Compare commits

..

26 Commits

Author SHA1 Message Date
Rami
7ce00f4605 Merge 0d76627f415c77ad6cb676bf44dd81e008e7a489 into 186249149674df5938faecabb3a3b7c48d9bce71 2025-04-12 07:18:48 +00:00
Rami
0d76627f41 Merge branch 'ItzCrazyKns:master' into feature/library-improvements 2025-04-12 11:18:46 +04:00
ItzCrazyKns
1862491496 feat(settings): add LM Studio API URL 2025-04-12 11:59:05 +05:30
ItzCrazyKns
073b5e897c feat(app): lint & beautify 2025-04-12 11:58:52 +05:30
Rami
8e133366b2 Merge branch 'ItzCrazyKns:master' into feature/library-improvements 2025-04-11 20:08:14 +04:00
Rami
9a332e79e4 Merge branch 'ItzCrazyKns:master' into feature/lm-studio-provider 2025-04-11 20:07:58 +04:00
ItzCrazyKns
72450b9217 Merge pull request #731 from ClawCloud-Ron/master
docs: add ClawCloud Run button
2025-04-11 21:20:44 +05:30
haddadrm
0ebda34a52 fix: update batch delete URL format to match single delete format 2025-04-11 19:19:43 +04:00
haddadrm
1deda793bd feat: Enhance Library component with search, selection, and batch deletion capabilities 2025-04-11 19:19:43 +04:00
haddadrm
7e1dc33a08 Implement provider formatting improvements and fix client-side compatibility
- Add PROVIDER_INFO metadata to each provider file with proper display names
- Create centralized PROVIDER_METADATA in index.ts for consistent reference
- Update settings UI to use provider metadata for display names
- Fix client/server compatibility for Node.js modules in config.ts
2025-04-11 19:18:19 +04:00
haddadrm
aa240009ab Feature: Add LM Studio provider integration - Added LM Studio provider to support OpenAI compatible API - Implemented chat and embeddings model loading - Updated config to include LM Studio API endpoint 2025-04-11 19:18:19 +04:00
sjiampojamarn
41b258e4d8 Set speech message before return 2025-04-08 23:17:52 -07:00
ItzCrazyKns
da1123d84b feat(groq): update model name 2025-04-07 23:30:51 +05:30
ItzCrazyKns
627775c430 feat(groq): remove maverick (not being run yet) 2025-04-07 23:29:51 +05:30
ItzCrazyKns
245573efca feat(groq): update model list 2025-04-07 23:23:18 +05:30
ClawCloud-Ron
28b9cca413 docs: add ClawCloud Run button 2025-04-07 16:49:59 +08:00
ItzCrazyKns
a85f762c58 feat(package): bump version 2025-04-07 10:27:04 +05:30
ItzCrazyKns
3ddcceda0a feat(gemini-provider): update embedding models 2025-04-07 10:26:29 +05:30
ItzCrazyKns
e226645bc7 feat(app): lint & beautify 2025-04-06 13:48:58 +05:30
ItzCrazyKns
5447530ece Merge branch 'feat/deepseek-provider' 2025-04-06 13:48:10 +05:30
ItzCrazyKns
ed6d46a440 Merge branch 'pr/719' 2025-04-06 13:47:57 +05:30
ItzCrazyKns
588e68e93e feat(providers): add deepseek provider 2025-04-06 13:37:43 +05:30
ItzCrazyKns
c4440327db Merge pull request #720 from OmarElKadri/master
feat(search): add optional systemInstructions to API request body
2025-04-06 10:34:29 +05:30
OTYAK
64e2d457cc feat(search): add optional systemInstructions to API request body 2025-04-05 19:06:18 +01:00
ItzCrazyKns
bf705afc21 feat(message-box): change styles, lint & beautify 2025-04-05 22:32:56 +05:30
singleparadox
2e4433a6b3 feat(message-box): support [1,2,3,4] citation format instead of just [1][2][3] 2025-04-05 15:24:45 +00:00
22 changed files with 980 additions and 363 deletions

View File

@ -159,6 +159,7 @@ Perplexica runs on Next.js and handles all API requests. It works right away on
[![Deploy to Sealos](https://raw.githubusercontent.com/labring-actions/templates/main/Deploy-on-Sealos.svg)](https://usw.sealos.io/?openapp=system-template%3FtemplateName%3Dperplexica) [![Deploy to Sealos](https://raw.githubusercontent.com/labring-actions/templates/main/Deploy-on-Sealos.svg)](https://usw.sealos.io/?openapp=system-template%3FtemplateName%3Dperplexica)
[![Deploy to RepoCloud](https://d16t0pc4846x52.cloudfront.net/deploylobe.svg)](https://repocloud.io/details/?app_id=267) [![Deploy to RepoCloud](https://d16t0pc4846x52.cloudfront.net/deploylobe.svg)](https://repocloud.io/details/?app_id=267)
[![Run on ClawCloud](https://raw.githubusercontent.com/ClawCloud/Run-Template/refs/heads/main/Run-on-ClawCloud.svg)](https://template.run.claw.cloud/?referralCode=U11MRQ8U9RM4&openapp=system-fastdeploy%3FtemplateName%3Dperplexica)
## Upcoming Features ## Upcoming Features

1
data/.gitignore vendored
View File

@ -1,3 +1,2 @@
* *
!models.json
!.gitignore !.gitignore

View File

@ -1,157 +0,0 @@
{
"_comment": "Ollama models are fetched from the Ollama API, so they are not included here.",
"chatModels": {
"openai": [
{
"displayName": "GPT-3.5 Turbo",
"key": "gpt-3.5-turbo"
},
{
"displayName": "GPT-4",
"key": "gpt-4"
},
{
"displayName": "GPT-4 Turbo",
"key": "gpt-4-turbo"
},
{
"displayName": "GPT-4 Omni",
"key": "gpt-4o"
},
{
"displayName": "GPT-4 Omni Mini",
"key": "gpt-4o-mini"
}
],
"groq": [
{
"displayName": "Gemma2 9B IT",
"key": "gemma2-9b-it"
},
{
"displayName": "Llama 3.3 70B Versatile",
"key": "llama-3.3-70b-versatile"
},
{
"displayName": "Llama 3.1 8B Instant",
"key": "llama-3.1-8b-instant"
},
{
"displayName": "Llama3 70B 8192",
"key": "llama3-70b-8192"
},
{
"displayName": "Llama3 8B 8192",
"key": "llama3-8b-8192"
},
{
"displayName": "Mixtral 8x7B 32768",
"key": "mixtral-8x7b-32768"
},
{
"displayName": "Qwen QWQ 32B (Preview)",
"key": "qwen-qwq-32b"
},
{
"displayName": "Mistral Saba 24B (Preview)",
"key": "mistral-saba-24b"
},
{
"displayName": "DeepSeek R1 Distill Llama 70B (Preview)",
"key": "deepseek-r1-distill-llama-70b"
}
],
"gemini": [
{
"displayName": "Gemini 2.5 Pro Experimental",
"key": "gemini-2.5-pro-exp-03-25"
},
{
"displayName": "Gemini 2.0 Flash",
"key": "gemini-2.0-flash"
},
{
"displayName": "Gemini 2.0 Flash-Lite",
"key": "gemini-2.0-flash-lite"
},
{
"displayName": "Gemini 2.0 Flash Thinking Experimental",
"key": "gemini-2.0-flash-thinking-exp-01-21"
},
{
"displayName": "Gemini 1.5 Flash",
"key": "gemini-1.5-flash"
},
{
"displayName": "Gemini 1.5 Flash-8B",
"key": "gemini-1.5-flash-8b"
},
{
"displayName": "Gemini 1.5 Pro",
"key": "gemini-1.5-pro"
}
],
"anthropic": [
{
"displayName": "Claude 3.7 Sonnet",
"key": "claude-3-7-sonnet-20250219"
},
{
"displayName": "Claude 3.5 Haiku",
"key": "claude-3-5-haiku-20241022"
},
{
"displayName": "Claude 3.5 Sonnet v2",
"key": "claude-3-5-sonnet-20241022"
},
{
"displayName": "Claude 3.5 Sonnet",
"key": "claude-3-5-sonnet-20240620"
},
{
"displayName": "Claude 3 Opus",
"key": "claude-3-opus-20240229"
},
{
"displayName": "Claude 3 Sonnet",
"key": "claude-3-sonnet-20240229"
},
{
"displayName": "Claude 3 Haiku",
"key": "claude-3-haiku-20240307"
}
]
},
"embeddingModels": {
"openai": [
{
"displayName": "Text Embedding 3 Large",
"key": "text-embedding-3-large"
},
{
"displayName": "Text Embedding 3 Small",
"key": "text-embedding-3-small"
}
],
"gemini": [
{
"displayName": "Gemini Embedding",
"key": "gemini-embedding-exp"
}
],
"transformers": [
{
"displayName": "BGE Small",
"key": "xenova-bge-small-en-v1.5"
},
{
"displayName": "GTE Small",
"key": "xenova-gte-small"
},
{
"displayName": "Bert Multilingual",
"key": "xenova-bert-base-multilingual-uncased"
}
]
}
}

