mirror of
https://github.com/ItzCrazyKns/Perplexica.git
synced 2025-06-17 15:28:37 +00:00
Compare commits
44 Commits
feat/remov
...
feat/deep-
Author | SHA1 | Date | |
---|---|---|---|
83f1c6ce12 | |||
fd6c58734d | |||
da1123d84b | |||
627775c430 | |||
245573efca | |||
a85f762c58 | |||
3ddcceda0a | |||
114a7aa09d | |||
d0ba8c9038 | |||
934fb0a23b | |||
e226645bc7 | |||
5447530ece | |||
ed6d46a440 | |||
588e68e93e | |||
c4440327db | |||
64e2d457cc | |||
bf705afc21 | |||
2e4433a6b3 | |||
8ecf3b4e99 | |||
09661ae11d | |||
a8d410bc2f | |||
7d52fbb368 | |||
4b8e0ea1aa | |||
5b1055e8c9 | |||
b5ee8386e7 | |||
4b2a7916fd | |||
97e64aa65e | |||
90e303f737 | |||
7955d8e408 | |||
b285cb4323 | |||
5d60ab1139 | |||
9095996356 | |||
310c8a75fd | |||
191d1dc25f | |||
d3b2f8983d | |||
27286465a3 | |||
defc677932 | |||
0fcd598ff7 | |||
45df9dc5bf | |||
06db95d7c0 | |||
74f7eaed6e | |||
dddd944a18 | |||
7eccd4d75b | |||
04a0342b52 |
114
.github/workflows/docker-build.yaml
vendored
114
.github/workflows/docker-build.yaml
vendored
@ -8,15 +8,12 @@ on:
|
|||||||
types: [published]
|
types: [published]
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
build-and-push:
|
build-amd64:
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout code
|
- name: Checkout code
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v3
|
||||||
|
|
||||||
- name: Set up QEMU
|
|
||||||
uses: docker/setup-qemu-action@v2
|
|
||||||
|
|
||||||
- name: Set up Docker Buildx
|
- name: Set up Docker Buildx
|
||||||
uses: docker/setup-buildx-action@v2
|
uses: docker/setup-buildx-action@v2
|
||||||
with:
|
with:
|
||||||
@ -33,28 +30,109 @@ jobs:
|
|||||||
id: version
|
id: version
|
||||||
run: echo "RELEASE_VERSION=${GITHUB_REF#refs/tags/}" >> $GITHUB_ENV
|
run: echo "RELEASE_VERSION=${GITHUB_REF#refs/tags/}" >> $GITHUB_ENV
|
||||||
|
|
||||||
- name: Build and push Docker image
|
- name: Build and push AMD64 Docker image
|
||||||
if: github.ref == 'refs/heads/master' && github.event_name == 'push'
|
if: github.ref == 'refs/heads/master' && github.event_name == 'push'
|
||||||
run: |
|
run: |
|
||||||
docker buildx create --use
|
DOCKERFILE=app.dockerfile
|
||||||
DOCKERFILE=app.dockerfile; \
|
IMAGE_NAME=perplexica
|
||||||
IMAGE_NAME=perplexica; \
|
docker buildx build --platform linux/amd64 \
|
||||||
docker buildx build --platform linux/amd64,linux/arm64 \
|
--cache-from=type=registry,ref=itzcrazykns1337/${IMAGE_NAME}:amd64 \
|
||||||
--cache-from=type=registry,ref=itzcrazykns1337/${IMAGE_NAME}:main \
|
|
||||||
--cache-to=type=inline \
|
--cache-to=type=inline \
|
||||||
|
--provenance false \
|
||||||
-f $DOCKERFILE \
|
-f $DOCKERFILE \
|
||||||
-t itzcrazykns1337/${IMAGE_NAME}:main \
|
-t itzcrazykns1337/${IMAGE_NAME}:amd64 \
|
||||||
--push .
|
--push .
|
||||||
|
|
||||||
- name: Build and push release Docker image
|
- name: Build and push AMD64 release Docker image
|
||||||
if: github.event_name == 'release'
|
if: github.event_name == 'release'
|
||||||
run: |
|
run: |
|
||||||
docker buildx create --use
|
DOCKERFILE=app.dockerfile
|
||||||
DOCKERFILE=app.dockerfile; \
|
IMAGE_NAME=perplexica
|
||||||
IMAGE_NAME=perplexica; \
|
docker buildx build --platform linux/amd64 \
|
||||||
docker buildx build --platform linux/amd64,linux/arm64 \
|
--cache-from=type=registry,ref=itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }}-amd64 \
|
||||||
--cache-from=type=registry,ref=itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }} \
|
|
||||||
--cache-to=type=inline \
|
--cache-to=type=inline \
|
||||||
|
--provenance false \
|
||||||
-f $DOCKERFILE \
|
-f $DOCKERFILE \
|
||||||
-t itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }} \
|
-t itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }}-amd64 \
|
||||||
--push .
|
--push .
|
||||||
|
|
||||||
|
build-arm64:
|
||||||
|
runs-on: ubuntu-24.04-arm
|
||||||
|
steps:
|
||||||
|
- name: Checkout code
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
|
||||||
|
- name: Set up Docker Buildx
|
||||||
|
uses: docker/setup-buildx-action@v2
|
||||||
|
with:
|
||||||
|
install: true
|
||||||
|
|
||||||
|
- name: Log in to DockerHub
|
||||||
|
uses: docker/login-action@v2
|
||||||
|
with:
|
||||||
|
username: ${{ secrets.DOCKER_USERNAME }}
|
||||||
|
password: ${{ secrets.DOCKER_PASSWORD }}
|
||||||
|
|
||||||
|
- name: Extract version from release tag
|
||||||
|
if: github.event_name == 'release'
|
||||||
|
id: version
|
||||||
|
run: echo "RELEASE_VERSION=${GITHUB_REF#refs/tags/}" >> $GITHUB_ENV
|
||||||
|
|
||||||
|
- name: Build and push ARM64 Docker image
|
||||||
|
if: github.ref == 'refs/heads/master' && github.event_name == 'push'
|
||||||
|
run: |
|
||||||
|
DOCKERFILE=app.dockerfile
|
||||||
|
IMAGE_NAME=perplexica
|
||||||
|
docker buildx build --platform linux/arm64 \
|
||||||
|
--cache-from=type=registry,ref=itzcrazykns1337/${IMAGE_NAME}:arm64 \
|
||||||
|
--cache-to=type=inline \
|
||||||
|
--provenance false \
|
||||||
|
-f $DOCKERFILE \
|
||||||
|
-t itzcrazykns1337/${IMAGE_NAME}:arm64 \
|
||||||
|
--push .
|
||||||
|
|
||||||
|
- name: Build and push ARM64 release Docker image
|
||||||
|
if: github.event_name == 'release'
|
||||||
|
run: |
|
||||||
|
DOCKERFILE=app.dockerfile
|
||||||
|
IMAGE_NAME=perplexica
|
||||||
|
docker buildx build --platform linux/arm64 \
|
||||||
|
--cache-from=type=registry,ref=itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }}-arm64 \
|
||||||
|
--cache-to=type=inline \
|
||||||
|
--provenance false \
|
||||||
|
-f $DOCKERFILE \
|
||||||
|
-t itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }}-arm64 \
|
||||||
|
--push .
|
||||||
|
|
||||||
|
manifest:
|
||||||
|
needs: [build-amd64, build-arm64]
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- name: Log in to DockerHub
|
||||||
|
uses: docker/login-action@v2
|
||||||
|
with:
|
||||||
|
username: ${{ secrets.DOCKER_USERNAME }}
|
||||||
|
password: ${{ secrets.DOCKER_PASSWORD }}
|
||||||
|
|
||||||
|
- name: Extract version from release tag
|
||||||
|
if: github.event_name == 'release'
|
||||||
|
id: version
|
||||||
|
run: echo "RELEASE_VERSION=${GITHUB_REF#refs/tags/}" >> $GITHUB_ENV
|
||||||
|
|
||||||
|
- name: Create and push multi-arch manifest for main
|
||||||
|
if: github.ref == 'refs/heads/master' && github.event_name == 'push'
|
||||||
|
run: |
|
||||||
|
IMAGE_NAME=perplexica
|
||||||
|
docker manifest create itzcrazykns1337/${IMAGE_NAME}:main \
|
||||||
|
--amend itzcrazykns1337/${IMAGE_NAME}:amd64 \
|
||||||
|
--amend itzcrazykns1337/${IMAGE_NAME}:arm64
|
||||||
|
docker manifest push itzcrazykns1337/${IMAGE_NAME}:main
|
||||||
|
|
||||||
|
- name: Create and push multi-arch manifest for releases
|
||||||
|
if: github.event_name == 'release'
|
||||||
|
run: |
|
||||||
|
IMAGE_NAME=perplexica
|
||||||
|
docker manifest create itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }} \
|
||||||
|
--amend itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }}-amd64 \
|
||||||
|
--amend itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }}-arm64
|
||||||
|
docker manifest push itzcrazykns1337/${IMAGE_NAME}:${{ env.RELEASE_VERSION }}
|
||||||
|
@ -153,7 +153,7 @@ For more details, check out the full documentation [here](https://github.com/Itz
|
|||||||
|
|
||||||
## Expose Perplexica to network
|
## Expose Perplexica to network
|
||||||
|
|
||||||
You can access Perplexica over your home network by following our networking guide [here](https://github.com/ItzCrazyKns/Perplexica/blob/master/docs/installation/NETWORKING.md).
|
Perplexica runs on Next.js and handles all API requests. It works right away on the same network and stays accessible even with port forwarding.
|
||||||
|
|
||||||
## One-Click Deployment
|
## One-Click Deployment
|
||||||
|
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
FROM node:20.18.0-alpine AS builder
|
FROM node:20.18.0-slim AS builder
|
||||||
|
|
||||||
WORKDIR /home/perplexica
|
WORKDIR /home/perplexica
|
||||||
|
|
||||||
@ -12,7 +12,7 @@ COPY public ./public
|
|||||||
RUN mkdir -p /home/perplexica/data
|
RUN mkdir -p /home/perplexica/data
|
||||||
RUN yarn build
|
RUN yarn build
|
||||||
|
|
||||||
FROM node:20.18.0-alpine
|
FROM node:20.18.0-slim
|
||||||
|
|
||||||
WORKDIR /home/perplexica
|
WORKDIR /home/perplexica
|
||||||
|
|
||||||
|
@ -32,7 +32,9 @@ The API accepts a JSON object in the request body, where you define the focus mo
|
|||||||
"history": [
|
"history": [
|
||||||
["human", "Hi, how are you?"],
|
["human", "Hi, how are you?"],
|
||||||
["assistant", "I am doing well, how can I help you today?"]
|
["assistant", "I am doing well, how can I help you today?"]
|
||||||
]
|
],
|
||||||
|
"systemInstructions": "Focus on providing technical details about Perplexica's architecture.",
|
||||||
|
"stream": false
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -62,6 +64,8 @@ The API accepts a JSON object in the request body, where you define the focus mo
|
|||||||
|
|
||||||
- **`query`** (string, required): The search query or question.
|
- **`query`** (string, required): The search query or question.
|
||||||
|
|
||||||
|
- **`systemInstructions`** (string, optional): Custom instructions provided by the user to guide the AI's response. These instructions are treated as user preferences and have lower priority than the system's core instructions. For example, you can specify a particular writing style, format, or focus area.
|
||||||
|
|
||||||
- **`history`** (array, optional): An array of message pairs representing the conversation history. Each pair consists of a role (either 'human' or 'assistant') and the message content. This allows the system to use the context of the conversation to refine results. Example:
|
- **`history`** (array, optional): An array of message pairs representing the conversation history. Each pair consists of a role (either 'human' or 'assistant') and the message content. This allows the system to use the context of the conversation to refine results. Example:
|
||||||
|
|
||||||
```json
|
```json
|
||||||
@ -71,11 +75,13 @@ The API accepts a JSON object in the request body, where you define the focus mo
|
|||||||
]
|
]
|
||||||
```
|
```
|
||||||
|
|
||||||
|
- **`stream`** (boolean, optional): When set to `true`, enables streaming responses. Default is `false`.
|
||||||
|
|
||||||
### Response
|
### Response
|
||||||
|
|
||||||
The response from the API includes both the final message and the sources used to generate that message.
|
The response from the API includes both the final message and the sources used to generate that message.
|
||||||
|
|
||||||
#### Example Response
|
#### Standard Response (stream: false)
|
||||||
|
|
||||||
```json
|
```json
|
||||||
{
|
{
|
||||||
@ -100,6 +106,28 @@ The response from the API includes both the final message and the sources used t
|
|||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
#### Streaming Response (stream: true)
|
||||||
|
|
||||||
|
When streaming is enabled, the API returns a stream of newline-delimited JSON objects. Each line contains a complete, valid JSON object. The response has Content-Type: application/json.
|
||||||
|
|
||||||
|
Example of streamed response objects:
|
||||||
|
|
||||||
|
```
|
||||||
|
{"type":"init","data":"Stream connected"}
|
||||||
|
{"type":"sources","data":[{"pageContent":"...","metadata":{"title":"...","url":"..."}},...]}
|
||||||
|
{"type":"response","data":"Perplexica is an "}
|
||||||
|
{"type":"response","data":"innovative, open-source "}
|
||||||
|
{"type":"response","data":"AI-powered search engine..."}
|
||||||
|
{"type":"done"}
|
||||||
|
```
|
||||||
|
|
||||||
|
Clients should process each line as a separate JSON object. The different message types include:
|
||||||
|
|
||||||
|
- **`init`**: Initial connection message
|
||||||
|
- **`sources`**: All sources used for the response
|
||||||
|
- **`response`**: Chunks of the generated answer text
|
||||||
|
- **`done`**: Indicates the stream is complete
|
||||||
|
|
||||||
### Fields in the Response
|
### Fields in the Response
|
||||||
|
|
||||||
- **`message`** (string): The search result, generated based on the query and focus mode.
|
- **`message`** (string): The search result, generated based on the query and focus mode.
