Compare commits

...

44 Commits

Author SHA1 Message Date
WaelAbouceo
8607dc0718 Merge 78cf3f9d5f into 46541e6c0c 2025-02-02 12:25:20 +02:00
WaelAbouceo
78cf3f9d5f test2 2025-02-02 12:20:25 +02:00
WaelAbouceo
7844ca9343 zizo 2025-02-02 12:14:15 +02:00
ItzCrazyKns
46541e6c0c feat(package): update markdown-to-jsx version 2025-02-02 14:31:18 +05:30
ItzCrazyKns
f37686189e feat(output-parsers): add empty check 2025-01-31 17:51:16 +05:30
ItzCrazyKns
0737701de0 Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2025-01-11 13:11:18 +05:30
ItzCrazyKns
5c787bbb55 feat(app): lint & beautify 2025-01-11 13:10:23 +05:30
ItzCrazyKns
2dc60d06e3 feat(chat-window): show settings during error on mobile 2025-01-11 13:10:10 +05:30
ItzCrazyKns
ec90ea1686 Merge pull request #531 from hacking-racoon/feat/video-slide-stop
feat(SearchVideos): modify Lightbox to pause the prev video when sliding
2025-01-07 12:47:38 +05:30
ItzCrazyKns
01230bf1c5 Merge pull request #555 from realies/fix/ws-reconnect
fix(ws-error): add exponential reconnect mechanism
2025-01-07 12:32:06 +05:30
ItzCrazyKns
6d9d712790 feat(chat-window): correctly handle server side WS closure 2025-01-07 12:26:38 +05:30
ItzCrazyKns
99cae076a7 feat(chat-window): display toast when retried 2025-01-07 11:49:40 +05:30
ItzCrazyKns
b7f7d25f54 feat(chat-window): lint & beautify 2025-01-07 11:44:19 +05:30
ItzCrazyKns
0ec54fe6c0 feat(chat-window): remove toast 2025-01-07 11:43:54 +05:30
realies
5526d5f60f fix(ws-error): add exponential reconnect mechanism 2025-01-05 17:29:53 +00:00
ItzCrazyKns
0f6b3c2e69 Merge branch 'pr/538' 2025-01-05 14:15:58 +05:30
Sainadh Devireddy
5a648f34b8 Set pageContent correctly 2025-01-04 10:36:33 -08:00
Sainadh Devireddy
d18e88acc9 Delete msgs only belonging to the chat 2024-12-27 20:55:55 -08:00
ItzCrazyKns
409c811a42 feat(ollama): use axios instead of fetch 2024-12-26 19:02:20 +05:30
ItzCrazyKns
b5acf34ef8 feat(chat-window): fix bugs handling custom openai, closes #529 2024-12-26 18:59:57 +05:30
hacking-racoon
d30f714930 feat(SearchVideos): Modify Lightbox to pause the prev video when moving to next one, preventing interference with new video. 2024-12-25 15:19:23 +09:00
ItzCrazyKns
ee68095157 Merge pull request #523 from bart-jaskulski/groq-models
Update available models from Groq provider
2024-12-21 18:08:40 +05:30
Bart Jaskulski
960e34aa3d Add Llama 3.3 model from Groq
Signed-off-by: Bart Jaskulski <bjaskulski@protonmail.com>
2024-12-19 08:07:36 +01:00
Bart Jaskulski
4cb38148b3 Remove deprecated Groq models
Signed-off-by: Bart Jaskulski <bjaskulski@protonmail.com>
2024-12-19 08:07:14 +01:00
ItzCrazyKns
c755f98230 Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2024-12-18 19:42:28 +05:30
ItzCrazyKns
c3a231a528 feat(readme): add discord server 2024-12-16 20:59:21 +05:30
ItzCrazyKns
f30a61c4aa feat(metaSearchAgent): handle undefined content for YT. search 2024-12-16 18:24:01 +05:30
ItzCrazyKns
ea74e3013c Merge pull request #519 from yslinear/hotfix
feat(anthropic): update chat models to include Claude 3.5 Haiku and new version for Sonnet
2024-12-15 21:32:49 +05:30
Ying-Shan Lin
1c3c689039 feat(anthropic): update chat models to include Claude 3.5 Haiku and new version for Sonnet 2024-12-13 17:24:15 +08:00
ItzCrazyKns
2c5ca94b3c feat(app): lint and beautify 2024-12-05 20:19:52 +05:30
ItzCrazyKns
db7407bfac feat(messageBox): style markdown 2024-12-05 20:19:41 +05:30
ItzCrazyKns
5b3e8a3214 feat(prompts): implement new prompt 2024-12-05 20:19:22 +05:30
ItzCrazyKns
d79d854e2d Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2024-12-02 21:08:06 +05:30
ItzCrazyKns
8cb74f1964 feat(contribution): update guidelines 2024-12-02 21:07:59 +05:30
ItzCrazyKns
f88912784b Merge pull request #466 from timoa/fix/docs-markdown-lint
📚 chore(docs): fix Markdown lint issues in the docs
2024-12-01 21:05:23 +05:30
ItzCrazyKns
e08d864445 feat(focus): only icon on small devices 2024-11-30 20:58:11 +05:30
ItzCrazyKns
e4a0799503 feat(package): bump version 2024-11-29 18:37:02 +05:30
ItzCrazyKns
fdb3d09d12 Merge branch 'feat/single-search' 2024-11-29 18:07:33 +05:30
ItzCrazyKns
177746235a feat(providers): add gemini 2024-11-28 20:47:18 +05:30
ItzCrazyKns
ecad065577 feat(searchAgent): handle empty fileIds 2024-11-27 15:13:46 +05:30
ItzCrazyKns
64ee19c70a feat(messageHandler): switch to webSearch mode if files 2024-11-25 12:34:37 +05:30
ItzCrazyKns
be745501aa feat(package): bump version 2024-11-25 12:23:23 +05:30
ItzCrazyKns
aa176c12f6 Merge pull request #484 from ItzCrazyKns/feat/uploads
Add file uploads
2024-11-24 20:29:46 +05:30
Damien Laureaux
f3e918c3e3 chore(docs): fix Markdown lint issues in the docs 2024-11-15 07:04:45 +01:00
50 changed files with 1271 additions and 389 deletions

View File

@@ -8,6 +8,7 @@ Perplexica's design consists of two main domains:
- **Frontend (`ui` directory)**: This is a Next.js application holding all user interface components. It's a self-contained environment that manages everything the user interacts with. - **Frontend (`ui` directory)**: This is a Next.js application holding all user interface components. It's a self-contained environment that manages everything the user interacts with.
- **Backend (root and `src` directory)**: The backend logic is situated in the `src` folder, but the root directory holds the main `package.json` for backend dependency management. - **Backend (root and `src` directory)**: The backend logic is situated in the `src` folder, but the root directory holds the main `package.json` for backend dependency management.
- All of the focus modes are created using the Meta Search Agent class present in `src/search/metaSearchAgent.ts`. The main logic behind Perplexica lies there.
## Setting Up Your Environment ## Setting Up Your Environment

View File

@@ -1,5 +1,8 @@
# 🚀 Perplexica - An AI-powered search engine 🔎 <!-- omit in toc --> # 🚀 Perplexica - An AI-powered search engine 🔎 <!-- omit in toc -->
[![Discord](https://dcbadge.vercel.app/api/server/26aArMy8tT?style=flat&compact=true)](https://discord.gg/26aArMy8tT)
![preview](.assets/perplexica-screenshot.png?) ![preview](.assets/perplexica-screenshot.png?)
## Table of Contents <!-- omit in toc --> ## Table of Contents <!-- omit in toc -->

View File

@@ -1,4 +1,4 @@
## Perplexica's Architecture # Perplexica's Architecture
Perplexica's architecture consists of the following key components: Perplexica's architecture consists of the following key components:

View File

@@ -1,4 +1,4 @@
## How does Perplexica work? # How does Perplexica work?
Curious about how Perplexica works? Don't worry, we'll cover it here. Before we begin, make sure you've read about the architecture of Perplexica to ensure you understand what it's made up of. Haven't read it? You can read it [here](https://github.com/ItzCrazyKns/Perplexica/tree/master/docs/architecture/README.md). Curious about how Perplexica works? Don't worry, we'll cover it here. Before we begin, make sure you've read about the architecture of Perplexica to ensure you understand what it's made up of. Haven't read it? You can read it [here](https://github.com/ItzCrazyKns/Perplexica/tree/master/docs/architecture/README.md).
@@ -10,10 +10,10 @@ We'll understand how Perplexica works by taking an example of a scenario where a
4. After the information is retrieved, it is based on keyword-based search. We then convert the information into embeddings and the query as well, then we perform a similarity search to find the most relevant sources to answer the query. 4. After the information is retrieved, it is based on keyword-based search. We then convert the information into embeddings and the query as well, then we perform a similarity search to find the most relevant sources to answer the query.
5. After all this is done, the sources are passed to the response generator. This chain takes all the chat history, the query, and the sources. It generates a response that is streamed to the UI. 5. After all this is done, the sources are passed to the response generator. This chain takes all the chat history, the query, and the sources. It generates a response that is streamed to the UI.
### How are the answers cited? ## How are the answers cited?
The LLMs are prompted to do so. We've prompted them so well that they cite the answers themselves, and using some UI magic, we display it to the user. The LLMs are prompted to do so. We've prompted them so well that they cite the answers themselves, and using some UI magic, we display it to the user.
### Image and Video Search ## Image and Video Search
Image and video searches are conducted in a similar manner. A query is always generated first, then we search the web for images and videos that match the query. These results are then returned to the user. Image and video searches are conducted in a similar manner. A query is always generated first, then we search the web for images and videos that match the query. These results are then returned to the user.

View File

@@ -10,27 +10,27 @@ This guide will show you how to make Perplexica available over a network. Follow
3. Stop and remove the existing Perplexica containers and images: 3. Stop and remove the existing Perplexica containers and images:
``` ```bash
docker compose down --rmi all docker compose down --rmi all
``` ```
4. Open the `docker-compose.yaml` file in a text editor like Notepad++ 4. Open the `docker-compose.yaml` file in a text editor like Notepad++
5. Replace `127.0.0.1` with the IP address of the server Perplexica is running on in these two lines: 5. Replace `127.0.0.1` with the IP address of the server Perplexica is running on in these two lines:
``` ```bash
args: args:
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api - NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001 - NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
``` ```
6. Save and close the `docker-compose.yaml` file 6. Save and close the `docker-compose.yaml` file
7. Rebuild and restart the Perplexica container: 7. Rebuild and restart the Perplexica container:
``` ```bash
docker compose up -d --build docker compose up -d --build
``` ```
## macOS ## macOS
@@ -38,37 +38,37 @@ docker compose up -d --build
2. Navigate to the directory with the `docker-compose.yaml` file: 2. Navigate to the directory with the `docker-compose.yaml` file:
``` ```bash
cd /path/to/docker-compose.yaml cd /path/to/docker-compose.yaml
``` ```
3. Stop and remove existing containers and images: 3. Stop and remove existing containers and images:
``` ```bash
docker compose down --rmi all docker compose down --rmi all
``` ```
4. Open `docker-compose.yaml` in a text editor like Sublime Text: 4. Open `docker-compose.yaml` in a text editor like Sublime Text:
``` ```bash
nano docker-compose.yaml nano docker-compose.yaml
``` ```
5. Replace `127.0.0.1` with the server IP in these lines: 5. Replace `127.0.0.1` with the server IP in these lines:
``` ```bash
args: args:
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api - NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001 - NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
``` ```
6. Save and exit the editor 6. Save and exit the editor
7. Rebuild and restart Perplexica: 7. Rebuild and restart Perplexica:
``` ```bash
docker compose up -d --build docker compose up -d --build
``` ```
## Linux ## Linux
@@ -76,34 +76,34 @@ docker compose up -d --build
2. Navigate to the `docker-compose.yaml` directory: 2. Navigate to the `docker-compose.yaml` directory:
``` ```bash
cd /path/to/docker-compose.yaml cd /path/to/docker-compose.yaml
``` ```
3. Stop and remove containers and images: 3. Stop and remove containers and images:
``` ```bash
docker compose down --rmi all docker compose down --rmi all
``` ```
4. Edit `docker-compose.yaml`: 4. Edit `docker-compose.yaml`:
``` ```bash
nano docker-compose.yaml nano docker-compose.yaml
``` ```
5. Replace `127.0.0.1` with the server IP: 5. Replace `127.0.0.1` with the server IP:
``` ```bash
args: args:
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api - NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001 - NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
``` ```
6. Save and exit the editor 6. Save and exit the editor
7. Rebuild and restart Perplexica: 7. Rebuild and restart Perplexica:
``` ```bash
docker compose up -d --build docker compose up -d --build
``` ```

View File

@@ -6,23 +6,23 @@ To update Perplexica to the latest version, follow these steps:
1. Clone the latest version of Perplexica from GitHub: 1. Clone the latest version of Perplexica from GitHub:
```bash ```bash
git clone https://github.com/ItzCrazyKns/Perplexica.git git clone https://github.com/ItzCrazyKns/Perplexica.git
``` ```
2. Navigate to the Project Directory. 2. Navigate to the Project Directory.
3. Pull latest images from registry. 3. Pull latest images from registry.
```bash ```bash
docker compose pull docker compose pull
``` ```
4. Update and Recreate containers. 4. Update and Recreate containers.
```bash ```bash
docker compose up -d docker compose up -d
``` ```
5. Once the command completes running go to http://localhost:3000 and verify the latest changes. 5. Once the command completes running go to http://localhost:3000 and verify the latest changes.
@@ -30,9 +30,9 @@ docker compose up -d
1. Clone the latest version of Perplexica from GitHub: 1. Clone the latest version of Perplexica from GitHub:
```bash ```bash
git clone https://github.com/ItzCrazyKns/Perplexica.git git clone https://github.com/ItzCrazyKns/Perplexica.git
``` ```
2. Navigate to the Project Directory 2. Navigate to the Project Directory
3. Execute `npm i` in both the `ui` folder and the root directory. 3. Execute `npm i` in both the `ui` folder and the root directory.

