Compare commits

..

6 Commits

Author SHA1 Message Date
ItzCrazyKns
114a7aa09d Merge pull request #728 from ItzCrazyKns/master-deep-research
Merge master into feat/deep-research
2025-04-07 10:21:34 +05:30
ItzCrazyKns
d0ba8c9038 Merge branch 'feat/deep-research' into master-deep-research 2025-04-07 10:21:22 +05:30
ItzCrazyKns
934fb0a23b Update metaSearchAgent.ts 2025-04-07 10:18:11 +05:30
ItzCrazyKns
8ecf3b4e99 feat(chat-window): update message handling 2025-04-02 13:02:45 +05:30
ItzCrazyKns
b5ee8386e7 Merge pull request #714 from ItzCrazyKns/master
Merge master into feat/deep-research
2025-04-01 14:16:45 +05:30
ItzCrazyKns
0fcd598ff7 feat(metaSearchAgent): eliminate runnables 2025-03-24 17:27:54 +05:30
19 changed files with 265 additions and 565 deletions

View File

@@ -159,7 +159,6 @@ Perplexica runs on Next.js and handles all API requests. It works right away on
[![Deploy to Sealos](https://raw.githubusercontent.com/labring-actions/templates/main/Deploy-on-Sealos.svg)](https://usw.sealos.io/?openapp=system-template%3FtemplateName%3Dperplexica)
[![Deploy to RepoCloud](https://d16t0pc4846x52.cloudfront.net/deploylobe.svg)](https://repocloud.io/details/?app_id=267)
[![Run on ClawCloud](https://raw.githubusercontent.com/ClawCloud/Run-Template/refs/heads/main/Run-on-ClawCloud.svg)](https://template.run.claw.cloud/?referralCode=U11MRQ8U9RM4&openapp=system-fastdeploy%3FtemplateName%3Dperplexica)
## Upcoming Features

View File

@@ -1,6 +1,6 @@
{
"name": "perplexica-frontend",
"version": "1.10.2",
"version": "1.10.1",
"license": "MIT",
"author": "ItzCrazyKns",
"scripts": {

View File

@@ -25,8 +25,5 @@ API_URL = "" # Ollama API URL - http://host.docker.internal:11434
[MODELS.DEEPSEEK]
API_KEY = ""
[MODELS.LM_STUDIO]
API_URL = "" # LM Studio API URL - http://host.docker.internal:1234
[API_ENDPOINTS]
SEARXNG = "" # SearxNG API URL - http://localhost:32768

View File

@@ -8,7 +8,6 @@ import {
getOllamaApiEndpoint,
getOpenaiApiKey,
getDeepseekApiKey,
getLMStudioApiEndpoint,
updateConfig,
} from '@/lib/config';
import {
@@ -52,7 +51,6 @@ export const GET = async (req: Request) => {
config['openaiApiKey'] = getOpenaiApiKey();
config['ollamaApiUrl'] = getOllamaApiEndpoint();
config['lmStudioApiUrl'] = getLMStudioApiEndpoint();
config['anthropicApiKey'] = getAnthropicApiKey();
config['groqApiKey'] = getGroqApiKey();
config['geminiApiKey'] = getGeminiApiKey();
@@ -95,9 +93,6 @@ export const POST = async (req: Request) => {
DEEPSEEK: {
API_KEY: config.deepseekApiKey,
},
LM_STUDIO: {
API_URL: config.lmStudioApiUrl,
},
CUSTOM_OPENAI: {
API_URL: config.customOpenaiApiUrl,
API_KEY: config.customOpenaiApiKey,