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "perplexica-frontend",
|
"name": "perplexica-frontend",
|
||||||
"version": "1.10.0",
|
"version": "1.10.2",
|
||||||
"license": "MIT",
|
"license": "MIT",
|
||||||
"author": "ItzCrazyKns",
|
"author": "ItzCrazyKns",
|
||||||
"scripts": {
|
"scripts": {
|
||||||
@ -15,8 +15,10 @@
|
|||||||
"@headlessui/react": "^2.2.0",
|
"@headlessui/react": "^2.2.0",
|
||||||
"@iarna/toml": "^2.2.5",
|
"@iarna/toml": "^2.2.5",
|
||||||
"@icons-pack/react-simple-icons": "^12.3.0",
|
"@icons-pack/react-simple-icons": "^12.3.0",
|
||||||
|
"@langchain/anthropic": "^0.3.15",
|
||||||
"@langchain/community": "^0.3.36",
|
"@langchain/community": "^0.3.36",
|
||||||
"@langchain/core": "^0.3.42",
|
"@langchain/core": "^0.3.42",
|
||||||
|
"@langchain/google-genai": "^0.1.12",
|
||||||
"@langchain/openai": "^0.0.25",
|
"@langchain/openai": "^0.0.25",
|
||||||
"@langchain/textsplitters": "^0.1.0",
|
"@langchain/textsplitters": "^0.1.0",
|
||||||
"@tailwindcss/typography": "^0.5.12",
|
"@tailwindcss/typography": "^0.5.12",
|
||||||
|
@ -22,5 +22,8 @@ MODEL_NAME = ""
|
|||||||
[MODELS.OLLAMA]
|
[MODELS.OLLAMA]
|
||||||
API_URL = "" # Ollama API URL - http://host.docker.internal:11434
|
API_URL = "" # Ollama API URL - http://host.docker.internal:11434
|
||||||
|
|
||||||
|
[MODELS.DEEPSEEK]
|
||||||
|
API_KEY = ""
|
||||||
|
|
||||||
[API_ENDPOINTS]
|
[API_ENDPOINTS]
|
||||||
SEARXNG = "" # SearxNG API URL - http://localhost:32768
|
SEARXNG = "" # SearxNG API URL - http://localhost:32768
|
@ -49,6 +49,7 @@ type Body = {
|
|||||||
files: Array<string>;
|
files: Array<string>;
|
||||||
chatModel: ChatModel;
|
chatModel: ChatModel;
|
||||||
embeddingModel: EmbeddingModel;
|
embeddingModel: EmbeddingModel;
|
||||||
|
systemInstructions: string;
|
||||||
};
|
};
|
||||||
|
|
||||||
const handleEmitterEvents = async (
|
const handleEmitterEvents = async (
|
||||||
@ -278,6 +279,7 @@ export const POST = async (req: Request) => {
|
|||||||
embedding,
|
embedding,
|
||||||
body.optimizationMode,
|
body.optimizationMode,
|
||||||
body.files,
|
body.files,
|
||||||
|
body.systemInstructions,
|
||||||
);
|
);
|
||||||
|
|
||||||
const responseStream = new TransformStream();
|
const responseStream = new TransformStream();
|
||||||
@ -295,9 +297,9 @@ export const POST = async (req: Request) => {
|
|||||||
},
|
},
|
||||||
});
|
});
|
||||||
} catch (err) {
|
} catch (err) {
|
||||||
console.error('An error ocurred while processing chat request:', err);
|
console.error('An error occurred while processing chat request:', err);
|
||||||
return Response.json(
|
return Response.json(
|
||||||
{ message: 'An error ocurred while processing chat request' },
|
{ message: 'An error occurred while processing chat request' },
|
||||||
{ status: 500 },
|
{ status: 500 },
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
@ -7,6 +7,7 @@ import {
|
|||||||
getGroqApiKey,
|
getGroqApiKey,
|
||||||
getOllamaApiEndpoint,
|
getOllamaApiEndpoint,
|
||||||
getOpenaiApiKey,
|
getOpenaiApiKey,
|
||||||
|
getDeepseekApiKey,
|
||||||
updateConfig,
|
updateConfig,
|
||||||
} from '@/lib/config';
|
} from '@/lib/config';
|
||||||
import {
|
import {
|
||||||
@ -53,15 +54,16 @@ export const GET = async (req: Request) => {
|
|||||||
config['anthropicApiKey'] = getAnthropicApiKey();
|
config['anthropicApiKey'] = getAnthropicApiKey();
|
||||||
config['groqApiKey'] = getGroqApiKey();
|
config['groqApiKey'] = getGroqApiKey();
|
||||||
config['geminiApiKey'] = getGeminiApiKey();
|
config['geminiApiKey'] = getGeminiApiKey();
|
||||||
|
config['deepseekApiKey'] = getDeepseekApiKey();
|
||||||
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
|
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
|
||||||
config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
|
config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
|
||||||
config['customOpenaiModelName'] = getCustomOpenaiModelName();
|
config['customOpenaiModelName'] = getCustomOpenaiModelName();
|
||||||
|
|
||||||
return Response.json({ ...config }, { status: 200 });
|
return Response.json({ ...config }, { status: 200 });
|
||||||
} catch (err) {
|
} catch (err) {
|
||||||
console.error('An error ocurred while getting config:', err);
|
console.error('An error occurred while getting config:', err);
|
||||||
return Response.json(
|
return Response.json(
|
||||||
{ message: 'An error ocurred while getting config' },
|
{ message: 'An error occurred while getting config' },
|
||||||
{ status: 500 },
|
{ status: 500 },
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
@ -88,6 +90,9 @@ export const POST = async (req: Request) => {
|
|||||||
OLLAMA: {
|
OLLAMA: {
|
||||||
API_URL: config.ollamaApiUrl,
|
API_URL: config.ollamaApiUrl,
|
||||||
},
|
},
|
||||||
|
DEEPSEEK: {
|
||||||
|
API_KEY: config.deepseekApiKey,
|
||||||
|
},
|
||||||
CUSTOM_OPENAI: {
|
CUSTOM_OPENAI: {
|
||||||
API_URL: config.customOpenaiApiUrl,
|
API_URL: config.customOpenaiApiUrl,
|
||||||
API_KEY: config.customOpenaiApiKey,
|
API_KEY: config.customOpenaiApiKey,
|
||||||
@ -100,9 +105,9 @@ export const POST = async (req: Request) => {
|
|||||||
|
|
||||||
return Response.json({ message: 'Config updated' }, { status: 200 });
|
return Response.json({ message: 'Config updated' }, { status: 200 });
|
||||||
} catch (err) {
|
} catch (err) {
|
||||||
console.error('An error ocurred while updating config:', err);
|
console.error('An error occurred while updating config:', err);
|
||||||
return Response.json(
|
return Response.json(
|
||||||
{ message: 'An error ocurred while updating config' },
|
{ message: 'An error occurred while updating config' },
|
||||||
{ status: 500 },
|
{ status: 500 },
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
@ -48,7 +48,7 @@ export const GET = async (req: Request) => {
|
|||||||
},
|
},
|
||||||
);
|
);
|
||||||
} catch (err) {
|
} catch (err) {
|
||||||
console.error(`An error ocurred in discover route: ${err}`);
|
console.error(`An error occurred in discover route: ${err}`);
|
||||||
return Response.json(
|
return Response.json(
|
||||||
{
|
{
|
||||||
message: 'An error has occurred',
|
message: 'An error has occurred',
|
||||||
|
@ -74,9 +74,9 @@ export const POST = async (req: Request) => {
|
|||||||
|
|
||||||
return Response.json({ images }, { status: 200 });
|
return Response.json({ images }, { status: 200 });
|
||||||
} catch (err) {
|
} catch (err) {
|
||||||
console.error(`An error ocurred while searching images: ${err}`);
|
console.error(`An error occurred while searching images: ${err}`);
|
||||||
return Response.json(
|
return Response.json(
|
||||||
{ message: 'An error ocurred while searching images' },
|
{ message: 'An error occurred while searching images' },
|
||||||
{ status: 500 },
|
{ status: 500 },
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
@ -34,7 +34,7 @@ export const GET = async (req: Request) => {
|
|||||||
},
|
},
|
||||||
);
|
);
|
||||||
} catch (err) {
|
} catch (err) {
|
||||||
console.error('An error ocurred while fetching models', err);
|
console.error('An error occurred while fetching models', err);
|
||||||
return Response.json(
|
return Response.json(
|
||||||
{
|
{
|
||||||
message: 'An error has occurred.',
|
message: 'An error has occurred.',
|
||||||
|
@ -33,6 +33,8 @@ interface ChatRequestBody {
|
|||||||
embeddingModel?: embeddingModel;
|
embeddingModel?: embeddingModel;
|
||||||
query: string;
|
query: string;
|
||||||
history: Array<[string, string]>;
|
history: Array<[string, string]>;
|
||||||
|
stream?: boolean;
|
||||||
|
systemInstructions?: string;
|
||||||
}
|
}
|
||||||
|
|
||||||
export const POST = async (req: Request) => {
|
export const POST = async (req: Request) => {
|
||||||
@ -48,6 +50,7 @@ export const POST = async (req: Request) => {
|
|||||||
|
|
||||||
body.history = body.history || [];
|
body.history = body.history || [];
|
||||||
body.optimizationMode = body.optimizationMode || 'balanced';
|
body.optimizationMode = body.optimizationMode || 'balanced';
|
||||||
|
body.stream = body.stream || false;
|
||||||
|
|
||||||
const history: BaseMessage[] = body.history.map((msg) => {
|
const history: BaseMessage[] = body.history.map((msg) => {
|
||||||
return msg[0] === 'human'
|
return msg[0] === 'human'
|
||||||
@ -123,42 +126,140 @@ export const POST = async (req: Request) => {
|
|||||||
embeddings,
|
embeddings,
|
||||||
body.optimizationMode,
|
body.optimizationMode,
|
||||||
[],
|
[],
|
||||||
|
body.systemInstructions || '',
|
||||||
);
|
);
|
||||||
|
|
||||||
return new Promise(
|
if (!body.stream) {
|
||||||
(
|
return new Promise(
|
||||||
resolve: (value: Response) => void,
|
(
|
||||||
reject: (value: Response) => void,
|
resolve: (value: Response) => void,
|
||||||
) => {
|
reject: (value: Response) => void,
|
||||||
let message = '';
|
) => {
|
||||||
|
let message = '';
|
||||||
|
let sources: any[] = [];
|
||||||
|
|
||||||
|
emitter.on('data', (data: string) => {
|
||||||
|
try {
|
||||||
|
const parsedData = JSON.parse(data);
|
||||||
|
if (parsedData.type === 'response') {
|
||||||
|
message += parsedData.data;
|
||||||
|
} else if (parsedData.type === 'sources') {
|
||||||
|
sources = parsedData.data;
|
||||||
|
}
|
||||||
|
} catch (error) {
|
||||||
|
reject(
|
||||||
|
Response.json(
|
||||||
|
{ message: 'Error parsing data' },
|
||||||
|
{ status: 500 },
|
||||||
|
),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
emitter.on('end', () => {
|
||||||
|
resolve(Response.json({ message, sources }, { status: 200 }));
|
||||||
|
});
|
||||||
|
|
||||||
|
emitter.on('error', (error: any) => {
|
||||||
|
reject(
|
||||||
|
Response.json(
|
||||||
|
{ message: 'Search error', error },
|
||||||
|
{ status: 500 },
|
||||||
|
),
|
||||||
|
);
|
||||||
|
});
|
||||||
|
},
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
const encoder = new TextEncoder();
|
||||||
|
|
||||||
|
const abortController = new AbortController();
|
||||||
|
const { signal } = abortController;
|
||||||
|
|
||||||
|
const stream = new ReadableStream({
|
||||||
|
start(controller) {
|
||||||
let sources: any[] = [];
|
let sources: any[] = [];
|
||||||
|
|
||||||
emitter.on('data', (data) => {
|
controller.enqueue(
|
||||||
|
encoder.encode(
|
||||||
|
JSON.stringify({
|
||||||
|
type: 'init',
|
||||||
|
data: 'Stream connected',
|
||||||
|
}) + '\n',
|
||||||
|
),
|
||||||
|
);
|
||||||
|
|
||||||
|
signal.addEventListener('abort', () => {
|
||||||
|
emitter.removeAllListeners();
|
||||||
|
|
||||||
|
try {
|
||||||
|
controller.close();
|
||||||
|
} catch (error) {}
|
||||||
|
});
|
||||||
|
|
||||||
|
emitter.on('data', (data: string) => {
|
||||||
|
if (signal.aborted) return;
|
||||||
|
|
||||||
try {
|
try {
|
||||||
const parsedData = JSON.parse(data);
|
const parsedData = JSON.parse(data);
|
||||||
|
|
||||||
if (parsedData.type === 'response') {
|
if (parsedData.type === 'response') {
|
||||||
message += parsedData.data;
|
controller.enqueue(
|
||||||
|
encoder.encode(
|
||||||
|
JSON.stringify({
|
||||||
|
type: 'response',
|
||||||
|
data: parsedData.data,
|
||||||
|
}) + '\n',
|
||||||
|
),
|
||||||
|
);
|
||||||
} else if (parsedData.type === 'sources') {
|
} else if (parsedData.type === 'sources') {
|
||||||
sources = parsedData.data;
|
sources = parsedData.data;
|
||||||
|
controller.enqueue(
|
||||||
|
encoder.encode(
|
||||||
|
JSON.stringify({
|
||||||
|
type: 'sources',
|
||||||
|
data: sources,
|
||||||
|
}) + '\n',
|
||||||
|
),
|
||||||
|
);
|
||||||
}
|
}
|
||||||
} catch (error) {
|
} catch (error) {
|
||||||
reject(
|
controller.error(error);
|
||||||
Response.json({ message: 'Error parsing data' }, { status: 500 }),
|
|
||||||
);
|
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|
||||||
emitter.on('end', () => {
|
emitter.on('end', () => {
|
||||||
resolve(Response.json({ message, sources }, { status: 200 }));
|
if (signal.aborted) return;
|
||||||
|