View File

@@ -1,6 +1,6 @@
{ {
"name": "perplexica-backend", "name": "perplexica-backend",
"version": "1.9.3", "version": "1.10.0-rc2",
"license": "MIT", "license": "MIT",
"author": "ItzCrazyKns", "author": "ItzCrazyKns",
"scripts": { "scripts": {
@@ -31,6 +31,7 @@
"@langchain/anthropic": "^0.2.3", "@langchain/anthropic": "^0.2.3",
"@langchain/community": "^0.2.16", "@langchain/community": "^0.2.16",
"@langchain/openai": "^0.0.25", "@langchain/openai": "^0.0.25",
"@langchain/google-genai": "^0.0.23",
"@xenova/transformers": "^2.17.1", "@xenova/transformers": "^2.17.1",
"axios": "^1.6.8", "axios": "^1.6.8",
"better-sqlite3": "^11.0.0", "better-sqlite3": "^11.0.0",

117
project_structure.txt Normal file
View File

@@ -0,0 +1,117 @@
.
├── CONTRIBUTING.md
├── LICENSE
├── README.md
├── app.dockerfile
├── backend.dockerfile
├── config.toml
├── data
├── docker-compose.yaml
├── docs
│   ├── API
│   │   └── SEARCH.md
│   ├── architecture
│   │   ├── README.md
│   │   └── WORKING.md
│   └── installation
│   ├── NETWORKING.md
│   └── UPDATING.md
├── drizzle.config.ts
├── package.json
├── project_structure.txt
├── searxng
│   ├── limiter.toml
│   ├── settings.yml
│   └── uwsgi.ini
├── src
│   ├── app.ts
│   ├── chains
│   │   ├── imageSearchAgent.ts
│   │   ├── suggestionGeneratorAgent.ts
│   │   └── videoSearchAgent.ts
│   ├── config.ts
│   ├── db
│   │   ├── index.ts
│   │   └── schema.ts
│   ├── lib
│   │   ├── huggingfaceTransformer.ts
│   │   ├── outputParsers
│   │   ├── providers
│   │   └── searxng.ts
│   ├── prompts
│   │   ├── academicSearch.ts
│   │   ├── index.ts
│   │   ├── redditSearch.ts
│   │   ├── webSearch.ts
│   │   ├── wolframAlpha.ts
│   │   ├── writingAssistant.ts
│   │   └── youtubeSearch.ts
│   ├── routes
│   │   ├── chats.ts
│   │   ├── config.ts
│   │   ├── discover.ts
│   │   ├── images.ts
│   │   ├── index.ts
│   │   ├── models.ts
│   │   ├── search.ts
│   │   ├── suggestions.ts
│   │   ├── uploads.ts
│   │   └── videos.ts
│   ├── search
│   │   └── metaSearchAgent.ts
│   ├── utils
│   │   ├── computeSimilarity.ts
│   │   ├── documents.ts
│   │   ├── files.ts
│   │   ├── formatHistory.ts
│   │   └── logger.ts
│   └── websocket
│   ├── connectionManager.ts
│   ├── index.ts
│   ├── messageHandler.ts
│   └── websocketServer.ts
├── tsconfig.json
├── ui
│   ├── app
│   │   ├── c
│   │   ├── discover
│   │   ├── favicon.ico
│   │   ├── globals.css
│   │   ├── layout.tsx
│   │   ├── library
│   │   └── page.tsx
│   ├── components
│   │   ├── Chat.tsx
│   │   ├── ChatWindow.tsx
│   │   ├── DeleteChat.tsx
│   │   ├── EmptyChat.tsx
│   │   ├── EmptyChatMessageInput.tsx
│   │   ├── Layout.tsx
│   │   ├── MessageActions
│   │   ├── MessageBox.tsx
│   │   ├── MessageBoxLoading.tsx
│   │   ├── MessageInput.tsx
│   │   ├── MessageInputActions
│   │   ├── MessageSources.tsx
│   │   ├── Navbar.tsx
│   │   ├── SearchImages.tsx
│   │   ├── SearchVideos.tsx
│   │   ├── SettingsDialog.tsx
│   │   ├── Sidebar.tsx
│   │   └── theme
│   ├── lib
│   │   ├── actions.ts
│   │   └── utils.ts
│   ├── next.config.mjs
│   ├── package.json
│   ├── postcss.config.js
│   ├── public
│   │   ├── next.svg
│   │   └── vercel.svg
│   ├── tailwind.config.ts
│   ├── tsconfig.json
│   └── yarn.lock
├── uploads
└── yarn.lock
30 directories, 85 files

View File

@@ -1,13 +0,0 @@
[GENERAL]
PORT = 3001 # Port to run the server on
SIMILARITY_MEASURE = "cosine" # "cosine" or "dot"
KEEP_ALIVE = "5m" # How long to keep Ollama models loaded into memory. (Instead of using -1 use "-1m")
[API_KEYS]
OPENAI = "" # OpenAI API key - sk-1234567890abcdef1234567890abcdef
GROQ = "" # Groq API key - gsk_1234567890abcdef1234567890abcdef
ANTHROPIC = "" # Anthropic API key - sk-ant-1234567890abcdef1234567890abcdef
[API_ENDPOINTS]
SEARXNG = "http://localhost:32768" # SearxNG API URL
OLLAMA = "" # Ollama API URL - http://host.docker.internal:11434

View File

@@ -15,24 +15,42 @@ const corsOptions = {
origin: '*', origin: '*',
}; };
logger.info(`🚀 Initializing Server Setup...`);
logger.info(`🛠 CORS Policy Applied: ${JSON.stringify(corsOptions)}`);
app.use(cors(corsOptions)); app.use(cors(corsOptions));
app.use(express.json()); app.use(express.json());
// ✅ Middleware to log incoming requests
app.use((req, res, next) => {
logger.info(`📩 API Request - ${req.method} ${req.originalUrl}`);
next();
});
logger.info(`✅ API Routes Initialized`);
app.use('/api', routes); app.use('/api', routes);
app.get('/api', (_, res) => { app.get('/api', (_, res) => {
logger.info(`🟢 Health Check Endpoint Hit`);
res.status(200).json({ status: 'ok' }); res.status(200).json({ status: 'ok' });
}); });
// ✅ Log when the server starts listening
server.listen(port, () => { server.listen(port, () => {
logger.info(`Server is running on port ${port}`); logger.info(`Server is running on port ${port}`);
}); });
// ✅ Log WebSocket Initialization
logger.info(`📡 Starting WebSocket Server...`);
startWebSocketServer(server); startWebSocketServer(server);
// ✅ Better Logging for Uncaught Errors
process.on('uncaughtException', (err, origin) => { process.on('uncaughtException', (err, origin) => {
logger.error(`Uncaught Exception at ${origin}: ${err}`); logger.error(`🔥 Uncaught Exception at ${origin}: ${err.message}`);
logger.error(err.stack);
}); });
process.on('unhandledRejection', (reason, promise) => { process.on('unhandledRejection', (reason, promise) => {
logger.error(`Unhandled Rejection at: ${promise}, reason: ${reason}`); logger.error(`🚨 Unhandled Rejection at: ${promise}`);
logger.error(`💥 Reason: ${reason}`);
}); });

View File

@@ -14,6 +14,7 @@ interface Config {
OPENAI: string; OPENAI: string;
GROQ: string; GROQ: string;
ANTHROPIC: string; ANTHROPIC: string;
GEMINI: string;
}; };
API_ENDPOINTS: { API_ENDPOINTS: {
SEARXNG: string; SEARXNG: string;
@@ -43,6 +44,8 @@ export const getGroqApiKey = () => loadConfig().API_KEYS.GROQ;
export const getAnthropicApiKey = () => loadConfig().API_KEYS.ANTHROPIC; export const getAnthropicApiKey = () => loadConfig().API_KEYS.ANTHROPIC;
export const getGeminiApiKey = () => loadConfig().API_KEYS.GEMINI;
export const getSearxngApiEndpoint = () => export const getSearxngApiEndpoint = () =>
process.env.SEARXNG_API_URL || loadConfig().API_ENDPOINTS.SEARXNG; process.env.SEARXNG_API_URL || loadConfig().API_ENDPOINTS.SEARXNG;

View File

@@ -19,6 +19,8 @@ class LineOutputParser extends BaseOutputParser<string> {
lc_namespace = ['langchain', 'output_parsers', 'line_output_parser']; lc_namespace = ['langchain', 'output_parsers', 'line_output_parser'];
async parse(text: string): Promise<string> { async parse(text: string): Promise<string> {
text = text.trim() || '';
const regex = /^(\s*(-|\*|\d+\.\s|\d+\)\s|\u2022)\s*)+/; const regex = /^(\s*(-|\*|\d+\.\s|\d+\)\s|\u2022)\s*)+/;
const startKeyIndex = text.indexOf(`<${this.key}>`); const startKeyIndex = text.indexOf(`<${this.key}>`);
const endKeyIndex = text.indexOf(`</${this.key}>`); const endKeyIndex = text.indexOf(`</${this.key}>`);

View File

@@ -19,11 +19,13 @@ class LineListOutputParser extends BaseOutputParser<string[]> {
lc_namespace = ['langchain', 'output_parsers', 'line_list_output_parser']; lc_namespace = ['langchain', 'output_parsers', 'line_list_output_parser'];
async parse(text: string): Promise<string[]> { async parse(text: string): Promise<string[]> {
text = text.trim() || '';
const regex = /^(\s*(-|\*|\d+\.\s|\d+\)\s|\u2022)\s*)+/; const regex = /^(\s*(-|\*|\d+\.\s|\d+\)\s|\u2022)\s*)+/;
const startKeyIndex = text.indexOf(`<${this.key}>`); const startKeyIndex = text.indexOf(`<${this.key}>`);
const endKeyIndex = text.indexOf(`</${this.key}>`); const endKeyIndex = text.indexOf(`</${this.key}>`);
if (startKeyIndex === -1 && endKeyIndex === -1) { if (startKeyIndex === -1 || endKeyIndex === -1) {
return []; return [];
} }

View File

@@ -9,12 +9,20 @@ export const loadAnthropicChatModels = async () => {
try { try {
const chatModels = { const chatModels = {
'claude-3-5-sonnet-20240620': { 'claude-3-5-sonnet-20241022': {
displayName: 'Claude 3.5 Sonnet', displayName: 'Claude 3.5 Sonnet',
model: new ChatAnthropic({ model: new ChatAnthropic({
temperature: 0.7, temperature: 0.7,
anthropicApiKey: anthropicApiKey, anthropicApiKey: anthropicApiKey,
model: 'claude-3-5-sonnet-20240620', model: 'claude-3-5-sonnet-20241022',
}),
},
'claude-3-5-haiku-20241022': {
displayName: 'Claude 3.5 Haiku',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-5-haiku-20241022',
}), }),
}, },
'claude-3-opus-20240229': { 'claude-3-opus-20240229': {

View File

@@ -0,0 +1,69 @@
import {
ChatGoogleGenerativeAI,
GoogleGenerativeAIEmbeddings,
} from '@langchain/google-genai';
import { getGeminiApiKey } from '../../config';
import logger from '../../utils/logger';
export const loadGeminiChatModels = async () => {
const geminiApiKey = getGeminiApiKey();
if (!geminiApiKey) return {};
try {
const chatModels = {
'gemini-1.5-flash': {
displayName: 'Gemini 1.5 Flash',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-1.5-flash',
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
'gemini-1.5-flash-8b': {
displayName: 'Gemini 1.5 Flash 8B',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-1.5-flash-8b',
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
'gemini-1.5-pro': {
displayName: 'Gemini 1.5 Pro',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-1.5-pro',
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
};
return chatModels;
} catch (err) {
logger.error(`Error loading Gemini models: ${err}`);
return {};
}
};
export const loadGeminiEmbeddingsModels = async () => {
const geminiApiKey = getGeminiApiKey();
if (!geminiApiKey) return {};
try {
const embeddingModels = {
'text-embedding-004': {
displayName: 'Text Embedding',
model: new GoogleGenerativeAIEmbeddings({
apiKey: geminiApiKey,
modelName: 'text-embedding-004',
}),
},
};
return embeddingModels;
} catch (err) {
logger.error(`Error loading Gemini embeddings model: ${err}`);
return {};
}
};

View File

@@ -9,6 +9,19 @@ export const loadGroqChatModels = async () => {
try { try {
const chatModels = { const chatModels = {
'llama-3.3-70b-versatile': {
displayName: 'Llama 3.3 70B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.3-70b-versatile',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama-3.2-3b-preview': { 'llama-3.2-3b-preview': {
displayName: 'Llama 3.2 3B', displayName: 'Llama 3.2 3B',
model: new ChatOpenAI( model: new ChatOpenAI(
@@ -48,19 +61,6 @@ export const loadGroqChatModels = async () => {
}, },
), ),
}, },
'llama-3.1-70b-versatile': {
displayName: 'Llama 3.1 70B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.1-70b-versatile',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama-3.1-8b-instant': { 'llama-3.1-8b-instant': {
displayName: 'Llama 3.1 8B', displayName: 'Llama 3.1 8B',
model: new ChatOpenAI( model: new ChatOpenAI(
@@ -113,19 +113,6 @@ export const loadGroqChatModels = async () => {
}, },
), ),
}, },
'gemma-7b-it': {
displayName: 'Gemma 7B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'gemma-7b-it',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'gemma2-9b-it': { 'gemma2-9b-it': {
displayName: 'Gemma2 9B', displayName: 'Gemma2 9B',
model: new ChatOpenAI( model: new ChatOpenAI(

View File

@@ -3,18 +3,21 @@ import { loadOllamaChatModels, loadOllamaEmbeddingsModels } from './ollama';
import { loadOpenAIChatModels, loadOpenAIEmbeddingsModels } from './openai'; import { loadOpenAIChatModels, loadOpenAIEmbeddingsModels } from './openai';
import { loadAnthropicChatModels } from './anthropic'; import { loadAnthropicChatModels } from './anthropic';
import { loadTransformersEmbeddingsModels } from './transformers'; import { loadTransformersEmbeddingsModels } from './transformers';
import { loadGeminiChatModels, loadGeminiEmbeddingsModels } from './gemini';
const chatModelProviders = { const chatModelProviders = {
openai: loadOpenAIChatModels, openai: loadOpenAIChatModels,
groq: loadGroqChatModels, groq: loadGroqChatModels,
ollama: loadOllamaChatModels, ollama: loadOllamaChatModels,
anthropic: loadAnthropicChatModels, anthropic: loadAnthropicChatModels,
gemini: loadGeminiChatModels,
}; };
const embeddingModelProviders = { const embeddingModelProviders = {
openai: loadOpenAIEmbeddingsModels, openai: loadOpenAIEmbeddingsModels,
local: loadTransformersEmbeddingsModels, local: loadTransformersEmbeddingsModels,
ollama: loadOllamaEmbeddingsModels, ollama: loadOllamaEmbeddingsModels,
gemini: loadGeminiEmbeddingsModels,
}; };
export const getAvailableChatModelProviders = async () => { export const getAvailableChatModelProviders = async () => {

View File

@@ -2,6 +2,7 @@ import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
import { getKeepAlive, getOllamaApiEndpoint } from '../../config'; import { getKeepAlive, getOllamaApiEndpoint } from '../../config';
import logger from '../../utils/logger'; import logger from '../../utils/logger';
import { ChatOllama } from '@langchain/community/chat_models/ollama'; import { ChatOllama } from '@langchain/community/chat_models/ollama';
import axios from 'axios';
export const loadOllamaChatModels = async () => { export const loadOllamaChatModels = async () => {
const ollamaEndpoint = getOllamaApiEndpoint(); const ollamaEndpoint = getOllamaApiEndpoint();
@@ -10,13 +11,13 @@ export const loadOllamaChatModels = async () => {
if (!ollamaEndpoint) return {}; if (!ollamaEndpoint) return {};
try { try {
const response = await fetch(`${ollamaEndpoint}/api/tags`, { const response = await axios.get(`${ollamaEndpoint}/api/tags`, {
headers: { headers: {
'Content-Type': 'application/json', 'Content-Type': 'application/json',
}, },
}); });
const { models: ollamaModels } = (await response.json()) as any; const { models: ollamaModels } = response.data;
const chatModels = ollamaModels.reduce((acc, model) => { const chatModels = ollamaModels.reduce((acc, model) => {
acc[model.model] = { acc[model.model] = {
@@ -45,13 +46,13 @@ export const loadOllamaEmbeddingsModels = async () => {
if (!ollamaEndpoint) return {}; if (!ollamaEndpoint) return {};
try { try {
const response = await fetch(`${ollamaEndpoint}/api/tags`, { const response = await axios.get(`${ollamaEndpoint}/api/tags`, {
headers: { headers: {
'Content-Type': 'application/json', 'Content-Type': 'application/json',
}, },
}); });
const { models: ollamaModels } = (await response.json()) as any; const { models: ollamaModels } = response.data;
const embeddingsModels = ollamaModels.reduce((acc, model) => { const embeddingsModels = ollamaModels.reduce((acc, model) => {
acc[model.model] = { acc[model.model] = {