View File

@@ -7,7 +7,6 @@ import { Switch } from '@headlessui/react';
import ThemeSwitcher from '@/components/theme/Switcher';
import { ImagesIcon, VideoIcon } from 'lucide-react';
import Link from 'next/link';
import { PROVIDER_METADATA } from '@/lib/providers';
interface SettingsType {
chatModelProviders: {
@@ -21,7 +20,6 @@ interface SettingsType {
anthropicApiKey: string;
geminiApiKey: string;
ollamaApiUrl: string;
lmStudioApiUrl: string;
deepseekApiKey: string;
customOpenaiApiKey: string;
customOpenaiApiUrl: string;
@@ -550,7 +548,6 @@ const Page = () => {
(provider) => ({
value: provider,
label:
(PROVIDER_METADATA as any)[provider]?.displayName ||
provider.charAt(0).toUpperCase() +
provider.slice(1),
}),
@@ -693,7 +690,6 @@ const Page = () => {
(provider) => ({
value: provider,
label:
(PROVIDER_METADATA as any)[provider]?.displayName ||
provider.charAt(0).toUpperCase() +
provider.slice(1),
}),
@@ -862,25 +858,6 @@ const Page = () => {
onSave={(value) => saveConfig('deepseekApiKey', value)}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
LM Studio API URL
</p>
<Input
type="text"
placeholder="LM Studio API URL"
value={config.lmStudioApiUrl}
isSaving={savingStates['lmStudioApiUrl']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
lmStudioApiUrl: e.target.value,
}));
}}
onSave={(value) => saveConfig('lmStudioApiUrl', value)}
/>
</div>
</div>
</SettingsSection>
</div>

View File

@@ -363,7 +363,6 @@ const ChatWindow = ({ id }: { id?: string }) => {
if (data.type === 'sources') {
sources = data.data;
if (!added) {
setMessages((prevMessages) => [
...prevMessages,
{
@@ -376,7 +375,6 @@ const ChatWindow = ({ id }: { id?: string }) => {
},
]);
added = true;
}
setMessageAppeared(true);
}
@@ -394,8 +392,8 @@ const ChatWindow = ({ id }: { id?: string }) => {
},
]);
added = true;
}
setMessageAppeared(true);
} else {
setMessages((prev) =>
prev.map((message) => {
if (message.messageId === data.messageId) {
@@ -405,9 +403,9 @@ const ChatWindow = ({ id }: { id?: string }) => {
return message;
}),
);
}
recievedMessage += data.data;
setMessageAppeared(true);
}
if (data.type === 'messageEnd') {

View File

@@ -97,7 +97,6 @@ const MessageBox = ({
},
),
);
setSpeechMessage(message.content.replace(regex, ''));
return;
}

View File

@@ -1,14 +1,7 @@
import fs from 'fs';
import path from 'path';
import toml from '@iarna/toml';
// Use dynamic imports for Node.js modules to prevent client-side errors
let fs: any;
let path: any;
if (typeof window === 'undefined') {
// We're on the server
fs = require('fs');
path = require('path');
}
const configFileName = 'config.toml';
interface Config {
@@ -35,9 +28,6 @@ interface Config {
DEEPSEEK: {
API_KEY: string;
};
LM_STUDIO: {
API_URL: string;
};
CUSTOM_OPENAI: {
API_URL: string;
API_KEY: string;
@@ -53,17 +43,10 @@ type RecursivePartial<T> = {
[P in keyof T]?: RecursivePartial<T[P]>;
};
const loadConfig = () => {
// Server-side only
if (typeof window === 'undefined') {
return toml.parse(
const loadConfig = () =>
toml.parse(
fs.readFileSync(path.join(process.cwd(), `${configFileName}`), 'utf-8'),
) as any as Config;
}
// Client-side fallback - settings will be loaded via API
return {} as Config;
};
export const getSimilarityMeasure = () =>
loadConfig().GENERAL.SIMILARITY_MEASURE;
@@ -94,9 +77,6 @@ export const getCustomOpenaiApiUrl = () =>
export const getCustomOpenaiModelName = () =>
loadConfig().MODELS.CUSTOM_OPENAI.MODEL_NAME;
export const getLMStudioApiEndpoint = () =>
loadConfig().MODELS.LM_STUDIO.API_URL;
const mergeConfigs = (current: any, update: any): any => {
if (update === null || update === undefined) {
return current;
@@ -129,13 +109,10 @@ const mergeConfigs = (current: any, update: any): any => {
};
export const updateConfig = (config: RecursivePartial<Config>) => {
// Server-side only
if (typeof window === 'undefined') {
const currentConfig = loadConfig();
const mergedConfig = mergeConfigs(currentConfig, config);
fs.writeFileSync(
path.join(path.join(process.cwd(), `${configFileName}`)),
toml.stringify(mergedConfig),
);
}
};