|
||||||
|
controller.enqueue(
|
||||||
|
encoder.encode(
|
||||||
|
JSON.stringify({
|
||||||
|
type: 'done',
|
||||||
|
}) + '\n',
|
||||||
|
),
|
||||||
|
);
|
||||||
|
controller.close();
|
||||||
});
|
});
|
||||||
|
|
||||||
emitter.on('error', (error) => {
|
emitter.on('error', (error: any) => {
|
||||||
reject(
|
if (signal.aborted) return;
|
||||||
Response.json({ message: 'Search error', error }, { status: 500 }),
|
|
||||||
);
|
controller.error(error);
|
||||||
});
|
});
|
||||||
},
|
},
|
||||||
);
|
cancel() {
|
||||||
|
abortController.abort();
|
||||||
|
},
|
||||||
|
});
|
||||||
|
|
||||||
|
return new Response(stream, {
|
||||||
|
headers: {
|
||||||
|
'Content-Type': 'text/event-stream',
|
||||||
|
'Cache-Control': 'no-cache, no-transform',
|
||||||
|
Connection: 'keep-alive',
|
||||||
|
},
|
||||||
|
});
|
||||||
} catch (err: any) {
|
} catch (err: any) {
|
||||||
console.error(`Error in getting search results: ${err.message}`);
|
console.error(`Error in getting search results: ${err.message}`);
|
||||||
return Response.json(
|
return Response.json(
|
||||||
|
@ -72,9 +72,9 @@ export const POST = async (req: Request) => {
|
|||||||
|
|
||||||
return Response.json({ suggestions }, { status: 200 });
|
return Response.json({ suggestions }, { status: 200 });
|
||||||
} catch (err) {
|
} catch (err) {
|
||||||
console.error(`An error ocurred while generating suggestions: ${err}`);
|
console.error(`An error occurred while generating suggestions: ${err}`);
|
||||||
return Response.json(
|
return Response.json(
|
||||||
{ message: 'An error ocurred while generating suggestions' },
|
{ message: 'An error occurred while generating suggestions' },
|
||||||
{ status: 500 },
|
{ status: 500 },
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
@ -74,9 +74,9 @@ export const POST = async (req: Request) => {
|
|||||||
|
|
||||||
return Response.json({ videos }, { status: 200 });
|
return Response.json({ videos }, { status: 200 });
|
||||||
} catch (err) {
|
} catch (err) {
|
||||||
console.error(`An error ocurred while searching videos: ${err}`);
|
console.error(`An error occurred while searching videos: ${err}`);
|
||||||
return Response.json(
|
return Response.json(
|
||||||
{ message: 'An error ocurred while searching videos' },
|
{ message: 'An error occurred while searching videos' },
|
||||||
{ status: 500 },
|
{ status: 500 },
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
@ -20,6 +20,7 @@ interface SettingsType {
|
|||||||
anthropicApiKey: string;
|
anthropicApiKey: string;
|
||||||
geminiApiKey: string;
|
geminiApiKey: string;
|
||||||
ollamaApiUrl: string;
|
ollamaApiUrl: string;
|
||||||
|
deepseekApiKey: string;
|
||||||
customOpenaiApiKey: string;
|
customOpenaiApiKey: string;
|
||||||
customOpenaiApiUrl: string;
|
customOpenaiApiUrl: string;
|
||||||
customOpenaiModelName: string;
|
customOpenaiModelName: string;
|
||||||
@ -54,6 +55,38 @@ const Input = ({ className, isSaving, onSave, ...restProps }: InputProps) => {
|
|||||||
);
|
);
|
||||||
};
|
};
|
||||||
|
|
||||||
|
interface TextareaProps extends React.InputHTMLAttributes<HTMLTextAreaElement> {
|
||||||
|
isSaving?: boolean;
|
||||||
|
onSave?: (value: string) => void;
|
||||||
|
}
|
||||||
|
|
||||||
|
const Textarea = ({
|
||||||
|
className,
|
||||||
|
isSaving,
|
||||||
|
onSave,
|
||||||
|
...restProps
|
||||||
|
}: TextareaProps) => {
|
||||||
|
return (
|
||||||
|
<div className="relative">
|
||||||
|
<textarea
|
||||||
|
placeholder="Any special instructions for the LLM"
|
||||||
|
className="placeholder:text-sm text-sm w-full flex items-center justify-between p-3 bg-light-secondary dark:bg-dark-secondary rounded-lg hover:bg-light-200 dark:hover:bg-dark-200 transition-colors"
|
||||||
|
rows={4}
|
||||||
|
onBlur={(e) => onSave?.(e.target.value)}
|
||||||
|
{...restProps}
|
||||||
|
/>
|
||||||
|
{isSaving && (
|
||||||
|
<div className="absolute right-3 top-3">
|
||||||
|
<Loader2
|
||||||
|
size={16}
|
||||||
|
className="animate-spin text-black/70 dark:text-white/70"
|
||||||
|
/>
|
||||||
|
</div>
|
||||||
|
)}
|
||||||
|
</div>
|
||||||
|
);
|
||||||
|
};
|
||||||
|
|
||||||
const Select = ({
|
const Select = ({
|
||||||
className,
|
className,
|
||||||
options,
|
options,
|
||||||
@ -111,6 +144,7 @@ const Page = () => {
|
|||||||
const [isLoading, setIsLoading] = useState(false);
|
const [isLoading, setIsLoading] = useState(false);
|
||||||
const [automaticImageSearch, setAutomaticImageSearch] = useState(false);
|
const [automaticImageSearch, setAutomaticImageSearch] = useState(false);
|
||||||
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
|
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
|
||||||
|
const [systemInstructions, setSystemInstructions] = useState<string>('');
|
||||||
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
|
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
|
||||||
|
|
||||||
useEffect(() => {
|
useEffect(() => {
|
||||||
@ -172,6 +206,8 @@ const Page = () => {
|
|||||||
localStorage.getItem('autoVideoSearch') === 'true',
|
localStorage.getItem('autoVideoSearch') === 'true',
|
||||||
);
|
);
|
||||||
|
|
||||||
|
setSystemInstructions(localStorage.getItem('systemInstructions')!);
|
||||||
|
|
||||||
setIsLoading(false);
|
setIsLoading(false);
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -328,6 +364,8 @@ const Page = () => {
|
|||||||
localStorage.setItem('embeddingModelProvider', value);
|
localStorage.setItem('embeddingModelProvider', value);
|
||||||
} else if (key === 'embeddingModel') {
|
} else if (key === 'embeddingModel') {
|
||||||
localStorage.setItem('embeddingModel', value);
|
localStorage.setItem('embeddingModel', value);
|
||||||
|
} else if (key === 'systemInstructions') {
|
||||||
|
localStorage.setItem('systemInstructions', value);
|
||||||
}
|
}
|
||||||
} catch (err) {
|
} catch (err) {
|
||||||
console.error('Failed to save:', err);
|
console.error('Failed to save:', err);
|
||||||
@ -473,6 +511,19 @@ const Page = () => {
|
|||||||
</div>
|
</div>
|
||||||
</SettingsSection>
|
</SettingsSection>
|
||||||
|
|
||||||
|
<SettingsSection title="System Instructions">
|
||||||
|
<div className="flex flex-col space-y-4">
|
||||||
|
<Textarea
|
||||||
|
value={systemInstructions}
|
||||||
|
isSaving={savingStates['systemInstructions']}
|
||||||
|
onChange={(e) => {
|
||||||
|
setSystemInstructions(e.target.value);
|
||||||
|
}}
|
||||||
|
onSave={(value) => saveConfig('systemInstructions', value)}
|
||||||
|
/>
|
||||||
|
</div>
|
||||||
|
</SettingsSection>
|
||||||
|
|
||||||
<SettingsSection title="Model Settings">
|
<SettingsSection title="Model Settings">
|
||||||
{config.chatModelProviders && (
|
{config.chatModelProviders && (
|
||||||
<div className="flex flex-col space-y-4">
|
<div className="flex flex-col space-y-4">
|
||||||
@ -788,6 +839,25 @@ const Page = () => {
|
|||||||
onSave={(value) => saveConfig('geminiApiKey', value)}
|
onSave={(value) => saveConfig('geminiApiKey', value)}
|
||||||
/>
|
/>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
|
<div className="flex flex-col space-y-1">
|
||||||
|
<p className="text-black/70 dark:text-white/70 text-sm">
|
||||||
|
Deepseek API Key
|
||||||
|
</p>
|
||||||
|
<Input
|
||||||
|
type="text"
|
||||||
|
placeholder="Deepseek API Key"
|
||||||
|
value={config.deepseekApiKey}
|
||||||
|
isSaving={savingStates['deepseekApiKey']}
|
||||||
|
onChange={(e) => {
|
||||||
|
setConfig((prev) => ({
|
||||||
|
...prev!,
|
||||||
|
deepseekApiKey: e.target.value,
|
||||||
|
}));
|
||||||
|
}}
|
||||||
|
onSave={(value) => saveConfig('deepseekApiKey', value)}
|
||||||
|
/>
|
||||||
|
</div>
|
||||||
</div>
|
</div>
|
||||||
</SettingsSection>
|
</SettingsSection>
|
||||||
</div>
|
</div>
|
||||||
|
@ -363,20 +363,18 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
|||||||
|
|
||||||
if (data.type === 'sources') {
|
if (data.type === 'sources') {
|
||||||
sources = data.data;
|
sources = data.data;
|
||||||
if (!added) {
|
setMessages((prevMessages) => [
|
||||||
setMessages((prevMessages) => [
|
...prevMessages,
|
||||||
...prevMessages,
|
{
|
||||||
{
|
content: '',
|
||||||
content: '',
|
messageId: data.messageId,
|
||||||
messageId: data.messageId,
|
chatId: chatId!,
|
||||||
chatId: chatId!,
|
role: 'assistant',
|
||||||
role: 'assistant',
|
sources: sources,
|
||||||
sources: sources,
|
createdAt: new Date(),
|
||||||
createdAt: new Date(),
|
},
|
||||||
},
|
]);
|
||||||
]);
|
added = true;
|
||||||
added = true;
|
|
||||||
}
|
|
||||||
setMessageAppeared(true);
|
setMessageAppeared(true);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -394,20 +392,20 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
|||||||
},
|
},
|
||||||
]);
|
]);
|
||||||
added = true;
|
added = true;
|
||||||
|
setMessageAppeared(true);
|
||||||
|
} else {
|
||||||
|
setMessages((prev) =>
|
||||||
|
prev.map((message) => {
|
||||||
|
if (message.messageId === data.messageId) {
|
||||||
|
return { ...message, content: message.content + data.data };
|
||||||
|
}
|
||||||
|
|
||||||
|
return message;
|
||||||
|
}),
|
||||||
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
setMessages((prev) =>
|
|
||||||
prev.map((message) => {
|
|
||||||
if (message.messageId === data.messageId) {
|
|
||||||
return { ...message, content: message.content + data.data };
|
|
||||||
}
|
|
||||||
|
|
||||||
return message;
|
|
||||||
}),
|
|
||||||
);
|
|
||||||
|
|
||||||
recievedMessage += data.data;
|
recievedMessage += data.data;
|
||||||
setMessageAppeared(true);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if (data.type === 'messageEnd') {
|
if (data.type === 'messageEnd') {
|
||||||
@ -480,6 +478,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
|||||||
name: embeddingModelProvider.name,
|
name: embeddingModelProvider.name,
|
||||||
provider: embeddingModelProvider.provider,
|
provider: embeddingModelProvider.provider,
|
||||||
},
|
},
|
||||||
|
systemInstructions: localStorage.getItem('systemInstructions'),
|
||||||
}),
|
}),
|
||||||
});
|
});
|
||||||
|
|
||||||
|
@ -48,6 +48,7 @@ const MessageBox = ({
|
|||||||
const [speechMessage, setSpeechMessage] = useState(message.content);
|
const [speechMessage, setSpeechMessage] = useState(message.content);
|
||||||
|
|
||||||
useEffect(() => {
|
useEffect(() => {
|
||||||
|
const citationRegex = /\[([^\]]+)\]/g;
|
||||||
const regex = /\[(\d+)\]/g;
|
const regex = /\[(\d+)\]/g;
|
||||||
let processedMessage = message.content;
|
let processedMessage = message.content;
|
||||||
|
|
||||||
@ -67,11 +68,33 @@ const MessageBox = ({
|
|||||||
) {
|
) {
|
||||||
setParsedMessage(
|
setParsedMessage(
|
||||||
processedMessage.replace(
|
processedMessage.replace(
|
||||||
regex,
|
citationRegex,
|
||||||
(_, number) =>
|
(_, capturedContent: string) => {
|
||||||
`<a href="${
|
const numbers = capturedContent
|
||||||
message.sources?.[number - 1]?.metadata?.url
|
.split(',')
|
||||||
}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${number}</a>`,
|
.map((numStr) => numStr.trim());
|
||||||
|
|
||||||
|
const linksHtml = numbers
|
||||||
|
.map((numStr) => {
|
||||||
|
const number = parseInt(numStr);
|
||||||
|
|
||||||
|
if (isNaN(number) || number <= 0) {
|
||||||
|
return `[${numStr}]`;
|
||||||
|
}
|
||||||
|
|
||||||
|
const source = message.sources?.[number - 1];
|
||||||
|
const url = source?.metadata?.url;
|
||||||
|
|
||||||
|
if (url) {
|
||||||
|
return `<a href="${url}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${numStr}</a>`;
|
||||||
|
} else {
|
||||||
|
return `[${numStr}]`;
|
||||||
|
}
|
||||||
|
})
|
||||||
|
.join('');
|
||||||
|
|
||||||
|
return linksHtml;
|
||||||
|
},
|
||||||
),
|
),
|
||||||
);
|
);
|
||||||
return;
|
return;
|
||||||
|
@ -76,13 +76,11 @@ const Optimization = ({
|
|||||||
<PopoverButton
|
<PopoverButton
|
||||||
onClick={() => setOptimizationMode(mode.key)}
|
onClick={() => setOptimizationMode(mode.key)}
