mirror of
https://github.com/ItzCrazyKns/Perplexica.git
synced 2025-06-17 07:18:31 +00:00
Compare commits
8 Commits
e4285b4fe7
...
feat/deep-
Author | SHA1 | Date | |
---|---|---|---|
83f1c6ce12 | |||
fd6c58734d | |||
114a7aa09d | |||
d0ba8c9038 | |||
934fb0a23b | |||
8ecf3b4e99 | |||
b5ee8386e7 | |||
0fcd598ff7 |
@ -159,7 +159,6 @@ Perplexica runs on Next.js and handles all API requests. It works right away on
|
|||||||
|
|
||||||
[](https://usw.sealos.io/?openapp=system-template%3FtemplateName%3Dperplexica)
|
[](https://usw.sealos.io/?openapp=system-template%3FtemplateName%3Dperplexica)
|
||||||
[](https://repocloud.io/details/?app_id=267)
|
[](https://repocloud.io/details/?app_id=267)
|
||||||
[](https://template.run.claw.cloud/?referralCode=U11MRQ8U9RM4&openapp=system-fastdeploy%3FtemplateName%3Dperplexica)
|
|
||||||
|
|
||||||
## Upcoming Features
|
## Upcoming Features
|
||||||
|
|
||||||
|
@ -25,8 +25,5 @@ API_URL = "" # Ollama API URL - http://host.docker.internal:11434
|
|||||||
[MODELS.DEEPSEEK]
|
[MODELS.DEEPSEEK]
|
||||||
API_KEY = ""
|
API_KEY = ""
|
||||||
|
|
||||||
[MODELS.LM_STUDIO]
|
|
||||||
API_URL = "" # LM Studio API URL - http://host.docker.internal:1234
|
|
||||||
|
|
||||||
[API_ENDPOINTS]
|
[API_ENDPOINTS]
|
||||||
SEARXNG = "" # SearxNG API URL - http://localhost:32768
|
SEARXNG = "" # SearxNG API URL - http://localhost:32768
|
@ -29,7 +29,6 @@ type Message = {
|
|||||||
messageId: string;
|
messageId: string;
|
||||||
chatId: string;
|
chatId: string;
|
||||||
content: string;
|
content: string;
|
||||||
userSessionId: string;
|
|
||||||
};
|
};
|
||||||
|
|
||||||
type ChatModel = {
|
type ChatModel = {
|
||||||
@ -139,7 +138,6 @@ const handleHistorySave = async (
|
|||||||
where: eq(chats.id, message.chatId),
|
where: eq(chats.id, message.chatId),
|
||||||
});
|
});
|
||||||
|
|
||||||
let currentDate = new Date();
|
|
||||||
if (!chat) {
|
if (!chat) {
|
||||||
await db
|
await db
|
||||||
.insert(chats)
|
.insert(chats)
|
||||||
@ -149,8 +147,6 @@ const handleHistorySave = async (
|
|||||||
createdAt: new Date().toString(),
|
createdAt: new Date().toString(),
|
||||||
focusMode: focusMode,
|
focusMode: focusMode,
|
||||||
files: files.map(getFileDetails),
|
files: files.map(getFileDetails),
|
||||||
userSessionId: message.userSessionId,
|
|
||||||
timestamp: currentDate.toISOString(),
|
|
||||||
})
|
})
|
||||||
.execute();
|
.execute();
|
||||||
}
|
}
|
||||||
|
@ -1,47 +1,10 @@
|
|||||||
import db from '@/lib/db';
|
import db from '@/lib/db';
|
||||||
import { chats } from '@/lib/db/schema';
|
|
||||||
import { eq, sql} from 'drizzle-orm';
|
|
||||||
|
|
||||||
export const GET = async (req: Request) => {
|
export const GET = async (req: Request) => {
|
||||||
try {
|
try {
|
||||||
// get header from request
|
let chats = await db.query.chats.findMany();
|
||||||
const headers = await req.headers;
|
chats = chats.reverse();
|
||||||
const userSessionId = headers.get('user-session-id')?.toString() ?? '';
|
return Response.json({ chats: chats }, { status: 200 });
|
||||||
const maxRecordLimit = parseInt(headers.get('max-record-limit') || '20', 10);
|
|
||||||
|
|
||||||
if (userSessionId == '') {
|
|
||||||
return Response.json({ chats: {} }, { status: 200 });
|
|
||||||
}
|
|
||||||
|
|
||||||
let chatsRes = await db.query.chats.findMany({
|
|
||||||
where: eq(chats.userSessionId, userSessionId),
|
|
||||||
});
|
|
||||||
|
|
||||||
chatsRes = chatsRes.reverse();
|
|
||||||
// Keep only the latest records in the database. Delete older records.
|
|
||||||
if (chatsRes.length > maxRecordLimit) {
|
|
||||||
const deleteChatsQuery = sql`DELETE FROM chats
|
|
||||||
WHERE userSessionId = ${userSessionId} AND (
|
|
||||||
timestamp IS NULL OR
|
|
||||||
timestamp NOT in (
|
|
||||||
SELECT timestamp FROM chats
|
|
||||||
WHERE userSessionId = ${userSessionId}
|
|
||||||
ORDER BY timestamp DESC
|
|
||||||
LIMIT ${maxRecordLimit}
|
|
||||||
)
|
|
||||||
)
|
|
||||||
`;
|
|
||||||
await db.run(deleteChatsQuery);
|
|
||||||
// Delete messages that no longer link with the chat from the database.
|
|
||||||
const deleteMessagesQuery = sql`DELETE FROM messages
|
|
||||||
WHERE chatId NOT IN (
|
|
||||||
SELECT id FROM chats
|
|
||||||
)
|
|
||||||
`;
|
|
||||||
await db.run(deleteMessagesQuery);
|
|
||||||
}
|
|
||||||
|
|
||||||
return Response.json({ chats: chatsRes }, { status: 200 });
|
|
||||||
} catch (err) {
|
} catch (err) {
|
||||||
console.error('Error in getting chats: ', err);
|
console.error('Error in getting chats: ', err);
|
||||||
return Response.json(
|
return Response.json(
|
||||||
|
@ -8,7 +8,6 @@ import {
|
|||||||
getOllamaApiEndpoint,
|
getOllamaApiEndpoint,
|
||||||
getOpenaiApiKey,
|
getOpenaiApiKey,
|
||||||
getDeepseekApiKey,
|
getDeepseekApiKey,
|
||||||
getLMStudioApiEndpoint,
|
|
||||||
updateConfig,
|
updateConfig,
|
||||||
} from '@/lib/config';
|
} from '@/lib/config';
|
||||||
import {
|
import {
|
||||||
@ -52,7 +51,6 @@ export const GET = async (req: Request) => {
|
|||||||
|
|
||||||
config['openaiApiKey'] = getOpenaiApiKey();
|
config['openaiApiKey'] = getOpenaiApiKey();
|
||||||
config['ollamaApiUrl'] = getOllamaApiEndpoint();
|
config['ollamaApiUrl'] = getOllamaApiEndpoint();
|
||||||
config['lmStudioApiUrl'] = getLMStudioApiEndpoint();
|
|
||||||
config['anthropicApiKey'] = getAnthropicApiKey();
|
config['anthropicApiKey'] = getAnthropicApiKey();
|
||||||
config['groqApiKey'] = getGroqApiKey();
|
config['groqApiKey'] = getGroqApiKey();
|
||||||
config['geminiApiKey'] = getGeminiApiKey();
|
config['geminiApiKey'] = getGeminiApiKey();
|
||||||
@ -95,9 +93,6 @@ export const POST = async (req: Request) => {
|
|||||||
DEEPSEEK: {
|
DEEPSEEK: {
|
||||||
API_KEY: config.deepseekApiKey,
|
API_KEY: config.deepseekApiKey,
|
||||||
},
|
},
|
||||||
LM_STUDIO: {
|
|
||||||
API_URL: config.lmStudioApiUrl,
|
|
||||||
},
|
|
||||||
CUSTOM_OPENAI: {
|
CUSTOM_OPENAI: {
|
||||||
API_URL: config.customOpenaiApiUrl,
|
API_URL: config.customOpenaiApiUrl,
|
||||||
API_KEY: config.customOpenaiApiKey,
|
API_KEY: config.customOpenaiApiKey,
|
||||||
|
@ -1,6 +1,5 @@
|
|||||||
'use client';
|
'use client';
|
||||||
|
|
||||||
import crypto from 'crypto';
|
|
||||||
import DeleteChat from '@/components/DeleteChat';
|
import DeleteChat from '@/components/DeleteChat';
|
||||||
import { cn, formatTimeDifference } from '@/lib/utils';
|
import { cn, formatTimeDifference } from '@/lib/utils';
|
||||||
import { BookOpenText, ClockIcon, Delete, ScanEye } from 'lucide-react';
|
import { BookOpenText, ClockIcon, Delete, ScanEye } from 'lucide-react';
|
||||||
@ -22,34 +21,10 @@ const Page = () => {
|
|||||||
const fetchChats = async () => {
|
const fetchChats = async () => {
|
||||||
setLoading(true);
|
setLoading(true);
|
||||||
|
|
||||||
let userSessionId = localStorage.getItem('userSessionId');
|
|
||||||
if (!userSessionId) {
|
|
||||||
userSessionId = crypto.randomBytes(20).toString('hex');
|
|
||||||
localStorage.setItem('userSessionId', userSessionId)
|
|
||||||
}
|
|
||||||
|
|
||||||
// Get maxRecordLimit from localStorage or set default
|
|
||||||
let maxRecordLimit = localStorage.getItem('maxRecordLimit');
|
|
||||||
if (!maxRecordLimit) {
|
|
||||||
maxRecordLimit = '20';
|
|
||||||
localStorage.setItem('maxRecordLimit', maxRecordLimit);
|
|
||||||
} else {
|
|
||||||
let valueInt = parseInt(maxRecordLimit, 10) || 20;
|
|
||||||