View File

@ -33,6 +33,7 @@ The API accepts a JSON object in the request body, where you define the focus mo
["human", "Hi, how are you?"], ["human", "Hi, how are you?"],
["assistant", "I am doing well, how can I help you today?"] ["assistant", "I am doing well, how can I help you today?"]
], ],
"systemInstructions": "Focus on providing technical details about Perplexica's architecture.",
"stream": false "stream": false
} }
``` ```
@ -63,6 +64,8 @@ The API accepts a JSON object in the request body, where you define the focus mo
- **`query`** (string, required): The search query or question. - **`query`** (string, required): The search query or question.
- **`systemInstructions`** (string, optional): Custom instructions provided by the user to guide the AI's response. These instructions are treated as user preferences and have lower priority than the system's core instructions. For example, you can specify a particular writing style, format, or focus area.
- **`history`** (array, optional): An array of message pairs representing the conversation history. Each pair consists of a role (either 'human' or 'assistant') and the message content. This allows the system to use the context of the conversation to refine results. Example: - **`history`** (array, optional): An array of message pairs representing the conversation history. Each pair consists of a role (either 'human' or 'assistant') and the message content. This allows the system to use the context of the conversation to refine results. Example:
```json ```json

View File

@ -1,6 +1,6 @@
{ {
"name": "perplexica-frontend", "name": "perplexica-frontend",
"version": "1.10.1", "version": "1.10.2",
"license": "MIT", "license": "MIT",
"author": "ItzCrazyKns", "author": "ItzCrazyKns",
"scripts": { "scripts": {

View File

@ -22,5 +22,11 @@ MODEL_NAME = ""
[MODELS.OLLAMA] [MODELS.OLLAMA]
API_URL = "" # Ollama API URL - http://host.docker.internal:11434 API_URL = "" # Ollama API URL - http://host.docker.internal:11434
[MODELS.DEEPSEEK]
API_KEY = ""
[MODELS.LM_STUDIO]
API_URL = "" # LM Studio API URL - http://host.docker.internal:1234
[API_ENDPOINTS] [API_ENDPOINTS]
SEARXNG = "" # SearxNG API URL - http://localhost:32768 SEARXNG = "" # SearxNG API URL - http://localhost:32768

View File

@ -7,6 +7,8 @@ import {
getGroqApiKey, getGroqApiKey,
getOllamaApiEndpoint, getOllamaApiEndpoint,
getOpenaiApiKey, getOpenaiApiKey,
getDeepseekApiKey,
getLMStudioApiEndpoint,
updateConfig, updateConfig,
} from '@/lib/config'; } from '@/lib/config';
import { import {
@ -50,9 +52,11 @@ export const GET = async (req: Request) => {
config['openaiApiKey'] = getOpenaiApiKey(); config['openaiApiKey'] = getOpenaiApiKey();
config['ollamaApiUrl'] = getOllamaApiEndpoint(); config['ollamaApiUrl'] = getOllamaApiEndpoint();
config['lmStudioApiUrl'] = getLMStudioApiEndpoint();
config['anthropicApiKey'] = getAnthropicApiKey(); config['anthropicApiKey'] = getAnthropicApiKey();
config['groqApiKey'] = getGroqApiKey(); config['groqApiKey'] = getGroqApiKey();
config['geminiApiKey'] = getGeminiApiKey(); config['geminiApiKey'] = getGeminiApiKey();
config['deepseekApiKey'] = getDeepseekApiKey();
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl(); config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
config['customOpenaiApiKey'] = getCustomOpenaiApiKey(); config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
config['customOpenaiModelName'] = getCustomOpenaiModelName(); config['customOpenaiModelName'] = getCustomOpenaiModelName();
@ -88,6 +92,12 @@ export const POST = async (req: Request) => {
OLLAMA: { OLLAMA: {
API_URL: config.ollamaApiUrl, API_URL: config.ollamaApiUrl,
}, },
DEEPSEEK: {
API_KEY: config.deepseekApiKey,
},
LM_STUDIO: {
API_URL: config.lmStudioApiUrl,
},
CUSTOM_OPENAI: { CUSTOM_OPENAI: {
API_URL: config.customOpenaiApiUrl, API_URL: config.customOpenaiApiUrl,
API_KEY: config.customOpenaiApiKey, API_KEY: config.customOpenaiApiKey,

View File

@ -34,6 +34,7 @@ interface ChatRequestBody {
query: string; query: string;
history: Array<[string, string]>; history: Array<[string, string]>;
stream?: boolean; stream?: boolean;
systemInstructions?: string;
} }
export const POST = async (req: Request) => { export const POST = async (req: Request) => {
@ -125,7 +126,7 @@ export const POST = async (req: Request) => {
embeddings, embeddings,
body.optimizationMode, body.optimizationMode,
[], [],
'', body.systemInstructions || '',
); );
if (!body.stream) { if (!body.stream) {