View File

@@ -1,11 +1,6 @@
import { ChatAnthropic } from '@langchain/anthropic';
import { ChatModel } from '.';
import { getAnthropicApiKey } from '../config';
export const PROVIDER_INFO = {
key: 'anthropic',
displayName: 'Anthropic',
};
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const anthropicChatModels: Record<string, string>[] = [

View File

@@ -3,11 +3,6 @@ import { getDeepseekApiKey } from '../config';
import { ChatModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
export const PROVIDER_INFO = {
key: 'deepseek',
displayName: 'Deepseek AI',
};
const deepseekChatModels: Record<string, string>[] = [
{
displayName: 'Deepseek Chat (Deepseek V3)',

View File

@@ -4,11 +4,6 @@ import {
} from '@langchain/google-genai';
import { getGeminiApiKey } from '../config';
import { ChatModel, EmbeddingModel } from '.';
export const PROVIDER_INFO = {
key: 'gemini',
displayName: 'Google Gemini',
};
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { Embeddings } from '@langchain/core/embeddings';
@@ -45,12 +40,8 @@ const geminiChatModels: Record<string, string>[] = [
const geminiEmbeddingModels: Record<string, string>[] = [
{
displayName: 'Text Embedding 004',
key: 'models/text-embedding-004',
},
{
displayName: 'Embedding 001',
key: 'models/embedding-001',
displayName: 'Gemini Embedding',
key: 'gemini-embedding-exp',
},
];

View File

@@ -1,11 +1,6 @@
import { ChatOpenAI } from '@langchain/openai';
import { getGroqApiKey } from '../config';
import { ChatModel } from '.';
export const PROVIDER_INFO = {
key: 'groq',
displayName: 'Groq',
};
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const groqChatModels: Record<string, string>[] = [
@@ -77,14 +72,6 @@ const groqChatModels: Record<string, string>[] = [
displayName: 'Llama 3.2 90B Vision Preview (Preview)',
key: 'llama-3.2-90b-vision-preview',
},
/* {
displayName: 'Llama 4 Maverick 17B 128E Instruct (Preview)',
key: 'meta-llama/llama-4-maverick-17b-128e-instruct',
}, */
{
displayName: 'Llama 4 Scout 17B 16E Instruct (Preview)',
key: 'meta-llama/llama-4-scout-17b-16e-instruct',
},
];
export const loadGroqChatModels = async () => {