if (valueInt < 1) {
|
|
||||||
valueInt = 1;
|
|
||||||
} else if (valueInt > 100) {
|
|
||||||
valueInt = 100;
|
|
||||||
}
|
|
||||||
maxRecordLimit = valueInt.toString();
|
|
||||||
localStorage.setItem('maxRecordLimit', maxRecordLimit);
|
|
||||||
}
|
|
||||||
|
|
||||||
const res = await fetch(`/api/chats`, {
|
const res = await fetch(`/api/chats`, {
|
||||||
method: 'GET',
|
method: 'GET',
|
||||||
headers: {
|
headers: {
|
||||||
'Content-Type': 'application/json',
|
'Content-Type': 'application/json',
|
||||||
'user-session-id': userSessionId!,
|
|
||||||
'max-record-limit': maxRecordLimit,
|
|
||||||
},
|
},
|
||||||
});
|
});
|
||||||
|
|
||||||
|
@ -7,7 +7,6 @@ import { Switch } from '@headlessui/react';
|
|||||||
import ThemeSwitcher from '@/components/theme/Switcher';
|
import ThemeSwitcher from '@/components/theme/Switcher';
|
||||||
import { ImagesIcon, VideoIcon } from 'lucide-react';
|
import { ImagesIcon, VideoIcon } from 'lucide-react';
|
||||||
import Link from 'next/link';
|
import Link from 'next/link';
|
||||||
import { PROVIDER_METADATA } from '@/lib/providers';
|
|
||||||
|
|
||||||
interface SettingsType {
|
interface SettingsType {
|
||||||
chatModelProviders: {
|
chatModelProviders: {
|
||||||
@ -21,12 +20,10 @@ interface SettingsType {
|
|||||||
anthropicApiKey: string;
|
anthropicApiKey: string;
|
||||||
geminiApiKey: string;
|
geminiApiKey: string;
|
||||||
ollamaApiUrl: string;
|
ollamaApiUrl: string;
|
||||||
lmStudioApiUrl: string;
|
|
||||||
deepseekApiKey: string;
|
deepseekApiKey: string;
|
||||||
customOpenaiApiKey: string;
|
customOpenaiApiKey: string;
|
||||||
customOpenaiApiUrl: string;
|
customOpenaiApiUrl: string;
|
||||||
customOpenaiModelName: string;
|
customOpenaiModelName: string;
|
||||||
maxRecordLimit: string;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
interface InputProps extends React.InputHTMLAttributes<HTMLInputElement> {
|
interface InputProps extends React.InputHTMLAttributes<HTMLInputElement> {
|
||||||
@ -149,7 +146,6 @@ const Page = () => {
|
|||||||
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
|
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
|
||||||
const [systemInstructions, setSystemInstructions] = useState<string>('');
|
const [systemInstructions, setSystemInstructions] = useState<string>('');
|
||||||
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
|
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
|
||||||
const [maxRecordLimit, setMaxRecordLimit] = useState<string>('20');
|
|
||||||
|
|
||||||
useEffect(() => {
|
useEffect(() => {
|
||||||
const fetchConfig = async () => {
|
const fetchConfig = async () => {
|
||||||
@ -212,8 +208,6 @@ const Page = () => {
|
|||||||
|
|
||||||
setSystemInstructions(localStorage.getItem('systemInstructions')!);
|
setSystemInstructions(localStorage.getItem('systemInstructions')!);
|
||||||
|
|
||||||
setMaxRecordLimit(localStorage.getItem('maxRecordLimit') || data.maxRecordLimit || '20');
|
|
||||||
|
|
||||||
setIsLoading(false);
|
setIsLoading(false);
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -372,15 +366,6 @@ const Page = () => {
|
|||||||
localStorage.setItem('embeddingModel', value);
|
localStorage.setItem('embeddingModel', value);
|
||||||
} else if (key === 'systemInstructions') {
|
} else if (key === 'systemInstructions') {
|
||||||
localStorage.setItem('systemInstructions', value);
|
localStorage.setItem('systemInstructions', value);
|
||||||
} else if (key === 'maxRecordLimit') {
|
|
||||||
let valueInt = parseInt(value, 10) || 20;
|
|
||||||
if (valueInt < 1) {
|
|
||||||
valueInt = 1;
|
|
||||||
} else if (valueInt > 100) {
|
|
||||||
valueInt = 100;
|
|
||||||
}
|
|
||||||
setMaxRecordLimit(valueInt.toString());
|
|
||||||
localStorage.setItem('maxRecordLimit', valueInt.toString());
|
|
||||||
}
|
}
|
||||||
} catch (err) {
|
} catch (err) {
|
||||||
console.error('Failed to save:', err);
|
console.error('Failed to save:', err);
|
||||||
@ -563,9 +548,8 @@ const Page = () => {
|
|||||||
(provider) => ({
|
(provider) => ({
|
||||||
value: provider,
|
value: provider,
|
||||||
label:
|
label:
|
||||||
(PROVIDER_METADATA as any)[provider]?.displayName ||
|
|
||||||
provider.charAt(0).toUpperCase() +
|
provider.charAt(0).toUpperCase() +
|
||||||
provider.slice(1),
|
provider.slice(1),
|
||||||
}),
|
}),
|
||||||
)}
|
)}
|
||||||
/>
|
/>
|
||||||
@ -706,9 +690,8 @@ const Page = () => {
|
|||||||
(provider) => ({
|
(provider) => ({
|
||||||
value: provider,
|
value: provider,
|
||||||
label:
|
label:
|
||||||
(PROVIDER_METADATA as any)[provider]?.displayName ||
|
|
||||||
provider.charAt(0).toUpperCase() +
|
provider.charAt(0).toUpperCase() +
|
||||||
provider.slice(1),
|
provider.slice(1),
|
||||||
}),
|
}),
|
||||||
)}
|
)}
|
||||||
/>
|
/>
|
||||||
@ -875,56 +858,6 @@ const Page = () => {
|
|||||||
onSave={(value) => saveConfig('deepseekApiKey', value)}
|
onSave={(value) => saveConfig('deepseekApiKey', value)}
|
||||||
/>
|
/>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
<div className="flex flex-col space-y-1">
|
|
||||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
|
||||||
LM Studio API URL
|
|
||||||
</p>
|
|
||||||
<Input
|
|
||||||
type="text"
|
|
||||||
placeholder="LM Studio API URL"
|
|
||||||
value={config.lmStudioApiUrl}
|
|
||||||
isSaving={savingStates['lmStudioApiUrl']}
|
|
||||||
onChange={(e) => {
|
|
||||||
setConfig((prev) => ({
|
|
||||||
...prev!,
|
|
||||||
lmStudioApiUrl: e.target.value,
|
|
||||||
}));
|
|
||||||
}}
|
|
||||||
onSave={(value) => saveConfig('lmStudioApiUrl', value)}
|
|
||||||
/>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
</SettingsSection>
|
|
||||||
|
|
||||||
<SettingsSection title="Chat History">
|
|
||||||
<div className="flex flex-col space-y-4">
|
|
||||||
<div className="flex flex-col space-y-1">
|
|
||||||
<p className="text-black/70 dark:text-white/70 text-sm">
|
|
||||||
Maximum Chat History Records
|
|
||||||
</p>
|
|
||||||
<div className="flex items-center space-x-2">
|
|
||||||
<Input
|
|
||||||
type="number"
|
|
||||||
min="1"
|
|
||||||
max="100"
|
|
||||||
pattern="[0-9]*"
|
|
||||||
inputMode="numeric"
|
|
||||||
value={maxRecordLimit}
|
|
||||||
isSaving={savingStates['maxRecordLimit']}
|
|
||||||
onChange={(e) => {
|
|
||||||
setMaxRecordLimit(e.target.value);
|
|
||||||
}}
|
|
||||||
onSave={(value) => saveConfig('maxRecordLimit', value)}
|
|
||||||
/>
|
|
||||||
<span className="text-black/60 dark:text-white/60 text-sm">
|
|
||||||
records
|
|
||||||
</span>
|
|
||||||
</div>
|
|
||||||
<p className="text-xs text-black/60 dark:text-white/60 mt-1">
|
|
||||||
Maximum number of chat records to keep in history. Older records will be automatically deleted.
|
|
||||||
</p>
|
|
||||||
</div>
|
|
||||||
</div>
|
</div>
|
||||||
</SettingsSection>
|
</SettingsSection>
|
||||||
</div>
|
</div>
|
||||||
|
@ -95,18 +95,6 @@ const checkConfig = async (
|
|||||||
if (!embeddingModel || !embeddingModelProvider) {
|
if (!embeddingModel || !embeddingModelProvider) {
|
||||||
const embeddingModelProviders = providers.embeddingModelProviders;
|
const embeddingModelProviders = providers.embeddingModelProviders;
|
||||||
|
|
||||||
let userSessionId = localStorage.getItem('userSessionId');
|
|
||||||
if (!userSessionId) {
|
|
||||||
userSessionId = crypto.randomBytes(20).toString('hex');
|
|
||||||
localStorage.setItem('userSessionId', userSessionId!)