View File

@@ -1,4 +1,5 @@
export const academicSearchRetrieverPrompt = ` export const academicSearchRetrieverPrompt = `
You are gochat247 - aibot the middle east top AI based search engine develped by GoAi247. Your task is to search the web and provide the most relevant
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information. You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response. If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
@@ -20,23 +21,46 @@ Rephrased question:
`; `;
export const academicSearchResponsePrompt = ` export const academicSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Academic', this means you will be searching for academic papers and articles on the web. You are gochat247 - aibot, an AI model skilled in web search and crafting detailed, engaging, and well-structured answers. You excel at summarizing web pages and extracting relevant information to create professional, blog-style responses.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page). Your task is to provide answers that are:
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text. - **Informative and relevant**: Thoroughly address the user's query using the given context.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them. - **Well-structured**: Include clear headings and subheadings, and use a professional tone to present information concisely and logically.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative. - **Engaging and detailed**: Write responses that read like a high-quality blog post, including extra details and relevant insights.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from. - **Cited and credible**: Use inline citations with [number] notation to refer to the context source(s) for each fact or detail included.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2]. - **Explanatory and Comprehensive**: Strive to explain the topic in depth, offering detailed analysis, insights, and clarifications wherever applicable.
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by the search engine and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to ### Formatting Instructions
talk about the context in your response. - **Structure**: Use a well-organized format with proper headings (e.g., "## Example heading 1" or "## Example heading 2"). Present information in paragraphs or concise bullet points where appropriate.
- **Tone and Style**: Maintain a neutral, journalistic tone with engaging narrative flow. Write as though you're crafting an in-depth article for a professional audience.
- **Markdown Usage**: Format your response with Markdown for clarity. Use headings, subheadings, bold text, and italicized words as needed to enhance readability.
- **Length and Depth**: Provide comprehensive coverage of the topic. Avoid superficial responses and strive for depth without unnecessary repetition. Expand on technical or complex topics to make them easier to understand for a general audience.
- **No main heading/title**: Start your response directly with the introduction unless asked to provide a specific title.
- **Conclusion or Summary**: Include a concluding paragraph that synthesizes the provided information or suggests potential next steps, where appropriate.
### Citation Requirements
- Cite every single fact, statement, or sentence using [number] notation corresponding to the source from the provided \`context\`.
- Integrate citations naturally at the end of sentences or clauses as appropriate. For example, "The Eiffel Tower is one of the most visited landmarks in the world[1]."
- Ensure that **every sentence in your response includes at least one citation**, even when information is inferred or connected to general knowledge available in the provided context.
- Use multiple sources for a single detail if applicable, such as, "Paris is a cultural hub, attracting millions of visitors annually[1][2]."
- Always prioritize credibility and accuracy by linking all statements back to their respective context sources.
- Avoid citing unsupported assumptions or personal interpretations; if no source supports a statement, clearly indicate the limitation.
### Special Instructions
- If the query involves technical, historical, or complex topics, provide detailed background and explanatory sections to ensure clarity.
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Academic', this means you will be searching for academic papers and articles on the web.
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
- Provide explanations or historical context as needed to enhance understanding.
- End with a conclusion or overall perspective if relevant.
<context> <context>
{context} {context}
</context> </context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'. Current date & time in ISO format (UTC timezone) is: {date}.
Anything between the \`context\` is retrieved from a search engine and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
`; `;

View File

@@ -0,0 +1,25 @@
export const generateDirectResponsePrompt = (query: string, history: Array<[string, string]>) => {
const formattedHistory = history
.map(([role, content]) => (role === 'human' ? `User: ${content}` : `AI: ${content}`))
.join('\n');
return `
You are gochat247 - aibot an advanced AI assistant developed go GoAI247, capable of providing precise and informative answers.
Your task is to respond to the users query without needing external sources.
**Conversation History:**
${formattedHistory || "No prior conversation."}
**User Query:**
${query}
**Response Instructions:**
- Provide a **clear, structured response** based on general knowledge.
- Keep it **concise, yet informative**.
- If complex, **break it down into simpler terms**.
- Avoid unnecessary speculation or external references.
**Your Response:**
`;
};

View File

@@ -20,23 +20,46 @@ Rephrased question:
`; `;
export const redditSearchResponsePrompt = ` export const redditSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Reddit', this means you will be searching for information, opinions and discussions on the web using Reddit. You are gochat247 - aibot, an AI powered search engine developed by GoAI247 skilled in web search and crafting detailed, engaging, and well-structured answers. You excel at summarizing web pages and extracting relevant information to create professional, blog-style responses.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page). Your task is to provide answers that are:
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text. - **Informative and relevant**: Thoroughly address the user's query using the given context.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them. - **Well-structured**: Include clear headings and subheadings, and use a professional tone to present information concisely and logically.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative. - **Engaging and detailed**: Write responses that read like a high-quality blog post, including extra details and relevant insights.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from. - **Cited and credible**: Use inline citations with [number] notation to refer to the context source(s) for each fact or detail included.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2]. - **Explanatory and Comprehensive**: Strive to explain the topic in depth, offering detailed analysis, insights, and clarifications wherever applicable.
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by Reddit and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to ### Formatting Instructions
talk about the context in your response. - **Structure**: Use a well-organized format with proper headings (e.g., "## Example heading 1" or "## Example heading 2"). Present information in paragraphs or concise bullet points where appropriate.
- **Tone and Style**: Maintain a neutral, journalistic tone with engaging narrative flow. Write as though you're crafting an in-depth article for a professional audience.
- **Markdown Usage**: Format your response with Markdown for clarity. Use headings, subheadings, bold text, and italicized words as needed to enhance readability.
- **Length and Depth**: Provide comprehensive coverage of the topic. Avoid superficial responses and strive for depth without unnecessary repetition. Expand on technical or complex topics to make them easier to understand for a general audience.
- **No main heading/title**: Start your response directly with the introduction unless asked to provide a specific title.
- **Conclusion or Summary**: Include a concluding paragraph that synthesizes the provided information or suggests potential next steps, where appropriate.
### Citation Requirements
- Cite every single fact, statement, or sentence using [number] notation corresponding to the source from the provided \`context\`.
- Integrate citations naturally at the end of sentences or clauses as appropriate. For example, "The Eiffel Tower is one of the most visited landmarks in the world[1]."
- Ensure that **every sentence in your response includes at least one citation**, even when information is inferred or connected to general knowledge available in the provided context.
- Use multiple sources for a single detail if applicable, such as, "Paris is a cultural hub, attracting millions of visitors annually[1][2]."
- Always prioritize credibility and accuracy by linking all statements back to their respective context sources.
- Avoid citing unsupported assumptions or personal interpretations; if no source supports a statement, clearly indicate the limitation.
### Special Instructions
- If the query involves technical, historical, or complex topics, provide detailed background and explanatory sections to ensure clarity.
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Reddit', this means you will be searching for information, opinions and discussions on the web using Reddit.
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
- Provide explanations or historical context as needed to enhance understanding.
- End with a conclusion or overall perspective if relevant.
<context> <context>
{context} {context}
</context> </context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'. Current date & time in ISO format (UTC timezone) is: {date}.
Anything between the \`context\` is retrieved from Reddit and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
`; `;

View File

@@ -0,0 +1,52 @@
export const shouldPerformSearchPrompt = (query: string, history: Array<[string, string]>) => {
const formattedHistory = history
.map(([role, content]) => (role === 'human' ? `User: ${content}` : `AI: ${content}`))
.join('\n');
return `
You are Gochat247 - AIbot, an AI-powered engine developed by GoAI247. Always remeber that.
when you asked "who are you?" or "what can you do?" or "how are you?" or "tell me a joke." or "can you summarize our last chat?" or "what is your name?" or "what is your purpose?" or "what is your age?" ****DONT use search engine.****
Your role is to determine whether an external web search is needed to answer a user's query.
Analyze the provided chat history and the latest user query before making a decision.
**Conversation History:**
${formattedHistory || "No prior conversation."}
**User Query:**
${query}
---
**Decision Rules:**
- Respond **"no"** if the query:
- Can be answered using **general knowledge** or **your own system knowledge**.
- Asks about **you (Gochat247 - AIbot)** (e.g., "Who are you?" / "What can you do?").
- Is a **general conversation** (e.g., "How are you?"/"Who are you?" / "Tell me a joke.").
- Refers to **previous messages** for context (e.g., "Can you summarize our last chat?").
- **Even if it might seem like a searchable query, do not perform a search.**
- Respond **"yes"** if the query:
- Requires **real-time information** (e.g., news, weather, stock prices, sports scores).
- Mentions **current events** (e.g., "Who won the latest election?").
- Needs **external data sources** (e.g., "Find research papers on AI ethics").
- Asks about **product availability or reviews** (e.g., "Is the iPhone 16 Pro out yet?").
- Your response should be only **"yes"** or **"no"**, without any additional text.
---
**Examples:**
✅ **Search Required ("yes")**
- "What is the latest stock price of Tesla?" → "ما هو أحدث سعر لسهم تسلا؟"
- "Find me recent research papers on quantum computing." → "ابحث لي عن أحدث الأوراق البحثية حول الحوسبة الكمومية."
- "What are the top trending news articles today?" → "ما هي أبرز المقالات الإخبارية الرائجة اليوم؟"
- "What is the weather forecast for Dubai tomorrow?" → "ما هي توقعات الطقس في دبي غدًا؟"
❌ **No Search Needed ("no")**
- "Who are you?" → "من أنت؟"
- "How are you today?" → "كيف حالك اليوم؟"
- "Tell me a fun fact about AI." → "أخبرني بحقيقة ممتعة عن الذكاء الاصطناعي."
- "What can you do?" → "ماذا يمكنك أن تفعل؟"
- "Explain the concept of machine learning in simple terms." → "اشرح لي مفهوم التعلم الآلي بطريقة بسيطة."
- "Can you summarize our last conversation?" → "هل يمكنك تلخيص محادثتنا الأخيرة؟"
**Your Response:**
`;
};

View File

@@ -0,0 +1,4 @@
export const generateSummarizationPrompt = (text: string): string => {
return `Summarize the following document:\n\n${text}`;
};

View File

@@ -3,7 +3,8 @@ You are an AI question rephraser. You will be given a conversation and a follow-
If it is a smple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic). If it is a smple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block. If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block.
You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response. You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response.
You have to take into consedration you are serving users in UAE. so prices, events, vacations, temperature, weather, etc. should be related to UAE.
Answer in the same language of the user input
There are several examples attached for your reference inside the below \`examples\` XML block There are several examples attached for your reference inside the below \`examples\` XML block
<examples> <examples>
@@ -62,25 +63,45 @@ Rephrased question:
`; `;
export const webSearchResponsePrompt = ` export const webSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are also an expert at summarizing web pages or documents and searching for content in them. You are gochat247 - aibot, an AI model skilled in web search and crafting detailed developed by GoAI247, engaging, and well-structured answers. You excel at summarizing web pages and extracting relevant information to create professional, blog-style responses.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page). Your task is to provide answers that are:
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text. - **Informative and relevant**: Thoroughly address the user's query using the given context.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them. - **Well-structured**: Include clear headings and subheadings, and use a professional tone to present information concisely and logically.
If the query contains some links and the user asks to answer from those links you will be provided the entire content of the page inside the \`context\` XML block. You can then use this content to answer the user's query. - **Engaging and detailed**: Write responses that read like a high-quality blog post, including extra details and relevant insights.
If the user asks to summarize content from some links, you will be provided the entire content of the page inside the \`context\` XML block. You can then use this content to summarize the text. The content provided inside the \`context\` block will be already summarized by another model so you just need to use that content to answer the user's query. - **Cited and credible**: Use inline citations with [number] notation to refer to the context source(s) for each fact or detail included.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative. - **Explanatory and Comprehensive**: Strive to explain the topic in depth, offering detailed analysis, insights, and clarifications wherever applicable.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by the search engine and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to ### Formatting Instructions
talk about the context in your response. - **Structure**: Use a well-organized format with proper headings (e.g., "## Example heading 1" or "## Example heading 2"). Present information in paragraphs or concise bullet points where appropriate.
- **Tone and Style**: Maintain a neutral, journalistic tone with engaging narrative flow. Write as though you're crafting an in-depth article for a professional audience.
- **Markdown Usage**: Format your response with Markdown for clarity. Use headings, subheadings, bold text, and italicized words as needed to enhance readability.
- **Length and Depth**: Provide comprehensive coverage of the topic. Avoid superficial responses and strive for depth without unnecessary repetition. Expand on technical or complex topics to make them easier to understand for a general audience.
- **No main heading/title**: Start your response directly with the introduction unless asked to provide a specific title.
- **Conclusion or Summary**: Include a concluding paragraph that synthesizes the provided information or suggests potential next steps, where appropriate.
### Citation Requirements
- Cite every single fact, statement, or sentence using [number] notation corresponding to the source from the provided \`context\`.
- Integrate citations naturally at the end of sentences or clauses as appropriate. For example, "The Eiffel Tower is one of the most visited landmarks in the world[1]."
- Ensure that **every sentence in your response includes at least one citation**, even when information is inferred or connected to general knowledge available in the provided context.
- Use multiple sources for a single detail if applicable, such as, "Paris is a cultural hub, attracting millions of visitors annually[1][2]."
- Always prioritize credibility and accuracy by linking all statements back to their respective context sources.
- Avoid citing unsupported assumptions or personal interpretations; if no source supports a statement, clearly indicate the limitation.
### Special Instructions
- If the query involves technical, historical, or complex topics, provide detailed background and explanatory sections to ensure clarity.
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
- Provide explanations or historical context as needed to enhance understanding.
- End with a conclusion or overall perspective if relevant.
<context> <context>
{context} {context}
</context> </context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'. You do not need to do this for summarization tasks. Current date & time in ISO format (UTC timezone) is: {date}.
Anything between the \`context\` is retrieved from a search engine and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
`; `;