View File

@ -1,10 +1,12 @@
'use client'; 'use client';
import DeleteChat from '@/components/DeleteChat'; import DeleteChat from '@/components/DeleteChat';
import BatchDeleteChats from '@/components/BatchDeleteChats';
import { cn, formatTimeDifference } from '@/lib/utils'; import { cn, formatTimeDifference } from '@/lib/utils';
import { BookOpenText, ClockIcon, Delete, ScanEye } from 'lucide-react'; import { BookOpenText, Check, ClockIcon, Delete, ScanEye, Search, X } from 'lucide-react';
import Link from 'next/link'; import Link from 'next/link';
import { useEffect, useState } from 'react'; import { useEffect, useState } from 'react';
import { toast } from 'sonner';
export interface Chat { export interface Chat {
id: string; id: string;
@ -15,7 +17,13 @@ export interface Chat {
const Page = () => { const Page = () => {
const [chats, setChats] = useState<Chat[]>([]); const [chats, setChats] = useState<Chat[]>([]);
const [filteredChats, setFilteredChats] = useState<Chat[]>([]);
const [loading, setLoading] = useState(true); const [loading, setLoading] = useState(true);
const [searchQuery, setSearchQuery] = useState('');
const [selectionMode, setSelectionMode] = useState(false);
const [selectedChats, setSelectedChats] = useState<string[]>([]);
const [hoveredChatId, setHoveredChatId] = useState<string | null>(null);
const [isDeleteDialogOpen, setIsDeleteDialogOpen] = useState(false);
useEffect(() => { useEffect(() => {
const fetchChats = async () => { const fetchChats = async () => {
@ -31,12 +39,71 @@ const Page = () => {
const data = await res.json(); const data = await res.json();
setChats(data.chats); setChats(data.chats);
setFilteredChats(data.chats);
setLoading(false); setLoading(false);
}; };
fetchChats(); fetchChats();
}, []); }, []);
useEffect(() => {
if (searchQuery.trim() === '') {
setFilteredChats(chats);
} else {
const filtered = chats.filter((chat) =>
chat.title.toLowerCase().includes(searchQuery.toLowerCase())
);
setFilteredChats(filtered);
}
}, [searchQuery, chats]);
const handleSearchChange = (e: React.ChangeEvent<HTMLInputElement>) => {
setSearchQuery(e.target.value);
};
const clearSearch = () => {
setSearchQuery('');
};
const toggleSelectionMode = () => {
setSelectionMode(!selectionMode);
setSelectedChats([]);
};
const toggleChatSelection = (chatId: string) => {
if (selectedChats.includes(chatId)) {
setSelectedChats(selectedChats.filter(id => id !== chatId));
} else {
setSelectedChats([...selectedChats, chatId]);
}
};
const selectAllChats = () => {
if (selectedChats.length === filteredChats.length) {
setSelectedChats([]);
} else {
setSelectedChats(filteredChats.map(chat => chat.id));
}
};
const deleteSelectedChats = () => {
if (selectedChats.length === 0) return;
setIsDeleteDialogOpen(true);
};
const handleBatchDeleteComplete = () => {
setSelectedChats([]);
setSelectionMode(false);
};
const updateChatsAfterDelete = (newChats: Chat[]) => {
setChats(newChats);
setFilteredChats(newChats.filter(chat =>
searchQuery.trim() === '' ||
chat.title.toLowerCase().includes(searchQuery.toLowerCase())
));
};
return loading ? ( return loading ? (
<div className="flex flex-row items-center justify-center min-h-screen"> <div className="flex flex-row items-center justify-center min-h-screen">
<svg <svg
@ -64,32 +131,145 @@ const Page = () => {
<h1 className="text-3xl font-medium p-2">Library</h1> <h1 className="text-3xl font-medium p-2">Library</h1>
</div> </div>
<hr className="border-t border-[#2B2C2C] my-4 w-full" /> <hr className="border-t border-[#2B2C2C] my-4 w-full" />
{/* Search Box */}
<div className="relative mt-6 mb-6">
<div className="absolute inset-y-0 left-0 flex items-center pl-3 pointer-events-none">
<Search className="w-5 h-5 text-black/50 dark:text-white/50" />
</div>
<input
type="text"
className="block w-full p-2 pl-10 pr-10 bg-light-secondary dark:bg-dark-secondary border border-light-200 dark:border-dark-200 rounded-md text-black dark:text-white focus:outline-none focus:ring-1 focus:ring-blue-500"
placeholder="Search your threads..."
value={searchQuery}
onChange={handleSearchChange}
/>
{searchQuery && (
<button
onClick={clearSearch}
className="absolute inset-y-0 right-0 flex items-center pr-3"
>
<X className="w-5 h-5 text-black/50 dark:text-white/50 hover:text-black dark:hover:text-white" />
</button>
)}
</div>
{/* Thread Count and Selection Controls */}
<div className="mb-4">
{!selectionMode ? (
<div className="flex items-center justify-between">
<div className="text-black/70 dark:text-white/70">
You have {chats.length} threads in Perplexica
</div>
<button
onClick={toggleSelectionMode}
className="text-black/70 dark:text-white/70 hover:text-black dark:hover:text-white text-sm transition duration-200"
>
Select
</button>
</div>
) : (
<div className="flex items-center justify-between">
<div className="text-black/70 dark:text-white/70">
{selectedChats.length} selected thread{selectedChats.length !== 1 ? 's' : ''}
</div>
<div className="flex space-x-4">
<button
onClick={selectAllChats}
className="text-black/70 dark:text-white/70 hover:text-black dark:hover:text-white text-sm transition duration-200"
>
{selectedChats.length === filteredChats.length ? 'Deselect all' : 'Select all'}
</button>
<button
onClick={toggleSelectionMode}
className="text-black/70 dark:text-white/70 hover:text-black dark:hover:text-white text-sm transition duration-200"
>
Cancel
</button>
<button
onClick={deleteSelectedChats}
disabled={selectedChats.length === 0}
className={cn(
"text-sm transition duration-200",
selectedChats.length === 0
? "text-red-400/50 hover:text-red-500/50 cursor-not-allowed"
: "text-red-400 hover:text-red-500 cursor-pointer"
)}
>
Delete Selected
</button>
</div>
</div>
)}
</div>
</div> </div>
{chats.length === 0 && (
<div className="flex flex-row items-center justify-center min-h-screen"> {filteredChats.length === 0 && (
<div className="flex flex-row items-center justify-center min-h-[50vh]">
<p className="text-black/70 dark:text-white/70 text-sm"> <p className="text-black/70 dark:text-white/70 text-sm">
No chats found. {searchQuery ? 'No threads found matching your search.' : 'No threads found.'}
</p> </p>
</div> </div>
)} )}
{chats.length > 0 && (
{filteredChats.length > 0 && (
<div className="flex flex-col pb-20 lg:pb-2"> <div className="flex flex-col pb-20 lg:pb-2">
{chats.map((chat, i) => ( {filteredChats.map((chat, i) => (
<div <div
className={cn( className={cn(
'flex flex-col space-y-4 py-6', 'flex flex-col space-y-4 py-6',
i !== chats.length - 1 i !== filteredChats.length - 1
? 'border-b border-white-200 dark:border-dark-200' ? 'border-b border-white-200 dark:border-dark-200'
: '', : '',
)} )}
key={i} key={i}
onMouseEnter={() => setHoveredChatId(chat.id)}
onMouseLeave={() => setHoveredChatId(null)}
> >
<Link <div className="flex items-center">
href={`/c/${chat.id}`} {/* Checkbox - visible when in selection mode or when hovering */}
className="text-black dark:text-white lg:text-xl font-medium truncate transition duration-200 hover:text-[#24A0ED] dark:hover:text-[#24A0ED] cursor-pointer" {(selectionMode || hoveredChatId === chat.id) && (
> <div
{chat.title} className="mr-3 cursor-pointer"
</Link> onClick={(e) => {
e.preventDefault();
if (!selectionMode) setSelectionMode(true);
toggleChatSelection(chat.id);
}}
>
<div className={cn(
"w-5 h-5 border rounded flex items-center justify-center transition-colors",
selectedChats.includes(chat.id)
? "bg-blue-500 border-blue-500"
: "border-gray-400 dark:border-gray-600"
)}>
{selectedChats.includes(chat.id) && (
<Check className="w-4 h-4 text-white" />
)}
</div>
</div>
)}
{/* Chat Title */}
<Link
href={`/c/${chat.id}`}
className={cn(
"text-black dark:text-white lg:text-xl font-medium truncate transition duration-200 hover:text-[#24A0ED] dark:hover:text-[#24A0ED] cursor-pointer",
selectionMode && "pointer-events-none text-black dark:text-white hover:text-black dark:hover:text-white"
)}
onClick={(e) => {
if (selectionMode) {
e.preventDefault();
toggleChatSelection(chat.id);
}
}}
>
{chat.title}
</Link>
</div>
<div className="flex flex-row items-center justify-between w-full"> <div className="flex flex-row items-center justify-between w-full">
<div className="flex flex-row items-center space-x-1 lg:space-x-1.5 text-black/70 dark:text-white/70"> <div className="flex flex-row items-center space-x-1 lg:space-x-1.5 text-black/70 dark:text-white/70">
<ClockIcon size={15} /> <ClockIcon size={15} />
@ -97,16 +277,30 @@ const Page = () => {
{formatTimeDifference(new Date(), chat.createdAt)} Ago {formatTimeDifference(new Date(), chat.createdAt)} Ago
</p> </p>
</div> </div>
<DeleteChat
chatId={chat.id} {/* Delete button - only visible when not in selection mode */}
chats={chats} {!selectionMode && (
setChats={setChats} <DeleteChat
/> chatId={chat.id}
chats={chats}
setChats={updateChatsAfterDelete}
/>
)}
</div> </div>
</div> </div>
))} ))}
</div> </div>
)} )}
{/* Batch Delete Confirmation Dialog */}
<BatchDeleteChats
chatIds={selectedChats}
chats={chats}
setChats={updateChatsAfterDelete}
onComplete={handleBatchDeleteComplete}
isOpen={isDeleteDialogOpen}
setIsOpen={setIsDeleteDialogOpen}
/>
</div> </div>
); );
}; };