|
|
||||||
}
|
|
||||||
|
|
||||||
let maxRecordLimit = localStorage.getItem('maxRecordLimit');
|
|
||||||
if (!maxRecordLimit) {
|
|
||||||
maxRecordLimit = '20';
|
|
||||||
localStorage.setItem('maxRecordLimit', maxRecordLimit);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (
|
if (
|
||||||
!embeddingModelProviders ||
|
!embeddingModelProviders ||
|
||||||
Object.keys(embeddingModelProviders).length === 0
|
Object.keys(embeddingModelProviders).length === 0
|
||||||
@ -354,7 +342,6 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
|||||||
let added = false;
|
let added = false;
|
||||||
|
|
||||||
messageId = messageId ?? crypto.randomBytes(7).toString('hex');
|
messageId = messageId ?? crypto.randomBytes(7).toString('hex');
|
||||||
let userSessionId = localStorage.getItem('userSessionId');
|
|
||||||
|
|
||||||
setMessages((prevMessages) => [
|
setMessages((prevMessages) => [
|
||||||
...prevMessages,
|
...prevMessages,
|
||||||
@ -376,20 +363,18 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
|||||||
|
|
||||||
if (data.type === 'sources') {
|
if (data.type === 'sources') {
|
||||||
sources = data.data;
|
sources = data.data;
|
||||||
if (!added) {
|
setMessages((prevMessages) => [
|
||||||
setMessages((prevMessages) => [
|
...prevMessages,
|
||||||
...prevMessages,
|
{
|
||||||
{
|
content: '',
|
||||||
content: '',
|
messageId: data.messageId,
|
||||||
messageId: data.messageId,
|
chatId: chatId!,
|
||||||
chatId: chatId!,
|
role: 'assistant',
|
||||||
role: 'assistant',
|
sources: sources,
|
||||||
sources: sources,
|
createdAt: new Date(),
|
||||||
createdAt: new Date(),
|
},
|
||||||
},
|
]);
|
||||||
]);
|
added = true;
|
||||||
added = true;
|
|
||||||
}
|
|
||||||
setMessageAppeared(true);
|
setMessageAppeared(true);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -407,20 +392,20 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
|||||||
},
|
},
|
||||||
]);
|
]);
|
||||||
added = true;
|
added = true;
|
||||||
|
setMessageAppeared(true);
|
||||||
|
} else {
|
||||||
|
setMessages((prev) =>
|
||||||
|
prev.map((message) => {
|
||||||
|
if (message.messageId === data.messageId) {
|
||||||
|
return { ...message, content: message.content + data.data };
|
||||||
|
}
|
||||||
|
|
||||||
|
return message;
|
||||||
|
}),
|
||||||
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
setMessages((prev) =>
|
|
||||||
prev.map((message) => {
|
|
||||||
if (message.messageId === data.messageId) {
|
|
||||||
return { ...message, content: message.content + data.data };
|
|
||||||
}
|
|
||||||
|
|
||||||
return message;
|
|
||||||
}),
|
|
||||||
);
|
|
||||||
|
|
||||||
recievedMessage += data.data;
|
recievedMessage += data.data;
|
||||||
setMessageAppeared(true);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if (data.type === 'messageEnd') {
|
if (data.type === 'messageEnd') {
|
||||||
@ -479,7 +464,6 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
|||||||
messageId: messageId,
|
messageId: messageId,
|
||||||
chatId: chatId!,
|
chatId: chatId!,
|
||||||
content: message,
|
content: message,
|
||||||
userSessionId: userSessionId,
|
|
||||||
},
|
},
|
||||||
chatId: chatId!,
|
chatId: chatId!,
|
||||||
files: fileIds,
|
files: fileIds,
|
||||||
|
@ -97,7 +97,6 @@ const MessageBox = ({
|
|||||||
},
|
},
|
||||||
),
|
),
|
||||||
);
|
);
|
||||||
setSpeechMessage(message.content.replace(regex, ''));
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -76,13 +76,11 @@ const Optimization = ({
|
|||||||
<PopoverButton
|
<PopoverButton
|
||||||
onClick={() => setOptimizationMode(mode.key)}
|
onClick={() => setOptimizationMode(mode.key)}
|
||||||
key={i}
|
key={i}
|
||||||
disabled={mode.key === 'quality'}
|
|
||||||
className={cn(
|
className={cn(
|
||||||
'p-2 rounded-lg flex flex-col items-start justify-start text-start space-y-1 duration-200 cursor-pointer transition',
|
'p-2 rounded-lg flex flex-col items-start justify-start text-start space-y-1 duration-200 cursor-pointer transition',
|
||||||
optimizationMode === mode.key
|
optimizationMode === mode.key
|
||||||
? 'bg-light-secondary dark:bg-dark-secondary'
|
? 'bg-light-secondary dark:bg-dark-secondary'
|
||||||
: 'hover:bg-light-secondary dark:hover:bg-dark-secondary',
|
: 'hover:bg-light-secondary dark:hover:bg-dark-secondary',
|
||||||
mode.key === 'quality' && 'opacity-50 cursor-not-allowed',
|
|
||||||
)}
|
)}
|
||||||
>
|
>
|
||||||
<div className="flex flex-row items-center space-x-1 text-black dark:text-white">
|
<div className="flex flex-row items-center space-x-1 text-black dark:text-white">
|
||||||
|
@ -1,14 +1,7 @@
|
|||||||
|
import fs from 'fs';
|
||||||
|
import path from 'path';
|
||||||
import toml from '@iarna/toml';
|
import toml from '@iarna/toml';
|
||||||
|
|
||||||
// Use dynamic imports for Node.js modules to prevent client-side errors
|
|
||||||
let fs: any;
|
|
||||||
let path: any;
|
|
||||||
if (typeof window === 'undefined') {
|
|
||||||
// We're on the server
|
|
||||||
fs = require('fs');
|
|
||||||
path = require('path');
|
|
||||||
}
|
|
||||||
|
|
||||||
const configFileName = 'config.toml';
|
const configFileName = 'config.toml';
|
||||||
|
|
||||||
interface Config {
|
interface Config {
|
||||||
@ -35,9 +28,6 @@ interface Config {
|
|||||||
DEEPSEEK: {
|
DEEPSEEK: {
|
||||||
API_KEY: string;
|
API_KEY: string;
|
||||||
};
|
};
|
||||||
LM_STUDIO: {
|
|
||||||
API_URL: string;
|
|
||||||
};
|
|
||||||
CUSTOM_OPENAI: {
|
CUSTOM_OPENAI: {
|
||||||
API_URL: string;
|
API_URL: string;
|
||||||
API_KEY: string;
|
API_KEY: string;
|
||||||
@ -53,17 +43,10 @@ type RecursivePartial<T> = {
|
|||||||
[P in keyof T]?: RecursivePartial<T[P]>;
|
[P in keyof T]?: RecursivePartial<T[P]>;
|
||||||
};
|
};
|
||||||
|
|
||||||
const loadConfig = () => {
|
const loadConfig = () =>
|
||||||
// Server-side only
|
toml.parse(
|
||||||
if (typeof window === 'undefined') {
|
fs.readFileSync(path.join(process.cwd(), `${configFileName}`), 'utf-8'),
|
||||||
return toml.parse(
|
) as any as Config;
|
||||||
fs.readFileSync(path.join(process.cwd(), `${configFileName}`), 'utf-8'),
|
|
||||||
) as any as Config;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Client-side fallback - settings will be loaded via API
|
|
||||||
return {} as Config;
|
|
||||||
};
|
|
||||||
|
|
||||||
export const getSimilarityMeasure = () =>
|
export const getSimilarityMeasure = () =>
|
||||||
loadConfig().GENERAL.SIMILARITY_MEASURE;
|
loadConfig().GENERAL.SIMILARITY_MEASURE;
|
||||||
@ -94,9 +77,6 @@ export const getCustomOpenaiApiUrl = () =>
|
|||||||
export const getCustomOpenaiModelName = () =>
|
export const getCustomOpenaiModelName = () =>
|
||||||
loadConfig().MODELS.CUSTOM_OPENAI.MODEL_NAME;
|
loadConfig().MODELS.CUSTOM_OPENAI.MODEL_NAME;
|
||||||
|
|
||||||
export const getLMStudioApiEndpoint = () =>
|
|
||||||
loadConfig().MODELS.LM_STUDIO.API_URL;
|
|
||||||
|
|
||||||
const mergeConfigs = (current: any, update: any): any => {
|
const mergeConfigs = (current: any, update: any): any => {
|
||||||
if (update === null || update === undefined) {
|
if (update === null || update === undefined) {
|
||||||
return current;
|
return current;
|
||||||
@ -129,13 +109,10 @@ const mergeConfigs = (current: any, update: any): any => {
|
|||||||
};
|
};
|
||||||
|
|
||||||
export const updateConfig = (config: RecursivePartial<Config>) => {
|
export const updateConfig = (config: RecursivePartial<Config>) => {
|
||||||
// Server-side only
|
const currentConfig = loadConfig();
|
||||||
if (typeof window === 'undefined') {
|
const mergedConfig = mergeConfigs(currentConfig, config);
|
||||||
const currentConfig = loadConfig();
|
fs.writeFileSync(
|
||||||
const mergedConfig = mergeConfigs(currentConfig, config);
|
path.join(path.join(process.cwd(), `${configFileName}`)),
|
||||||
fs.writeFileSync(
|
toml.stringify(mergedConfig),
|
||||||
path.join(path.join(process.cwd(), `${configFileName}`)),
|
);
|
||||||
toml.stringify(mergedConfig),
|
|
||||||
);
|
|
||||||
}
|
|
||||||
};
|
};
|
||||||
|
@ -25,6 +25,4 @@ export const chats = sqliteTable('chats', {
|
|||||||
files: text('files', { mode: 'json' })
|
files: text('files', { mode: 'json' })
|
||||||
.$type<File[]>()
|
.$type<File[]>()
|
||||||
.default(sql`'[]'`),