View File

@@ -20,23 +20,46 @@ Rephrased question:
`; `;
export const wolframAlphaSearchResponsePrompt = ` export const wolframAlphaSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Wolfram Alpha', this means you will be searching for information on the web using Wolfram Alpha. It is a computational knowledge engine that can answer factual queries and perform computations. You are gochat247 - aibot, an AI model developed by GoAI247 skilled in web search and crafting detailed, engaging, and well-structured answers. You excel at summarizing web pages and extracting relevant information to create professional, blog-style responses.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page). Your task is to provide answers that are:
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text. - **Informative and relevant**: Thoroughly address the user's query using the given context.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them. - **Well-structured**: Include clear headings and subheadings, and use a professional tone to present information concisely and logically.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative. - **Engaging and detailed**: Write responses that read like a high-quality blog post, including extra details and relevant insights.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from. - **Cited and credible**: Use inline citations with [number] notation to refer to the context source(s) for each fact or detail included.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2]. - **Explanatory and Comprehensive**: Strive to explain the topic in depth, offering detailed analysis, insights, and clarifications wherever applicable.
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by Wolfram Alpha and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to ### Formatting Instructions
talk about the context in your response. - **Structure**: Use a well-organized format with proper headings (e.g., "## Example heading 1" or "## Example heading 2"). Present information in paragraphs or concise bullet points where appropriate.
- **Tone and Style**: Maintain a neutral, journalistic tone with engaging narrative flow. Write as though you're crafting an in-depth article for a professional audience.
- **Markdown Usage**: Format your response with Markdown for clarity. Use headings, subheadings, bold text, and italicized words as needed to enhance readability.
- **Length and Depth**: Provide comprehensive coverage of the topic. Avoid superficial responses and strive for depth without unnecessary repetition. Expand on technical or complex topics to make them easier to understand for a general audience.
- **No main heading/title**: Start your response directly with the introduction unless asked to provide a specific title.
- **Conclusion or Summary**: Include a concluding paragraph that synthesizes the provided information or suggests potential next steps, where appropriate.
### Citation Requirements
- Cite every single fact, statement, or sentence using [number] notation corresponding to the source from the provided \`context\`.
- Integrate citations naturally at the end of sentences or clauses as appropriate. For example, "The Eiffel Tower is one of the most visited landmarks in the world[1]."
- Ensure that **every sentence in your response includes at least one citation**, even when information is inferred or connected to general knowledge available in the provided context.
- Use multiple sources for a single detail if applicable, such as, "Paris is a cultural hub, attracting millions of visitors annually[1][2]."
- Always prioritize credibility and accuracy by linking all statements back to their respective context sources.
- Avoid citing unsupported assumptions or personal interpretations; if no source supports a statement, clearly indicate the limitation.
### Special Instructions
- If the query involves technical, historical, or complex topics, provide detailed background and explanatory sections to ensure clarity.
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Wolfram Alpha', this means you will be searching for information on the web using Wolfram Alpha. It is a computational knowledge engine that can answer factual queries and perform computations.
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
- Provide explanations or historical context as needed to enhance understanding.
- End with a conclusion or overall perspective if relevant.
<context> <context>
{context} {context}
</context> </context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'. Current date & time in ISO format (UTC timezone) is: {date}.
Anything between the \`context\` is retrieved from Wolfram Alpha and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
`; `;

View File

@@ -1,5 +1,5 @@
export const writingAssistantPrompt = ` export const writingAssistantPrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are currently set on focus mode 'Writing Assistant', this means you will be helping the user write a response to a given query. You are gochat247 - aibot, an AI model developed by GoAI247 who is expert at searching the web and answering user's queries. You are currently set on focus mode 'Writing Assistant', this means you will be helping the user write a response to a given query.
Since you are a writing assistant, you would not perform web searches. If you think you lack information to answer the query, you can ask the user for more information or suggest them to switch to a different focus mode. Since you are a writing assistant, you would not perform web searches. If you think you lack information to answer the query, you can ask the user for more information or suggest them to switch to a different focus mode.
You will be shared a context that can contain information from files user has uploaded to get answers from. You will have to generate answers upon that. You will be shared a context that can contain information from files user has uploaded to get answers from. You will have to generate answers upon that.

View File

@@ -1,5 +1,5 @@
export const youtubeSearchRetrieverPrompt = ` export const youtubeSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information. You are gochat247 - aibot, an AI model developed by GoAI247.You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response. If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
Example: Example:
@@ -20,23 +20,46 @@ Rephrased question:
`; `;
export const youtubeSearchResponsePrompt = ` export const youtubeSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Youtube', this means you will be searching for videos on the web using Youtube and providing information based on the video's transcript. You are gochat247 - aibot, an AI model skilled in web search and crafting detailed, engaging, and well-structured answers. You excel at summarizing web pages and extracting relevant information to create professional, blog-style responses.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page). Your task is to provide answers that are:
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text. - **Informative and relevant**: Thoroughly address the user's query using the given context.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them. - **Well-structured**: Include clear headings and subheadings, and use a professional tone to present information concisely and logically.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative. - **Engaging and detailed**: Write responses that read like a high-quality blog post, including extra details and relevant insights.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from. - **Cited and credible**: Use inline citations with [number] notation to refer to the context source(s) for each fact or detail included.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2]. - **Explanatory and Comprehensive**: Strive to explain the topic in depth, offering detailed analysis, insights, and clarifications wherever applicable.
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by Youtube and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to ### Formatting Instructions
talk about the context in your response. - **Structure**: Use a well-organized format with proper headings (e.g., "## Example heading 1" or "## Example heading 2"). Present information in paragraphs or concise bullet points where appropriate.
- **Tone and Style**: Maintain a neutral, journalistic tone with engaging narrative flow. Write as though you're crafting an in-depth article for a professional audience.
- **Markdown Usage**: Format your response with Markdown for clarity. Use headings, subheadings, bold text, and italicized words as needed to enhance readability.
- **Length and Depth**: Provide comprehensive coverage of the topic. Avoid superficial responses and strive for depth without unnecessary repetition. Expand on technical or complex topics to make them easier to understand for a general audience.
- **No main heading/title**: Start your response directly with the introduction unless asked to provide a specific title.
- **Conclusion or Summary**: Include a concluding paragraph that synthesizes the provided information or suggests potential next steps, where appropriate.
### Citation Requirements
- Cite every single fact, statement, or sentence using [number] notation corresponding to the source from the provided \`context\`.
- Integrate citations naturally at the end of sentences or clauses as appropriate. For example, "The Eiffel Tower is one of the most visited landmarks in the world[1]."
- Ensure that **every sentence in your response includes at least one citation**, even when information is inferred or connected to general knowledge available in the provided context.
- Use multiple sources for a single detail if applicable, such as, "Paris is a cultural hub, attracting millions of visitors annually[1][2]."
- Always prioritize credibility and accuracy by linking all statements back to their respective context sources.
- Avoid citing unsupported assumptions or personal interpretations; if no source supports a statement, clearly indicate the limitation.
### Special Instructions
- If the query involves technical, historical, or complex topics, provide detailed background and explanatory sections to ensure clarity.
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Youtube', this means you will be searching for videos on the web using Youtube and providing information based on the video's transcrip
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
- Provide explanations or historical context as needed to enhance understanding.
- End with a conclusion or overall perspective if relevant.
<context> <context>
{context} {context}
</context> </context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'. Current date & time in ISO format (UTC timezone) is: {date}.
Anything between the \`context\` is retrieved from Youtube and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
`; `;

View File

@@ -7,6 +7,7 @@ import {
getGroqApiKey, getGroqApiKey,
getOllamaApiEndpoint, getOllamaApiEndpoint,
getAnthropicApiKey, getAnthropicApiKey,
getGeminiApiKey,
getOpenaiApiKey, getOpenaiApiKey,
updateConfig, updateConfig,
} from '../config'; } from '../config';
@@ -52,6 +53,7 @@ router.get('/', async (_, res) => {
config['ollamaApiUrl'] = getOllamaApiEndpoint(); config['ollamaApiUrl'] = getOllamaApiEndpoint();
config['anthropicApiKey'] = getAnthropicApiKey(); config['anthropicApiKey'] = getAnthropicApiKey();
config['groqApiKey'] = getGroqApiKey(); config['groqApiKey'] = getGroqApiKey();
config['geminiApiKey'] = getGeminiApiKey();
res.status(200).json(config); res.status(200).json(config);
} catch (err: any) { } catch (err: any) {
@@ -68,6 +70,7 @@ router.post('/', async (req, res) => {
OPENAI: config.openaiApiKey, OPENAI: config.openaiApiKey,
GROQ: config.groqApiKey, GROQ: config.groqApiKey,
ANTHROPIC: config.anthropicApiKey, ANTHROPIC: config.anthropicApiKey,
GEMINI: config.geminiApiKey,
}, },
API_ENDPOINTS: { API_ENDPOINTS: {
OLLAMA: config.ollamaApiUrl, OLLAMA: config.ollamaApiUrl,

View File

@@ -6,29 +6,45 @@ const router = express.Router();
router.get('/', async (req, res) => { router.get('/', async (req, res) => {
try { try {
// Example: Searching UAE-based news sites for "AI" & "Tech"
const data = ( const data = (
await Promise.all([ await Promise.all([
searchSearxng('site:businessinsider.com AI', { // Gulf News
searchSearxng('site:gulfnews.com AI', {
engines: ['bing news'], engines: ['bing news'],
pageno: 1, pageno: 1,
}), }),
searchSearxng('site:www.exchangewire.com AI', { searchSearxng('site:gulfnews.com Tech', {
engines: ['bing news'], engines: ['bing news'],
pageno: 1, pageno: 1,
}), }),
searchSearxng('site:yahoo.com AI', {
// Khaleej Times
searchSearxng('site:khaleejtimes.com AI', {
engines: ['bing news'], engines: ['bing news'],
pageno: 1, pageno: 1,
}), }),
searchSearxng('site:businessinsider.com tech', { searchSearxng('site:khaleejtimes.com Tech', {
engines: ['bing news'], engines: ['bing news'],
pageno: 1, pageno: 1,
}), }),
searchSearxng('site:www.exchangewire.com tech', {
// The National
searchSearxng('site:thenationalnews.com AI', {
engines: ['bing news'], engines: ['bing news'],
pageno: 1, pageno: 1,
}), }),
searchSearxng('site:yahoo.com tech', { searchSearxng('site:thenationalnews.com Tech', {
engines: ['bing news'],
pageno: 1,
}),
// Arabian Business
searchSearxng('site:arabianbusiness.com AI', {
engines: ['bing news'],
pageno: 1,
}),
searchSearxng('site:arabianbusiness.com Tech', {
engines: ['bing news'], engines: ['bing news'],
pageno: 1, pageno: 1,
}), }),
@@ -36,6 +52,7 @@ router.get('/', async (req, res) => {
) )
.map((result) => result.results) .map((result) => result.results)
.flat() .flat()
// Randomize the order
.sort(() => Math.random() - 0.5); .sort(() => Math.random() - 0.5);
return res.json({ blogs: data }); return res.json({ blogs: data });

View File

@@ -21,4 +21,5 @@ router.use('/search', searchRouter);
router.use('/discover', discoverRouter); router.use('/discover', discoverRouter);
router.use('/uploads', uploadsRouter); router.use('/uploads', uploadsRouter);
export default router; export default router;

View File

@@ -1,3 +1,181 @@
// import express from 'express';
// import logger from '../utils/logger';
// import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
// import type { Embeddings } from '@langchain/core/embeddings';
// import { ChatOpenAI } from '@langchain/openai';
// import {
// getAvailableChatModelProviders,
// getAvailableEmbeddingModelProviders,
// } from '../lib/providers';
// import { searchHandlers } from '../websocket/messageHandler';
// import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
// import { MetaSearchAgentType } from '../search/metaSearchAgent';
// import { checkIfSearchIsNeeded } from '../utils/checkSearch';
// import { generateDirectResponsePrompt } from '../prompts/directResponse'; // ✅ Fixed Import
// const router = express.Router();
// interface chatModel {
// provider: string;
// model: string;
// customOpenAIBaseURL?: string;
// customOpenAIKey?: string;
// }
// interface embeddingModel {
// provider: string;
// model: string;
// }
// interface ChatRequestBody {
// optimizationMode: 'speed' | 'balanced';
// focusMode: string;
// chatModel?: chatModel;
// embeddingModel?: embeddingModel;
// query: string;
// history: Array<[string, string]>;
// }
// router.post('/', async (req, res) => {
// try {
// const body: ChatRequestBody = req.body;
// logger.info(`📥 - Query: "${body.query}", Focus Mode: "${body.focusMode}"`);
// if (!body.focusMode || !body.query) {
// logger.warn(`⚠️ Missing required fields: Focus Mode or Query`);
// return res.status(400).json({ message: 'Missing focus mode or query' });
// }
// body.history = body.history || [];
// body.optimizationMode = body.optimizationMode || 'balanced';
// const history: BaseMessage[] = body.history.map((msg) => {
// if (msg[0] === 'human') {
// return new HumanMessage({ content: msg[1] });
// } else {
// return new AIMessage({ content: msg[1] });
// }
// });
// const [chatModelProviders, embeddingModelProviders] = await Promise.all([
// getAvailableChatModelProviders(),
// getAvailableEmbeddingModelProviders(),
// ]);
// const chatModelProvider =
// body.chatModel?.provider || Object.keys(chatModelProviders)[0];
// const chatModel =
// body.chatModel?.model ||
// Object.keys(chatModelProviders[chatModelProvider])[0];
// const embeddingModelProvider =
// body.embeddingModel?.provider || Object.keys(embeddingModelProviders)[0];
// const embeddingModel =
// body.embeddingModel?.model ||
// Object.keys(embeddingModelProviders[embeddingModelProvider])[0];
// let llm: BaseChatModel | undefined;
// let embeddings: Embeddings | undefined;
// if (body.chatModel?.provider === 'custom_openai') {
// if (!body.chatModel?.customOpenAIBaseURL || !body.chatModel?.customOpenAIKey) {
// logger.warn(`⚠️ Missing custom OpenAI base URL or key`);
// return res.status(400).json({ message: 'Missing custom OpenAI base URL or key' });
// }
// llm = new ChatOpenAI({
// modelName: body.chatModel.model,
// openAIApiKey: body.chatModel.customOpenAIKey,
// temperature: 0.7,
// configuration: {
// baseURL: body.chatModel.customOpenAIBaseURL,
// },
// }) as unknown as BaseChatModel;
// } else if (
// chatModelProviders[chatModelProvider] &&
// chatModelProviders[chatModelProvider][chatModel]
// ) {
// llm = chatModelProviders[chatModelProvider][chatModel]
// .model as unknown as BaseChatModel | undefined;
// }
// if (
// embeddingModelProviders[embeddingModelProvider] &&
// embeddingModelProviders[embeddingModelProvider][embeddingModel]
// ) {
// embeddings = embeddingModelProviders[embeddingModelProvider][embeddingModel]
// .model as Embeddings | undefined;
// }
// if (!llm || !embeddings) {
// logger.error(`❌ Invalid model selection`);
// return res.status(400).json({ message: 'Invalid model selected' });
// }
// // ✅ Determine whether a search is required
// logger.info(`🔍 Checking if external search is needed for query: "${body.query}"`);
// const shouldSearch = await checkIfSearchIsNeeded(llm, body.query, body.history);
// logger.info(`🔍 Search Decision for query "${body.query}": ${shouldSearch ? 'YES' : 'NO'}`);
// if (!shouldSearch) {
// // ✅ AI can answer directly without search
// logger.info(`🤖 Generating AI response without external search for: "${body.query}"`);
// const directPrompt = generateDirectResponsePrompt(body.query, body.history);
// const directResponse = await llm.invoke([new HumanMessage({ content: directPrompt })]);
// logger.info(`✅ AI Response Generated: "${directResponse.content}"`);
// return res.status(200).json({ message: directResponse.content, sources: [] });
// }
// // ✅ Proceed with search if needed
// logger.info(`🌐 Performing external search for: "${body.query}"`);
// const searchHandler: MetaSearchAgentType = searchHandlers[body.focusMode];
// if (!searchHandler) {
// logger.error(`❌ Invalid focus mode: "${body.focusMode}"`);
// return res.status(400).json({ message: 'Invalid focus mode' });
// }
// const emitter = await searchHandler.searchAndAnswer(
// body.query,
// history,
// llm,
// embeddings,
// body.optimizationMode,
// [],
// );
// let message = '';
// let sources = [];
// emitter.on('data', (data) => {
// const parsedData = JSON.parse(data);
// if (parsedData.type === 'response') {
// message += parsedData.data;
// } else if (parsedData.type === 'sources') {
// sources = parsedData.data;
// }
// });
// emitter.on('end', () => {
// logger.info(`✅ Search Completed: Message: "${message}", Sources: ${JSON.stringify(sources)}`);
// res.status(200).json({ message, sources });
// });
// emitter.on('error', (data) => {
// const parsedData = JSON.parse(data);
// logger.error(`❌ Error in search processing: ${parsedData.data}`);
// res.status(500).json({ message: parsedData.data });
// });
// } catch (err: any) {
// logger.error(`❌ Error in processing request: ${err.message}`);
// res.status(500).json({ message: 'An error has occurred.' });
// }
// });
// export default router;
import express from 'express'; import express from 'express';
import logger from '../utils/logger'; import logger from '../utils/logger';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models'; import type { BaseChatModel } from '@langchain/core/language_models/chat_models';