View File

@ -7,6 +7,7 @@ import { Switch } from '@headlessui/react';
import ThemeSwitcher from '@/components/theme/Switcher'; import ThemeSwitcher from '@/components/theme/Switcher';
import { ImagesIcon, VideoIcon } from 'lucide-react'; import { ImagesIcon, VideoIcon } from 'lucide-react';
import Link from 'next/link'; import Link from 'next/link';
import { PROVIDER_METADATA } from '@/lib/providers';
interface SettingsType { interface SettingsType {
chatModelProviders: { chatModelProviders: {
@ -20,6 +21,8 @@ interface SettingsType {
anthropicApiKey: string; anthropicApiKey: string;
geminiApiKey: string; geminiApiKey: string;
ollamaApiUrl: string; ollamaApiUrl: string;
lmStudioApiUrl: string;
deepseekApiKey: string;
customOpenaiApiKey: string; customOpenaiApiKey: string;
customOpenaiApiUrl: string; customOpenaiApiUrl: string;
customOpenaiModelName: string; customOpenaiModelName: string;
@ -547,8 +550,9 @@ const Page = () => {
(provider) => ({ (provider) => ({
value: provider, value: provider,
label: label:
(PROVIDER_METADATA as any)[provider]?.displayName ||
provider.charAt(0).toUpperCase() + provider.charAt(0).toUpperCase() +
provider.slice(1), provider.slice(1),
}), }),
)} )}
/> />
@ -689,8 +693,9 @@ const Page = () => {
(provider) => ({ (provider) => ({
value: provider, value: provider,
label: label:
(PROVIDER_METADATA as any)[provider]?.displayName ||
provider.charAt(0).toUpperCase() + provider.charAt(0).toUpperCase() +
provider.slice(1), provider.slice(1),
}), }),
)} )}
/> />
@ -838,6 +843,44 @@ const Page = () => {
onSave={(value) => saveConfig('geminiApiKey', value)} onSave={(value) => saveConfig('geminiApiKey', value)}
/> />
</div> </div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Deepseek API Key
</p>
<Input
type="text"
placeholder="Deepseek API Key"
value={config.deepseekApiKey}
isSaving={savingStates['deepseekApiKey']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
deepseekApiKey: e.target.value,
}));
}}
onSave={(value) => saveConfig('deepseekApiKey', value)}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
LM Studio API URL
</p>
<Input
type="text"
placeholder="LM Studio API URL"
value={config.lmStudioApiUrl}
isSaving={savingStates['lmStudioApiUrl']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
lmStudioApiUrl: e.target.value,
}));
}}
onSave={(value) => saveConfig('lmStudioApiUrl', value)}
/>
</div>
</div> </div>
</SettingsSection> </SettingsSection>
</div> </div>

View File

@ -0,0 +1,118 @@
import {
Description,
Dialog,
DialogBackdrop,
DialogPanel,
DialogTitle,
Transition,
TransitionChild,
} from '@headlessui/react';
import { Fragment, useState } from 'react';
import { toast } from 'sonner';
import { Chat } from '@/app/library/page';
interface BatchDeleteChatsProps {
chatIds: string[];
chats: Chat[];
setChats: (chats: Chat[]) => void;
onComplete: () => void;
isOpen: boolean;
setIsOpen: (isOpen: boolean) => void;
}
const BatchDeleteChats = ({
chatIds,
chats,
setChats,
onComplete,
isOpen,
setIsOpen,
}: BatchDeleteChatsProps) => {
const [loading, setLoading] = useState(false);
const handleDelete = async () => {
if (chatIds.length === 0) return;
setLoading(true);
try {
for (const chatId of chatIds) {
await fetch(`/api/chats/${chatId}`, {
method: 'DELETE',
headers: {
'Content-Type': 'application/json',
},
});
}
const newChats = chats.filter(chat => !chatIds.includes(chat.id));
setChats(newChats);
toast.success(`${chatIds.length} thread${chatIds.length > 1 ? 's' : ''} deleted`);
onComplete();
} catch (err: any) {
toast.error('Failed to delete threads');
} finally {
setIsOpen(false);
setLoading(false);
}
};
return (
<Transition appear show={isOpen} as={Fragment}>
<Dialog
as="div"
className="relative z-50"
onClose={() => {
if (!loading) {
setIsOpen(false);
}
}}
>
<DialogBackdrop className="fixed inset-0 bg-black/30" />
<div className="fixed inset-0 overflow-y-auto">
<div className="flex min-h-full items-center justify-center p-4 text-center">
<TransitionChild
as={Fragment}
enter="ease-out duration-200"
enterFrom="opacity-0 scale-95"
enterTo="opacity-100 scale-100"
leave="ease-in duration-100"
leaveFrom="opacity-100 scale-200"
leaveTo="opacity-0 scale-95"
>
<DialogPanel className="w-full max-w-md transform rounded-2xl bg-light-secondary dark:bg-dark-secondary border border-light-200 dark:border-dark-200 p-6 text-left align-middle shadow-xl transition-all">
<DialogTitle className="text-lg font-medium leading-6 dark:text-white">
Delete Confirmation
</DialogTitle>
<Description className="text-sm dark:text-white/70 text-black/70">
Are you sure you want to delete {chatIds.length} selected thread{chatIds.length !== 1 ? 's' : ''}?
</Description>
<div className="flex flex-row items-end justify-end space-x-4 mt-6">
<button
onClick={() => {
if (!loading) {
setIsOpen(false);
}
}}
className="text-black/50 dark:text-white/50 text-sm hover:text-black/70 hover:dark:text-white/70 transition duration-200"
>
Cancel
</button>
<button
onClick={handleDelete}
className="text-red-400 text-sm hover:text-red-500 transition duration-200"
disabled={loading}
>
Delete
</button>
</div>
</DialogPanel>
</TransitionChild>
</div>
</div>
</Dialog>
</Transition>
);
};
export default BatchDeleteChats;

View File

@ -48,6 +48,7 @@ const MessageBox = ({
const [speechMessage, setSpeechMessage] = useState(message.content); const [speechMessage, setSpeechMessage] = useState(message.content);
useEffect(() => { useEffect(() => {
const citationRegex = /\[([^\]]+)\]/g;
const regex = /\[(\d+)\]/g; const regex = /\[(\d+)\]/g;
let processedMessage = message.content; let processedMessage = message.content;
@ -67,13 +68,36 @@ const MessageBox = ({
) { ) {
setParsedMessage( setParsedMessage(
processedMessage.replace( processedMessage.replace(
regex, citationRegex,
(_, number) => (_, capturedContent: string) => {
`<a href="${ const numbers = capturedContent
message.sources?.[number - 1]?.metadata?.url .split(',')
}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${number}</a>`, .map((numStr) => numStr.trim());
const linksHtml = numbers
.map((numStr) => {
const number = parseInt(numStr);
if (isNaN(number) || number <= 0) {
return `[${numStr}]`;
}
const source = message.sources?.[number - 1];
const url = source?.metadata?.url;
if (url) {
return `<a href="${url}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${numStr}</a>`;
} else {
return `[${numStr}]`;
}
})
.join('');
return linksHtml;
},
), ),
); );
setSpeechMessage(message.content.replace(regex, ''));
return; return;
} }