|
.default(sql`'[]'`),
|
||||||
userSessionId: text('userSessionId'),
|
|
||||||
timestamp: text('timestamp'),
|
|
||||||
});
|
});
|
||||||
|
@ -1,11 +1,6 @@
|
|||||||
import { ChatAnthropic } from '@langchain/anthropic';
|
import { ChatAnthropic } from '@langchain/anthropic';
|
||||||
import { ChatModel } from '.';
|
import { ChatModel } from '.';
|
||||||
import { getAnthropicApiKey } from '../config';
|
import { getAnthropicApiKey } from '../config';
|
||||||
|
|
||||||
export const PROVIDER_INFO = {
|
|
||||||
key: 'anthropic',
|
|
||||||
displayName: 'Anthropic',
|
|
||||||
};
|
|
||||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||||
|
|
||||||
const anthropicChatModels: Record<string, string>[] = [
|
const anthropicChatModels: Record<string, string>[] = [
|
||||||
|
@ -3,11 +3,6 @@ import { getDeepseekApiKey } from '../config';
|
|||||||
import { ChatModel } from '.';
|
import { ChatModel } from '.';
|
||||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||||
|
|
||||||
export const PROVIDER_INFO = {
|
|
||||||
key: 'deepseek',
|
|
||||||
displayName: 'Deepseek AI',
|
|
||||||
};
|
|
||||||
|
|
||||||
const deepseekChatModels: Record<string, string>[] = [
|
const deepseekChatModels: Record<string, string>[] = [
|
||||||
{
|
{
|
||||||
displayName: 'Deepseek Chat (Deepseek V3)',
|
displayName: 'Deepseek Chat (Deepseek V3)',
|
||||||
|
@ -4,11 +4,6 @@ import {
|
|||||||
} from '@langchain/google-genai';
|
} from '@langchain/google-genai';
|
||||||
import { getGeminiApiKey } from '../config';
|
import { getGeminiApiKey } from '../config';
|
||||||
import { ChatModel, EmbeddingModel } from '.';
|
import { ChatModel, EmbeddingModel } from '.';
|
||||||
|
|
||||||
export const PROVIDER_INFO = {
|
|
||||||
key: 'gemini',
|
|
||||||
displayName: 'Google Gemini',
|
|
||||||
};
|
|
||||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||||
import { Embeddings } from '@langchain/core/embeddings';
|
import { Embeddings } from '@langchain/core/embeddings';
|
||||||
|
|
||||||
|
@ -1,11 +1,6 @@
|
|||||||
import { ChatOpenAI } from '@langchain/openai';
|
import { ChatOpenAI } from '@langchain/openai';
|
||||||
import { getGroqApiKey } from '../config';
|
import { getGroqApiKey } from '../config';
|
||||||
import { ChatModel } from '.';
|
import { ChatModel } from '.';
|
||||||
|
|
||||||
export const PROVIDER_INFO = {
|
|
||||||
key: 'groq',
|
|
||||||
displayName: 'Groq',
|
|
||||||
};
|
|
||||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||||
|
|
||||||
const groqChatModels: Record<string, string>[] = [
|
const groqChatModels: Record<string, string>[] = [
|
||||||
|
@ -1,60 +1,18 @@
|
|||||||
import { Embeddings } from '@langchain/core/embeddings';
|
import { Embeddings } from '@langchain/core/embeddings';
|
||||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||||
import {
|
import { loadOpenAIChatModels, loadOpenAIEmbeddingModels } from './openai';
|
||||||
loadOpenAIChatModels,
|
|
||||||
loadOpenAIEmbeddingModels,
|
|
||||||
PROVIDER_INFO as OpenAIInfo,
|
|
||||||
PROVIDER_INFO,
|
|
||||||
} from './openai';
|
|
||||||
import {
|
import {
|
||||||
getCustomOpenaiApiKey,
|
getCustomOpenaiApiKey,
|
||||||
getCustomOpenaiApiUrl,
|
getCustomOpenaiApiUrl,
|
||||||
getCustomOpenaiModelName,
|
getCustomOpenaiModelName,
|
||||||
} from '../config';
|
} from '../config';
|
||||||
import { ChatOpenAI } from '@langchain/openai';
|
import { ChatOpenAI } from '@langchain/openai';
|
||||||
import {
|
import { loadOllamaChatModels, loadOllamaEmbeddingModels } from './ollama';
|
||||||
loadOllamaChatModels,
|
import { loadGroqChatModels } from './groq';
|
||||||
loadOllamaEmbeddingModels,
|
import { loadAnthropicChatModels } from './anthropic';
|
||||||
PROVIDER_INFO as OllamaInfo,
|
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini';
|
||||||
} from './ollama';
|
import { loadTransformersEmbeddingsModels } from './transformers';
|
||||||
import { loadGroqChatModels, PROVIDER_INFO as GroqInfo } from './groq';
|
import { loadDeepseekChatModels } from './deepseek';
|
||||||
import {
|
|
||||||
loadAnthropicChatModels,
|
|
||||||
PROVIDER_INFO as AnthropicInfo,
|
|
||||||
} from './anthropic';
|
|
||||||
import {
|
|
||||||
loadGeminiChatModels,
|
|
||||||
loadGeminiEmbeddingModels,
|
|
||||||
PROVIDER_INFO as GeminiInfo,
|
|
||||||
} from './gemini';
|
|
||||||
import {
|
|
||||||
loadTransformersEmbeddingsModels,
|
|
||||||
PROVIDER_INFO as TransformersInfo,
|
|
||||||
} from './transformers';
|
|
||||||
import {
|
|
||||||
loadDeepseekChatModels,
|
|
||||||
PROVIDER_INFO as DeepseekInfo,
|
|
||||||
} from './deepseek';
|
|
||||||
import {
|
|
||||||
loadLMStudioChatModels,
|
|
||||||
loadLMStudioEmbeddingsModels,
|
|
||||||
PROVIDER_INFO as LMStudioInfo,
|
|
||||||
} from './lmstudio';
|
|
||||||
|
|
||||||
export const PROVIDER_METADATA = {
|
|
||||||
openai: OpenAIInfo,
|
|
||||||
ollama: OllamaInfo,
|
|
||||||
groq: GroqInfo,
|
|
||||||
anthropic: AnthropicInfo,
|
|
||||||
gemini: GeminiInfo,
|
|
||||||
transformers: TransformersInfo,
|
|
||||||
deepseek: DeepseekInfo,
|
|
||||||
lmstudio: LMStudioInfo,
|
|
||||||
custom_openai: {
|
|
||||||
key: 'custom_openai',
|
|
||||||
displayName: 'Custom OpenAI',
|
|
||||||
},
|
|
||||||
};
|
|
||||||
|
|
||||||
export interface ChatModel {
|
export interface ChatModel {
|
||||||
displayName: string;
|
displayName: string;
|
||||||
@ -76,7 +34,6 @@ export const chatModelProviders: Record<
|
|||||||
anthropic: loadAnthropicChatModels,
|
anthropic: loadAnthropicChatModels,
|
||||||
gemini: loadGeminiChatModels,
|
gemini: loadGeminiChatModels,
|
||||||
deepseek: loadDeepseekChatModels,
|
deepseek: loadDeepseekChatModels,
|
||||||
lmstudio: loadLMStudioChatModels,
|
|
||||||
};
|
};
|
||||||
|
|
||||||
export const embeddingModelProviders: Record<
|
export const embeddingModelProviders: Record<
|
||||||
@ -87,7 +44,6 @@ export const embeddingModelProviders: Record<
|
|||||||
ollama: loadOllamaEmbeddingModels,
|
ollama: loadOllamaEmbeddingModels,
|
||||||
gemini: loadGeminiEmbeddingModels,
|
gemini: loadGeminiEmbeddingModels,
|
||||||
transformers: loadTransformersEmbeddingsModels,
|
transformers: loadTransformersEmbeddingsModels,
|
||||||
lmstudio: loadLMStudioEmbeddingsModels,
|
|
||||||
};
|
};
|
||||||
|
|
||||||
export const getAvailableChatModelProviders = async () => {
|
export const getAvailableChatModelProviders = async () => {
|
||||||
|
@ -1,100 +0,0 @@
|
|||||||
import { getKeepAlive, getLMStudioApiEndpoint } from '../config';
|
|
||||||
import axios from 'axios';
|
|
||||||
import { ChatModel, EmbeddingModel } from '.';
|
|
||||||
|
|
||||||
export const PROVIDER_INFO = {
|
|
||||||
key: 'lmstudio',
|
|
||||||
displayName: 'LM Studio',
|
|
||||||
};
|
|
||||||
import { ChatOpenAI } from '@langchain/openai';
|
|
||||||
import { OpenAIEmbeddings } from '@langchain/openai';
|
|
||||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
|
||||||
import { Embeddings } from '@langchain/core/embeddings';
|
|
||||||
|
|
||||||
interface LMStudioModel {
|
|
||||||
id: string;
|
|
||||||
name?: string;
|
|
||||||
}
|
|
||||||
|
|
||||||
const ensureV1Endpoint = (endpoint: string): string =>
|
|
||||||
endpoint.endsWith('/v1') ? endpoint : `${endpoint}/v1`;
|
|
||||||
|
|
||||||
const checkServerAvailability = async (endpoint: string): Promise<boolean> => {
|
|
||||||
try {
|
|
||||||
await axios.get(`${ensureV1Endpoint(endpoint)}/models`, {
|
|
||||||
headers: { 'Content-Type': 'application/json' },
|
|
||||||
});
|
|
||||||
return true;
|
|
||||||
} catch {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
export const loadLMStudioChatModels = async () => {
|
|
||||||
const endpoint = getLMStudioApiEndpoint();
|
|
||||||
|
|
||||||
if (!endpoint) return {};
|
|
||||||
if (!(await checkServerAvailability(endpoint))) return {};
|
|
||||||
|
|
||||||
try {
|
|
||||||
const response = await axios.get(`${ensureV1Endpoint(endpoint)}/models`, {
|
|
||||||
headers: { 'Content-Type': 'application/json' },
|
|
||||||
});
|
|
||||||
|
|
||||||
const chatModels: Record<string, ChatModel> = {};
|
|
||||||
|
|
||||||
response.data.data.forEach((model: LMStudioModel) => {
|
|
||||||
chatModels[model.id] = {
|
|
||||||