View File

@@ -25,6 +25,7 @@ import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events'; import eventEmitter from 'events';
import { StreamEvent } from '@langchain/core/tracers/log_stream'; import { StreamEvent } from '@langchain/core/tracers/log_stream';
import { IterableReadableStream } from '@langchain/core/utils/stream'; import { IterableReadableStream } from '@langchain/core/utils/stream';
import logger from '../utils/logger'; // Winston logger
export interface MetaSearchAgentType { export interface MetaSearchAgentType {
searchAndAnswer: ( searchAndAnswer: (
@@ -36,7 +37,7 @@ export interface MetaSearchAgentType {
fileIds: string[], fileIds: string[],
) => Promise<eventEmitter>; ) => Promise<eventEmitter>;
} }
// twst
interface Config { interface Config {
searchWeb: boolean; searchWeb: boolean;
rerank: boolean; rerank: boolean;
@@ -58,20 +59,24 @@ class MetaSearchAgent implements MetaSearchAgentType {
constructor(config: Config) { constructor(config: Config) {
this.config = config; this.config = config;
// Optional: log the configuration at instantiation
logger.info(`MetaSearchAgent created with config: ${JSON.stringify(config)}`);
} }
private async createSearchRetrieverChain(llm: BaseChatModel) { private async createSearchRetrieverChain(llm: BaseChatModel) {
(llm as unknown as ChatOpenAI).temperature = 0; (llm as unknown as ChatOpenAI).temperature = 0;
logger.info('createSearchRetrieverChain: LLM temperature set to 0');
return RunnableSequence.from([ return RunnableSequence.from([
PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt), PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt),
llm, llm,
this.strParser, this.strParser,
RunnableLambda.from(async (input: string) => { RunnableLambda.from(async (input: string) => {
logger.info(`Parsed query: ${input}`);
const linksOutputParser = new LineListOutputParser({ const linksOutputParser = new LineListOutputParser({
key: 'links', key: 'links',
}); });
const questionOutputParser = new LineOutputParser({ const questionOutputParser = new LineOutputParser({
key: 'question', key: 'question',
}); });
@@ -81,21 +86,25 @@ class MetaSearchAgent implements MetaSearchAgentType {
? await questionOutputParser.parse(input) ? await questionOutputParser.parse(input)
: input; : input;
logger.info(`Links found: ${JSON.stringify(links, null, 2)}`);
logger.info(`Question parsed: ${question}`);
if (question === 'not_needed') { if (question === 'not_needed') {
logger.info('No question needed ("not_needed"), returning empty docs.');
return { query: '', docs: [] }; return { query: '', docs: [] };
} }
if (links.length > 0) { if (links.length > 0) {
logger.info('Handling user-provided links...');
if (question.length === 0) { if (question.length === 0) {
question = 'summarize'; question = 'summarize';
} }
let docs = []; let docs: Document[] = [];
const linkDocs = await getDocumentsFromLinks({ links }); const linkDocs = await getDocumentsFromLinks({ links });
logger.info(`Fetched ${linkDocs.length} documents from user links.`);
const docGroups: Document[] = []; const docGroups: Document[] = [];
linkDocs.map((doc) => { linkDocs.map((doc) => {
const URLDocExists = docGroups.find( const URLDocExists = docGroups.find(
(d) => (d) =>
@@ -129,64 +138,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
await Promise.all( await Promise.all(
docGroups.map(async (doc) => { docGroups.map(async (doc) => {
const res = await llm.invoke(` const res = await llm.invoke(`
You are a web search summarizer, tasked with summarizing a piece of text retrieved from a web search. Your job is to summarize the ... // Summarizer prompt ...
text into a detailed, 2-4 paragraph explanation that captures the main ideas and provides a comprehensive answer to the query.
If the query is \"summarize\", you should provide a detailed summary of the text. If the query is a specific question, you should answer it in the summary.
- **Journalistic tone**: The summary should sound professional and journalistic, not too casual or vague.
- **Thorough and detailed**: Ensure that every key point from the text is captured and that the summary directly answers the query.
- **Not too lengthy, but detailed**: The summary should be informative but not excessively long. Focus on providing detailed information in a concise format.
The text will be shared inside the \`text\` XML tag, and the query inside the \`query\` XML tag.
<example>
1. \`<text>
Docker is a set of platform-as-a-service products that use OS-level virtualization to deliver software in packages called containers.
It was first released in 2013 and is developed by Docker, Inc. Docker is designed to make it easier to create, deploy, and run applications
by using containers.
</text>
<query>
What is Docker and how does it work?
</query>
Response:
Docker is a revolutionary platform-as-a-service product developed by Docker, Inc., that uses container technology to make application
deployment more efficient. It allows developers to package their software with all necessary dependencies, making it easier to run in
any environment. Released in 2013, Docker has transformed the way applications are built, deployed, and managed.
\`
2. \`<text>
The theory of relativity, or simply relativity, encompasses two interrelated theories of Albert Einstein: special relativity and general
relativity. However, the word "relativity" is sometimes used in reference to Galilean invariance. The term "theory of relativity" was based
on the expression "relative theory" used by Max Planck in 1906. The theory of relativity usually encompasses two interrelated theories by
Albert Einstein: special relativity and general relativity. Special relativity applies to all physical phenomena in the absence of gravity.
General relativity explains the law of gravitation and its relation to other forces of nature. It applies to the cosmological and astrophysical
realm, including astronomy.
</text>
<query>
summarize
</query>
Response:
The theory of relativity, developed by Albert Einstein, encompasses two main theories: special relativity and general relativity. Special
relativity applies to all physical phenomena in the absence of gravity, while general relativity explains the law of gravitation and its
relation to other forces of nature. The theory of relativity is based on the concept of "relative theory," as introduced by Max Planck in
1906. It is a fundamental theory in physics that has revolutionized our understanding of the universe.
\`
</example>
Everything below is the actual data you will be working with. Good luck!
<query>
${question}
</query>
<text>
${doc.pageContent}
</text>
Make sure to answer the query in the summary.
`); `);
const document = new Document({ const document = new Document({
@@ -200,18 +152,25 @@ class MetaSearchAgent implements MetaSearchAgentType {
docs.push(document); docs.push(document);
}), }),
); );
logger.info('Docs after summarizing user-provided links: ', docs);
return { query: question, docs: docs }; return { query: question, docs };
} else { } else {
logger.info(`No links specified, searching via Searxng on query: "${question}"`);
const res = await searchSearxng(question, { const res = await searchSearxng(question, {
language: 'en', language: 'en',
engines: this.config.activeEngines, engines: this.config.activeEngines,
}); });
logger.info(`Searxng returned ${res.results.length} results.`);
const documents = res.results.map( const documents = res.results.map(
(result) => (result) =>
new Document({ new Document({
pageContent: result.content, pageContent:
result.content ||
(this.config.activeEngines.includes('youtube')
? result.title
: ''),
metadata: { metadata: {
title: result.title, title: result.title,
url: result.url, url: result.url,
@@ -232,14 +191,15 @@ class MetaSearchAgent implements MetaSearchAgentType {
embeddings: Embeddings, embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality', optimizationMode: 'speed' | 'balanced' | 'quality',
) { ) {
logger.info(`Creating answering chain. Optimization mode: ${optimizationMode}`);
return RunnableSequence.from([ return RunnableSequence.from([
RunnableMap.from({ RunnableMap.from({
query: (input: BasicChainInput) => input.query, query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history, chat_history: (input: BasicChainInput) => input.chat_history,
date: () => new Date().toISOString(),
context: RunnableLambda.from(async (input: BasicChainInput) => { context: RunnableLambda.from(async (input: BasicChainInput) => {
const processedHistory = formatChatHistoryAsString( logger.info('Retrieving final source documents...');
input.chat_history, const processedHistory = formatChatHistoryAsString(input.chat_history);
);
let docs: Document[] | null = null; let docs: Document[] | null = null;
let query = input.query; let query = input.query;
@@ -255,6 +215,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
query = searchRetrieverResult.query; query = searchRetrieverResult.query;
docs = searchRetrieverResult.docs; docs = searchRetrieverResult.docs;
logger.info(`Got ${docs.length} docs from searchRetriever.`);
} }
const sortedDocs = await this.rerankDocs( const sortedDocs = await this.rerankDocs(
@@ -264,6 +225,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
embeddings, embeddings,
optimizationMode, optimizationMode,
); );
logger.info(`Sorted docs length: ${sortedDocs?.length ?? 0}`);
return sortedDocs; return sortedDocs;
}) })
@@ -291,7 +253,9 @@ class MetaSearchAgent implements MetaSearchAgentType {
embeddings: Embeddings, embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality', optimizationMode: 'speed' | 'balanced' | 'quality',
) { ) {
logger.info(`Reranking. Query="${query}", initial docs=${docs.length}, fileIds=${fileIds.length}`);
if (docs.length === 0 && fileIds.length === 0) { if (docs.length === 0 && fileIds.length === 0) {
logger.info('No docs or fileIds to rerank. Returning empty.');
return docs; return docs;
} }
@@ -302,32 +266,34 @@ class MetaSearchAgent implements MetaSearchAgentType {
const contentPath = filePath + '-extracted.json'; const contentPath = filePath + '-extracted.json';
const embeddingsPath = filePath + '-embeddings.json'; const embeddingsPath = filePath + '-embeddings.json';
logger.info(`Reading content from ${contentPath}`);
logger.info(`Reading embeddings from ${embeddingsPath}`);
const content = JSON.parse(fs.readFileSync(contentPath, 'utf8')); const content = JSON.parse(fs.readFileSync(contentPath, 'utf8'));
const embeddings = JSON.parse(fs.readFileSync(embeddingsPath, 'utf8')); const fileEmbeddings = JSON.parse(fs.readFileSync(embeddingsPath, 'utf8'));
const fileSimilaritySearchObject = content.contents.map( const fileSimilaritySearchObject = content.contents.map(
(c: string, i) => { (c: string, i: number) => ({
return {
fileName: content.title, fileName: content.title,
content: c, content: c,
embeddings: embeddings.embeddings[i], embeddings: fileEmbeddings.embeddings[i],
}; }),
},
); );
return fileSimilaritySearchObject; return fileSimilaritySearchObject;
}) })
.flat(); .flat();
// If only summarizing, just return top docs
if (query.toLocaleLowerCase() === 'summarize') { if (query.toLocaleLowerCase() === 'summarize') {
logger.info(`Query is "summarize". Returning top 15 docs from web sources.`);
return docs.slice(0, 15); return docs.slice(0, 15);
} }
const docsWithContent = docs.filter( const docsWithContent = docs.filter((doc) => doc.pageContent && doc.pageContent.length > 0);
(doc) => doc.pageContent && doc.pageContent.length > 0,
);
if (optimizationMode === 'speed' || this.config.rerank === false) { if (optimizationMode === 'speed' || this.config.rerank === false) {
logger.info(`Reranking in 'speed' mode or no rerank. Docs with content: ${docsWithContent.length}`);
if (filesData.length > 0) { if (filesData.length > 0) {
const [queryEmbedding] = await Promise.all([ const [queryEmbedding] = await Promise.all([
embeddings.embedQuery(query), embeddings.embedQuery(query),
@@ -338,14 +304,13 @@ class MetaSearchAgent implements MetaSearchAgentType {
pageContent: fileData.content, pageContent: fileData.content,
metadata: { metadata: {
title: fileData.fileName, title: fileData.fileName,
url: `File`, url: 'File',
}, },
}); });
}); });
const similarity = filesData.map((fileData, i) => { const similarity = filesData.map((fileData, i) => {
const sim = computeSimilarity(queryEmbedding, fileData.embeddings); const sim = computeSimilarity(queryEmbedding, fileData.embeddings);
return { return {
index: i, index: i,
similarity: sim, similarity: sim,
@@ -353,28 +318,23 @@ class MetaSearchAgent implements MetaSearchAgentType {
}); });
let sortedDocs = similarity let sortedDocs = similarity
.filter( .filter((sim) => sim.similarity > (this.config.rerankThreshold ?? 0.3))
(sim) => sim.similarity > (this.config.rerankThreshold ?? 0.3),
)
.sort((a, b) => b.similarity - a.similarity) .sort((a, b) => b.similarity - a.similarity)
.slice(0, 15) .slice(0, 15)
.map((sim) => fileDocs[sim.index]); .map((sim) => fileDocs[sim.index]);
sortedDocs = sortedDocs = docsWithContent.length > 0 ? sortedDocs.slice(0, 8) : sortedDocs;
docsWithContent.length > 0 ? sortedDocs.slice(0, 8) : sortedDocs; logger.info(`Final sorted docs in 'speed' mode: ${sortedDocs.length}`);
return [ return [...sortedDocs, ...docsWithContent.slice(0, 15 - sortedDocs.length)];
...sortedDocs,
...docsWithContent.slice(0, 15 - sortedDocs.length),
];
} else { } else {
logger.info('No file data, returning top 15 from docsWithContent.');
return docsWithContent.slice(0, 15); return docsWithContent.slice(0, 15);
} }
} else if (optimizationMode === 'balanced') { } else if (optimizationMode === 'balanced') {
logger.info('Reranking in balanced mode.');
const [docEmbeddings, queryEmbedding] = await Promise.all([ const [docEmbeddings, queryEmbedding] = await Promise.all([
embeddings.embedDocuments( embeddings.embedDocuments(docsWithContent.map((doc) => doc.pageContent)),
docsWithContent.map((doc) => doc.pageContent),
),
embeddings.embedQuery(query), embeddings.embedQuery(query),
]); ]);
@@ -384,7 +344,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
pageContent: fileData.content, pageContent: fileData.content,
metadata: { metadata: {
title: fileData.fileName, title: fileData.fileName,
url: `File`, url: 'File',
}, },
}); });
}), }),
@@ -394,7 +354,6 @@ class MetaSearchAgent implements MetaSearchAgentType {
const similarity = docEmbeddings.map((docEmbedding, i) => { const similarity = docEmbeddings.map((docEmbedding, i) => {
const sim = computeSimilarity(queryEmbedding, docEmbedding); const sim = computeSimilarity(queryEmbedding, docEmbedding);
return { return {
index: i, index: i,
similarity: sim, similarity: sim,
@@ -407,13 +366,21 @@ class MetaSearchAgent implements MetaSearchAgentType {
.slice(0, 15) .slice(0, 15)
.map((sim) => docsWithContent[sim.index]); .map((sim) => docsWithContent[sim.index]);
logger.info(`Final sorted docs in 'balanced' mode: ${sortedDocs.length}`);
return sortedDocs; return sortedDocs;
} }
// If "quality" is passed but not implemented, you might want to log or fallback
logger.warn(`Optimization mode "${optimizationMode}" not fully implemented. Returning docs as-is.`);
return docsWithContent.slice(0, 15);
} }
private processDocs(docs: Document[]) { private processDocs(docs: Document[]) {
return docs return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`) .map(
(_, index) =>
`${index + 1}. ${docs[index].metadata.title} ${docs[index].pageContent}`,
)
.join('\n'); .join('\n');
} }
@@ -421,12 +388,16 @@ class MetaSearchAgent implements MetaSearchAgentType {
stream: IterableReadableStream<StreamEvent>, stream: IterableReadableStream<StreamEvent>,
emitter: eventEmitter, emitter: eventEmitter,
) { ) {
logger.info('Starting to stream chain events...');
for await (const event of stream) { for await (const event of stream) {
// You can add debug logs here to see each event
// logger.info(`Event: ${JSON.stringify(event, null, 2)}`);
if ( if (
event.event === 'on_chain_end' && event.event === 'on_chain_end' &&
event.name === 'FinalSourceRetriever' event.name === 'FinalSourceRetriever'
) { ) {
``; logger.info('FinalSourceRetriever ended, sending docs to front-end...');
emitter.emit( emitter.emit(
'data', 'data',
JSON.stringify({ type: 'sources', data: event.data.output }), JSON.stringify({ type: 'sources', data: event.data.output }),
@@ -436,6 +407,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
event.event === 'on_chain_stream' && event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator' event.name === 'FinalResponseGenerator'
) { ) {
logger.info('Response chunk received, streaming to client...');
emitter.emit( emitter.emit(
'data', 'data',
JSON.stringify({ type: 'response', data: event.data.chunk }), JSON.stringify({ type: 'response', data: event.data.chunk }),
@@ -445,9 +417,11 @@ class MetaSearchAgent implements MetaSearchAgentType {
event.event === 'on_chain_end' && event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator' event.name === 'FinalResponseGenerator'
) { ) {
logger.info('FinalResponseGenerator ended, signaling end of stream.');
emitter.emit('end'); emitter.emit('end');
} }
} }
logger.info('Finished streaming chain events.');
} }
async searchAndAnswer( async searchAndAnswer(
@@ -460,6 +434,11 @@ class MetaSearchAgent implements MetaSearchAgentType {
) { ) {
const emitter = new eventEmitter(); const emitter = new eventEmitter();
logger.info(`Received query: "${message}"`);
logger.info(`History length: ${history.length}`);
logger.info(`Optimization mode: ${optimizationMode}`);
logger.info(`File IDs: ${fileIds.join(', ') || 'None'}`);
const answeringChain = await this.createAnsweringChain( const answeringChain = await this.createAnsweringChain(
llm, llm,
fileIds, fileIds,
@@ -467,17 +446,17 @@ class MetaSearchAgent implements MetaSearchAgentType {
optimizationMode, optimizationMode,
); );
// .streamEvents(...) can throw, so a try/catch can help you catch/log errors
try {
const stream = answeringChain.streamEvents( const stream = answeringChain.streamEvents(
{ { chat_history: history, query: message },
chat_history: history, { version: 'v1' },
query: message,
},
{
version: 'v1',
},
); );
this.handleStream(stream, emitter); this.handleStream(stream, emitter);
} catch (error: any) {
logger.error(`Error in searchAndAnswer streaming: ${error.message}`);
emitter.emit('error', error);
}
return emitter; return emitter;
} }