|
||||||
key={i}
|
key={i}
|
||||||
disabled={mode.key === 'quality'}
|
|
||||||
className={cn(
|
className={cn(
|
||||||
'p-2 rounded-lg flex flex-col items-start justify-start text-start space-y-1 duration-200 cursor-pointer transition',
|
'p-2 rounded-lg flex flex-col items-start justify-start text-start space-y-1 duration-200 cursor-pointer transition',
|
||||||
optimizationMode === mode.key
|
optimizationMode === mode.key
|
||||||
? 'bg-light-secondary dark:bg-dark-secondary'
|
? 'bg-light-secondary dark:bg-dark-secondary'
|
||||||
: 'hover:bg-light-secondary dark:hover:bg-dark-secondary',
|
: 'hover:bg-light-secondary dark:hover:bg-dark-secondary',
|
||||||
mode.key === 'quality' && 'opacity-50 cursor-not-allowed',
|
|
||||||
)}
|
)}
|
||||||
>
|
>
|
||||||
<div className="flex flex-row items-center space-x-1 text-black dark:text-white">
|
<div className="flex flex-row items-center space-x-1 text-black dark:text-white">
|
||||||
|
@ -25,6 +25,9 @@ interface Config {
|
|||||||
OLLAMA: {
|
OLLAMA: {
|
||||||
API_URL: string;
|
API_URL: string;
|
||||||
};
|
};
|
||||||
|
DEEPSEEK: {
|
||||||
|
API_KEY: string;
|
||||||
|
};
|
||||||
CUSTOM_OPENAI: {
|
CUSTOM_OPENAI: {
|
||||||
API_URL: string;
|
API_URL: string;
|
||||||
API_KEY: string;
|
API_KEY: string;
|
||||||
@ -63,6 +66,8 @@ export const getSearxngApiEndpoint = () =>
|
|||||||
|
|
||||||
export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL;
|
export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL;
|
||||||
|
|
||||||
|
export const getDeepseekApiKey = () => loadConfig().MODELS.DEEPSEEK.API_KEY;
|
||||||
|
|
||||||
export const getCustomOpenaiApiKey = () =>
|
export const getCustomOpenaiApiKey = () =>
|
||||||
loadConfig().MODELS.CUSTOM_OPENAI.API_KEY;
|
loadConfig().MODELS.CUSTOM_OPENAI.API_KEY;
|
||||||
|
|
||||||
|
@ -51,6 +51,10 @@ export const academicSearchResponsePrompt = `
|
|||||||
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
|
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
|
||||||
- You are set on focus mode 'Academic', this means you will be searching for academic papers and articles on the web.
|
- You are set on focus mode 'Academic', this means you will be searching for academic papers and articles on the web.
|
||||||
|
|
||||||
|
### User instructions
|
||||||
|
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
|
||||||
|
{systemInstructions}
|
||||||
|
|
||||||
### Example Output
|
### Example Output
|
||||||
- Begin with a brief introduction summarizing the event or query topic.
|
- Begin with a brief introduction summarizing the event or query topic.
|
||||||
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
|
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
|
||||||
|
@ -51,6 +51,10 @@ export const redditSearchResponsePrompt = `
|
|||||||
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
|
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
|
||||||
- You are set on focus mode 'Reddit', this means you will be searching for information, opinions and discussions on the web using Reddit.
|
- You are set on focus mode 'Reddit', this means you will be searching for information, opinions and discussions on the web using Reddit.
|
||||||
|
|
||||||
|
### User instructions
|
||||||
|
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
|
||||||
|
{systemInstructions}
|
||||||
|
|
||||||
### Example Output
|
### Example Output
|
||||||
- Begin with a brief introduction summarizing the event or query topic.
|
- Begin with a brief introduction summarizing the event or query topic.
|
||||||
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
|
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
export const webSearchRetrieverPrompt = `
|
export const webSearchRetrieverPrompt = `
|
||||||
You are an AI question rephraser. You will be given a conversation and a follow-up question, you will have to rephrase the follow up question so it is a standalone question and can be used by another LLM to search the web for information to answer it.
|
You are an AI question rephraser. You will be given a conversation and a follow-up question, you will have to rephrase the follow up question so it is a standalone question and can be used by another LLM to search the web for information to answer it.
|
||||||
If it is a smple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
|
If it is a simple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
|
||||||
If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block.
|
If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block.
|
||||||
You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response.
|
You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response.
|
||||||
|
|
||||||
@ -92,6 +92,10 @@ export const webSearchResponsePrompt = `
|
|||||||
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
|
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
|
||||||
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
|
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
|
||||||
|
|
||||||
|
### User instructions
|
||||||
|
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
|
||||||
|
{systemInstructions}
|
||||||
|
|
||||||
### Example Output
|
### Example Output
|
||||||
- Begin with a brief introduction summarizing the event or query topic.
|
- Begin with a brief introduction summarizing the event or query topic.
|
||||||
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
|
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
|
||||||
|
@ -51,6 +51,10 @@ export const wolframAlphaSearchResponsePrompt = `
|
|||||||
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
|
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
|
||||||
- You are set on focus mode 'Wolfram Alpha', this means you will be searching for information on the web using Wolfram Alpha. It is a computational knowledge engine that can answer factual queries and perform computations.
|
- You are set on focus mode 'Wolfram Alpha', this means you will be searching for information on the web using Wolfram Alpha. It is a computational knowledge engine that can answer factual queries and perform computations.
|
||||||
|
|
||||||
|
### User instructions
|
||||||
|
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
|
||||||
|
{systemInstructions}
|
||||||
|
|
||||||
### Example Output
|
### Example Output
|
||||||
- Begin with a brief introduction summarizing the event or query topic.
|
- Begin with a brief introduction summarizing the event or query topic.
|
||||||
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
|
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
|
||||||
|
@ -7,6 +7,10 @@ You have to cite the answer using [number] notation. You must cite the sentences
|
|||||||
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
|
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
|
||||||
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
|
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
|
||||||
|
|
||||||
|
### User instructions
|
||||||
|
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
|
||||||
|
{systemInstructions}
|
||||||
|
|
||||||
<context>
|
<context>
|
||||||
{context}
|
{context}
|
||||||
</context>
|
</context>
|
||||||
|
@ -51,6 +51,10 @@ export const youtubeSearchResponsePrompt = `
|
|||||||
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
|
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
|
||||||
- You are set on focus mode 'Youtube', this means you will be searching for videos on the web using Youtube and providing information based on the video's transcrip
|
- You are set on focus mode 'Youtube', this means you will be searching for videos on the web using Youtube and providing information based on the video's transcrip
|
||||||
|
|
||||||
|
### User instructions
|
||||||
|
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
|
||||||
|
{systemInstructions}
|
||||||
|
|
||||||
### Example Output
|
### Example Output
|
||||||
- Begin with a brief introduction summarizing the event or query topic.
|
- Begin with a brief introduction summarizing the event or query topic.
|
||||||
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
|
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
import { ChatOpenAI } from '@langchain/openai';
|
import { ChatAnthropic } from '@langchain/anthropic';
|
||||||
import { ChatModel } from '.';
|
import { ChatModel } from '.';
|
||||||
import { getAnthropicApiKey } from '../config';
|
import { getAnthropicApiKey } from '../config';
|
||||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||||
@ -45,13 +45,10 @@ export const loadAnthropicChatModels = async () => {
|
|||||||
anthropicChatModels.forEach((model) => {
|
anthropicChatModels.forEach((model) => {
|
||||||
chatModels[model.key] = {
|
chatModels[model.key] = {
|
||||||
displayName: model.displayName,
|
displayName: model.displayName,
|
||||||
model: new ChatOpenAI({
|
model: new ChatAnthropic({
|
||||||
openAIApiKey: anthropicApiKey,
|
apiKey: anthropicApiKey,
|
||||||
modelName: model.key,
|
modelName: model.key,
|
||||||
temperature: 0.7,
|
temperature: 0.7,
|
||||||
configuration: {
|
|
||||||
baseURL: 'https://api.anthropic.com/v1/',
|
|
||||||
},
|
|
||||||
}) as unknown as BaseChatModel,
|
}) as unknown as BaseChatModel,
|
||||||
};
|
};
|
||||||
});
|
});
|
||||||
|
44
src/lib/providers/deepseek.ts
Normal file
44
src/lib/providers/deepseek.ts
Normal file
@ -0,0 +1,44 @@
|
|||||||
|
import { ChatOpenAI } from '@langchain/openai';
|
||||||
|
import { getDeepseekApiKey } from '../config';
|
||||||
|
import { ChatModel } from '.';
|
||||||
|
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||||
|
|
||||||
|
const deepseekChatModels: Record<string, string>[] = [
|
||||||
|
{
|
||||||
|
displayName: 'Deepseek Chat (Deepseek V3)',
|
||||||
|
key: 'deepseek-chat',
|
||||||
|
},
|
||||||
|
{
|
||||||
|
displayName: 'Deepseek Reasoner (Deepseek R1)',
|
||||||
|
key: 'deepseek-reasoner',
|
||||||
|
},
|
||||||
|
];
|
||||||
|
|
||||||
|
export const loadDeepseekChatModels = async () => {
|
||||||
|
const deepseekApiKey = getDeepseekApiKey();
|
||||||
|
|
||||||
|
if (!deepseekApiKey) return {};
|
||||||
|
|
||||||
|
try {
|
||||||
|
const chatModels: Record<string, ChatModel> = {};
|
||||||
|
|
||||||
|
deepseekChatModels.forEach((model) => {
|
||||||
|
chatModels[model.key] = {
|
||||||
|
displayName: model.displayName,
|
||||||
|
model: new ChatOpenAI({
|
||||||
|
openAIApiKey: deepseekApiKey,
|
||||||
|
modelName: model.key,
|
||||||
|
temperature: 0.7,
|
||||||
|
configuration: {
|
||||||
|
baseURL: 'https://api.deepseek.com',
|
||||||
|
},
|
||||||
|
}) as unknown as BaseChatModel,
|
||||||
|
};
|
||||||
|
});
|
||||||
|
|
||||||
|
return chatModels;
|
||||||
|
} catch (err) {
|
||||||
|
console.error(`Error loading Deepseek models: ${err}`);
|
||||||
|
return {};
|
||||||
|
}
|
||||||
|
};
|
@ -1,10 +1,17 @@
|
|||||||
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
|
import {
|
||||||
|
ChatGoogleGenerativeAI,
|
||||||
|
GoogleGenerativeAIEmbeddings,
|
||||||
|
} from '@langchain/google-genai';
|
||||||
import { getGeminiApiKey } from '../config';
|
import { getGeminiApiKey } from '../config';
|
||||||
import { ChatModel, EmbeddingModel } from '.';
|
import { ChatModel, EmbeddingModel } from '.';
|
||||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||||
import { Embeddings } from '@langchain/core/embeddings';
|
import { Embeddings } from '@langchain/core/embeddings';
|
||||||
|
|
||||||
const geminiChatModels: Record<string, string>[] = [
|
const geminiChatModels: Record<string, string>[] = [
|
||||||
|
{
|
||||||
|
displayName: 'Gemini 2.5 Pro Experimental',
|
||||||
|
key: 'gemini-2.5-pro-exp-03-25',
|
||||||
|
},
|
||||||
{
|
{
|
||||||
displayName: 'Gemini 2.0 Flash',
|
displayName: 'Gemini 2.0 Flash',
|
||||||
key: 'gemini-2.0-flash',
|
key: 'gemini-2.0-flash',
|