displayName: model.name || model.id,
|
|
||||||
model: new ChatOpenAI({
|
|
||||||
openAIApiKey: 'lm-studio',
|
|
||||||
configuration: {
|
|
||||||
baseURL: ensureV1Endpoint(endpoint),
|
|
||||||
},
|
|
||||||
modelName: model.id,
|
|
||||||
temperature: 0.7,
|
|
||||||
streaming: true,
|
|
||||||
maxRetries: 3,
|
|
||||||
}) as unknown as BaseChatModel,
|
|
||||||
};
|
|
||||||
});
|
|
||||||
|
|
||||||
return chatModels;
|
|
||||||
} catch (err) {
|
|
||||||
console.error(`Error loading LM Studio models: ${err}`);
|
|
||||||
return {};
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
export const loadLMStudioEmbeddingsModels = async () => {
|
|
||||||
const endpoint = getLMStudioApiEndpoint();
|
|
||||||
|
|
||||||
if (!endpoint) return {};
|
|
||||||
if (!(await checkServerAvailability(endpoint))) return {};
|
|
||||||
|
|
||||||
try {
|
|
||||||
const response = await axios.get(`${ensureV1Endpoint(endpoint)}/models`, {
|
|
||||||
headers: { 'Content-Type': 'application/json' },
|
|
||||||
});
|
|
||||||
|
|
||||||
const embeddingsModels: Record<string, EmbeddingModel> = {};
|
|
||||||
|
|
||||||
response.data.data.forEach((model: LMStudioModel) => {
|
|
||||||
embeddingsModels[model.id] = {
|
|
||||||
displayName: model.name || model.id,
|
|
||||||
model: new OpenAIEmbeddings({
|
|
||||||
openAIApiKey: 'lm-studio',
|
|
||||||
configuration: {
|
|
||||||
baseURL: ensureV1Endpoint(endpoint),
|
|
||||||
},
|
|
||||||
modelName: model.id,
|
|
||||||
}) as unknown as Embeddings,
|
|
||||||
};
|
|
||||||
});
|
|
||||||
|
|
||||||
return embeddingsModels;
|
|
||||||
} catch (err) {
|
|
||||||
console.error(`Error loading LM Studio embeddings model: ${err}`);
|
|
||||||
return {};
|
|
||||||
}
|
|
||||||
};
|
|
@ -1,11 +1,6 @@
|
|||||||
import axios from 'axios';
|
import axios from 'axios';
|
||||||
import { getKeepAlive, getOllamaApiEndpoint } from '../config';
|
import { getKeepAlive, getOllamaApiEndpoint } from '../config';
|
||||||
import { ChatModel, EmbeddingModel } from '.';
|
import { ChatModel, EmbeddingModel } from '.';
|
||||||
|
|
||||||
export const PROVIDER_INFO = {
|
|
||||||
key: 'ollama',
|
|
||||||
displayName: 'Ollama',
|
|
||||||
};
|
|
||||||
import { ChatOllama } from '@langchain/community/chat_models/ollama';
|
import { ChatOllama } from '@langchain/community/chat_models/ollama';
|
||||||
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
|
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
|
||||||
|
|
||||||
|
@ -1,11 +1,6 @@
|
|||||||
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
|
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
|
||||||
import { getOpenaiApiKey } from '../config';
|
import { getOpenaiApiKey } from '../config';
|
||||||
import { ChatModel, EmbeddingModel } from '.';
|
import { ChatModel, EmbeddingModel } from '.';
|
||||||
|
|
||||||
export const PROVIDER_INFO = {
|
|
||||||
key: 'openai',
|
|
||||||
displayName: 'OpenAI',
|
|
||||||
};
|
|
||||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||||
import { Embeddings } from '@langchain/core/embeddings';
|
import { Embeddings } from '@langchain/core/embeddings';
|
||||||
|
|
||||||
|
@ -1,10 +1,5 @@
|
|||||||
import { HuggingFaceTransformersEmbeddings } from '../huggingfaceTransformer';
|
import { HuggingFaceTransformersEmbeddings } from '../huggingfaceTransformer';
|
||||||
|
|
||||||
export const PROVIDER_INFO = {
|
|
||||||
key: 'transformers',
|
|
||||||
displayName: 'Hugging Face',
|
|
||||||
};
|
|
||||||
|
|
||||||
export const loadTransformersEmbeddingsModels = async () => {
|
export const loadTransformersEmbeddingsModels = async () => {
|
||||||
try {
|
try {
|
||||||
const embeddingModels = {
|
const embeddingModels = {
|
||||||
|
@ -6,24 +6,20 @@ import {
|
|||||||
MessagesPlaceholder,
|
MessagesPlaceholder,
|
||||||
PromptTemplate,
|
PromptTemplate,
|
||||||
} from '@langchain/core/prompts';
|
} from '@langchain/core/prompts';
|
||||||
import {
|
|
||||||
RunnableLambda,
|
|
||||||
RunnableMap,
|
|
||||||
RunnableSequence,
|
|
||||||
} from '@langchain/core/runnables';
|
|
||||||
import { BaseMessage } from '@langchain/core/messages';
|
import { BaseMessage } from '@langchain/core/messages';
|
||||||
import { StringOutputParser } from '@langchain/core/output_parsers';
|
import { StringOutputParser } from '@langchain/core/output_parsers';
|
||||||
import LineListOutputParser from '../outputParsers/listLineOutputParser';
|
import LineListOutputParser from '../outputParsers/listLineOutputParser';
|
||||||
import LineOutputParser from '../outputParsers/lineOutputParser';
|
import LineOutputParser from '../outputParsers/lineOutputParser';
|
||||||
import { getDocumentsFromLinks } from '../utils/documents';
|
import { getDocumentsFromLinks } from '../utils/documents';
|
||||||
import { Document } from 'langchain/document';
|
import { Document } from 'langchain/document';
|
||||||
import { searchSearxng } from '../searxng';
|
import { searchSearxng, SearxngSearchResult } from '../searxng';
|
||||||
import path from 'node:path';
|
import path from 'node:path';
|
||||||
import fs from 'node:fs';
|
import fs from 'node:fs';
|
||||||
import computeSimilarity from '../utils/computeSimilarity';
|
import computeSimilarity from '../utils/computeSimilarity';
|
||||||
import formatChatHistoryAsString from '../utils/formatHistory';
|
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||||
import eventEmitter from 'events';
|
import eventEmitter from 'events';
|
||||||
import { StreamEvent } from '@langchain/core/tracers/log_stream';
|
import { StreamEvent } from '@langchain/core/tracers/log_stream';
|
||||||
|
import { EventEmitter } from 'node:stream';
|
||||||
|
|
||||||
export interface MetaSearchAgentType {
|
export interface MetaSearchAgentType {
|
||||||
searchAndAnswer: (
|
searchAndAnswer: (
|
||||||
@ -47,7 +43,7 @@ interface Config {
|
|||||||
activeEngines: string[];
|
activeEngines: string[];
|
||||||
}
|
}
|
||||||
|
|
||||||
type BasicChainInput = {
|
type SearchInput = {
|
||||||
chat_history: BaseMessage[];
|
chat_history: BaseMessage[];
|
||||||
query: string;
|
query: string;
|
||||||
};
|
};
|
||||||
@ -60,237 +56,385 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||||||
this.config = config;
|
this.config = config;
|
||||||
}
|
}
|
||||||
|
|
||||||
private async createSearchRetrieverChain(llm: BaseChatModel) {
|
private async searchSources(
|
||||||
|
llm: BaseChatModel,
|
||||||
|
input: SearchInput,
|
||||||
|
emitter: EventEmitter,
|
||||||
|
) {
|
||||||
(llm as unknown as ChatOpenAI).temperature = 0;
|
(llm as unknown as ChatOpenAI).temperature = 0;
|
||||||
|
|
||||||
return RunnableSequence.from([
|
const chatPrompt = PromptTemplate.fromTemplate(
|
||||||
PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt),
|
this.config.queryGeneratorPrompt,
|
||||||
llm,
|
);
|
||||||
this.strParser,
|
|
||||||
RunnableLambda.from(async (input: string) => {
|
|
||||||
const linksOutputParser = new LineListOutputParser({
|
|
||||||
key: 'links',
|
|
||||||
});
|
|
||||||
|
|
||||||
const questionOutputParser = new LineOutputParser({
|
const processedChatPrompt = await chatPrompt.invoke({
|
||||||
key: 'question',
|
chat_history: formatChatHistoryAsString(input.chat_history),
|
||||||
});
|
query: input.query,
|
||||||
|
});
|
||||||
|
|
||||||
const links = await linksOutputParser.parse(input);
|
const llmRes = await llm.invoke(processedChatPrompt);
|
||||||
let question = this.config.summarizer
|
const messageStr = await this.strParser.invoke(llmRes);
|
||||||
? await questionOutputParser.parse(input)
|
|
||||||
: input;
|
|
||||||
|
|
||||||
if (question === 'not_needed') {
|
const linksOutputParser = new LineListOutputParser({
|
||||||
return { query: '', docs: [] };
|
key: 'links',
|
||||||
|
});
|
||||||
|
|
||||||
|
const questionOutputParser = new LineOutputParser({
|
||||||
|
key: 'question',
|
||||||
|
});
|
||||||
|
|
||||||
|
const links = await linksOutputParser.parse(messageStr);
|
||||||
|
let question = this.config.summarizer
|
||||||
|
? await questionOutputParser.parse(messageStr)
|
||||||
|
: messageStr;
|
||||||
|
|
||||||
|
if (question === 'not_needed') {
|
||||||
|
return { query: '', docs: [] };
|
||||||
|
}
|