View File

@@ -1,60 +1,18 @@
import { Embeddings } from '@langchain/core/embeddings';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import {
loadOpenAIChatModels,
loadOpenAIEmbeddingModels,
PROVIDER_INFO as OpenAIInfo,
PROVIDER_INFO,
} from './openai';
import { loadOpenAIChatModels, loadOpenAIEmbeddingModels } from './openai';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '../config';
import { ChatOpenAI } from '@langchain/openai';
import {
loadOllamaChatModels,
loadOllamaEmbeddingModels,
PROVIDER_INFO as OllamaInfo,
} from './ollama';
import { loadGroqChatModels, PROVIDER_INFO as GroqInfo } from './groq';
import {
loadAnthropicChatModels,
PROVIDER_INFO as AnthropicInfo,
} from './anthropic';
import {
loadGeminiChatModels,
loadGeminiEmbeddingModels,
PROVIDER_INFO as GeminiInfo,
} from './gemini';
import {
loadTransformersEmbeddingsModels,
PROVIDER_INFO as TransformersInfo,
} from './transformers';
import {
loadDeepseekChatModels,
PROVIDER_INFO as DeepseekInfo,
} from './deepseek';
import {
loadLMStudioChatModels,
loadLMStudioEmbeddingsModels,
PROVIDER_INFO as LMStudioInfo,
} from './lmstudio';
export const PROVIDER_METADATA = {
openai: OpenAIInfo,
ollama: OllamaInfo,
groq: GroqInfo,
anthropic: AnthropicInfo,
gemini: GeminiInfo,
transformers: TransformersInfo,
deepseek: DeepseekInfo,
lmstudio: LMStudioInfo,
custom_openai: {
key: 'custom_openai',
displayName: 'Custom OpenAI',
},
};
import { loadOllamaChatModels, loadOllamaEmbeddingModels } from './ollama';
import { loadGroqChatModels } from './groq';
import { loadAnthropicChatModels } from './anthropic';
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini';
import { loadTransformersEmbeddingsModels } from './transformers';
import { loadDeepseekChatModels } from './deepseek';
export interface ChatModel {
displayName: string;
@@ -76,7 +34,6 @@ export const chatModelProviders: Record<
anthropic: loadAnthropicChatModels,
gemini: loadGeminiChatModels,
deepseek: loadDeepseekChatModels,
lmstudio: loadLMStudioChatModels,
};
export const embeddingModelProviders: Record<
@@ -87,7 +44,6 @@ export const embeddingModelProviders: Record<
ollama: loadOllamaEmbeddingModels,
gemini: loadGeminiEmbeddingModels,
transformers: loadTransformersEmbeddingsModels,
lmstudio: loadLMStudioEmbeddingsModels,
};
export const getAvailableChatModelProviders = async () => {

View File

@@ -1,100 +0,0 @@
import { getKeepAlive, getLMStudioApiEndpoint } from '../config';
import axios from 'axios';
import { ChatModel, EmbeddingModel } from '.';
export const PROVIDER_INFO = {
key: 'lmstudio',
displayName: 'LM Studio',
};
import { ChatOpenAI } from '@langchain/openai';
import { OpenAIEmbeddings } from '@langchain/openai';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { Embeddings } from '@langchain/core/embeddings';
interface LMStudioModel {
id: string;
name?: string;
}
const ensureV1Endpoint = (endpoint: string): string =>
endpoint.endsWith('/v1') ? endpoint : `${endpoint}/v1`;
const checkServerAvailability = async (endpoint: string): Promise<boolean> => {
try {
await axios.get(`${ensureV1Endpoint(endpoint)}/models`, {
headers: { 'Content-Type': 'application/json' },
});
return true;
} catch {
return false;
}
};
export const loadLMStudioChatModels = async () => {
const endpoint = getLMStudioApiEndpoint();
if (!endpoint) return {};
if (!(await checkServerAvailability(endpoint))) return {};
try {
const response = await axios.get(`${ensureV1Endpoint(endpoint)}/models`, {
headers: { 'Content-Type': 'application/json' },
});
const chatModels: Record<string, ChatModel> = {};
response.data.data.forEach((model: LMStudioModel) => {
chatModels[model.id] = {
displayName: model.name || model.id,
model: new ChatOpenAI({
openAIApiKey: 'lm-studio',
configuration: {
baseURL: ensureV1Endpoint(endpoint),
},
modelName: model.id,
temperature: 0.7,
streaming: true,
maxRetries: 3,
}) as unknown as BaseChatModel,
};
});
return chatModels;
} catch (err) {
console.error(`Error loading LM Studio models: ${err}`);
return {};
}
};
export const loadLMStudioEmbeddingsModels = async () => {
const endpoint = getLMStudioApiEndpoint();
if (!endpoint) return {};
if (!(await checkServerAvailability(endpoint))) return {};
try {
const response = await axios.get(`${ensureV1Endpoint(endpoint)}/models`, {
headers: { 'Content-Type': 'application/json' },
});
const embeddingsModels: Record<string, EmbeddingModel> = {};
response.data.data.forEach((model: LMStudioModel) => {
embeddingsModels[model.id] = {
displayName: model.name || model.id,
model: new OpenAIEmbeddings({
openAIApiKey: 'lm-studio',
configuration: {
baseURL: ensureV1Endpoint(endpoint),
},
modelName: model.id,
}) as unknown as Embeddings,
};
});
return embeddingsModels;
} catch (err) {
console.error(`Error loading LM Studio embeddings model: ${err}`);
return {};
}
};