||||||
@ -14,8 +21,8 @@ const geminiChatModels: Record<string, string>[] = [
|
|||||||
key: 'gemini-2.0-flash-lite',
|
key: 'gemini-2.0-flash-lite',
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
displayName: 'Gemini 2.0 Pro Experimental',
|
displayName: 'Gemini 2.0 Flash Thinking Experimental',
|
||||||
key: 'gemini-2.0-pro-exp-02-05',
|
key: 'gemini-2.0-flash-thinking-exp-01-21',
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
displayName: 'Gemini 1.5 Flash',
|
displayName: 'Gemini 1.5 Flash',
|
||||||
@ -33,8 +40,12 @@ const geminiChatModels: Record<string, string>[] = [
|
|||||||
|
|
||||||
const geminiEmbeddingModels: Record<string, string>[] = [
|
const geminiEmbeddingModels: Record<string, string>[] = [
|
||||||
{
|
{
|
||||||
displayName: 'Gemini Embedding',
|
displayName: 'Text Embedding 004',
|
||||||
key: 'gemini-embedding-exp',
|
key: 'models/text-embedding-004',
|
||||||
|
},
|
||||||
|
{
|
||||||
|
displayName: 'Embedding 001',
|
||||||
|
key: 'models/embedding-001',
|
||||||
},
|
},
|
||||||
];
|
];
|
||||||
|
|
||||||
@ -49,13 +60,10 @@ export const loadGeminiChatModels = async () => {
|
|||||||
geminiChatModels.forEach((model) => {
|
geminiChatModels.forEach((model) => {
|
||||||
chatModels[model.key] = {
|
chatModels[model.key] = {
|
||||||
displayName: model.displayName,
|
displayName: model.displayName,
|
||||||
model: new ChatOpenAI({
|
model: new ChatGoogleGenerativeAI({
|
||||||
openAIApiKey: geminiApiKey,
|
apiKey: geminiApiKey,
|
||||||
modelName: model.key,
|
modelName: model.key,
|
||||||
temperature: 0.7,
|
temperature: 0.7,
|
||||||
configuration: {
|
|
||||||
baseURL: 'https://generativelanguage.googleapis.com/v1beta/openai/',
|
|
||||||
},
|
|
||||||
}) as unknown as BaseChatModel,
|
}) as unknown as BaseChatModel,
|
||||||
};
|
};
|
||||||
});
|
});
|
||||||
@ -78,12 +86,9 @@ export const loadGeminiEmbeddingModels = async () => {
|
|||||||
geminiEmbeddingModels.forEach((model) => {
|
geminiEmbeddingModels.forEach((model) => {
|
||||||
embeddingModels[model.key] = {
|
embeddingModels[model.key] = {
|
||||||
displayName: model.displayName,
|
displayName: model.displayName,
|
||||||
model: new OpenAIEmbeddings({
|
model: new GoogleGenerativeAIEmbeddings({
|
||||||
openAIApiKey: geminiApiKey,
|
apiKey: geminiApiKey,
|
||||||
modelName: model.key,
|
modelName: model.key,
|
||||||
configuration: {
|
|
||||||
baseURL: 'https://generativelanguage.googleapis.com/v1beta/openai/',
|
|
||||||
},
|
|
||||||
}) as unknown as Embeddings,
|
}) as unknown as Embeddings,
|
||||||
};
|
};
|
||||||
});
|
});
|
||||||
|
@ -72,6 +72,14 @@ const groqChatModels: Record<string, string>[] = [
|
|||||||
displayName: 'Llama 3.2 90B Vision Preview (Preview)',
|
displayName: 'Llama 3.2 90B Vision Preview (Preview)',
|
||||||
key: 'llama-3.2-90b-vision-preview',
|
key: 'llama-3.2-90b-vision-preview',
|
||||||
},
|
},
|
||||||
|
/* {
|
||||||
|
displayName: 'Llama 4 Maverick 17B 128E Instruct (Preview)',
|
||||||
|
key: 'meta-llama/llama-4-maverick-17b-128e-instruct',
|
||||||
|
}, */
|
||||||
|
{
|
||||||
|
displayName: 'Llama 4 Scout 17B 16E Instruct (Preview)',
|
||||||
|
key: 'meta-llama/llama-4-scout-17b-16e-instruct',
|
||||||
|
},
|
||||||
];
|
];
|
||||||
|
|
||||||
export const loadGroqChatModels = async () => {
|
export const loadGroqChatModels = async () => {
|
||||||
|
@ -12,6 +12,7 @@ import { loadGroqChatModels } from './groq';
|
|||||||
import { loadAnthropicChatModels } from './anthropic';
|
import { loadAnthropicChatModels } from './anthropic';
|
||||||
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini';
|
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini';
|
||||||
import { loadTransformersEmbeddingsModels } from './transformers';
|
import { loadTransformersEmbeddingsModels } from './transformers';
|
||||||
|
import { loadDeepseekChatModels } from './deepseek';
|
||||||
|
|
||||||
export interface ChatModel {
|
export interface ChatModel {
|
||||||
displayName: string;
|
displayName: string;
|
||||||
@ -32,6 +33,7 @@ export const chatModelProviders: Record<
|
|||||||
groq: loadGroqChatModels,
|
groq: loadGroqChatModels,
|
||||||
anthropic: loadAnthropicChatModels,
|
anthropic: loadAnthropicChatModels,
|
||||||
gemini: loadGeminiChatModels,
|
gemini: loadGeminiChatModels,
|
||||||
|
deepseek: loadDeepseekChatModels,
|
||||||
};
|
};
|
||||||
|
|
||||||
export const embeddingModelProviders: Record<
|
export const embeddingModelProviders: Record<
|
||||||
|
@ -6,24 +6,20 @@ import {
|
|||||||
MessagesPlaceholder,
|
MessagesPlaceholder,
|
||||||
PromptTemplate,
|
PromptTemplate,
|
||||||
} from '@langchain/core/prompts';
|
} from '@langchain/core/prompts';
|
||||||
import {
|
|
||||||
RunnableLambda,
|
|
||||||
RunnableMap,
|
|
||||||
RunnableSequence,
|
|
||||||
} from '@langchain/core/runnables';
|
|
||||||
import { BaseMessage } from '@langchain/core/messages';
|
import { BaseMessage } from '@langchain/core/messages';
|
||||||
import { StringOutputParser } from '@langchain/core/output_parsers';
|
import { StringOutputParser } from '@langchain/core/output_parsers';
|
||||||
import LineListOutputParser from '../outputParsers/listLineOutputParser';
|
import LineListOutputParser from '../outputParsers/listLineOutputParser';
|
||||||
import LineOutputParser from '../outputParsers/lineOutputParser';
|
import LineOutputParser from '../outputParsers/lineOutputParser';
|
||||||
import { getDocumentsFromLinks } from '../utils/documents';
|
import { getDocumentsFromLinks } from '../utils/documents';
|
||||||
import { Document } from 'langchain/document';
|
import { Document } from 'langchain/document';
|
||||||
import { searchSearxng } from '../searxng';
|
import { searchSearxng, SearxngSearchResult } from '../searxng';
|
||||||
import path from 'node:path';
|
import path from 'node:path';
|
||||||
import fs from 'node:fs';
|
import fs from 'node:fs';
|
||||||
import computeSimilarity from '../utils/computeSimilarity';
|
import computeSimilarity from '../utils/computeSimilarity';
|
||||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||||
import eventEmitter from 'events';
|
import eventEmitter from 'events';
|
||||||
import { StreamEvent } from '@langchain/core/tracers/log_stream';
|
import { StreamEvent } from '@langchain/core/tracers/log_stream';
|
||||||
|
import { EventEmitter } from 'node:stream';
|
||||||
|
|
||||||
export interface MetaSearchAgentType {
|
export interface MetaSearchAgentType {
|
||||||
searchAndAnswer: (
|
searchAndAnswer: (
|
||||||
@ -33,6 +29,7 @@ export interface MetaSearchAgentType {
|
|||||||
embeddings: Embeddings,
|
embeddings: Embeddings,
|
||||||
optimizationMode: 'speed' | 'balanced' | 'quality',
|
optimizationMode: 'speed' | 'balanced' | 'quality',
|
||||||
fileIds: string[],
|
fileIds: string[],
|
||||||
|
systemInstructions: string,
|
||||||
) => Promise<eventEmitter>;
|
) => Promise<eventEmitter>;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -46,7 +43,7 @@ interface Config {
|
|||||||
activeEngines: string[];
|
activeEngines: string[];
|
||||||
}
|
}
|
||||||
|
|
||||||
type BasicChainInput = {
|
type SearchInput = {
|
||||||
chat_history: BaseMessage[];
|
chat_history: BaseMessage[];
|
||||||
query: string;
|
query: string;
|
||||||
};
|
};
|
||||||
@ -59,235 +56,385 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||||||
this.config = config;
|
this.config = config;
|
||||||
}
|
}
|
||||||
|
|
||||||
private async createSearchRetrieverChain(llm: BaseChatModel) {
|
private async searchSources(
|
||||||
|
llm: BaseChatModel,
|
||||||
|
input: SearchInput,
|
||||||
|
emitter: EventEmitter,
|
||||||
|
) {
|
||||||
(llm as unknown as ChatOpenAI).temperature = 0;
|
(llm as unknown as ChatOpenAI).temperature = 0;
|
||||||
|
|
||||||
return RunnableSequence.from([
|
const chatPrompt = PromptTemplate.fromTemplate(
|
||||||
PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt),
|
this.config.queryGeneratorPrompt,
|
||||||
llm,
|
);
|
||||||
this.strParser,
|
|
||||||
RunnableLambda.from(async (input: string) => {
|
|
||||||
const linksOutputParser = new LineListOutputParser({
|
|
||||||
key: 'links',
|
|
||||||
});
|
|
||||||
|
|
||||||
const questionOutputParser = new LineOutputParser({
|
const processedChatPrompt = await chatPrompt.invoke({
|
||||||
key: 'question',
|
chat_history: formatChatHistoryAsString(input.chat_history),
|
||||||
});
|
query: input.query,
|
||||||
|
});
|
||||||
|
|
||||||
const links = await linksOutputParser.parse(input);
|
const llmRes = await llm.invoke(processedChatPrompt);
|
||||||
let question = this.config.summarizer
|
const messageStr = await this.strParser.invoke(llmRes);
|
||||||
? await questionOutputParser.parse(input)
|
|
||||||
: input;
|
|
||||||
|
|
||||||
if (question === 'not_needed') {
|
const linksOutputParser = new LineListOutputParser({
|
||||||
return { query: '', docs: [] };
|
key: 'links',
|
||||||
|
});
|
||||||
|
|
||||||
|
const questionOutputParser = new LineOutputParser({
|
||||||
|
key: 'question',
|
||||||
|
});
|
||||||
|
|
||||||
|
const links = await linksOutputParser.parse(messageStr);
|
||||||
|
let question = this.config.summarizer
|
||||||
|
? await questionOutputParser.parse(messageStr)
|
||||||
|
: messageStr;
|
||||||
|
|
||||||
|
if (question === 'not_needed') {
|
||||||
|
return { query: '', docs: [] };
|
||||||
|
}
|
||||||
|
|
||||||
|
if (links.length > 0) {
|
||||||
|
if (question.length === 0) {
|
||||||
|
question = 'summarize';
|
||||||
|
}
|
||||||
|
|
||||||
|
let docs: Document[] = [];
|
||||||
|
|
||||||
|
const linkDocs = await getDocumentsFromLinks({ links });
|
||||||
|
|
||||||
|
const docGroups: Document[] = [];
|
||||||
|
|
||||||
|
linkDocs.map((doc) => {
|
||||||
|
const URLDocExists = docGroups.find(
|
||||||
|
(d) =>
|
||||||
|
d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10,
|
||||||
|
);
|
||||||
|
|
||||||
|
if (!URLDocExists) {
|
||||||
|
docGroups.push({
|
||||||
|
...doc,
|
||||||
|
metadata: {
|
||||||
|
...doc.metadata,
|
||||||
|
totalDocs: 1,
|
||||||
|
},
|
||||||
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
if (links.length > 0) {
|
const docIndex = docGroups.findIndex(
|
||||||
if (question.length === 0) {
|
(d) =>
|
||||||
question = 'summarize';
|
d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10,
|
||||||
}
|
);
|
||||||
|
|
||||||
let docs: Document[] = [];
|
if (docIndex !== -1) {
|
||||||
|
docGroups[docIndex].pageContent =
|
||||||
const linkDocs = await getDocumentsFromLinks({ links });
|
docGroups[docIndex].pageContent + `\n\n` + doc.pageContent;
|
||||||
|
docGroups[docIndex].metadata.totalDocs += 1;
|
||||||
const docGroups: Document[] = [];
|
|
||||||
|
|
||||||
linkDocs.map((doc) => {
|
|
||||||
const URLDocExists = docGroups.find(
|
|
||||||
(d) =>
|
|
||||||
d.metadata.url === doc.metadata.url &&
|
|
||||||
d.metadata.totalDocs < 10,
|
|
||||||
);
|
|
||||||
|
|
||||||
if (!URLDocExists) {
|
|
||||||
docGroups.push({
|
|
||||||
...doc,
|
|
||||||
metadata: {
|
|
||||||
...doc.metadata,
|
|
||||||
totalDocs: 1,
|
|
||||||
},
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
const docIndex = docGroups.findIndex(
|
|
||||||
(d) =>
|
|
||||||
d.metadata.url === doc.metadata.url &&
|
|
||||||
d.metadata.totalDocs < 10,
|
|
||||||
);
|
|
||||||
|
|
||||||
if (docIndex !== -1) {
|
|
||||||
docGroups[docIndex].pageContent =
|
|
||||||
docGroups[docIndex].pageContent + `\n\n` + doc.pageContent;
|
|
||||||
docGroups[docIndex].metadata.totalDocs += 1;
|
|
||||||
}
|
|
||||||
});
|
|
||||||
|
|
||||||
await Promise.all(
|
|
||||||
docGroups.map(async (doc) => {
|
|
||||||
const res = await llm.invoke(`
|
|
||||||
You are a web search summarizer, tasked with summarizing a piece of text retrieved from a web search. Your job is to summarize the
|
|
||||||
text into a detailed, 2-4 paragraph explanation that captures the main ideas and provides a comprehensive answer to the query.