||||||
|
|
||||||
|
if (links.length > 0) {
|
||||||
|
if (question.length === 0) {
|
||||||
|
question = 'summarize';
|
||||||
|
}
|
||||||
|
|
||||||
|
let docs: Document[] = [];
|
||||||
|
|
||||||
|
const linkDocs = await getDocumentsFromLinks({ links });
|
||||||
|
|
||||||
|
const docGroups: Document[] = [];
|
||||||
|
|
||||||
|
linkDocs.map((doc) => {
|
||||||
|
const URLDocExists = docGroups.find(
|
||||||
|
(d) =>
|
||||||
|
d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10,
|
||||||
|
);
|
||||||
|
|
||||||
|
if (!URLDocExists) {
|
||||||
|
docGroups.push({
|
||||||
|
...doc,
|
||||||
|
metadata: {
|
||||||
|
...doc.metadata,
|
||||||
|
totalDocs: 1,
|
||||||
|
},
|
||||||
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
if (links.length > 0) {
|
const docIndex = docGroups.findIndex(
|
||||||
if (question.length === 0) {
|
(d) =>
|
||||||
question = 'summarize';
|
d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10,
|
||||||
}
|
);
|
||||||
|
|
||||||
let docs: Document[] = [];
|
if (docIndex !== -1) {
|
||||||
|
docGroups[docIndex].pageContent =
|
||||||
const linkDocs = await getDocumentsFromLinks({ links });
|
docGroups[docIndex].pageContent + `\n\n` + doc.pageContent;
|
||||||
|
docGroups[docIndex].metadata.totalDocs += 1;
|
||||||
const docGroups: Document[] = [];
|
|
||||||
|
|
||||||
linkDocs.map((doc) => {
|
|
||||||
const URLDocExists = docGroups.find(
|
|
||||||
(d) =>
|
|
||||||
d.metadata.url === doc.metadata.url &&
|
|
||||||
d.metadata.totalDocs < 10,
|
|
||||||
);
|
|
||||||
|
|
||||||
if (!URLDocExists) {
|
|
||||||
docGroups.push({
|
|
||||||
...doc,
|
|
||||||
metadata: {
|
|
||||||
...doc.metadata,
|
|
||||||
totalDocs: 1,
|
|
||||||
},
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
const docIndex = docGroups.findIndex(
|
|
||||||
(d) =>
|
|
||||||
d.metadata.url === doc.metadata.url &&
|
|
||||||
d.metadata.totalDocs < 10,
|
|
||||||
);
|
|
||||||
|
|
||||||
if (docIndex !== -1) {
|
|
||||||
docGroups[docIndex].pageContent =
|
|
||||||
docGroups[docIndex].pageContent + `\n\n` + doc.pageContent;
|
|
||||||
docGroups[docIndex].metadata.totalDocs += 1;
|
|
||||||
}
|
|
||||||
});
|
|
||||||
|
|
||||||
await Promise.all(
|
|
||||||
docGroups.map(async (doc) => {
|
|
||||||
const res = await llm.invoke(`
|
|
||||||
You are a web search summarizer, tasked with summarizing a piece of text retrieved from a web search. Your job is to summarize the
|
|
||||||
text into a detailed, 2-4 paragraph explanation that captures the main ideas and provides a comprehensive answer to the query.
|
|
||||||
If the query is \"summarize\", you should provide a detailed summary of the text. If the query is a specific question, you should answer it in the summary.
|
|
||||||
|
|
||||||
- **Journalistic tone**: The summary should sound professional and journalistic, not too casual or vague.
|
|
||||||
- **Thorough and detailed**: Ensure that every key point from the text is captured and that the summary directly answers the query.
|
|
||||||
- **Not too lengthy, but detailed**: The summary should be informative but not excessively long. Focus on providing detailed information in a concise format.
|
|
||||||
|
|
||||||
The text will be shared inside the \`text\` XML tag, and the query inside the \`query\` XML tag.
|
|
||||||
|
|
||||||
<example>
|
|
||||||
1. \`<text>
|
|
||||||
Docker is a set of platform-as-a-service products that use OS-level virtualization to deliver software in packages called containers.
|
|
||||||
It was first released in 2013 and is developed by Docker, Inc. Docker is designed to make it easier to create, deploy, and run applications
|
|
||||||
by using containers.
|
|
||||||
</text>
|
|
||||||
|
|
||||||
<query>
|
|
||||||
What is Docker and how does it work?
|
|
||||||
</query>
|
|
||||||
|
|
||||||
Response:
|
|
||||||
Docker is a revolutionary platform-as-a-service product developed by Docker, Inc., that uses container technology to make application
|
|
||||||
deployment more efficient. It allows developers to package their software with all necessary dependencies, making it easier to run in
|
|
||||||
any environment. Released in 2013, Docker has transformed the way applications are built, deployed, and managed.
|
|
||||||
\`
|
|
||||||
2. \`<text>
|
|
||||||
The theory of relativity, or simply relativity, encompasses two interrelated theories of Albert Einstein: special relativity and general
|
|
||||||
relativity. However, the word "relativity" is sometimes used in reference to Galilean invariance. The term "theory of relativity" was based
|
|
||||||
on the expression "relative theory" used by Max Planck in 1906. The theory of relativity usually encompasses two interrelated theories by
|
|
||||||
Albert Einstein: special relativity and general relativity. Special relativity applies to all physical phenomena in the absence of gravity.
|
|
||||||
General relativity explains the law of gravitation and its relation to other forces of nature. It applies to the cosmological and astrophysical
|
|
||||||
realm, including astronomy.
|
|
||||||
</text>
|
|
||||||
|
|
||||||
<query>
|
|
||||||
summarize
|
|
||||||
</query>
|
|
||||||
|
|
||||||
Response:
|
|
||||||
The theory of relativity, developed by Albert Einstein, encompasses two main theories: special relativity and general relativity. Special
|
|
||||||
relativity applies to all physical phenomena in the absence of gravity, while general relativity explains the law of gravitation and its
|
|
||||||
relation to other forces of nature. The theory of relativity is based on the concept of "relative theory," as introduced by Max Planck in
|
|
||||||
1906. It is a fundamental theory in physics that has revolutionized our understanding of the universe.
|
|
||||||
\`
|
|
||||||
</example>
|
|
||||||
|
|
||||||
Everything below is the actual data you will be working with. Good luck!
|
|
||||||
|
|
||||||
<query>
|
|
||||||
${question}
|
|
||||||
</query>
|
|
||||||
|
|
||||||
<text>
|
|
||||||
${doc.pageContent}
|
|
||||||
</text>
|
|
||||||
|
|
||||||
Make sure to answer the query in the summary.
|
|
||||||
`);
|
|
||||||
|
|
||||||
const document = new Document({
|
|
||||||
pageContent: res.content as string,
|
|
||||||
metadata: {
|
|
||||||
title: doc.metadata.title,
|
|
||||||
url: doc.metadata.url,
|
|
||||||
},
|
|
||||||
});
|
|
||||||
|
|
||||||
docs.push(document);
|
|
||||||
}),
|
|
||||||
);
|
|
||||||
|
|
||||||
return { query: question, docs: docs };
|
|
||||||
} else {
|
|
||||||
question = question.replace(/<think>.*?<\/think>/g, '');
|
|
||||||
|
|
||||||
const res = await searchSearxng(question, {
|
|
||||||
language: 'en',
|
|
||||||
engines: this.config.activeEngines,
|
|
||||||
});
|
|
||||||
|
|
||||||
const documents = res.results.map(
|
|
||||||
(result) =>
|
|
||||||
new Document({
|
|
||||||
pageContent:
|
|
||||||
result.content ||
|
|
||||||
(this.config.activeEngines.includes('youtube')
|
|
||||||
? result.title
|
|
||||||
: '') /* Todo: Implement transcript grabbing using Youtubei (source: https://www.npmjs.com/package/youtubei) */,
|
|
||||||
metadata: {
|
|
||||||
title: result.title,
|
|
||||||
url: result.url,
|
|
||||||
...(result.img_src && { img_src: result.img_src }),
|
|
||||||
},
|
|
||||||
}),
|
|
||||||
);
|
|
||||||
|
|
||||||
return { query: question, docs: documents };
|
|
||||||
}
|
}
|
||||||
}),
|
});
|
||||||
]);
|
|
||||||
|
await Promise.all(
|
||||||
|
docGroups.map(async (doc) => {
|
||||||
|
const res = await llm.invoke(`
|
||||||
|
You are a web search summarizer, tasked with summarizing a piece of text retrieved from a web search. Your job is to summarize the
|
||||||
|
text into a detailed, 2-4 paragraph explanation that captures the main ideas and provides a comprehensive answer to the query.
|
||||||
|
If the query is \"summarize\", you should provide a detailed summary of the text. If the query is a specific question, you should answer it in the summary.
|
||||||
|
|
||||||
|
- **Journalistic tone**: The summary should sound professional and journalistic, not too casual or vague.
|
||||||
|
- **Thorough and detailed**: Ensure that every key point from the text is captured and that the summary directly answers the query.