View File

@ -1,7 +1,14 @@
import fs from 'fs';
import path from 'path';
import toml from '@iarna/toml'; import toml from '@iarna/toml';
// Use dynamic imports for Node.js modules to prevent client-side errors
let fs: any;
let path: any;
if (typeof window === 'undefined') {
// We're on the server
fs = require('fs');
path = require('path');
}
const configFileName = 'config.toml'; const configFileName = 'config.toml';
interface Config { interface Config {
@ -25,6 +32,12 @@ interface Config {
OLLAMA: { OLLAMA: {
API_URL: string; API_URL: string;
}; };
DEEPSEEK: {
API_KEY: string;
};
LM_STUDIO: {
API_URL: string;
};
CUSTOM_OPENAI: { CUSTOM_OPENAI: {
API_URL: string; API_URL: string;
API_KEY: string; API_KEY: string;
@ -40,10 +53,17 @@ type RecursivePartial<T> = {
[P in keyof T]?: RecursivePartial<T[P]>; [P in keyof T]?: RecursivePartial<T[P]>;
}; };
const loadConfig = () => const loadConfig = () => {
toml.parse( // Server-side only
fs.readFileSync(path.join(process.cwd(), `${configFileName}`), 'utf-8'), if (typeof window === 'undefined') {
) as any as Config; return toml.parse(
fs.readFileSync(path.join(process.cwd(), `${configFileName}`), 'utf-8'),
) as any as Config;
}
// Client-side fallback - settings will be loaded via API
return {} as Config;
};
export const getSimilarityMeasure = () => export const getSimilarityMeasure = () =>
loadConfig().GENERAL.SIMILARITY_MEASURE; loadConfig().GENERAL.SIMILARITY_MEASURE;
@ -63,6 +83,8 @@ export const getSearxngApiEndpoint = () =>
export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL; export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL;
export const getDeepseekApiKey = () => loadConfig().MODELS.DEEPSEEK.API_KEY;
export const getCustomOpenaiApiKey = () => export const getCustomOpenaiApiKey = () =>
loadConfig().MODELS.CUSTOM_OPENAI.API_KEY; loadConfig().MODELS.CUSTOM_OPENAI.API_KEY;
@ -72,6 +94,9 @@ export const getCustomOpenaiApiUrl = () =>
export const getCustomOpenaiModelName = () => export const getCustomOpenaiModelName = () =>
loadConfig().MODELS.CUSTOM_OPENAI.MODEL_NAME; loadConfig().MODELS.CUSTOM_OPENAI.MODEL_NAME;
export const getLMStudioApiEndpoint = () =>
loadConfig().MODELS.LM_STUDIO.API_URL;
const mergeConfigs = (current: any, update: any): any => { const mergeConfigs = (current: any, update: any): any => {
if (update === null || update === undefined) { if (update === null || update === undefined) {
return current; return current;
@ -104,10 +129,13 @@ const mergeConfigs = (current: any, update: any): any => {
}; };
export const updateConfig = (config: RecursivePartial<Config>) => { export const updateConfig = (config: RecursivePartial<Config>) => {
const currentConfig = loadConfig(); // Server-side only
const mergedConfig = mergeConfigs(currentConfig, config); if (typeof window === 'undefined') {
fs.writeFileSync( const currentConfig = loadConfig();
path.join(path.join(process.cwd(), `${configFileName}`)), const mergedConfig = mergeConfigs(currentConfig, config);
toml.stringify(mergedConfig), fs.writeFileSync(
); path.join(path.join(process.cwd(), `${configFileName}`)),
toml.stringify(mergedConfig),
);
}
}; };

View File

@ -1,22 +1,53 @@
import { ChatAnthropic } from '@langchain/anthropic'; import { ChatAnthropic } from '@langchain/anthropic';
import { ChatModel, getModelsList, RawModel } from '.'; import { ChatModel } from '.';
import { getAnthropicApiKey } from '../config'; import { getAnthropicApiKey } from '../config';
export const PROVIDER_INFO = {
key: 'anthropic',
displayName: 'Anthropic',
};
import { BaseChatModel } from '@langchain/core/language_models/chat_models'; import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const loadModels = () => { const anthropicChatModels: Record<string, string>[] = [
return getModelsList()?.['chatModels']['anthropic'] as unknown as RawModel[] {
} displayName: 'Claude 3.7 Sonnet',
key: 'claude-3-7-sonnet-20250219',
},
{
displayName: 'Claude 3.5 Haiku',
key: 'claude-3-5-haiku-20241022',
},
{
displayName: 'Claude 3.5 Sonnet v2',
key: 'claude-3-5-sonnet-20241022',
},
{
displayName: 'Claude 3.5 Sonnet',
key: 'claude-3-5-sonnet-20240620',
},
{
displayName: 'Claude 3 Opus',
key: 'claude-3-opus-20240229',
},
{
displayName: 'Claude 3 Sonnet',
key: 'claude-3-sonnet-20240229',
},
{
displayName: 'Claude 3 Haiku',
key: 'claude-3-haiku-20240307',
},
];
export const loadAnthropicChatModels = async () => { export const loadAnthropicChatModels = async () => {
const anthropicApiKey = getAnthropicApiKey(); const anthropicApiKey = getAnthropicApiKey();
if (!anthropicApiKey) return {};
const models = loadModels() if (!anthropicApiKey) return {};
try { try {
const chatModels: Record<string, ChatModel> = {}; const chatModels: Record<string, ChatModel> = {};
models.forEach((model) => { anthropicChatModels.forEach((model) => {
chatModels[model.key] = { chatModels[model.key] = {
displayName: model.displayName, displayName: model.displayName,
model: new ChatAnthropic({ model: new ChatAnthropic({

View File

@ -0,0 +1,49 @@
import { ChatOpenAI } from '@langchain/openai';
import { getDeepseekApiKey } from '../config';
import { ChatModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
export const PROVIDER_INFO = {
key: 'deepseek',
displayName: 'Deepseek AI',
};
const deepseekChatModels: Record<string, string>[] = [
{
displayName: 'Deepseek Chat (Deepseek V3)',
key: 'deepseek-chat',
},
{
displayName: 'Deepseek Reasoner (Deepseek R1)',
key: 'deepseek-reasoner',
},
];
export const loadDeepseekChatModels = async () => {
const deepseekApiKey = getDeepseekApiKey();
if (!deepseekApiKey) return {};
try {
const chatModels: Record<string, ChatModel> = {};
deepseekChatModels.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatOpenAI({
openAIApiKey: deepseekApiKey,
modelName: model.key,
temperature: 0.7,
configuration: {
baseURL: 'https://api.deepseek.com',
},
}) as unknown as BaseChatModel,
};
});
return chatModels;
} catch (err) {
console.error(`Error loading Deepseek models: ${err}`);
return {};
}
};