|
|
||||||
If the query is \"summarize\", you should provide a detailed summary of the text. If the query is a specific question, you should answer it in the summary.
|
|
||||||
|
|
||||||
- **Journalistic tone**: The summary should sound professional and journalistic, not too casual or vague.
|
|
||||||
- **Thorough and detailed**: Ensure that every key point from the text is captured and that the summary directly answers the query.
|
|
||||||
- **Not too lengthy, but detailed**: The summary should be informative but not excessively long. Focus on providing detailed information in a concise format.
|
|
||||||
|
|
||||||
The text will be shared inside the \`text\` XML tag, and the query inside the \`query\` XML tag.
|
|
||||||
|
|
||||||
<example>
|
|
||||||
1. \`<text>
|
|
||||||
Docker is a set of platform-as-a-service products that use OS-level virtualization to deliver software in packages called containers.
|
|
||||||
It was first released in 2013 and is developed by Docker, Inc. Docker is designed to make it easier to create, deploy, and run applications
|
|
||||||
by using containers.
|
|
||||||
</text>
|
|
||||||
|
|
||||||
<query>
|
|
||||||
What is Docker and how does it work?
|
|
||||||
</query>
|
|
||||||
|
|
||||||
Response:
|
|
||||||
Docker is a revolutionary platform-as-a-service product developed by Docker, Inc., that uses container technology to make application
|
|
||||||
deployment more efficient. It allows developers to package their software with all necessary dependencies, making it easier to run in
|
|
||||||
any environment. Released in 2013, Docker has transformed the way applications are built, deployed, and managed.
|
|
||||||
\`
|
|
||||||
2. \`<text>
|
|
||||||
The theory of relativity, or simply relativity, encompasses two interrelated theories of Albert Einstein: special relativity and general
|
|
||||||
relativity. However, the word "relativity" is sometimes used in reference to Galilean invariance. The term "theory of relativity" was based
|
|
||||||
on the expression "relative theory" used by Max Planck in 1906. The theory of relativity usually encompasses two interrelated theories by
|
|
||||||
Albert Einstein: special relativity and general relativity. Special relativity applies to all physical phenomena in the absence of gravity.
|
|
||||||
General relativity explains the law of gravitation and its relation to other forces of nature. It applies to the cosmological and astrophysical
|
|
||||||
realm, including astronomy.
|
|
||||||
</text>
|
|
||||||
|
|
||||||
<query>
|
|
||||||
summarize
|
|
||||||
</query>
|
|
||||||
|
|
||||||
Response:
|
|
||||||
The theory of relativity, developed by Albert Einstein, encompasses two main theories: special relativity and general relativity. Special
|
|
||||||
relativity applies to all physical phenomena in the absence of gravity, while general relativity explains the law of gravitation and its
|
|
||||||
relation to other forces of nature. The theory of relativity is based on the concept of "relative theory," as introduced by Max Planck in
|
|
||||||
1906. It is a fundamental theory in physics that has revolutionized our understanding of the universe.
|
|
||||||
\`
|
|
||||||
</example>
|
|
||||||
|
|
||||||
Everything below is the actual data you will be working with. Good luck!
|
|
||||||
|
|
||||||
<query>
|
|
||||||
${question}
|
|
||||||
</query>
|
|
||||||
|
|
||||||
<text>
|
|
||||||
${doc.pageContent}
|
|
||||||
</text>
|
|
||||||
|
|
||||||
Make sure to answer the query in the summary.
|
|
||||||
`);
|
|
||||||
|
|
||||||
const document = new Document({
|
|
||||||
pageContent: res.content as string,
|
|
||||||
metadata: {
|
|
||||||
title: doc.metadata.title,
|
|
||||||
url: doc.metadata.url,
|
|
||||||
},
|
|
||||||
});
|
|
||||||
|
|
||||||
docs.push(document);
|
|
||||||
}),
|
|
||||||
);
|
|
||||||
|
|
||||||
return { query: question, docs: docs };
|
|
||||||
} else {
|
|
||||||
question = question.replace(/<think>.*?<\/think>/g, '');
|
|
||||||
|
|
||||||
const res = await searchSearxng(question, {
|
|
||||||
language: 'en',
|
|
||||||
engines: this.config.activeEngines,
|
|
||||||
});
|
|
||||||
|
|
||||||
const documents = res.results.map(
|
|
||||||
(result) =>
|
|
||||||
new Document({
|
|
||||||
pageContent:
|
|
||||||
result.content ||
|
|
||||||
(this.config.activeEngines.includes('youtube')
|
|
||||||
? result.title
|
|
||||||
: '') /* Todo: Implement transcript grabbing using Youtubei (source: https://www.npmjs.com/package/youtubei) */,
|
|
||||||
metadata: {
|
|
||||||
title: result.title,
|
|
||||||
url: result.url,
|
|
||||||
...(result.img_src && { img_src: result.img_src }),
|
|
||||||
},
|
|
||||||
}),
|
|
||||||
);
|
|
||||||
|
|
||||||
return { query: question, docs: documents };
|
|
||||||
}
|
}
|
||||||
}),
|
});
|
||||||
]);
|
|
||||||
|
await Promise.all(
|
||||||
|
docGroups.map(async (doc) => {
|
||||||
|
const res = await llm.invoke(`
|
||||||
|
You are a web search summarizer, tasked with summarizing a piece of text retrieved from a web search. Your job is to summarize the
|
||||||
|
text into a detailed, 2-4 paragraph explanation that captures the main ideas and provides a comprehensive answer to the query.
|
||||||
|
If the query is \"summarize\", you should provide a detailed summary of the text. If the query is a specific question, you should answer it in the summary.
|
||||||
|
|
||||||
|
- **Journalistic tone**: The summary should sound professional and journalistic, not too casual or vague.
|
||||||
|
- **Thorough and detailed**: Ensure that every key point from the text is captured and that the summary directly answers the query.
|
||||||
|
- **Not too lengthy, but detailed**: The summary should be informative but not excessively long. Focus on providing detailed information in a concise format.
|
||||||
|
|
||||||
|
The text will be shared inside the \`text\` XML tag, and the query inside the \`query\` XML tag.
|
||||||
|
|
||||||
|
<example>
|
||||||
|
1. \`<text>
|
||||||
|
Docker is a set of platform-as-a-service products that use OS-level virtualization to deliver software in packages called containers.
|
||||||
|
It was first released in 2013 and is developed by Docker, Inc. Docker is designed to make it easier to create, deploy, and run applications
|
||||||
|
by using containers.
|
||||||
|
</text>
|
||||||
|
|
||||||
|
<query>
|
||||||
|
What is Docker and how does it work?
|
||||||
|
</query>
|
||||||
|
|
||||||
|
Response:
|
||||||
|
Docker is a revolutionary platform-as-a-service product developed by Docker, Inc., that uses container technology to make application
|
||||||
|
deployment more efficient. It allows developers to package their software with all necessary dependencies, making it easier to run in
|
||||||
|
any environment. Released in 2013, Docker has transformed the way applications are built, deployed, and managed.
|
||||||
|
\`
|
||||||
|
2. \`<text>
|
||||||
|
The theory of relativity, or simply relativity, encompasses two interrelated theories of Albert Einstein: special relativity and general
|
||||||
|
relativity. However, the word "relativity" is sometimes used in reference to Galilean invariance. The term "theory of relativity" was based
|
||||||
|
on the expression "relative theory" used by Max Planck in 1906. The theory of relativity usually encompasses two interrelated theories by
|
||||||
|
Albert Einstein: special relativity and general relativity. Special relativity applies to all physical phenomena in the absence of gravity.
|
||||||
|
General relativity explains the law of gravitation and its relation to other forces of nature. It applies to the cosmological and astrophysical
|
||||||
|
realm, including astronomy.
|
||||||
|
</text>
|
||||||
|
|
||||||
|
<query>
|
||||||
|
summarize
|
||||||
|
</query>
|
||||||
|
|
||||||
|
Response:
|
||||||
|
The theory of relativity, developed by Albert Einstein, encompasses two main theories: special relativity and general relativity. Special
|
||||||
|
relativity applies to all physical phenomena in the absence of gravity, while general relativity explains the law of gravitation and its
|
||||||
|
relation to other forces of nature. The theory of relativity is based on the concept of "relative theory," as introduced by Max Planck in
|
||||||
|
1906. It is a fundamental theory in physics that has revolutionized our understanding of the universe.
|
||||||
|
\`
|
||||||
|
</example>
|
||||||
|
|
||||||
|
Everything below is the actual data you will be working with. Good luck!
|
||||||
|
|
||||||
|
<query>
|
||||||
|
${question}
|
||||||
|
</query>
|
||||||
|
|
||||||
|
<text>
|
||||||
|
${doc.pageContent}
|
||||||
|
</text>
|
||||||
|
|
||||||
|
Make sure to answer the query in the summary.
|
||||||
|
`);
|
||||||
|
|
||||||
|
const document = new Document({
|
||||||
|
pageContent: res.content as string,
|
||||||
|
metadata: {
|
||||||
|
title: doc.metadata.title,
|
||||||
|
url: doc.metadata.url,
|
||||||
|
},
|
||||||
|
});
|
||||||
|
|
||||||
|
docs.push(document);
|
||||||
|
}),
|
||||||
|
);
|
||||||
|
|
||||||
|
return { query: question, docs: docs };
|
||||||
|
} else {
|
||||||
|
question = question.replace(/<think>.*?<\/think>/g, '');
|
||||||
|
|
||||||
|
const res = await searchSearxng(question, {
|
||||||
|
language: 'en',
|
||||||
|
engines: this.config.activeEngines,
|
||||||
|
});
|
||||||
|
|
||||||
|
const documents = res.results.map(
|
||||||
|
(result) =>
|
||||||
|
new Document({
|
||||||
|
pageContent:
|
||||||
|
result.content ||
|
||||||
|
(this.config.activeEngines.includes('youtube')
|
||||||
|
? result.title
|
||||||
|
: '') /* Todo: Implement transcript grabbing using Youtubei (source: https://www.npmjs.com/package/youtubei) */,
|
||||||
|
metadata: {
|
||||||
|
title: result.title,
|
||||||
|
url: result.url,
|
||||||
|
...(result.img_src && { img_src: result.img_src }),
|
||||||
|
},
|
||||||
|
}),
|
||||||
|
);
|
||||||
|
|
||||||
|
return { query: question, docs: documents };
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
private async createAnsweringChain(
|
private async performDeepResearch(
|
||||||
|
llm: BaseChatModel,
|
||||||
|
input: SearchInput,
|
||||||
|
emitter: EventEmitter,
|
||||||
|
) {
|
||||||
|
(llm as unknown as ChatOpenAI).temperature = 0;
|
||||||
|
|
||||||
|
const queryGenPrompt = PromptTemplate.fromTemplate(
|
||||||
|
this.config.queryGeneratorPrompt,
|
||||||
|
);
|
||||||
|
|
||||||
|
const formattedChatPrompt = await queryGenPrompt.invoke({
|
||||||
|
chat_history: formatChatHistoryAsString(input.chat_history),
|
||||||
|
query: input.query,
|
||||||
|
});
|
||||||
|
|
||||||
|
let i = 0;
|
||||||
|
let currentQuery = await this.strParser.invoke(
|
||||||
|
await llm.invoke(formattedChatPrompt),
|
||||||
|
);
|
||||||
|
const originalQuery = currentQuery;
|
||||||
|
const pastQueries: string[] = [];
|
||||||
|
const results: SearxngSearchResult[] = [];
|
||||||
|
|
||||||
|
while (i < 10) {
|
||||||
|
const res = await searchSearxng(currentQuery, {
|
||||||
|
language: 'en',
|
||||||
|
engines: this.config.activeEngines,
|
||||||
|
});
|
||||||
|
|
||||||
|
results.push(...res.results);
|
||||||
|
|
||||||
|
const reflectorPrompt = PromptTemplate.fromTemplate(`
|
||||||
|
You are an LLM that is tasked with reflecting on the results of a search query.
|
||||||
|
|
||||||
|
## Goal
|
||||||
|
You will be given question of the user, a list of search results collected from the web to answer that question along with past queries made to collect those results. You have to analyze the results based on user's question and do the following:
|
||||||
|
|
||||||
|
1. Identify unexplored areas or areas with less detailed information in the results and generate a new query that focuses on those areas. The new queries should be more specific and a similar query shall not exist in past queries which will be provided to you. Make sure to include keywords that you're looking for because the new query will be used to search the web for information on that topic. Make sure the query contains only 1 question and is not too long to ensure it is Search Engine friendly.
