddings } from '@langchain/ollama';
|
||||||
|
|
||||||
export const loadOllamaChatModels = async () => {
|
export const loadOllamaChatModels = async () => {
|
||||||
const ollamaApiEndpoint = getOllamaApiEndpoint();
|
const ollamaApiEndpoint = getOllamaApiEndpoint();
|
||||||
|
@@ -67,7 +67,7 @@ export const loadOpenAIChatModels = async () => {
|
|||||||
chatModels[model.key] = {
|
chatModels[model.key] = {
|
||||||
displayName: model.displayName,
|
displayName: model.displayName,
|
||||||
model: new ChatOpenAI({
|
model: new ChatOpenAI({
|
||||||
openAIApiKey: openaiApiKey,
|
apiKey: openaiApiKey,
|
||||||
modelName: model.key,
|
modelName: model.key,
|
||||||
temperature: 0.7,
|
temperature: 0.7,
|
||||||
}) as unknown as BaseChatModel,
|
}) as unknown as BaseChatModel,
|
||||||
@@ -93,7 +93,7 @@ export const loadOpenAIEmbeddingModels = async () => {
|
|||||||
embeddingModels[model.key] = {
|
embeddingModels[model.key] = {
|
||||||
displayName: model.displayName,
|
displayName: model.displayName,
|
||||||
model: new OpenAIEmbeddings({
|
model: new OpenAIEmbeddings({
|
||||||
openAIApiKey: openaiApiKey,
|
apiKey: openaiApiKey,
|
||||||
modelName: model.key,
|
modelName: model.key,
|
||||||
}) as unknown as Embeddings,
|
}) as unknown as Embeddings,
|
||||||
};
|
};
|
||||||
|
@@ -1,8 +1,11 @@
|
|||||||
import { BaseMessage } from '@langchain/core/messages';
|
import { BaseMessage, isAIMessage } from '@langchain/core/messages';
|
||||||
|
|
||||||
const formatChatHistoryAsString = (history: BaseMessage[]) => {
|
const formatChatHistoryAsString = (history: BaseMessage[]) => {
|
||||||
return history
|
return history
|
||||||
.map((message) => `${message._getType()}: ${message.content}`)
|
.map(
|
||||||
|
(message) =>
|
||||||
|
`${isAIMessage(message) ? 'AI' : 'User'}: ${message.content}`,
|
||||||
|
)
|
||||||
.join('\n');
|
.join('\n');
|
||||||
};
|
};
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user