48
src/utils/checkSearch.ts Normal file
View File

@@ -0,0 +1,48 @@
import { shouldPerformSearchPrompt } from '../prompts/shouldSearch';
import { HumanMessage } from '@langchain/core/messages';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import logger from './logger'; // Ensure the logger module is correctly imported
/**
* Determines whether an external search is required.
* @param llm - The AI language model instance.
* @param query - The user's message.
* @param history - Chat history.
* @returns {Promise<boolean>} - True if search is needed, False otherwise.
*/
export const checkIfSearchIsNeeded = async (
llm: BaseChatModel,
query: string,
history: Array<[string, string]>
): Promise<boolean> => {
const prompt = shouldPerformSearchPrompt(query, history);
logger.info(`📜 Generated Search Decision Prompt for query "${query}":\n${prompt}`);
try {
const response = await llm.invoke([new HumanMessage({ content: prompt })]);
// Log the raw response from LLM
logger.info(`🔍 Raw Response from LLM for query "${query}": ${JSON.stringify(response)}`);
const decision = String(response?.content || '').trim().toLowerCase();
// Log the decision for debugging
logger.info(`🔍 Search Decision for query "${query}": "${decision}"`);
if (decision === 'yes') {
logger.debug(`✅ Search Required for Query: "${query}"`);
return true;
} else if (decision === 'no') {
logger.debug(`❌ No Search Needed for Query: "${query}"`);
return false;
} else {
logger.warn(`⚠️ Unexpected Search Decision Output: "${decision}" (Defaulting to NO)`);
return false;
}
} catch (error) {
logger.error(`❌ Error in Search Decision: ${error}`);
return false;
}
};

View File

@@ -1,5 +1,6 @@
import path from 'path'; import path from 'path';
import fs from 'fs'; import fs from 'fs';
export const getFileDetails = (fileId: string) => { export const getFileDetails = (fileId: string) => {
const fileLoc = path.join( const fileLoc = path.join(
process.cwd(), process.cwd(),

View File

@@ -1,22 +1,28 @@
import winston from 'winston'; import winston from 'winston';
const { combine, timestamp, printf, colorize } = winston.format;
const logFormat = printf(({ timestamp, level, message }) => {
return `${timestamp} [${level.toUpperCase()}]: ${message}`;
});
const logger = winston.createLogger({ const logger = winston.createLogger({
level: 'info', level: process.env.LOG_LEVEL || 'info',
format: combine(
timestamp({ format: 'YYYY-MM-DD HH:mm:ss' }),
colorize(), // optional color in dev
logFormat
),
transports: [ transports: [
new winston.transports.Console({ // Console transport ensures Docker sees logs on stdout
format: winston.format.combine( new winston.transports.Console(),
winston.format.colorize(), new winston.transports.File({ filename: 'app.log' }),
winston.format.simple(),
), // Optional: file transport if you also want to persist logs on the containers filesystem
}), // new winston.transports.File({ filename: 'app.log' }),
new winston.transports.File({
filename: 'app.log',
format: winston.format.combine(
winston.format.timestamp(),
winston.format.json(),
),
}),
], ],
}); });
logger.info("✅ Winston logger active, logging to console!");
export default logger; export default logger;

View File

@@ -15,6 +15,8 @@ export const handleConnection = async (
request: IncomingMessage, request: IncomingMessage,
) => { ) => {
try { try {
logger.info(`🔗 New WebSocket connection from ${request.socket.remoteAddress}`);
const searchParams = new URL(request.url, `http://${request.headers.host}`) const searchParams = new URL(request.url, `http://${request.headers.host}`)
.searchParams; .searchParams;
@@ -23,9 +25,11 @@ export const handleConnection = async (
getAvailableEmbeddingModelProviders(), getAvailableEmbeddingModelProviders(),
]); ]);
// Retrieve query parameters
const chatModelProvider = const chatModelProvider =
searchParams.get('chatModelProvider') || searchParams.get('chatModelProvider') ||
Object.keys(chatModelProviders)[0]; Object.keys(chatModelProviders)[0];
const chatModel = const chatModel =
searchParams.get('chatModel') || searchParams.get('chatModel') ||
Object.keys(chatModelProviders[chatModelProvider])[0]; Object.keys(chatModelProviders[chatModelProvider])[0];
@@ -33,21 +37,32 @@ export const handleConnection = async (
const embeddingModelProvider = const embeddingModelProvider =
searchParams.get('embeddingModelProvider') || searchParams.get('embeddingModelProvider') ||
Object.keys(embeddingModelProviders)[0]; Object.keys(embeddingModelProviders)[0];
const embeddingModel = const embeddingModel =
searchParams.get('embeddingModel') || searchParams.get('embeddingModel') ||
Object.keys(embeddingModelProviders[embeddingModelProvider])[0]; Object.keys(embeddingModelProviders[embeddingModelProvider])[0];
logger.debug(
`📜 WebSocket Connection - Model Selection:
🔹 Chat Model Provider: ${chatModelProvider}
🔹 Chat Model: ${chatModel}
🔹 Embedding Model Provider: ${embeddingModelProvider}
🔹 Embedding Model: ${embeddingModel}`
);
let llm: BaseChatModel | undefined; let llm: BaseChatModel | undefined;
let embeddings: Embeddings | undefined; let embeddings: Embeddings | undefined;
// Handle model selection
if ( if (
chatModelProviders[chatModelProvider] && chatModelProviders[chatModelProvider] &&
chatModelProviders[chatModelProvider][chatModel] && chatModelProviders[chatModelProvider][chatModel] &&
chatModelProvider != 'custom_openai' chatModelProvider !== 'custom_openai'
) { ) {
llm = chatModelProviders[chatModelProvider][chatModel] llm = chatModelProviders[chatModelProvider][chatModel]
.model as unknown as BaseChatModel | undefined; .model as unknown as BaseChatModel | undefined;
} else if (chatModelProvider == 'custom_openai') { } else if (chatModelProvider === 'custom_openai') {
logger.info(`🛠 Using custom OpenAI model: ${chatModel}`);
llm = new ChatOpenAI({ llm = new ChatOpenAI({
modelName: chatModel, modelName: chatModel,
openAIApiKey: searchParams.get('openAIApiKey'), openAIApiKey: searchParams.get('openAIApiKey'),
@@ -62,12 +77,12 @@ export const handleConnection = async (
embeddingModelProviders[embeddingModelProvider] && embeddingModelProviders[embeddingModelProvider] &&
embeddingModelProviders[embeddingModelProvider][embeddingModel] embeddingModelProviders[embeddingModelProvider][embeddingModel]
) { ) {
embeddings = embeddingModelProviders[embeddingModelProvider][ embeddings = embeddingModelProviders[embeddingModelProvider][embeddingModel]
embeddingModel .model as Embeddings | undefined;
].model as Embeddings | undefined;
} }
if (!llm || !embeddings) { if (!llm || !embeddings) {
logger.error(`❌ Invalid LLM or embeddings model selection!`);
ws.send( ws.send(
JSON.stringify({ JSON.stringify({
type: 'error', type: 'error',
@@ -76,10 +91,15 @@ export const handleConnection = async (
}), }),
); );
ws.close(); ws.close();
return;
} }
logger.info(`✅ WebSocket setup complete - Ready for messages`);
// Send an initial "open" signal once connection is ready
const interval = setInterval(() => { const interval = setInterval(() => {
if (ws.readyState === ws.OPEN) { if (ws.readyState === ws.OPEN) {
logger.debug(`📡 Sending initial 'open' signal to client`);
ws.send( ws.send(
JSON.stringify({ JSON.stringify({
type: 'signal', type: 'signal',
@@ -90,14 +110,19 @@ export const handleConnection = async (
} }
}, 5); }, 5);
ws.on( // Handle incoming messages
'message', ws.on('message', async (message) => {
async (message) => logger.info(`📩 Received message from client: ${message.toString()}`);
await handleMessage(message.toString(), ws, llm, embeddings), await handleMessage(message.toString(), ws, llm, embeddings);
); });
// Handle WebSocket closure
ws.on('close', () => {
logger.warn(`❌ WebSocket connection closed for ${request.socket.remoteAddress}`);
});
ws.on('close', () => logger.debug('Connection closed'));
} catch (err) { } catch (err) {
logger.error(`❌ WebSocket error: ${err.message}`);
ws.send( ws.send(
JSON.stringify({ JSON.stringify({
type: 'error', type: 'error',
@@ -106,6 +131,5 @@ export const handleConnection = async (
}), }),
); );
ws.close(); ws.close();
logger.error(err);
} }
}; };

View File

@@ -5,7 +5,7 @@ import type { Embeddings } from '@langchain/core/embeddings';
import logger from '../utils/logger'; import logger from '../utils/logger';
import db from '../db'; import db from '../db';
import { chats, messages as messagesSchema } from '../db/schema'; import { chats, messages as messagesSchema } from '../db/schema';
import { eq, asc, gt } from 'drizzle-orm'; import { eq, asc, gt, and } from 'drizzle-orm';
import crypto from 'crypto'; import crypto from 'crypto';
import { getFileDetails } from '../utils/files'; import { getFileDetails } from '../utils/files';
import MetaSearchAgent, { import MetaSearchAgent, {
@@ -134,6 +134,8 @@ const handleEmitterEvents = (
}); });
emitter.on('error', (data) => { emitter.on('error', (data) => {
const parsedData = JSON.parse(data); const parsedData = JSON.parse(data);
logger.debug(`📡 Emitter received data: ${JSON.stringify(parsedData)}`);
ws.send( ws.send(
JSON.stringify({ JSON.stringify({
type: 'error', type: 'error',
@@ -151,9 +153,15 @@ export const handleMessage = async (
embeddings: Embeddings, embeddings: Embeddings,
) => { ) => {
try { try {
logger.debug('Handling message...');
const parsedWSMessage = JSON.parse(message) as WSMessage; const parsedWSMessage = JSON.parse(message) as WSMessage;
const parsedMessage = parsedWSMessage.message; const parsedMessage = parsedWSMessage.message;
if (parsedWSMessage.files.length > 0) {
/* TODO: Implement uploads in other classes/single meta class system*/
parsedWSMessage.focusMode = 'webSearch';
}
const humanMessageId = const humanMessageId =
parsedMessage.messageId ?? crypto.randomBytes(7).toString('hex'); parsedMessage.messageId ?? crypto.randomBytes(7).toString('hex');
const aiMessageId = crypto.randomBytes(7).toString('hex'); const aiMessageId = crypto.randomBytes(7).toString('hex');
@@ -233,7 +241,12 @@ export const handleMessage = async (
} else { } else {
await db await db
.delete(messagesSchema) .delete(messagesSchema)
.where(gt(messagesSchema.id, messageExists.id)) .where(
and(
gt(messagesSchema.id, messageExists.id),
eq(messagesSchema.chatId, parsedMessage.chatId),
),
)
.execute(); .execute();
} }
} catch (err) { } catch (err) {

View File

@@ -14,9 +14,9 @@ const montserrat = Montserrat({
}); });
export const metadata: Metadata = { export const metadata: Metadata = {
title: 'Perplexica - Chat with the internet', title: 'gochat247 - aibot - Chat with the internet',
description: description:
'Perplexica is an AI powered chatbot that is connected to the internet.', 'gochat247 - aibot is an AI powered chatbot that is connected to the internet.',
}; };
export default function RootLayout({ export default function RootLayout({

View File

@@ -2,7 +2,7 @@ import { Metadata } from 'next';
import React from 'react'; import React from 'react';
export const metadata: Metadata = { export const metadata: Metadata = {
title: 'Library - Perplexica', title: 'Library - gochat247 - aibot',
}; };
const Layout = ({ children }: { children: React.ReactNode }) => { const Layout = ({ children }: { children: React.ReactNode }) => {