View File

@@ -1,11 +1,6 @@
import axios from 'axios';
import { getKeepAlive, getOllamaApiEndpoint } from '../config';
import { ChatModel, EmbeddingModel } from '.';
export const PROVIDER_INFO = {
key: 'ollama',
displayName: 'Ollama',
};
import { ChatOllama } from '@langchain/community/chat_models/ollama';
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';

View File

@@ -1,11 +1,6 @@
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
import { getOpenaiApiKey } from '../config';
import { ChatModel, EmbeddingModel } from '.';
export const PROVIDER_INFO = {
key: 'openai',
displayName: 'OpenAI',
};
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { Embeddings } from '@langchain/core/embeddings';
@@ -30,18 +25,6 @@ const openaiChatModels: Record<string, string>[] = [
displayName: 'GPT-4 omni mini',
key: 'gpt-4o-mini',
},
{
displayName: 'GPT 4.1 nano',
key: 'gpt-4.1-nano',
},
{
displayName: 'GPT 4.1 mini',
key: 'gpt-4.1-mini',
},
{
displayName: 'GPT 4.1',
key: 'gpt-4.1',
},
];
const openaiEmbeddingModels: Record<string, string>[] = [

View File

@@ -1,10 +1,5 @@
import { HuggingFaceTransformersEmbeddings } from '../huggingfaceTransformer';
export const PROVIDER_INFO = {
key: 'transformers',
displayName: 'Hugging Face',
};
export const loadTransformersEmbeddingsModels = async () => {
try {
const embeddingModels = {