View File

@ -3,24 +3,66 @@ import {
GoogleGenerativeAIEmbeddings, GoogleGenerativeAIEmbeddings,
} from '@langchain/google-genai'; } from '@langchain/google-genai';
import { getGeminiApiKey } from '../config'; import { getGeminiApiKey } from '../config';
import { ChatModel, EmbeddingModel, getModelsList, RawModel } from '.'; import { ChatModel, EmbeddingModel } from '.';
export const PROVIDER_INFO = {
key: 'gemini',
displayName: 'Google Gemini',
};
import { BaseChatModel } from '@langchain/core/language_models/chat_models'; import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { Embeddings } from '@langchain/core/embeddings'; import { Embeddings } from '@langchain/core/embeddings';
const loadModels = (modelType: 'chat' | 'embedding') => { const geminiChatModels: Record<string, string>[] = [
return getModelsList()?.[modelType === 'chat' ? 'chatModels' : 'embeddingModels']['gemini'] as unknown as RawModel[] {
} displayName: 'Gemini 2.5 Pro Experimental',
key: 'gemini-2.5-pro-exp-03-25',
},
{
displayName: 'Gemini 2.0 Flash',
key: 'gemini-2.0-flash',
},
{
displayName: 'Gemini 2.0 Flash-Lite',
key: 'gemini-2.0-flash-lite',
},
{
displayName: 'Gemini 2.0 Flash Thinking Experimental',
key: 'gemini-2.0-flash-thinking-exp-01-21',
},
{
displayName: 'Gemini 1.5 Flash',
key: 'gemini-1.5-flash',
},
{
displayName: 'Gemini 1.5 Flash-8B',
key: 'gemini-1.5-flash-8b',
},
{
displayName: 'Gemini 1.5 Pro',
key: 'gemini-1.5-pro',
},
];
const geminiEmbeddingModels: Record<string, string>[] = [
{
displayName: 'Text Embedding 004',
key: 'models/text-embedding-004',
},
{
displayName: 'Embedding 001',
key: 'models/embedding-001',
},
];
export const loadGeminiChatModels = async () => { export const loadGeminiChatModels = async () => {
const geminiApiKey = getGeminiApiKey(); const geminiApiKey = getGeminiApiKey();
if (!geminiApiKey) return {};
const models = loadModels('chat'); if (!geminiApiKey) return {};
try { try {
const chatModels: Record<string, ChatModel> = {}; const chatModels: Record<string, ChatModel> = {};
models.forEach((model) => { geminiChatModels.forEach((model) => {
chatModels[model.key] = { chatModels[model.key] = {
displayName: model.displayName, displayName: model.displayName,
model: new ChatGoogleGenerativeAI({ model: new ChatGoogleGenerativeAI({
@ -40,14 +82,13 @@ export const loadGeminiChatModels = async () => {
export const loadGeminiEmbeddingModels = async () => { export const loadGeminiEmbeddingModels = async () => {
const geminiApiKey = getGeminiApiKey(); const geminiApiKey = getGeminiApiKey();
if (!geminiApiKey) return {};
const models = loadModels('embedding'); if (!geminiApiKey) return {};
try { try {
const embeddingModels: Record<string, EmbeddingModel> = {}; const embeddingModels: Record<string, EmbeddingModel> = {};
models.forEach((model) => { geminiEmbeddingModels.forEach((model) => {
embeddingModels[model.key] = { embeddingModels[model.key] = {
displayName: model.displayName, displayName: model.displayName,
model: new GoogleGenerativeAIEmbeddings({ model: new GoogleGenerativeAIEmbeddings({

View File

@ -1,22 +1,101 @@
import { ChatOpenAI } from '@langchain/openai'; import { ChatOpenAI } from '@langchain/openai';
import { getGroqApiKey } from '../config'; import { getGroqApiKey } from '../config';
import { ChatModel, getModelsList, RawModel } from '.'; import { ChatModel } from '.';
export const PROVIDER_INFO = {
key: 'groq',
displayName: 'Groq',
};
import { BaseChatModel } from '@langchain/core/language_models/chat_models'; import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const loadModels = () => { const groqChatModels: Record<string, string>[] = [
return getModelsList()?.chatModels['groq'] as unknown as RawModel[] {
} displayName: 'Gemma2 9B IT',
key: 'gemma2-9b-it',
},
{
displayName: 'Llama 3.3 70B Versatile',
key: 'llama-3.3-70b-versatile',
},
{
displayName: 'Llama 3.1 8B Instant',
key: 'llama-3.1-8b-instant',
},
{
displayName: 'Llama3 70B 8192',
key: 'llama3-70b-8192',
},
{
displayName: 'Llama3 8B 8192',
key: 'llama3-8b-8192',
},
{
displayName: 'Mixtral 8x7B 32768',
key: 'mixtral-8x7b-32768',
},
{
displayName: 'Qwen QWQ 32B (Preview)',
key: 'qwen-qwq-32b',
},
{
displayName: 'Mistral Saba 24B (Preview)',
key: 'mistral-saba-24b',
},
{
displayName: 'Qwen 2.5 Coder 32B (Preview)',
key: 'qwen-2.5-coder-32b',
},
{
displayName: 'Qwen 2.5 32B (Preview)',
key: 'qwen-2.5-32b',
},
{
displayName: 'DeepSeek R1 Distill Qwen 32B (Preview)',
key: 'deepseek-r1-distill-qwen-32b',
},
{
displayName: 'DeepSeek R1 Distill Llama 70B (Preview)',
key: 'deepseek-r1-distill-llama-70b',
},
{
displayName: 'Llama 3.3 70B SpecDec (Preview)',
key: 'llama-3.3-70b-specdec',
},
{
displayName: 'Llama 3.2 1B Preview (Preview)',
key: 'llama-3.2-1b-preview',
},
{
displayName: 'Llama 3.2 3B Preview (Preview)',
key: 'llama-3.2-3b-preview',
},
{
displayName: 'Llama 3.2 11B Vision Preview (Preview)',
key: 'llama-3.2-11b-vision-preview',
},
{
displayName: 'Llama 3.2 90B Vision Preview (Preview)',
key: 'llama-3.2-90b-vision-preview',
},
/* {
displayName: 'Llama 4 Maverick 17B 128E Instruct (Preview)',
key: 'meta-llama/llama-4-maverick-17b-128e-instruct',
}, */
{
displayName: 'Llama 4 Scout 17B 16E Instruct (Preview)',
key: 'meta-llama/llama-4-scout-17b-16e-instruct',
},
];
export const loadGroqChatModels = async () => { export const loadGroqChatModels = async () => {
const groqApiKey = getGroqApiKey(); const groqApiKey = getGroqApiKey();
if (!groqApiKey) return {};
const models = loadModels() if (!groqApiKey) return {};
try { try {
const chatModels: Record<string, ChatModel> = {}; const chatModels: Record<string, ChatModel> = {};
models.forEach((model) => { groqChatModels.forEach((model) => {
chatModels[model.key] = { chatModels[model.key] = {
displayName: model.displayName, displayName: model.displayName,
model: new ChatOpenAI({ model: new ChatOpenAI({