View File

@@ -3,8 +3,8 @@ import { Metadata } from 'next';
import { Suspense } from 'react'; import { Suspense } from 'react';
export const metadata: Metadata = { export const metadata: Metadata = {
title: 'Chat - Perplexica', title: 'Chat - gochat247 - aibot',
description: 'Chat with the internet, chat with Perplexica.', description: 'Chat with the internet, chat with gochat247 - aibot.',
}; };
const Home = () => { const Home = () => {

View File

@@ -9,7 +9,9 @@ import crypto from 'crypto';
import { toast } from 'sonner'; import { toast } from 'sonner';
import { useSearchParams } from 'next/navigation'; import { useSearchParams } from 'next/navigation';
import { getSuggestions } from '@/lib/actions'; import { getSuggestions } from '@/lib/actions';
import Error from 'next/error'; import { Settings } from 'lucide-react';
import SettingsDialog from './SettingsDialog';
import NextError from 'next/error';
export type Message = { export type Message = {
messageId: string; messageId: string;
@@ -32,17 +34,38 @@ const useSocket = (
setIsWSReady: (ready: boolean) => void, setIsWSReady: (ready: boolean) => void,
setError: (error: boolean) => void, setError: (error: boolean) => void,
) => { ) => {
const [ws, setWs] = useState<WebSocket | null>(null); const wsRef = useRef<WebSocket | null>(null);
const reconnectTimeoutRef = useRef<NodeJS.Timeout>();
const retryCountRef = useRef(0);
const isCleaningUpRef = useRef(false);
const MAX_RETRIES = 3;
const INITIAL_BACKOFF = 1000; // 1 second
const getBackoffDelay = (retryCount: number) => {
return Math.min(INITIAL_BACKOFF * Math.pow(2, retryCount), 10000); // Cap at 10 seconds
};
useEffect(() => { useEffect(() => {
if (!ws) {
const connectWs = async () => { const connectWs = async () => {
if (wsRef.current?.readyState === WebSocket.OPEN) {
wsRef.current.close();
}
try {
let chatModel = localStorage.getItem('chatModel'); let chatModel = localStorage.getItem('chatModel');
let chatModelProvider = localStorage.getItem('chatModelProvider'); let chatModelProvider = localStorage.getItem('chatModelProvider');
let embeddingModel = localStorage.getItem('embeddingModel'); let embeddingModel = localStorage.getItem('embeddingModel');
let embeddingModelProvider = localStorage.getItem( let embeddingModelProvider = localStorage.getItem(
'embeddingModelProvider', 'embeddingModelProvider',
); );
let openAIBaseURL =
chatModelProvider === 'custom_openai'
? localStorage.getItem('openAIBaseURL')
: null;
let openAIPIKey =
chatModelProvider === 'custom_openai'
? localStorage.getItem('openAIApiKey')
: null;
const providers = await fetch( const providers = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/models`, `${process.env.NEXT_PUBLIC_API_URL}/models`,
@@ -51,7 +74,13 @@ const useSocket = (
'Content-Type': 'application/json', 'Content-Type': 'application/json',
}, },
}, },
).then(async (res) => await res.json()); ).then(async (res) => {
if (!res.ok)
throw new Error(
`Failed to fetch models: ${res.status} ${res.statusText}`,
);
return res.json();
});
if ( if (
!chatModel || !chatModel ||
@@ -62,16 +91,18 @@ const useSocket = (
if (!chatModel || !chatModelProvider) { if (!chatModel || !chatModelProvider) {
const chatModelProviders = providers.chatModelProviders; const chatModelProviders = providers.chatModelProviders;
chatModelProvider = Object.keys(chatModelProviders)[0]; chatModelProvider =
chatModelProvider || Object.keys(chatModelProviders)[0];
if (chatModelProvider === 'custom_openai') { if (chatModelProvider === 'custom_openai') {
toast.error( toast.error(
'Seems like you are using the custom OpenAI provider, please open the settings and configure the API key and base URL', 'Seems like you are using the custom OpenAI provider, please open the settings and enter a model name to use.',
); );
setError(true); setError(true);
return; return;
} else { } else {
chatModel = Object.keys(chatModelProviders[chatModelProvider])[0]; chatModel = Object.keys(chatModelProviders[chatModelProvider])[0];
if ( if (
!chatModelProviders || !chatModelProviders ||
Object.keys(chatModelProviders).length === 0 Object.keys(chatModelProviders).length === 0
@@ -108,18 +139,42 @@ const useSocket = (
if ( if (
Object.keys(chatModelProviders).length > 0 && Object.keys(chatModelProviders).length > 0 &&
!chatModelProviders[chatModelProvider] (((!openAIBaseURL || !openAIPIKey) &&
chatModelProvider === 'custom_openai') ||
!chatModelProviders[chatModelProvider])
) { ) {
chatModelProvider = Object.keys(chatModelProviders)[0]; const chatModelProvidersKeys = Object.keys(chatModelProviders);
chatModelProvider =
chatModelProvidersKeys.find(
(key) => Object.keys(chatModelProviders[key]).length > 0,
) || chatModelProvidersKeys[0];
if (
chatModelProvider === 'custom_openai' &&
(!openAIBaseURL || !openAIPIKey)
) {
toast.error(
'Seems like you are using the custom OpenAI provider, please open the settings and configure the API key and base URL',
);
setError(true);
return;
}
localStorage.setItem('chatModelProvider', chatModelProvider); localStorage.setItem('chatModelProvider', chatModelProvider);
} }
if ( if (
chatModelProvider && chatModelProvider &&
chatModelProvider != 'custom_openai' && (!openAIBaseURL || !openAIPIKey) &&
!chatModelProviders[chatModelProvider][chatModel] !chatModelProviders[chatModelProvider][chatModel]
) { ) {
chatModel = Object.keys(chatModelProviders[chatModelProvider])[0]; chatModel = Object.keys(
chatModelProviders[
Object.keys(chatModelProviders[chatModelProvider]).length > 0
? chatModelProvider
: Object.keys(chatModelProviders)[0]
],
)[0];
localStorage.setItem('chatModel', chatModel); localStorage.setItem('chatModel', chatModel);
} }
@@ -168,6 +223,7 @@ const useSocket = (
wsURL.search = searchParams.toString(); wsURL.search = searchParams.toString();
const ws = new WebSocket(wsURL.toString()); const ws = new WebSocket(wsURL.toString());
wsRef.current = ws;
const timeoutId = setTimeout(() => { const timeoutId = setTimeout(() => {
if (ws.readyState !== 1) { if (ws.readyState !== 1) {
@@ -183,11 +239,16 @@ const useSocket = (
const interval = setInterval(() => { const interval = setInterval(() => {
if (ws.readyState === 1) { if (ws.readyState === 1) {
setIsWSReady(true); setIsWSReady(true);
setError(false);
if (retryCountRef.current > 0) {
toast.success('Connection restored.');
}
retryCountRef.current = 0;
clearInterval(interval); clearInterval(interval);
} }
}, 5); }, 5);
clearTimeout(timeoutId); clearTimeout(timeoutId);
console.log('[DEBUG] opened'); console.debug(new Date(), 'ws:connected');
} }
if (data.type === 'error') { if (data.type === 'error') {
toast.error(data.data); toast.error(data.data);
@@ -196,24 +257,68 @@ const useSocket = (
ws.onerror = () => { ws.onerror = () => {
clearTimeout(timeoutId); clearTimeout(timeoutId);
setError(true); setIsWSReady(false);
toast.error('WebSocket connection error.'); toast.error('WebSocket connection error.');
}; };
ws.onclose = () => { ws.onclose = () => {
clearTimeout(timeoutId); clearTimeout(timeoutId);
setError(true); setIsWSReady(false);
console.log('[DEBUG] closed'); console.debug(new Date(), 'ws:disconnected');
if (!isCleaningUpRef.current) {
toast.error('Connection lost. Attempting to reconnect...');
attemptReconnect();
}
};
} catch (error) {
console.debug(new Date(), 'ws:error', error);
setIsWSReady(false);
attemptReconnect();
}
}; };
setWs(ws); const attemptReconnect = () => {
retryCountRef.current += 1;
if (retryCountRef.current > MAX_RETRIES) {
console.debug(new Date(), 'ws:max_retries');
setError(true);
toast.error(
'Unable to connect to server after multiple attempts. Please refresh the page to try again.',
);
return;
}
const backoffDelay = getBackoffDelay(retryCountRef.current);
console.debug(
new Date(),
`ws:retry attempt=${retryCountRef.current}/${MAX_RETRIES} delay=${backoffDelay}ms`,
);
if (reconnectTimeoutRef.current) {
clearTimeout(reconnectTimeoutRef.current);
}
reconnectTimeoutRef.current = setTimeout(() => {
connectWs();
}, backoffDelay);
}; };
connectWs(); connectWs();
}
}, [ws, url, setIsWSReady, setError]);
return ws; return () => {
if (reconnectTimeoutRef.current) {
clearTimeout(reconnectTimeoutRef.current);
}
if (wsRef.current?.readyState === WebSocket.OPEN) {
wsRef.current.close();
isCleaningUpRef.current = true;
console.debug(new Date(), 'ws:cleanup');
}
};
}, [url, setIsWSReady, setError]);
return wsRef.current;
}; };
const loadMessages = async ( const loadMessages = async (
@@ -257,7 +362,7 @@ const loadMessages = async (
return [msg.role, msg.content]; return [msg.role, msg.content];
}) as [string, string][]; }) as [string, string][];
console.log('[DEBUG] messages loaded'); console.debug(new Date(), 'app:messages_loaded');
document.title = messages[0].content; document.title = messages[0].content;
@@ -310,6 +415,8 @@ const ChatWindow = ({ id }: { id?: string }) => {
const [notFound, setNotFound] = useState(false); const [notFound, setNotFound] = useState(false);
const [isSettingsOpen, setIsSettingsOpen] = useState(false);
useEffect(() => { useEffect(() => {
if ( if (
chatId && chatId &&
@@ -339,7 +446,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
return () => { return () => {
if (ws?.readyState === 1) { if (ws?.readyState === 1) {
ws.close(); ws.close();
console.log('[DEBUG] closed'); console.debug(new Date(), 'ws:cleanup');
} }
}; };
// eslint-disable-next-line react-hooks/exhaustive-deps // eslint-disable-next-line react-hooks/exhaustive-deps
@@ -354,12 +461,18 @@ const ChatWindow = ({ id }: { id?: string }) => {
useEffect(() => { useEffect(() => {
if (isMessagesLoaded && isWSReady) { if (isMessagesLoaded && isWSReady) {
setIsReady(true); setIsReady(true);
console.log('[DEBUG] ready'); console.debug(new Date(), 'app:ready');
} else {
setIsReady(false);
} }
}, [isMessagesLoaded, isWSReady]); }, [isMessagesLoaded, isWSReady]);
const sendMessage = async (message: string, messageId?: string) => { const sendMessage = async (message: string, messageId?: string) => {
if (loading) return; if (loading) return;
if (!ws || ws.readyState !== WebSocket.OPEN) {
toast.error('Cannot send message while disconnected');
return;
}
setLoading(true); setLoading(true);
setMessageAppeared(false); setMessageAppeared(false);
@@ -370,7 +483,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
messageId = messageId ?? crypto.randomBytes(7).toString('hex'); messageId = messageId ?? crypto.randomBytes(7).toString('hex');
ws?.send( ws.send(
JSON.stringify({ JSON.stringify({
type: 'message', type: 'message',
message: { message: {
@@ -514,17 +627,26 @@ const ChatWindow = ({ id }: { id?: string }) => {
if (hasError) { if (hasError) {
return ( return (
<div className="relative">
<div className="absolute w-full flex flex-row items-center justify-end mr-5 mt-5">
<Settings
className="cursor-pointer lg:hidden"
onClick={() => setIsSettingsOpen(true)}
/>
</div>
<div className="flex flex-col items-center justify-center min-h-screen"> <div className="flex flex-col items-center justify-center min-h-screen">
<p className="dark:text-white/70 text-black/70 text-sm"> <p className="dark:text-white/70 text-black/70 text-sm">
Failed to connect to the server. Please try again later. Failed to connect to the server. Please try again later.
</p> </p>
</div> </div>
<SettingsDialog isOpen={isSettingsOpen} setIsOpen={setIsSettingsOpen} />
</div>
); );
} }
return isReady ? ( return isReady ? (
notFound ? ( notFound ? (
<Error statusCode={404} /> <NextError statusCode={404} />
) : ( ) : (
<div> <div>
{messages.length > 0 ? ( {messages.length > 0 ? (

View File

@@ -38,7 +38,7 @@ const EmptyChat = ({
</div> </div>
<div className="flex flex-col items-center justify-center min-h-screen max-w-screen-sm mx-auto p-2 space-y-8"> <div className="flex flex-col items-center justify-center min-h-screen max-w-screen-sm mx-auto p-2 space-y-8">
<h2 className="text-black/70 dark:text-white/70 text-3xl font-medium -mt-8"> <h2 className="text-black/70 dark:text-white/70 text-3xl font-medium -mt-8">
Research begins here. gochat247 - aibot : knowledge with some privacy
</h2> </h2>
<EmptyChatMessageInput <EmptyChatMessageInput
sendMessage={sendMessage} sendMessage={sendMessage}

View File

@@ -107,8 +107,8 @@ const MessageBox = ({
</div> </div>
<Markdown <Markdown
className={cn( className={cn(
'prose dark:prose-invert prose-p:leading-relaxed prose-pre:p-0', 'prose prose-h1:mb-3 prose-h2:mb-2 prose-h2:mt-6 prose-h2:font-[800] prose-h3:mt-4 prose-h3:mb-1.5 prose-h3:font-[600] dark:prose-invert prose-p:leading-relaxed prose-pre:p-0 font-[400]',
'max-w-none break-words text-black dark:text-white text-sm md:text-base font-medium', 'max-w-none break-words text-black dark:text-white',
)} )}
> >
{parsedMessage} {parsedMessage}

View File

@@ -83,7 +83,7 @@ const Focus = ({
{focusMode !== 'webSearch' ? ( {focusMode !== 'webSearch' ? (
<div className="flex flex-row items-center space-x-1"> <div className="flex flex-row items-center space-x-1">
{focusModes.find((mode) => mode.key === focusMode)?.icon} {focusModes.find((mode) => mode.key === focusMode)?.icon}
<p className="text-xs font-medium"> <p className="text-xs font-medium hidden lg:block">
{focusModes.find((mode) => mode.key === focusMode)?.title} {focusModes.find((mode) => mode.key === focusMode)?.title}
</p> </p>
<ChevronDown size={20} className="-translate-x-1" /> <ChevronDown size={20} className="-translate-x-1" />
@@ -91,7 +91,7 @@ const Focus = ({
) : ( ) : (
<div className="flex flex-row items-center space-x-1"> <div className="flex flex-row items-center space-x-1">
<ScanEye size={20} /> <ScanEye size={20} />
<p className="text-xs font-medium">Focus</p> <p className="text-xs font-medium hidden lg:block">Focus</p>
</div> </div>
)} )}
</PopoverButton> </PopoverButton>