View File

@@ -6,11 +6,6 @@ import {
MessagesPlaceholder,
PromptTemplate,
} from '@langchain/core/prompts';
import {
RunnableLambda,
RunnableMap,
RunnableSequence,
} from '@langchain/core/runnables';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import LineListOutputParser from '../outputParsers/listLineOutputParser';
@@ -24,6 +19,7 @@ import computeSimilarity from '../utils/computeSimilarity';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import { StreamEvent } from '@langchain/core/tracers/log_stream';
import { EventEmitter } from 'node:stream';
export interface MetaSearchAgentType {
searchAndAnswer: (
@@ -47,7 +43,7 @@ interface Config {
activeEngines: string[];
}
type BasicChainInput = {
type SearchInput = {
chat_history: BaseMessage[];
query: string;
};
@@ -60,14 +56,25 @@ class MetaSearchAgent implements MetaSearchAgentType {
this.config = config;
}
private async createSearchRetrieverChain(llm: BaseChatModel) {
private async searchSources(
llm: BaseChatModel,
input: SearchInput,
emitter: EventEmitter,
) {
(llm as unknown as ChatOpenAI).temperature = 0;
return RunnableSequence.from([
PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt),
llm,
this.strParser,
RunnableLambda.from(async (input: string) => {
const chatPrompt = PromptTemplate.fromTemplate(
this.config.queryGeneratorPrompt,
);
const processedChatPrompt = await chatPrompt.invoke({
chat_history: formatChatHistoryAsString(input.chat_history),
query: input.query,
});
const llmRes = await llm.invoke(processedChatPrompt);
const messageStr = await this.strParser.invoke(llmRes);
const linksOutputParser = new LineListOutputParser({
key: 'links',
});
@@ -76,10 +83,10 @@ class MetaSearchAgent implements MetaSearchAgentType {
key: 'question',
});
const links = await linksOutputParser.parse(input);
const links = await linksOutputParser.parse(messageStr);
let question = this.config.summarizer
? await questionOutputParser.parse(input)
: input;
? await questionOutputParser.parse(messageStr)
: messageStr;
if (question === 'not_needed') {
return { query: '', docs: [] };
@@ -99,8 +106,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
linkDocs.map((doc) => {
const URLDocExists = docGroups.find(
(d) =>
d.metadata.url === doc.metadata.url &&
d.metadata.totalDocs < 10,
d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10,
);
if (!URLDocExists) {
@@ -115,8 +121,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
const docIndex = docGroups.findIndex(
(d) =>
d.metadata.url === doc.metadata.url &&
d.metadata.totalDocs < 10,
d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10,
);
if (docIndex !== -1) {
@@ -228,42 +233,31 @@ class MetaSearchAgent implements MetaSearchAgentType {
return { query: question, docs: documents };
}
}),
]);
}
private async createAnsweringChain(
private async streamAnswer(
llm: BaseChatModel,
fileIds: string[],
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
systemInstructions: string,
input: SearchInput,
emitter: EventEmitter,
) {
return RunnableSequence.from([
RunnableMap.from({
systemInstructions: () => systemInstructions,
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
date: () => new Date().toISOString(),
context: RunnableLambda.from(async (input: BasicChainInput) => {
const processedHistory = formatChatHistoryAsString(
input.chat_history,
);
const chatPrompt = ChatPromptTemplate.fromMessages([
['system', this.config.responsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]);
let docs: Document[] | null = null;
let query = input.query;
if (this.config.searchWeb) {
const searchRetrieverChain =
await this.createSearchRetrieverChain(llm);
const searchResults = await this.searchSources(llm, input, emitter);
const searchRetrieverResult = await searchRetrieverChain.invoke({
chat_history: processedHistory,
query,
});
query = searchRetrieverResult.query;
docs = searchRetrieverResult.docs;
query = searchResults.query;
docs = searchResults.docs;
}
const sortedDocs = await this.rerankDocs(
@@ -274,23 +268,30 @@ class MetaSearchAgent implements MetaSearchAgentType {
optimizationMode,
);
return sortedDocs;
})
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(this.processDocs),
}),
ChatPromptTemplate.fromMessages([
['system', this.config.responsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
llm,
this.strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
emitter.emit('data', JSON.stringify({ type: 'sources', data: sortedDocs }));
const context = this.processDocs(sortedDocs);
const formattedChatPrompt = await chatPrompt.invoke({
query: input.query,
chat_history: input.chat_history,
date: new Date().toISOString(),
context: context,
systemInstructions: systemInstructions,
});
const llmRes = await llm.stream(formattedChatPrompt);
for await (const data of llmRes) {
const messageStr = await this.strParser.invoke(data);
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: messageStr }),
);
}
emitter.emit('end');
}
private async rerankDocs(
@@ -431,39 +432,6 @@ class MetaSearchAgent implements MetaSearchAgentType {
.join('\n');
}
private async handleStream(
stream: AsyncGenerator<StreamEvent, any, any>,
emitter: eventEmitter,
) {
for await (const event of stream) {
if (
event.event === 'on_chain_end' &&
event.name === 'FinalSourceRetriever'
) {
``;
emitter.emit(
'data',
JSON.stringify({ type: 'sources', data: event.data.output }),
);
}
if (
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
);
}
if (
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit('end');
}
}
}
async searchAndAnswer(
message: string,
history: BaseMessage[],
@@ -475,26 +443,19 @@ class MetaSearchAgent implements MetaSearchAgentType {
) {
const emitter = new eventEmitter();
const answeringChain = await this.createAnsweringChain(
this.streamAnswer(
llm,
fileIds,
embeddings,
optimizationMode,
systemInstructions,
);
const stream = answeringChain.streamEvents(
{
chat_history: history,
query: message,
},
{
version: 'v1',
},
emitter,
);
this.handleStream(stream, emitter);
return emitter;
}
}

View File

@@ -64,7 +64,7 @@ export const getDocumentsFromLinks = async ({ links }: { links: string[] }) => {
const splittedText = await splitter.splitText(parsedText);
const title = res.data
.toString('utf8')
.match(/<title.*>(.*?)<\/title>/)?.[1];
.match(/<title>(.*?)<\/title>/)?.[1];
const linkDocs = splittedText.map((text) => {
return new Document({