|
||||||
|
- **Not too lengthy, but detailed**: The summary should be informative but not excessively long. Focus on providing detailed information in a concise format.
|
||||||
|
|
||||||
|
The text will be shared inside the \`text\` XML tag, and the query inside the \`query\` XML tag.
|
||||||
|
|
||||||
|
<example>
|
||||||
|
1. \`<text>
|
||||||
|
Docker is a set of platform-as-a-service products that use OS-level virtualization to deliver software in packages called containers.
|
||||||
|
It was first released in 2013 and is developed by Docker, Inc. Docker is designed to make it easier to create, deploy, and run applications
|
||||||
|
by using containers.
|
||||||
|
</text>
|
||||||
|
|
||||||
|
<query>
|
||||||
|
What is Docker and how does it work?
|
||||||
|
</query>
|
||||||
|
|
||||||
|
Response:
|
||||||
|
Docker is a revolutionary platform-as-a-service product developed by Docker, Inc., that uses container technology to make application
|
||||||
|
deployment more efficient. It allows developers to package their software with all necessary dependencies, making it easier to run in
|
||||||
|
any environment. Released in 2013, Docker has transformed the way applications are built, deployed, and managed.
|
||||||
|
\`
|
||||||
|
2. \`<text>
|
||||||
|
The theory of relativity, or simply relativity, encompasses two interrelated theories of Albert Einstein: special relativity and general
|
||||||
|
relativity. However, the word "relativity" is sometimes used in reference to Galilean invariance. The term "theory of relativity" was based
|
||||||
|
on the expression "relative theory" used by Max Planck in 1906. The theory of relativity usually encompasses two interrelated theories by
|
||||||
|
Albert Einstein: special relativity and general relativity. Special relativity applies to all physical phenomena in the absence of gravity.
|
||||||
|
General relativity explains the law of gravitation and its relation to other forces of nature. It applies to the cosmological and astrophysical
|
||||||
|
realm, including astronomy.
|
||||||
|
</text>
|
||||||
|
|
||||||
|
<query>
|
||||||
|
summarize
|
||||||
|
</query>
|
||||||
|
|
||||||
|
Response:
|
||||||
|
The theory of relativity, developed by Albert Einstein, encompasses two main theories: special relativity and general relativity. Special
|
||||||
|
relativity applies to all physical phenomena in the absence of gravity, while general relativity explains the law of gravitation and its
|
||||||
|
relation to other forces of nature. The theory of relativity is based on the concept of "relative theory," as introduced by Max Planck in
|
||||||
|
1906. It is a fundamental theory in physics that has revolutionized our understanding of the universe.
|
||||||
|
\`
|
||||||
|
</example>
|
||||||
|
|
||||||
|
Everything below is the actual data you will be working with. Good luck!
|
||||||
|
|
||||||
|
<query>
|
||||||
|
${question}
|
||||||
|
</query>
|
||||||
|
|
||||||
|
<text>
|
||||||
|
${doc.pageContent}
|
||||||
|
</text>
|
||||||
|
|
||||||
|
Make sure to answer the query in the summary.
|
||||||
|
`);
|
||||||
|
|
||||||
|
const document = new Document({
|
||||||
|
pageContent: res.content as string,
|
||||||
|
metadata: {
|
||||||
|
title: doc.metadata.title,
|
||||||
|
url: doc.metadata.url,
|
||||||
|
},
|
||||||
|
});
|
||||||
|
|
||||||
|
docs.push(document);
|
||||||
|
}),
|
||||||
|
);
|
||||||
|
|
||||||
|
return { query: question, docs: docs };
|
||||||
|
} else {
|
||||||
|
question = question.replace(/<think>.*?<\/think>/g, '');
|
||||||
|
|
||||||
|
const res = await searchSearxng(question, {
|
||||||
|
language: 'en',
|
||||||
|
engines: this.config.activeEngines,
|
||||||
|
});
|
||||||
|
|
||||||
|
const documents = res.results.map(
|
||||||
|
(result) =>
|
||||||
|
new Document({
|
||||||
|
pageContent:
|
||||||
|
result.content ||
|
||||||
|
(this.config.activeEngines.includes('youtube')
|
||||||
|
? result.title
|
||||||
|
: '') /* Todo: Implement transcript grabbing using Youtubei (source: https://www.npmjs.com/package/youtubei) */,
|
||||||
|
metadata: {
|
||||||
|
title: result.title,
|
||||||
|
url: result.url,
|
||||||
|
...(result.img_src && { img_src: result.img_src }),
|
||||||
|
},
|
||||||
|
}),
|
||||||
|
);
|
||||||
|
|
||||||
|
return { query: question, docs: documents };
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
private async createAnsweringChain(
|
private async performDeepResearch(
|
||||||
|
llm: BaseChatModel,
|
||||||
|
input: SearchInput,
|
||||||
|
emitter: EventEmitter,
|
||||||
|
) {
|
||||||
|
(llm as unknown as ChatOpenAI).temperature = 0;
|
||||||
|
|
||||||
|
const queryGenPrompt = PromptTemplate.fromTemplate(
|
||||||
|
this.config.queryGeneratorPrompt,
|
||||||
|
);
|
||||||
|
|
||||||
|
const formattedChatPrompt = await queryGenPrompt.invoke({
|
||||||
|
chat_history: formatChatHistoryAsString(input.chat_history),
|
||||||
|
query: input.query,
|
||||||
|
});
|
||||||
|
|
||||||
|
let i = 0;
|
||||||
|
let currentQuery = await this.strParser.invoke(
|
||||||
|
await llm.invoke(formattedChatPrompt),
|
||||||
|
);
|
||||||
|
const originalQuery = currentQuery;
|
||||||
|
const pastQueries: string[] = [];
|
||||||
|
const results: SearxngSearchResult[] = [];
|
||||||
|
|
||||||
|
while (i < 10) {
|
||||||
|
const res = await searchSearxng(currentQuery, {
|
||||||
|
language: 'en',
|
||||||
|
engines: this.config.activeEngines,
|
||||||
|
});
|
||||||
|
|
||||||
|
results.push(...res.results);
|
||||||
|
|
||||||
|
const reflectorPrompt = PromptTemplate.fromTemplate(`
|
||||||
|
You are an LLM that is tasked with reflecting on the results of a search query.
|
||||||
|
|
||||||
|
## Goal
|
||||||
|
You will be given question of the user, a list of search results collected from the web to answer that question along with past queries made to collect those results. You have to analyze the results based on user's question and do the following:
|
||||||
|
|
||||||
|
1. Identify unexplored areas or areas with less detailed information in the results and generate a new query that focuses on those areas. The new queries should be more specific and a similar query shall not exist in past queries which will be provided to you. Make sure to include keywords that you're looking for because the new query will be used to search the web for information on that topic. Make sure the query contains only 1 question and is not too long to ensure it is Search Engine friendly.
|
||||||
|
2. You'll have to generate a description explaining what you are doing for example "I am looking for more information about X" or "Understanding how X works" etc. The description should be short and concise.
|
||||||
|
|
||||||
|
## Output format
|
||||||
|
|
||||||
|
You need to output in XML format and do not generate any other text. ake sure to not include any other text in the output or start a conversation in the output. The output should be in the following format:
|
||||||
|
|
||||||
|
<query>(query)</query>
|
||||||
|
<description>(description)</description>
|
||||||
|
|
||||||
|
## Example
|
||||||
|
Say the user asked "What is Llama 4 by Meta?" and let search results contain information about Llama 4 being an LLM and very little information about its features. You can output:
|
||||||
|
|
||||||
|
<query>Llama 4 features</query> // Generate queries that capture keywords for SEO and not making words like "How", "What", "Why" etc.
|
||||||
|
<description>Looking for new features in Llama 4</description>
|
||||||
|
|
||||||
|
or something like
|
||||||
|
|
||||||
|
<query>How is Llama 4 better than its previous generation models</query>
|
||||||
|
<description>Understanding the difference between Llama 4 and previous generation models.</description>
|
||||||
|
|
||||||
|
## BELOW IS THE ACTUAL DATA YOU WILL BE WORKING WITH. IT IS NOT A PART OF EXAMPLES. YOU'LL HAVE TO GENERATE YOUR ANSWER BASED ON THIS DATA.