View File

@ -1,39 +1,69 @@
import { Embeddings } from '@langchain/core/embeddings' import { Embeddings } from '@langchain/core/embeddings';
import { BaseChatModel } from '@langchain/core/language_models/chat_models' import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { loadOpenAIChatModels, loadOpenAIEmbeddingModels } from './openai' import {
loadOpenAIChatModels,
loadOpenAIEmbeddingModels,
PROVIDER_INFO as OpenAIInfo,
PROVIDER_INFO,
} from './openai';
import { import {
getCustomOpenaiApiKey, getCustomOpenaiApiKey,
getCustomOpenaiApiUrl, getCustomOpenaiApiUrl,
getCustomOpenaiModelName, getCustomOpenaiModelName,
} from '../config' } from '../config';
import { ChatOpenAI } from '@langchain/openai' import { ChatOpenAI } from '@langchain/openai';
import { loadOllamaChatModels, loadOllamaEmbeddingModels } from './ollama' import {
import { loadGroqChatModels } from './groq' loadOllamaChatModels,
import { loadAnthropicChatModels } from './anthropic' loadOllamaEmbeddingModels,
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini' PROVIDER_INFO as OllamaInfo,
import { loadTransformersEmbeddingsModels } from './transformers' } from './ollama';
import path from 'path' import { loadGroqChatModels, PROVIDER_INFO as GroqInfo } from './groq';
import fs from 'fs' import {
loadAnthropicChatModels,
PROVIDER_INFO as AnthropicInfo,
} from './anthropic';
import {
loadGeminiChatModels,
loadGeminiEmbeddingModels,
PROVIDER_INFO as GeminiInfo,
} from './gemini';
import {
loadTransformersEmbeddingsModels,
PROVIDER_INFO as TransformersInfo,
} from './transformers';
import {
loadDeepseekChatModels,
PROVIDER_INFO as DeepseekInfo,
} from './deepseek';
import {
loadLMStudioChatModels,
loadLMStudioEmbeddingsModels,
PROVIDER_INFO as LMStudioInfo,
} from './lmstudio';
export const PROVIDER_METADATA = {
openai: OpenAIInfo,
ollama: OllamaInfo,
groq: GroqInfo,
anthropic: AnthropicInfo,
gemini: GeminiInfo,
transformers: TransformersInfo,
deepseek: DeepseekInfo,
lmstudio: LMStudioInfo,
custom_openai: {
key: 'custom_openai',
displayName: 'Custom OpenAI',
},
};
export interface ChatModel { export interface ChatModel {
displayName: string displayName: string;
model: BaseChatModel model: BaseChatModel;
} }
export interface EmbeddingModel { export interface EmbeddingModel {
displayName: string displayName: string;
model: Embeddings model: Embeddings;
}
export type RawModel = {
displayName: string
key: string
}
type ModelsList = {
[key in "chatModels" | "embeddingModels"]: {
[key: string]: RawModel[]
}
} }
export const chatModelProviders: Record< export const chatModelProviders: Record<
@ -45,7 +75,9 @@ export const chatModelProviders: Record<
groq: loadGroqChatModels, groq: loadGroqChatModels,
anthropic: loadAnthropicChatModels, anthropic: loadAnthropicChatModels,
gemini: loadGeminiChatModels, gemini: loadGeminiChatModels,
} deepseek: loadDeepseekChatModels,
lmstudio: loadLMStudioChatModels,
};
export const embeddingModelProviders: Record< export const embeddingModelProviders: Record<
string, string,
@ -55,43 +87,22 @@ export const embeddingModelProviders: Record<
ollama: loadOllamaEmbeddingModels, ollama: loadOllamaEmbeddingModels,
gemini: loadGeminiEmbeddingModels, gemini: loadGeminiEmbeddingModels,
transformers: loadTransformersEmbeddingsModels, transformers: loadTransformersEmbeddingsModels,
} lmstudio: loadLMStudioEmbeddingsModels,
};
export const getModelsList = (): ModelsList | null => {
const modelFile = path.join(process.cwd(), 'data/models.json')
try {
const content = fs.readFileSync(modelFile, 'utf-8')
return JSON.parse(content) as ModelsList
} catch (err) {
console.error(`Error reading models file: ${err}`)
return null
}
}
export const updateModelsList = (models: ModelsList) => {
try {
const modelFile = path.join(process.cwd(), 'data/models.json')
const content = JSON.stringify(models, null, 2)
fs.writeFileSync(modelFile, content, 'utf-8')
} catch(err) {
console.error(`Error updating models file: ${err}`)
}
}
export const getAvailableChatModelProviders = async () => { export const getAvailableChatModelProviders = async () => {
const models: Record<string, Record<string, ChatModel>> = {} const models: Record<string, Record<string, ChatModel>> = {};
for (const provider in chatModelProviders) { for (const provider in chatModelProviders) {
const providerModels = await chatModelProviders[provider]() const providerModels = await chatModelProviders[provider]();
if (Object.keys(providerModels).length > 0) { if (Object.keys(providerModels).length > 0) {
models[provider] = providerModels models[provider] = providerModels;
} }
} }
const customOpenAiApiKey = getCustomOpenaiApiKey() const customOpenAiApiKey = getCustomOpenaiApiKey();
const customOpenAiApiUrl = getCustomOpenaiApiUrl() const customOpenAiApiUrl = getCustomOpenaiApiUrl();
const customOpenAiModelName = getCustomOpenaiModelName() const customOpenAiModelName = getCustomOpenaiModelName();
models['custom_openai'] = { models['custom_openai'] = {
...(customOpenAiApiKey && customOpenAiApiUrl && customOpenAiModelName ...(customOpenAiApiKey && customOpenAiApiUrl && customOpenAiModelName
@ -109,20 +120,20 @@ export const getAvailableChatModelProviders = async () => {
}, },
} }
: {}), : {}),
} };
return models return models;
} };
export const getAvailableEmbeddingModelProviders = async () => { export const getAvailableEmbeddingModelProviders = async () => {
const models: Record<string, Record<string, EmbeddingModel>> = {} const models: Record<string, Record<string, EmbeddingModel>> = {};
for (const provider in embeddingModelProviders) { for (const provider in embeddingModelProviders) {
const providerModels = await embeddingModelProviders[provider]() const providerModels = await embeddingModelProviders[provider]();
if (Object.keys(providerModels).length > 0) { if (Object.keys(providerModels).length > 0) {
models[provider] = providerModels models[provider] = providerModels;
} }
} }
return models return models;
} };

View File

@ -0,0 +1,100 @@
import { getKeepAlive, getLMStudioApiEndpoint } from '../config';
import axios from 'axios';
import { ChatModel, EmbeddingModel } from '.';
export const PROVIDER_INFO = {
key: 'lmstudio',
displayName: 'LM Studio',
};
import { ChatOpenAI } from '@langchain/openai';
import { OpenAIEmbeddings } from '@langchain/openai';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { Embeddings } from '@langchain/core/embeddings';
interface LMStudioModel {
id: string;
name?: string;
}
const ensureV1Endpoint = (endpoint: string): string =>
endpoint.endsWith('/v1') ? endpoint : `${endpoint}/v1`;
const checkServerAvailability = async (endpoint: string): Promise<boolean> => {
try {
await axios.get(`${ensureV1Endpoint(endpoint)}/models`, {
headers: { 'Content-Type': 'application/json' },
});
return true;
} catch {
return false;
}
};
export const loadLMStudioChatModels = async () => {
const endpoint = getLMStudioApiEndpoint();
if (!endpoint) return {};
if (!(await checkServerAvailability(endpoint))) return {};
try {
const response = await axios.get(`${ensureV1Endpoint(endpoint)}/models`, {
headers: { 'Content-Type': 'application/json' },
});
const chatModels: Record<string, ChatModel> = {};
response.data.data.forEach((model: LMStudioModel) => {
chatModels[model.id] = {
displayName: model.name || model.id,
model: new ChatOpenAI({
openAIApiKey: 'lm-studio',
configuration: {
baseURL: ensureV1Endpoint(endpoint),
},
modelName: model.id,
temperature: 0.7,
streaming: true,
maxRetries: 3,
}) as unknown as BaseChatModel,
};
});
return chatModels;
} catch (err) {
console.error(`Error loading LM Studio models: ${err}`);
return {};
}
};
export const loadLMStudioEmbeddingsModels = async () => {
const endpoint = getLMStudioApiEndpoint();
if (!endpoint) return {};
if (!(await checkServerAvailability(endpoint))) return {};
try {
const response = await axios.get(`${ensureV1Endpoint(endpoint)}/models`, {
headers: { 'Content-Type': 'application/json' },
});
const embeddingsModels: Record<string, EmbeddingModel> = {};
response.data.data.forEach((model: LMStudioModel) => {
embeddingsModels[model.id] = {
displayName: model.name || model.id,
model: new OpenAIEmbeddings({
openAIApiKey: 'lm-studio',
configuration: {
baseURL: ensureV1Endpoint(endpoint),
},
modelName: model.id,
}) as unknown as Embeddings,
};
});
return embeddingsModels;
} catch (err) {
console.error(`Error loading LM Studio embeddings model: ${err}`);
return {};
}
};