|
||||||
|
2. You'll have to generate a description explaining what you are doing for example "I am looking for more information about X" or "Understanding how X works" etc. The description should be short and concise.
|
||||||
|
|
||||||
|
## Output format
|
||||||
|
|
||||||
|
You need to output in XML format and do not generate any other text. ake sure to not include any other text in the output or start a conversation in the output. The output should be in the following format:
|
||||||
|
|
||||||
|
<query>(query)</query>
|
||||||
|
<description>(description)</description>
|
||||||
|
|
||||||
|
## Example
|
||||||
|
Say the user asked "What is Llama 4 by Meta?" and let search results contain information about Llama 4 being an LLM and very little information about its features. You can output:
|
||||||
|
|
||||||
|
<query>Llama 4 features</query> // Generate queries that capture keywords for SEO and not making words like "How", "What", "Why" etc.
|
||||||
|
<description>Looking for new features in Llama 4</description>
|
||||||
|
|
||||||
|
or something like
|
||||||
|
|
||||||
|
<query>How is Llama 4 better than its previous generation models</query>
|
||||||
|
<description>Understanding the difference between Llama 4 and previous generation models.</description>
|
||||||
|
|
||||||
|
## BELOW IS THE ACTUAL DATA YOU WILL BE WORKING WITH. IT IS NOT A PART OF EXAMPLES. YOU'LL HAVE TO GENERATE YOUR ANSWER BASED ON THIS DATA.
|
||||||
|
<user_question>\n{question}\n</user_question>
|
||||||
|
<search_results>\n{search_results}\n</search_results>
|
||||||
|
<past_queries>\n{past_queries}\n</past_queries>
|
||||||
|
|
||||||
|
Response:
|
||||||
|
`);
|
||||||
|
|
||||||
|
const formattedReflectorPrompt = await reflectorPrompt.invoke({
|
||||||
|
question: originalQuery,
|
||||||
|
search_results: results
|
||||||
|
.map(
|
||||||
|
(result) => `<result>${result.title} - ${result.content}</result>`,
|
||||||
|
)
|
||||||
|
.join('\n'),
|
||||||
|
past_queries: pastQueries.map((q) => `<query>${q}</query>`).join('\n'),
|
||||||
|
});
|
||||||
|
|
||||||
|
const feedback = await this.strParser.invoke(
|
||||||
|
await llm.invoke(formattedReflectorPrompt),
|
||||||
|
);
|
||||||
|
|
||||||
|
console.log(`Feedback: ${feedback}`);
|
||||||
|
|
||||||
|
const queryOutputParser = new LineOutputParser({
|
||||||
|
key: 'query',
|
||||||
|
});
|
||||||
|
|
||||||
|
const descriptionOutputParser = new LineOutputParser({
|
||||||
|
key: 'description',
|
||||||
|
});
|
||||||
|
|
||||||
|
currentQuery = await queryOutputParser.parse(feedback);
|
||||||
|
const description = await descriptionOutputParser.parse(feedback);
|
||||||
|
console.log(`Query: ${currentQuery}`);
|
||||||
|
console.log(`Description: ${description}`);
|
||||||
|
|
||||||
|
pastQueries.push(currentQuery);
|
||||||
|
++i;
|
||||||
|
}
|
||||||
|
|
||||||
|
const uniqueResults: SearxngSearchResult[] = [];
|
||||||
|
|
||||||
|
results.forEach((res) => {
|
||||||
|
const exists = uniqueResults.find((r) => r.url === res.url);
|
||||||
|
|
||||||
|
if (!exists) {
|
||||||
|
uniqueResults.push(res);
|
||||||
|
} else {
|
||||||
|
exists.content += `\n\n` + res.content;
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
const documents = uniqueResults /* .slice(0, 50) */
|
||||||
|
.map(
|
||||||
|
(r) =>
|
||||||
|
new Document({
|
||||||
|
pageContent: r.content || '',
|
||||||
|
metadata: {
|
||||||
|
title: r.title,
|
||||||
|
url: r.url,
|
||||||
|
...(r.img_src && { img_src: r.img_src }),
|
||||||
|
},
|
||||||
|
}),
|
||||||
|
);
|
||||||
|
|
||||||
|
return documents;
|
||||||
|
}
|
||||||
|
|
||||||
|
private async streamAnswer(
|
||||||
llm: BaseChatModel,
|
llm: BaseChatModel,
|
||||||
fileIds: string[],
|
fileIds: string[],
|
||||||
embeddings: Embeddings,
|
embeddings: Embeddings,
|
||||||
optimizationMode: 'speed' | 'balanced' | 'quality',
|
optimizationMode: 'speed' | 'balanced' | 'quality',
|
||||||
|
systemInstructions: string,
|
||||||
|
input: SearchInput,
|
||||||
|
emitter: EventEmitter,
|
||||||
) {
|
) {
|
||||||
return RunnableSequence.from([
|
const chatPrompt = ChatPromptTemplate.fromMessages([
|
||||||
RunnableMap.from({
|
['system', this.config.responsePrompt],
|
||||||
query: (input: BasicChainInput) => input.query,
|
new MessagesPlaceholder('chat_history'),
|
||||||
chat_history: (input: BasicChainInput) => input.chat_history,
|
['user', '{query}'],
|
||||||
date: () => new Date().toISOString(),
|
]);
|
||||||
context: RunnableLambda.from(async (input: BasicChainInput) => {
|
|
||||||
const processedHistory = formatChatHistoryAsString(
|
|
||||||
input.chat_history,
|
|
||||||
);
|
|
||||||
|
|
||||||
let docs: Document[] | null = null;
|
let context = '';
|
||||||
let query = input.query;
|
|
||||||
|
|
||||||
if (this.config.searchWeb) {
|
if (optimizationMode === 'speed' || optimizationMode === 'balanced') {
|
||||||
const searchRetrieverChain =
|
let docs: Document[] | null = null;
|
||||||
await this.createSearchRetrieverChain(llm);
|
let query = input.query;
|
||||||
|
|
||||||
const searchRetrieverResult = await searchRetrieverChain.invoke({
|
if (this.config.searchWeb) {
|
||||||
chat_history: processedHistory,
|
const searchResults = await this.searchSources(llm, input, emitter);
|
||||||
query,
|
|
||||||
});
|
|
||||||
|
|
||||||
query = searchRetrieverResult.query;
|
query = searchResults.query;
|
||||||
docs = searchRetrieverResult.docs;
|
docs = searchResults.docs;
|
||||||
}
|
}
|
||||||
|
|
||||||
const sortedDocs = await this.rerankDocs(
|
const sortedDocs = await this.rerankDocs(
|
||||||
query,
|
query,
|
||||||
docs ?? [],
|
docs ?? [],
|
||||||
fileIds,
|
fileIds,
|
||||||
embeddings,
|
embeddings,
|
||||||
optimizationMode,
|
optimizationMode,
|
||||||
);
|
);
|
||||||
|
|
||||||
return sortedDocs;
|
emitter.emit(
|
||||||
})
|
'data',
|
||||||
.withConfig({
|
JSON.stringify({ type: 'sources', data: sortedDocs }),
|
||||||
runName: 'FinalSourceRetriever',
|
);
|
||||||
})
|
|
||||||
.pipe(this.processDocs),
|
context = this.processDocs(sortedDocs);
|
||||||
}),
|
} else if (optimizationMode === 'quality') {
|
||||||
ChatPromptTemplate.fromMessages([
|
let docs: Document[] = [];
|
||||||
['system', this.config.responsePrompt],
|
|
||||||
new MessagesPlaceholder('chat_history'),
|
docs = await this.performDeepResearch(llm, input, emitter);
|
||||||
['user', '{query}'],
|
|
||||||
]),
|
emitter.emit('data', JSON.stringify({ type: 'sources', data: docs }));
|
||||||
llm,
|
|
||||||
this.strParser,
|
context = this.processDocs(docs);
|
||||||
]).withConfig({
|
}
|
||||||
runName: 'FinalResponseGenerator',
|
|
||||||
|
const formattedChatPrompt = await chatPrompt.invoke({
|
||||||
|
query: input.query,
|
||||||
|
chat_history: input.chat_history,
|
||||||
|
date: new Date().toISOString(),
|
||||||
|
context: context,
|
||||||
|
systemInstructions: systemInstructions,
|
||||||
});
|
});
|
||||||
|
|
||||||
|
const llmRes = await llm.stream(formattedChatPrompt);
|
||||||
|
|
||||||
|
for await (const data of llmRes) {
|
||||||
|
const messageStr = await this.strParser.invoke(data);
|
||||||
|
|
||||||
|
emitter.emit(
|
||||||
|
'data',
|
||||||
|
JSON.stringify({ type: 'response', data: messageStr }),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
emitter.emit('end');
|
||||||
}
|
}
|
||||||
|
|
||||||
private async rerankDocs(
|
private async rerankDocs(
|
||||||
@ -423,44 +570,13 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||||||
return docs
|
return docs
|
||||||
.map(
|
.map(
|
||||||
(_, index) =>
|
(_, index) =>
|
||||||
`${index + 1}. ${docs[index].metadata.title} ${docs[index].pageContent}`,
|
`${index + 1}. ${docs[index].metadata.title} ${
|
||||||
|
docs[index].pageContent
|
||||||
|
}`,
|
||||||
)
|
)
|
||||||
.join('\n');
|
.join('\n');
|
||||||
}
|
}
|
||||||
|
|
||||||
private async handleStream(
|
|
||||||
stream: AsyncGenerator<StreamEvent, any, any>,
|
|
||||||
emitter: eventEmitter,
|
|
||||||
) {
|
|
||||||
for await (const event of stream) {
|
|
||||||
if (
|
|
||||||
event.event === 'on_chain_end' &&
|
|
||||||
event.name === 'FinalSourceRetriever'
|
|
||||||
) {
|
|
||||||
``;
|
|
||||||
emitter.emit(
|
|
||||||
'data',
|
|
||||||
JSON.stringify({ type: 'sources', data: event.data.output }),
|
|
||||||
);
|
|
||||||
}
|
|
||||||
if (
|
|
||||||
event.event === 'on_chain_stream' &&
|
|
||||||
event.name === 'FinalResponseGenerator'
|
|
||||||
) {
|
|
||||||
emitter.emit(
|
|
||||||
'data',
|
|
||||||
JSON.stringify({ type: 'response', data: event.data.chunk }),
|
|
||||||
);
|
|
||||||
}
|
|
||||||
if (
|
|
||||||
event.event === 'on_chain_end' &&
|
|
||||||
event.name === 'FinalResponseGenerator'
|
|
||||||
) {
|
|
||||||
emitter.emit('end');
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
async searchAndAnswer(
|
async searchAndAnswer(
|
||||||
message: string,
|
message: string,
|
||||||
history: BaseMessage[],
|
history: BaseMessage[],
|
||||||
@ -468,28 +584,23 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||||||
embeddings: Embeddings,
|
embeddings: Embeddings,
|
||||||
optimizationMode: 'speed' | 'balanced' | 'quality',
|
optimizationMode: 'speed' | 'balanced' | 'quality',
|
||||||
fileIds: string[],
|
fileIds: string[],
|
||||||
|
systemInstructions: string,
|
||||||
) {
|
) {
|
||||||
const emitter = new eventEmitter();
|
const emitter = new eventEmitter();
|
||||||
|
|
||||||
const answeringChain = await this.createAnsweringChain(
|
this.streamAnswer(
|
||||||
llm,
|