|
||||||
|
<user_question>\n{question}\n</user_question>
|
||||||
|
<search_results>\n{search_results}\n</search_results>
|
||||||
|
<past_queries>\n{past_queries}\n</past_queries>
|
||||||
|
|
||||||
|
Response:
|
||||||
|
`);
|
||||||
|
|
||||||
|
const formattedReflectorPrompt = await reflectorPrompt.invoke({
|
||||||
|
question: originalQuery,
|
||||||
|
search_results: results
|
||||||
|
.map(
|
||||||
|
(result) => `<result>${result.title} - ${result.content}</result>`,
|
||||||
|
)
|
||||||
|
.join('\n'),
|
||||||
|
past_queries: pastQueries.map((q) => `<query>${q}</query>`).join('\n'),
|
||||||
|
});
|
||||||
|
|
||||||
|
const feedback = await this.strParser.invoke(
|
||||||
|
await llm.invoke(formattedReflectorPrompt),
|
||||||
|
);
|
||||||
|
|
||||||
|
console.log(`Feedback: ${feedback}`);
|
||||||
|
|
||||||
|
const queryOutputParser = new LineOutputParser({
|
||||||
|
key: 'query',
|
||||||
|
});
|
||||||
|
|
||||||
|
const descriptionOutputParser = new LineOutputParser({
|
||||||
|
key: 'description',
|
||||||
|
});
|
||||||
|
|
||||||
|
currentQuery = await queryOutputParser.parse(feedback);
|
||||||
|
const description = await descriptionOutputParser.parse(feedback);
|
||||||
|
console.log(`Query: ${currentQuery}`);
|
||||||
|
console.log(`Description: ${description}`);
|
||||||
|
|
||||||
|
pastQueries.push(currentQuery);
|
||||||
|
++i;
|
||||||
|
}
|
||||||
|
|
||||||
|
const uniqueResults: SearxngSearchResult[] = [];
|
||||||
|
|
||||||
|
results.forEach((res) => {
|
||||||
|
const exists = uniqueResults.find((r) => r.url === res.url);
|
||||||
|
|
||||||
|
if (!exists) {
|
||||||
|
uniqueResults.push(res);
|
||||||
|
} else {
|
||||||
|
exists.content += `\n\n` + res.content;
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
const documents = uniqueResults /* .slice(0, 50) */
|
||||||
|
.map(
|
||||||
|
(r) =>
|
||||||
|
new Document({
|
||||||
|
pageContent: r.content || '',
|
||||||
|
metadata: {
|
||||||
|
title: r.title,
|
||||||
|
url: r.url,
|
||||||
|
...(r.img_src && { img_src: r.img_src }),
|
||||||
|
},
|
||||||
|
}),
|
||||||
|
);
|
||||||
|
|
||||||
|
return documents;
|
||||||
|
}
|
||||||
|
|
||||||
|
private async streamAnswer(
|
||||||
llm: BaseChatModel,
|
llm: BaseChatModel,
|
||||||
fileIds: string[],
|
fileIds: string[],
|
||||||
embeddings: Embeddings,
|
embeddings: Embeddings,
|
||||||
optimizationMode: 'speed' | 'balanced' | 'quality',
|
optimizationMode: 'speed' | 'balanced' | 'quality',
|
||||||
systemInstructions: string,
|
systemInstructions: string,
|
||||||
|
input: SearchInput,
|
||||||
|
emitter: EventEmitter,
|
||||||
) {
|
) {
|
||||||
return RunnableSequence.from([
|
const chatPrompt = ChatPromptTemplate.fromMessages([
|
||||||
RunnableMap.from({
|
['system', this.config.responsePrompt],
|
||||||
systemInstructions: () => systemInstructions,
|
new MessagesPlaceholder('chat_history'),
|
||||||
query: (input: BasicChainInput) => input.query,
|
['user', '{query}'],
|
||||||
chat_history: (input: BasicChainInput) => input.chat_history,
|
]);
|
||||||
date: () => new Date().toISOString(),
|
|
||||||
context: RunnableLambda.from(async (input: BasicChainInput) => {
|
|
||||||
const processedHistory = formatChatHistoryAsString(
|
|
||||||
input.chat_history,
|
|
||||||
);
|
|
||||||
|
|
||||||
let docs: Document[] | null = null;
|
let context = '';
|
||||||
let query = input.query;
|
|
||||||
|
|
||||||
if (this.config.searchWeb) {
|
if (optimizationMode === 'speed' || optimizationMode === 'balanced') {
|
||||||
const searchRetrieverChain =
|
let docs: Document[] | null = null;
|
||||||
await this.createSearchRetrieverChain(llm);
|
let query = input.query;
|
||||||
|
|
||||||
const searchRetrieverResult = await searchRetrieverChain.invoke({
|
if (this.config.searchWeb) {
|
||||||
chat_history: processedHistory,
|
const searchResults = await this.searchSources(llm, input, emitter);
|
||||||
query,
|
|
||||||
});
|
|
||||||
|
|
||||||
query = searchRetrieverResult.query;
|
query = searchResults.query;
|
||||||
docs = searchRetrieverResult.docs;
|
docs = searchResults.docs;
|
||||||
}
|
}
|
||||||
|
|
||||||
const sortedDocs = await this.rerankDocs(
|
const sortedDocs = await this.rerankDocs(
|
||||||
query,
|
query,
|
||||||
docs ?? [],
|
docs ?? [],
|
||||||
fileIds,
|
fileIds,
|
||||||
embeddings,
|
embeddings,
|
||||||
optimizationMode,
|
optimizationMode,
|
||||||
);
|
);
|
||||||
|
|
||||||
return sortedDocs;
|
emitter.emit(
|
||||||
})
|
'data',
|
||||||
.withConfig({
|
JSON.stringify({ type: 'sources', data: sortedDocs }),
|
||||||
runName: 'FinalSourceRetriever',
|
);
|
||||||
})
|
|
||||||
.pipe(this.processDocs),
|
context = this.processDocs(sortedDocs);
|
||||||
}),
|
} else if (optimizationMode === 'quality') {
|
||||||
ChatPromptTemplate.fromMessages([
|
let docs: Document[] = [];
|
||||||
['system', this.config.responsePrompt],
|
|
||||||
new MessagesPlaceholder('chat_history'),
|
docs = await this.performDeepResearch(llm, input, emitter);
|
||||||
['user', '{query}'],
|
|
||||||
]),
|
emitter.emit('data', JSON.stringify({ type: 'sources', data: docs }));
|
||||||
llm,
|
|
||||||
this.strParser,
|
context = this.processDocs(docs);
|
||||||
]).withConfig({
|
}
|
||||||
runName: 'FinalResponseGenerator',
|
|
||||||
|
const formattedChatPrompt = await chatPrompt.invoke({
|
||||||
|
query: input.query,
|
||||||
|
chat_history: input.chat_history,
|
||||||
|
date: new Date().toISOString(),
|
||||||
|
context: context,
|
||||||
|
systemInstructions: systemInstructions,
|
||||||
});
|
});
|
||||||
|
|
||||||
|
const llmRes = await llm.stream(formattedChatPrompt);
|
||||||
|
|
||||||
|
for await (const data of llmRes) {
|
||||||
|
const messageStr = await this.strParser.invoke(data);
|
||||||
|
|
||||||
|
emitter.emit(
|
||||||
|
'data',
|
||||||
|
JSON.stringify({ type: 'response', data: messageStr }),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
emitter.emit('end');
|
||||||
}
|
}
|
||||||
|
|
||||||
private async rerankDocs(
|
private async rerankDocs(
|
||||||
@ -426,44 +570,13 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||||||
return docs
|
return docs
|
||||||
.map(
|
.map(
|
||||||
(_, index) =>
|
(_, index) =>
|
||||||
`${index + 1}. ${docs[index].metadata.title} ${docs[index].pageContent}`,
|
`${index + 1}. ${docs[index].metadata.title} ${
|
||||||
|
docs[index].pageContent
|
||||||
|
}`,
|
||||||
)
|
)
|
||||||
.join('\n');
|
.join('\n');
|
||||||
}
|
}
|
||||||
|
|
||||||
private async handleStream(
|
|
||||||
stream: AsyncGenerator<StreamEvent, any, any>,
|
|
||||||
emitter: eventEmitter,
|
|
||||||
) {
|
|
||||||
for await (const event of stream) {
|
|
||||||
if (
|
|
||||||
event.event === 'on_chain_end' &&
|
|
||||||
event.name === 'FinalSourceRetriever'
|
|
||||||
) {
|
|
||||||
``;
|
|
||||||
emitter.emit(
|
|
||||||
'data',
|
|
||||||
JSON.stringify({ type: 'sources', data: event.data.output }),
|
|
||||||
);
|
|
||||||
}
|
|
||||||
if (
|
|
||||||
event.event === 'on_chain_stream' &&
|
|
||||||
event.name === 'FinalResponseGenerator'
|
|
||||||
) {
|
|
||||||
emitter.emit(
|
|
||||||
'data',
|
|
||||||
JSON.stringify({ type: 'response', data: event.data.chunk }),
|
|
||||||
);
|
|
||||||
}
|
|
||||||
if (
|
|
||||||
event.event === 'on_chain_end' &&
|
|
||||||
event.name === 'FinalResponseGenerator'
|
|
||||||
) {
|
|
||||||
emitter.emit('end');
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
async searchAndAnswer(
|
async searchAndAnswer(
|
||||||
message: string,
|
message: string,
|
||||||
history: BaseMessage[],
|
history: BaseMessage[],
|
||||||
@ -475,26 +588,19 @@ class MetaSearchAgent implements MetaSearchAgentType {
|
|||||||
) {
|
) {
|
||||||
const emitter = new eventEmitter();
|
const emitter = new eventEmitter();
|
||||||
|
|
||||||
const answeringChain = await this.createAnsweringChain(
|
this.streamAnswer(
|
||||||
llm,
|
llm,
|
||||||
fileIds,
|
fileIds,
|
||||||
embeddings,
|
embeddings,
|
||||||
optimizationMode,
|
optimizationMode,
|
||||||
systemInstructions,
|
systemInstructions,
|
||||||
);
|
|
||||||
|
|
||||||
const stream = answeringChain.streamEvents(
|
|
||||||
{
|
{
|
||||||
chat_history: history,
|
chat_history: history,
|
||||||
query: message,
|
query: message,
|
||||||
},
|
},
|
||||||
{
|
emitter,
|
||||||
version: 'v1',
|
|
||||||
},
|
|
||||||
);
|
);
|
||||||
|
|
||||||
this.handleStream(stream, emitter);
|
|
||||||
|
|
||||||
return emitter;
|
return emitter;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -8,7 +8,7 @@ interface SearxngSearchOptions {
|
|||||||
pageno?: number;
|
pageno?: number;
|
||||||
}
|
}
|
||||||
|
|
||||||
interface SearxngSearchResult {
|
export interface SearxngSearchResult {
|
||||||
title: string;
|
title: string;
|
||||||
url: string;
|
url: string;
|
||||||
img_src?: string;
|
img_src?: string;
|
||||||
|
Reference in New Issue
Block a user