View File

@ -1,39 +1,29 @@
import axios from 'axios' import axios from 'axios';
import { getKeepAlive, getOllamaApiEndpoint } from '../config' import { getKeepAlive, getOllamaApiEndpoint } from '../config';
import { ChatModel, EmbeddingModel } from '.' import { ChatModel, EmbeddingModel } from '.';
import { ChatOllama } from '@langchain/community/chat_models/ollama'
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama' export const PROVIDER_INFO = {
key: 'ollama',
displayName: 'Ollama',
};
import { ChatOllama } from '@langchain/community/chat_models/ollama';
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
export const loadOllamaChatModels = async () => {
const ollamaApiEndpoint = getOllamaApiEndpoint();
if (!ollamaApiEndpoint) return {};
const loadModels = async (apiURL: string) => {
try { try {
const res = await axios.get(`${apiURL}/api/tags`, { const res = await axios.get(`${ollamaApiEndpoint}/api/tags`, {
headers: { headers: {
'Content-Type': 'application/json', 'Content-Type': 'application/json',
}, },
}) });
if (res.status !== 200) { const { models } = res.data;
console.error(`Failed to load Ollama models: ${res.data}`)
return []
}
const { models } = res.data const chatModels: Record<string, ChatModel> = {};
return models
} catch (err) {
console.error(`Error loading Ollama models: ${err}`)
return []
}
}
export const loadOllamaChatModels = async () => {
const ollamaApiEndpoint = getOllamaApiEndpoint()
if (!ollamaApiEndpoint) return {}
const models = await loadModels(ollamaApiEndpoint)
try {
const chatModels: Record<string, ChatModel> = {}
models.forEach((model: any) => { models.forEach((model: any) => {
chatModels[model.model] = { chatModels[model.model] = {
@ -44,24 +34,31 @@ export const loadOllamaChatModels = async () => {
temperature: 0.7, temperature: 0.7,
keepAlive: getKeepAlive(), keepAlive: getKeepAlive(),
}), }),
} };
}) });
return chatModels return chatModels;
} catch (err) { } catch (err) {
console.error(`Error loading Ollama models: ${err}`) console.error(`Error loading Ollama models: ${err}`);
return {} return {};
} }
} };
export const loadOllamaEmbeddingModels = async () => { export const loadOllamaEmbeddingModels = async () => {
const ollamaApiEndpoint = getOllamaApiEndpoint() const ollamaApiEndpoint = getOllamaApiEndpoint();
if (!ollamaApiEndpoint) return {}
const models = await loadModels(ollamaApiEndpoint) if (!ollamaApiEndpoint) return {};
try { try {
const embeddingModels: Record<string, EmbeddingModel> = {} const res = await axios.get(`${ollamaApiEndpoint}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
const { models } = res.data;
const embeddingModels: Record<string, EmbeddingModel> = {};
models.forEach((model: any) => { models.forEach((model: any) => {
embeddingModels[model.model] = { embeddingModels[model.model] = {
@ -70,12 +67,12 @@ export const loadOllamaEmbeddingModels = async () => {
baseUrl: ollamaApiEndpoint, baseUrl: ollamaApiEndpoint,
model: model.model, model: model.model,
}), }),
} };
}) });
return embeddingModels return embeddingModels;
} catch (err) { } catch (err) {
console.error(`Error loading Ollama embeddings models: ${err}`) console.error(`Error loading Ollama embeddings models: ${err}`);
return {} return {};
} }
} };

View File

@ -1,23 +1,57 @@
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai'; import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
import { getOpenaiApiKey } from '../config'; import { getOpenaiApiKey } from '../config';
import { ChatModel, EmbeddingModel, getModelsList, RawModel } from '.'; import { ChatModel, EmbeddingModel } from '.';
export const PROVIDER_INFO = {
key: 'openai',
displayName: 'OpenAI',
};
import { BaseChatModel } from '@langchain/core/language_models/chat_models'; import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { Embeddings } from '@langchain/core/embeddings'; import { Embeddings } from '@langchain/core/embeddings';
const loadModels = (modelType: 'chat' | 'embedding') => { const openaiChatModels: Record<string, string>[] = [
return getModelsList()?.[modelType === 'chat' ? 'chatModels' : 'embeddingModels']['openai'] as unknown as RawModel[] {
} displayName: 'GPT-3.5 Turbo',
key: 'gpt-3.5-turbo',
},
{
displayName: 'GPT-4',
key: 'gpt-4',
},
{
displayName: 'GPT-4 turbo',
key: 'gpt-4-turbo',
},
{
displayName: 'GPT-4 omni',
key: 'gpt-4o',
},
{
displayName: 'GPT-4 omni mini',
key: 'gpt-4o-mini',
},
];
const openaiEmbeddingModels: Record<string, string>[] = [
{
displayName: 'Text Embedding 3 Small',
key: 'text-embedding-3-small',
},
{
displayName: 'Text Embedding 3 Large',
key: 'text-embedding-3-large',
},
];
export const loadOpenAIChatModels = async () => { export const loadOpenAIChatModels = async () => {
const openaiApiKey = getOpenaiApiKey(); const openaiApiKey = getOpenaiApiKey();
const models = loadModels('chat');
if (!openaiApiKey || !models) return {}; if (!openaiApiKey) return {};
try { try {
const chatModels: Record<string, ChatModel> = {}; const chatModels: Record<string, ChatModel> = {};
models.forEach((model) => { openaiChatModels.forEach((model) => {
chatModels[model.key] = { chatModels[model.key] = {
displayName: model.displayName, displayName: model.displayName,
model: new ChatOpenAI({ model: new ChatOpenAI({
@ -37,14 +71,13 @@ export const loadOpenAIChatModels = async () => {
export const loadOpenAIEmbeddingModels = async () => { export const loadOpenAIEmbeddingModels = async () => {
const openaiApiKey = getOpenaiApiKey(); const openaiApiKey = getOpenaiApiKey();
const models = loadModels('embedding');
if (!openaiApiKey || !models) return {}; if (!openaiApiKey) return {};
try { try {
const embeddingModels: Record<string, EmbeddingModel> = {}; const embeddingModels: Record<string, EmbeddingModel> = {};
models.forEach((model) => { openaiEmbeddingModels.forEach((model) => {
embeddingModels[model.key] = { embeddingModels[model.key] = {
displayName: model.displayName, displayName: model.displayName,
model: new OpenAIEmbeddings({ model: new OpenAIEmbeddings({

View File

@ -1,30 +1,36 @@
import { EmbeddingModel, getModelsList, RawModel } from '.' import { HuggingFaceTransformersEmbeddings } from '../huggingfaceTransformer';
import { HuggingFaceTransformersEmbeddings } from '../huggingfaceTransformer'
const loadModels = () => { export const PROVIDER_INFO = {
return getModelsList()?.embeddingModels[ key: 'transformers',
'transformers' displayName: 'Hugging Face',
] as unknown as RawModel[] };
}
export const loadTransformersEmbeddingsModels = async () => { export const loadTransformersEmbeddingsModels = async () => {
try { try {
const models = loadModels() const embeddingModels = {
'xenova-bge-small-en-v1.5': {
const embeddingModels: Record<string, EmbeddingModel> = {} displayName: 'BGE Small',
models.forEach(model => {
embeddingModels[model.key] = {
displayName: model.displayName,
model: new HuggingFaceTransformersEmbeddings({ model: new HuggingFaceTransformersEmbeddings({
modelName: model.key, modelName: 'Xenova/bge-small-en-v1.5',
}), }),
} },
}) 'xenova-gte-small': {
displayName: 'GTE Small',
model: new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/gte-small',
}),
},
'xenova-bert-base-multilingual-uncased': {
displayName: 'Bert Multilingual',
model: new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/bert-base-multilingual-uncased',
}),
},
};
return embeddingModels return embeddingModels;
} catch (err) { } catch (err) {
console.error(`Error loading Transformers embeddings model: ${err}`) console.error(`Error loading Transformers embeddings model: ${err}`);
return {} return {};
} }
} };