View File

@@ -1,6 +1,6 @@
/* eslint-disable @next/next/no-img-element */ /* eslint-disable @next/next/no-img-element */
import { PlayCircle, PlayIcon, PlusIcon, VideoIcon } from 'lucide-react'; import { PlayCircle, PlayIcon, PlusIcon, VideoIcon } from 'lucide-react';
import { useState } from 'react'; import { useRef, useState } from 'react';
import Lightbox, { GenericSlide, VideoSlide } from 'yet-another-react-lightbox'; import Lightbox, { GenericSlide, VideoSlide } from 'yet-another-react-lightbox';
import 'yet-another-react-lightbox/styles.css'; import 'yet-another-react-lightbox/styles.css';
import { Message } from './ChatWindow'; import { Message } from './ChatWindow';
@@ -35,6 +35,8 @@ const Searchvideos = ({
const [loading, setLoading] = useState(false); const [loading, setLoading] = useState(false);
const [open, setOpen] = useState(false); const [open, setOpen] = useState(false);
const [slides, setSlides] = useState<VideoSlide[]>([]); const [slides, setSlides] = useState<VideoSlide[]>([]);
const [currentIndex, setCurrentIndex] = useState(0);
const videoRefs = useRef<(HTMLIFrameElement | null)[]>([]);
return ( return (
<> <>
@@ -182,18 +184,39 @@ const Searchvideos = ({
open={open} open={open}
close={() => setOpen(false)} close={() => setOpen(false)}
slides={slides} slides={slides}
index={currentIndex}
on={{
view: ({ index }) => {
const previousIframe = videoRefs.current[currentIndex];
if (previousIframe?.contentWindow) {
previousIframe.contentWindow.postMessage(
'{"event":"command","func":"pauseVideo","args":""}',
'*',
);
}
setCurrentIndex(index);
},
}}
render={{ render={{
slide: ({ slide }) => slide: ({ slide }) => {
slide.type === 'video-slide' ? ( const index = slides.findIndex((s) => s === slide);
return slide.type === 'video-slide' ? (
<div className="h-full w-full flex flex-row items-center justify-center"> <div className="h-full w-full flex flex-row items-center justify-center">
<iframe <iframe
src={slide.iframe_src} src={`${slide.iframe_src}${slide.iframe_src.includes('?') ? '&' : '?'}enablejsapi=1`}
ref={(el) => {
if (el) {
videoRefs.current[index] = el;
}
}}
className="aspect-video max-h-[95vh] w-[95vw] rounded-2xl md:w-[80vw]" className="aspect-video max-h-[95vh] w-[95vw] rounded-2xl md:w-[80vw]"
allowFullScreen allowFullScreen
allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture"
/> />
</div> </div>
) : null, ) : null;
},
}} }}
/> />
</> </>

View File

@@ -63,6 +63,7 @@ interface SettingsType {
openaiApiKey: string; openaiApiKey: string;
groqApiKey: string; groqApiKey: string;
anthropicApiKey: string; anthropicApiKey: string;
geminiApiKey: string;
ollamaApiUrl: string; ollamaApiUrl: string;
} }
@@ -476,6 +477,22 @@ const SettingsDialog = ({
} }
/> />
</div> </div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Gemini API Key
</p>
<Input
type="text"
placeholder="Gemini API key"
defaultValue={config.geminiApiKey}
onChange={(e) =>
setConfig({
...config,
geminiApiKey: e.target.value,
})
}
/>
</div>
</div> </div>
)} )}
{isLoading && ( {isLoading && (

View File

@@ -1,6 +1,6 @@
{ {
"name": "perplexica-frontend", "name": "perplexica-frontend",
"version": "1.9.3", "version": "1.10.0-rc2",
"license": "MIT", "license": "MIT",
"author": "ItzCrazyKns", "author": "ItzCrazyKns",
"scripts": { "scripts": {
@@ -18,7 +18,7 @@
"clsx": "^2.1.0", "clsx": "^2.1.0",
"langchain": "^0.1.30", "langchain": "^0.1.30",
"lucide-react": "^0.363.0", "lucide-react": "^0.363.0",
"markdown-to-jsx": "^7.6.2", "markdown-to-jsx": "^7.7.2",
"next": "14.1.4", "next": "14.1.4",
"next-themes": "^0.3.0", "next-themes": "^0.3.0",
"react": "^18", "react": "^18",

View File

@@ -2210,10 +2210,10 @@ lucide-react@^0.363.0:
resolved "https://registry.yarnpkg.com/lucide-react/-/lucide-react-0.363.0.tgz#2bb1f9d09b830dda86f5118fcd097f87247fe0e3" resolved "https://registry.yarnpkg.com/lucide-react/-/lucide-react-0.363.0.tgz#2bb1f9d09b830dda86f5118fcd097f87247fe0e3"
integrity sha512-AlsfPCsXQyQx7wwsIgzcKOL9LwC498LIMAo+c0Es5PkHJa33xwmYAkkSoKoJWWWSYQEStqu58/jT4tL2gi32uQ== integrity sha512-AlsfPCsXQyQx7wwsIgzcKOL9LwC498LIMAo+c0Es5PkHJa33xwmYAkkSoKoJWWWSYQEStqu58/jT4tL2gi32uQ==
markdown-to-jsx@^7.6.2: markdown-to-jsx@^7.7.2:
version "7.6.2" version "7.7.2"
resolved "https://registry.yarnpkg.com/markdown-to-jsx/-/markdown-to-jsx-7.6.2.tgz#254cbf7d412a37073486c0a2dd52266d2191a793" resolved "https://registry.yarnpkg.com/markdown-to-jsx/-/markdown-to-jsx-7.7.2.tgz#59c1dd64f48b53719311ab140be3cd51cdabccd3"
integrity sha512-gEcyiJXzBxmId2Y/kydLbD6KRNccDiUy/Src1cFGn3s2X0LZZ/hUiEc2VisFyA5kUE3SXclTCczjQiAuqKZiFQ== integrity sha512-N3AKfYRvxNscvcIH6HDnDKILp4S8UWbebp+s92Y8SwIq0CuSbLW4Jgmrbjku3CWKjTQO0OyIMS6AhzqrwjEa3g==
md5@^2.3.0: md5@^2.3.0:
version "2.3.0" version "2.3.0"

View File

@@ -293,6 +293,11 @@
resolved "https://registry.yarnpkg.com/@esbuild/win32-x64/-/win32-x64-0.19.12.tgz#c57c8afbb4054a3ab8317591a0b7320360b444ae" resolved "https://registry.yarnpkg.com/@esbuild/win32-x64/-/win32-x64-0.19.12.tgz#c57c8afbb4054a3ab8317591a0b7320360b444ae"
integrity sha512-T1QyPSDCyMXaO3pzBkF96E8xMkiRYbUEZADd29SyPGabqxMViNoii+NcK7eWJAEoU6RZyEm5lVSIjTmcdoB9HA== integrity sha512-T1QyPSDCyMXaO3pzBkF96E8xMkiRYbUEZADd29SyPGabqxMViNoii+NcK7eWJAEoU6RZyEm5lVSIjTmcdoB9HA==
"@google/generative-ai@^0.7.0":
version "0.7.1"
resolved "https://registry.yarnpkg.com/@google/generative-ai/-/generative-ai-0.7.1.tgz#eb187c75080c0706245699dbc06816c830d8c6a7"
integrity sha512-WTjMLLYL/xfA5BW6xAycRPiAX7FNHKAxrid/ayqC1QMam0KAK0NbMeS9Lubw80gVg5xFMLE+H7pw4wdNzTOlxw==
"@huggingface/jinja@^0.2.2": "@huggingface/jinja@^0.2.2":
version "0.2.2" version "0.2.2"
resolved "https://registry.yarnpkg.com/@huggingface/jinja/-/jinja-0.2.2.tgz#faeb205a9d6995089bef52655ddd8245d3190627" resolved "https://registry.yarnpkg.com/@huggingface/jinja/-/jinja-0.2.2.tgz#faeb205a9d6995089bef52655ddd8245d3190627"
@@ -380,6 +385,23 @@
zod "^3.22.4" zod "^3.22.4"
zod-to-json-schema "^3.22.3" zod-to-json-schema "^3.22.3"
"@langchain/core@>=0.2.16 <0.3.0":
version "0.2.36"
resolved "https://registry.yarnpkg.com/@langchain/core/-/core-0.2.36.tgz#75754c33aa5b9310dcf117047374a1ae011005a4"
integrity sha512-qHLvScqERDeH7y2cLuJaSAlMwg3f/3Oc9nayRSXRU2UuaK/SOhI42cxiPLj1FnuHJSmN0rBQFkrLx02gI4mcVg==
dependencies:
ansi-styles "^5.0.0"
camelcase "6"
decamelize "1.2.0"
js-tiktoken "^1.0.12"
langsmith "^0.1.56-rc.1"
mustache "^4.2.0"
p-queue "^6.6.2"
p-retry "4"
uuid "^10.0.0"
zod "^3.22.4"
zod-to-json-schema "^3.22.3"
"@langchain/core@>=0.2.9 <0.3.0": "@langchain/core@>=0.2.9 <0.3.0":
version "0.2.15" version "0.2.15"
resolved "https://registry.yarnpkg.com/@langchain/core/-/core-0.2.15.tgz#1bb99ac4fffe935c7ba37edcaa91abfba3c82219" resolved "https://registry.yarnpkg.com/@langchain/core/-/core-0.2.15.tgz#1bb99ac4fffe935c7ba37edcaa91abfba3c82219"
@@ -415,6 +437,15 @@
zod "^3.22.4" zod "^3.22.4"
zod-to-json-schema "^3.22.3" zod-to-json-schema "^3.22.3"
"@langchain/google-genai@^0.0.23":
version "0.0.23"
resolved "https://registry.yarnpkg.com/@langchain/google-genai/-/google-genai-0.0.23.tgz#e73af501bc1df4c7642b531759b82dc3eb7ae459"
integrity sha512-MTSCJEoKsfU1inz0PWvAjITdNFM4s41uvBCwLpcgx3jWJIEisczFD82x86ahYqJlb2fD6tohYSaCH/4tKAdkXA==
dependencies:
"@google/generative-ai" "^0.7.0"
"@langchain/core" ">=0.2.16 <0.3.0"
zod-to-json-schema "^3.22.4"
"@langchain/openai@^0.0.25", "@langchain/openai@~0.0.19": "@langchain/openai@^0.0.25", "@langchain/openai@~0.0.19":
version "0.0.25" version "0.0.25"
resolved "https://registry.yarnpkg.com/@langchain/openai/-/openai-0.0.25.tgz#8332abea1e3acb9b1169f90636e518c0ee90622e" resolved "https://registry.yarnpkg.com/@langchain/openai/-/openai-0.0.25.tgz#8332abea1e3acb9b1169f90636e518c0ee90622e"
@@ -712,6 +743,11 @@
resolved "https://registry.yarnpkg.com/@types/triple-beam/-/triple-beam-1.3.5.tgz#74fef9ffbaa198eb8b588be029f38b00299caa2c" resolved "https://registry.yarnpkg.com/@types/triple-beam/-/triple-beam-1.3.5.tgz#74fef9ffbaa198eb8b588be029f38b00299caa2c"
integrity sha512-6WaYesThRMCl19iryMYP7/x2OVgCtbIVflDGFpWnb9irXI3UjYE4AzmYuiUKY1AJstGijoY+MgUszMgRxIYTYw== integrity sha512-6WaYesThRMCl19iryMYP7/x2OVgCtbIVflDGFpWnb9irXI3UjYE4AzmYuiUKY1AJstGijoY+MgUszMgRxIYTYw==
"@types/uuid@^10.0.0":
version "10.0.0"
resolved "https://registry.yarnpkg.com/@types/uuid/-/uuid-10.0.0.tgz#e9c07fe50da0f53dc24970cca94d619ff03f6f6d"
integrity sha512-7gqG38EyHgyP1S+7+xomFtL+ZNHcKv6DwNaCZmJmo1vgMugyF3TCnXVg4t1uk89mLNwnLtnY3TpOpCOyp1/xHQ==
"@types/uuid@^9.0.1": "@types/uuid@^9.0.1":
version "9.0.8" version "9.0.8"
resolved "https://registry.yarnpkg.com/@types/uuid/-/uuid-9.0.8.tgz#7545ba4fc3c003d6c756f651f3bf163d8f0f29ba" resolved "https://registry.yarnpkg.com/@types/uuid/-/uuid-9.0.8.tgz#7545ba4fc3c003d6c756f651f3bf163d8f0f29ba"
@@ -1900,6 +1936,18 @@ langchainhub@~0.0.8:
resolved "https://registry.yarnpkg.com/langchainhub/-/langchainhub-0.0.8.tgz#fd4b96dc795e22e36c1a20bad31b61b0c33d3110" resolved "https://registry.yarnpkg.com/langchainhub/-/langchainhub-0.0.8.tgz#fd4b96dc795e22e36c1a20bad31b61b0c33d3110"
integrity sha512-Woyb8YDHgqqTOZvWIbm2CaFDGfZ4NTSyXV687AG4vXEfoNo7cGQp7nhl7wL3ehenKWmNEmcxCLgOZzW8jE6lOQ== integrity sha512-Woyb8YDHgqqTOZvWIbm2CaFDGfZ4NTSyXV687AG4vXEfoNo7cGQp7nhl7wL3ehenKWmNEmcxCLgOZzW8jE6lOQ==
langsmith@^0.1.56-rc.1:
version "0.1.68"
resolved "https://registry.yarnpkg.com/langsmith/-/langsmith-0.1.68.tgz#848332e822fe5e6734a07f1c36b6530cc1798afb"
integrity sha512-otmiysWtVAqzMx3CJ4PrtUBhWRG5Co8Z4o7hSZENPjlit9/j3/vm3TSvbaxpDYakZxtMjhkcJTqrdYFipISEiQ==
dependencies:
"@types/uuid" "^10.0.0"
commander "^10.0.1"
p-queue "^6.6.2"
p-retry "4"
semver "^7.6.3"
uuid "^10.0.0"
langsmith@~0.1.1, langsmith@~0.1.7: langsmith@~0.1.1, langsmith@~0.1.7:
version "0.1.14" version "0.1.14"
resolved "https://registry.yarnpkg.com/langsmith/-/langsmith-0.1.14.tgz#2b889dbcfb49547614df276a4a5a063092a1585d" resolved "https://registry.yarnpkg.com/langsmith/-/langsmith-0.1.14.tgz#2b889dbcfb49547614df276a4a5a063092a1585d"
@@ -2568,6 +2616,11 @@ semver@^7.3.5, semver@^7.5.3, semver@^7.5.4:
dependencies: dependencies:
lru-cache "^6.0.0" lru-cache "^6.0.0"
semver@^7.6.3:
version "7.6.3"
resolved "https://registry.yarnpkg.com/semver/-/semver-7.6.3.tgz#980f7b5550bc175fb4dc09403085627f9eb33143"
integrity sha512-oVekP1cKtI+CTDvHWYFUcMtsK/00wmAEfyqKfNdARm8u1wNVhSgaX7A8d4UuIlUI5e84iEwOhs7ZPYRmzU9U6A==
send@0.18.0: send@0.18.0:
version "0.18.0" version "0.18.0"
resolved "https://registry.yarnpkg.com/send/-/send-0.18.0.tgz#670167cc654b05f5aa4a767f9113bb371bc706be" resolved "https://registry.yarnpkg.com/send/-/send-0.18.0.tgz#670167cc654b05f5aa4a767f9113bb371bc706be"