llm,
|
||||||
fileIds,
|
fileIds,
|
||||||
embeddings,
|
embeddings,
|
||||||
optimizationMode,
|
optimizationMode,
|
||||||
);
|
systemInstructions,
|
||||||
|
|
||||||
const stream = answeringChain.streamEvents(
|
|
||||||
{
|
{
|
||||||
chat_history: history,
|
chat_history: history,
|
||||||
query: message,
|
query: message,
|
||||||
},
|
},
|
||||||
{
|
emitter,
|
||||||
version: 'v1',
|
|
||||||
},
|
|
||||||
);
|
);
|
||||||
|
|
||||||
this.handleStream(stream, emitter);
|
|
||||||
|
|
||||||
return emitter;
|
return emitter;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -8,7 +8,7 @@ interface SearxngSearchOptions {
|
|||||||
pageno?: number;
|
pageno?: number;
|
||||||
}
|
}
|
||||||
|
|
||||||
interface SearxngSearchResult {
|
export interface SearxngSearchResult {
|
||||||
title: string;
|
title: string;
|
||||||
url: string;
|
url: string;
|
||||||
img_src?: string;
|
img_src?: string;
|
||||||
|
53
yarn.lock
53
yarn.lock
@ -12,6 +12,19 @@
|
|||||||
resolved "https://registry.yarnpkg.com/@alloc/quick-lru/-/quick-lru-5.2.0.tgz#7bf68b20c0a350f936915fcae06f58e32007ce30"
|
resolved "https://registry.yarnpkg.com/@alloc/quick-lru/-/quick-lru-5.2.0.tgz#7bf68b20c0a350f936915fcae06f58e32007ce30"
|
||||||
integrity sha512-UrcABB+4bUrFABwbluTIBErXwvbsU/V7TZWfmbgJfbkwiBuziS9gxdODUyuiecfdGQ85jglMW6juS3+z5TsKLw==
|
integrity sha512-UrcABB+4bUrFABwbluTIBErXwvbsU/V7TZWfmbgJfbkwiBuziS9gxdODUyuiecfdGQ85jglMW6juS3+z5TsKLw==
|
||||||
|
|
||||||
|
"@anthropic-ai/sdk@^0.37.0":
|
||||||
|
version "0.37.0"
|
||||||
|
resolved "https://registry.yarnpkg.com/@anthropic-ai/sdk/-/sdk-0.37.0.tgz#0018127404ecb9b8a12968068e0c4b3e8bbd6386"
|
||||||
|
integrity sha512-tHjX2YbkUBwEgg0JZU3EFSSAQPoK4qQR/NFYa8Vtzd5UAyXzZksCw2In69Rml4R/TyHPBfRYaLK35XiOe33pjw==
|
||||||
|
dependencies:
|
||||||
|
"@types/node" "^18.11.18"
|
||||||
|
"@types/node-fetch" "^2.6.4"
|
||||||
|
abort-controller "^3.0.0"
|
||||||
|
agentkeepalive "^4.2.1"
|
||||||
|
form-data-encoder "1.7.2"
|
||||||
|
formdata-node "^4.3.2"
|
||||||
|
node-fetch "^2.6.7"
|
||||||
|
|
||||||
"@anthropic-ai/sdk@^0.9.1":
|
"@anthropic-ai/sdk@^0.9.1":
|
||||||
version "0.9.1"
|
version "0.9.1"
|
||||||
resolved "https://registry.yarnpkg.com/@anthropic-ai/sdk/-/sdk-0.9.1.tgz#b2d2b7bf05c90dce502c9a2e869066870f69ba88"
|
resolved "https://registry.yarnpkg.com/@anthropic-ai/sdk/-/sdk-0.9.1.tgz#b2d2b7bf05c90dce502c9a2e869066870f69ba88"
|
||||||
@ -374,6 +387,11 @@
|
|||||||
resolved "https://registry.yarnpkg.com/@floating-ui/utils/-/utils-0.2.8.tgz#21a907684723bbbaa5f0974cf7730bd797eb8e62"
|
resolved "https://registry.yarnpkg.com/@floating-ui/utils/-/utils-0.2.8.tgz#21a907684723bbbaa5f0974cf7730bd797eb8e62"
|
||||||
integrity sha512-kym7SodPp8/wloecOpcmSnWJsK7M0E5Wg8UcFA+uO4B9s5d0ywXOEro/8HM9x0rW+TljRzul/14UYz3TleT3ig==
|
integrity sha512-kym7SodPp8/wloecOpcmSnWJsK7M0E5Wg8UcFA+uO4B9s5d0ywXOEro/8HM9x0rW+TljRzul/14UYz3TleT3ig==
|
||||||
|
|
||||||
|
"@google/generative-ai@^0.24.0":
|
||||||
|
version "0.24.0"
|
||||||
|
resolved "https://registry.yarnpkg.com/@google/generative-ai/-/generative-ai-0.24.0.tgz#4d27af7d944c924a27a593c17ad1336535d53846"
|
||||||
|
integrity sha512-fnEITCGEB7NdX0BhoYZ/cq/7WPZ1QS5IzJJfC3Tg/OwkvBetMiVJciyaan297OvE4B9Jg1xvo0zIazX/9sGu1Q==
|
||||||
|
|
||||||
"@headlessui/react@^2.2.0":
|
"@headlessui/react@^2.2.0":
|
||||||
version "2.2.0"
|
version "2.2.0"
|
||||||
resolved "https://registry.yarnpkg.com/@headlessui/react/-/react-2.2.0.tgz#a8e32f0899862849a1ce1615fa280e7891431ab7"
|
resolved "https://registry.yarnpkg.com/@headlessui/react/-/react-2.2.0.tgz#a8e32f0899862849a1ce1615fa280e7891431ab7"
|
||||||
@ -575,6 +593,16 @@
|
|||||||
"@jridgewell/resolve-uri" "^3.1.0"
|
"@jridgewell/resolve-uri" "^3.1.0"
|
||||||
"@jridgewell/sourcemap-codec" "^1.4.14"
|
"@jridgewell/sourcemap-codec" "^1.4.14"
|
||||||
|
|
||||||
|
"@langchain/anthropic@^0.3.15":
|
||||||
|
version "0.3.15"
|
||||||
|
resolved "https://registry.yarnpkg.com/@langchain/anthropic/-/anthropic-0.3.15.tgz#0244cdb345cb492eb40aedd681881ebadfbb73f2"
|
||||||
|
integrity sha512-Ar2viYcZ64idgV7EtCBCb36tIkNtPAhQRxSaMTWPHGspFgMfvwRoleVri9e90sCpjpS9xhlHsIQ0LlUS/Atsrw==
|
||||||
|
dependencies:
|
||||||
|
"@anthropic-ai/sdk" "^0.37.0"
|
||||||
|
fast-xml-parser "^4.4.1"
|
||||||
|
zod "^3.22.4"
|
||||||
|
zod-to-json-schema "^3.22.4"
|
||||||
|
|
||||||
"@langchain/community@^0.3.36":
|
"@langchain/community@^0.3.36":
|
||||||
version "0.3.36"
|
version "0.3.36"
|
||||||
resolved "https://registry.yarnpkg.com/@langchain/community/-/community-0.3.36.tgz#e4c13b8f928b17e0f9257395f43be2246dfada40"
|
resolved "https://registry.yarnpkg.com/@langchain/community/-/community-0.3.36.tgz#e4c13b8f928b17e0f9257395f43be2246dfada40"
|
||||||
@ -640,6 +668,14 @@
|
|||||||
zod "^3.22.4"
|
zod "^3.22.4"
|
||||||
zod-to-json-schema "^3.22.3"
|
zod-to-json-schema "^3.22.3"
|
||||||
|
|
||||||
|
"@langchain/google-genai@^0.1.12":
|
||||||
|
version "0.1.12"
|
||||||
|
resolved "https://registry.yarnpkg.com/@langchain/google-genai/-/google-genai-0.1.12.tgz#6727253bda6f0d87cd74cf0bb6b1e0f398f60f32"
|
||||||
|
integrity sha512-0Ea0E2g63ejCuormVxbuoyJQ5BYN53i2/fb6WP8bMKzyh+y43R13V8JqOtr3e/GmgNyv3ou/VeaZjx7KAvu/0g==
|
||||||
|
dependencies:
|
||||||
|
"@google/generative-ai" "^0.24.0"
|
||||||
|
zod-to-json-schema "^3.22.4"
|
||||||
|
|
||||||
"@langchain/openai@>=0.1.0 <0.5.0", "@langchain/openai@>=0.2.0 <0.5.0":
|
"@langchain/openai@>=0.1.0 <0.5.0", "@langchain/openai@>=0.2.0 <0.5.0":
|
||||||
version "0.4.5"
|
version "0.4.5"
|
||||||
resolved "https://registry.yarnpkg.com/@langchain/openai/-/openai-0.4.5.tgz#d18e207c3ec3f2ecaa4698a5a5888092f643da52"
|
resolved "https://registry.yarnpkg.com/@langchain/openai/-/openai-0.4.5.tgz#d18e207c3ec3f2ecaa4698a5a5888092f643da52"
|
||||||
@ -2369,6 +2405,13 @@ fast-levenshtein@^2.0.6:
|
|||||||
resolved "https://registry.yarnpkg.com/fast-levenshtein/-/fast-levenshtein-2.0.6.tgz#3d8a5c66883a16a30ca8643e851f19baa7797917"
|
resolved "https://registry.yarnpkg.com/fast-levenshtein/-/fast-levenshtein-2.0.6.tgz#3d8a5c66883a16a30ca8643e851f19baa7797917"
|
||||||
integrity sha512-DCXu6Ifhqcks7TZKY3Hxp3y6qphY5SJZmrWMDrKcERSOXWQdMhU9Ig/PYrzyw/ul9jOIyh0N4M0tbC5hodg8dw==
|
integrity sha512-DCXu6Ifhqcks7TZKY3Hxp3y6qphY5SJZmrWMDrKcERSOXWQdMhU9Ig/PYrzyw/ul9jOIyh0N4M0tbC5hodg8dw==
|
||||||
|
|
||||||
|
fast-xml-parser@^4.4.1:
|
||||||
|
version "4.5.3"
|
||||||
|
resolved "https://registry.yarnpkg.com/fast-xml-parser/-/fast-xml-parser-4.5.3.tgz#c54d6b35aa0f23dc1ea60b6c884340c006dc6efb"
|
||||||
|
integrity sha512-RKihhV+SHsIUGXObeVy9AXiBbFwkVk7Syp8XgwN5U3JV416+Gwp/GO9i0JYKmikykgz/UHRrrV4ROuZEo/T0ig==
|
||||||
|
dependencies:
|
||||||
|
strnum "^1.1.1"
|
||||||
|
|
||||||
fastq@^1.6.0:
|
fastq@^1.6.0:
|
||||||
version "1.17.1"
|
version "1.17.1"
|
||||||
resolved "https://registry.yarnpkg.com/fastq/-/fastq-1.17.1.tgz#2a523f07a4e7b1e81a42b91b8bf2254107753b47"
|
resolved "https://registry.yarnpkg.com/fastq/-/fastq-1.17.1.tgz#2a523f07a4e7b1e81a42b91b8bf2254107753b47"
|
||||||
@ -4458,6 +4501,11 @@ strip-json-comments@~2.0.1:
|
|||||||
resolved "https://registry.yarnpkg.com/strip-json-comments/-/strip-json-comments-2.0.1.tgz#3c531942e908c2697c0ec344858c286c7ca0a60a"
|
resolved "https://registry.yarnpkg.com/strip-json-comments/-/strip-json-comments-2.0.1.tgz#3c531942e908c2697c0ec344858c286c7ca0a60a"
|
||||||
integrity sha512-4gB8na07fecVVkOI6Rs4e7T6NOTki5EmL7TUduTs6bu3EdnSycntVJ4re8kgZA+wx9IueI2Y11bfbgwtzuE0KQ==
|
integrity sha512-4gB8na07fecVVkOI6Rs4e7T6NOTki5EmL7TUduTs6bu3EdnSycntVJ4re8kgZA+wx9IueI2Y11bfbgwtzuE0KQ==
|
||||||
|
|
||||||
|
strnum@^1.1.1:
|
||||||
|
version "1.1.2"
|
||||||
|
resolved "https://registry.yarnpkg.com/strnum/-/strnum-1.1.2.tgz#57bca4fbaa6f271081715dbc9ed7cee5493e28e4"
|
||||||
|
integrity sha512-vrN+B7DBIoTTZjnPNewwhx6cBA/H+IS7rfW68n7XxC1y7uoiGQBxaKzqucGUgavX15dJgiGztLJ8vxuEzwqBdA==
|
||||||
|
|
||||||
styled-jsx@5.1.6:
|
styled-jsx@5.1.6:
|
||||||
version "5.1.6"
|
version "5.1.6"
|
||||||
resolved "https://registry.yarnpkg.com/styled-jsx/-/styled-jsx-5.1.6.tgz#83b90c077e6c6a80f7f5e8781d0f311b2fe41499"
|
resolved "https://registry.yarnpkg.com/styled-jsx/-/styled-jsx-5.1.6.tgz#83b90c077e6c6a80f7f5e8781d0f311b2fe41499"
|
||||||
@ -4955,6 +5003,11 @@ zod-to-json-schema@^3.22.3, zod-to-json-schema@^3.22.5:
|
|||||||
resolved "https://registry.yarnpkg.com/zod-to-json-schema/-/zod-to-json-schema-3.22.5.tgz#3646e81cfc318dbad2a22519e5ce661615418673"
|
resolved "https://registry.yarnpkg.com/zod-to-json-schema/-/zod-to-json-schema-3.22.5.tgz#3646e81cfc318dbad2a22519e5ce661615418673"
|
||||||
integrity sha512-+akaPo6a0zpVCCseDed504KBJUQpEW5QZw7RMneNmKw+fGaML1Z9tUNLnHHAC8x6dzVRO1eB2oEMyZRnuBZg7Q==
|
integrity sha512-+akaPo6a0zpVCCseDed504KBJUQpEW5QZw7RMneNmKw+fGaML1Z9tUNLnHHAC8x6dzVRO1eB2oEMyZRnuBZg7Q==
|
||||||
|
|
||||||
|
zod-to-json-schema@^3.22.4:
|
||||||
|
version "3.24.5"
|
||||||
|
resolved "https://registry.yarnpkg.com/zod-to-json-schema/-/zod-to-json-schema-3.24.5.tgz#d1095440b147fb7c2093812a53c54df8d5df50a3"
|
||||||
|
integrity sha512-/AuWwMP+YqiPbsJx5D6TfgRTc4kTLjsh5SOcd4bLsfUg2RcEXrFMJl1DGgdHy2aCfsIA/cr/1JM0xcB2GZji8g==
|
||||||
|
|
||||||
zod@^3.22.3, zod@^3.22.4:
|
zod@^3.22.3, zod@^3.22.4:
|
||||||
version "3.22.4"
|
version "3.22.4"
|
||||||
resolved "https://registry.yarnpkg.com/zod/-/zod-3.22.4.tgz#f31c3a9386f61b1f228af56faa9255e845cf3fff"
|
resolved "https://registry.yarnpkg.com/zod/-/zod-3.22.4.tgz#f31c3a9386f61b1f228af56faa9255e845cf3fff"
|
||||||
|
Reference in New Issue
Block a user