Compare commits

..

8 Commits

Author SHA1 Message Date
ItzCrazyKns
a401e67d87 Merge pull request #666 from AnotiaWang/admin-password
feat: sync changes from master branch
2025-03-08 20:08:59 +05:30
AnotiaWang
d95849e538 fix: missing MODEL_NAME in config sample 2025-03-07 23:54:53 +08:00
AnotiaWang
ec5e5b3893 Merge branch 'master' into admin-password 2025-03-07 23:54:47 +08:00
ItzCrazyKns
639fbd7a15 feat(chat-window): lint & beautify 2024-08-02 19:37:20 +05:30
ItzCrazyKns
a88104434d feat(copilot): respect preferences 2024-08-02 19:36:50 +05:30
ItzCrazyKns
a1e0d368c6 feat(settings): add preferences 2024-08-02 19:36:39 +05:30
ItzCrazyKns
5779701b7d feat(sidebar): respect preferences 2024-08-02 19:35:57 +05:30
ItzCrazyKns
fdfe8d1f41 feat(app): add password auth for settings 2024-08-02 19:32:38 +05:30
117 changed files with 7544 additions and 4880 deletions

6
.gitignore vendored
View File

@@ -4,9 +4,9 @@ npm-debug.log
yarn-error.log yarn-error.log
# Build output # Build output
.next/ /.next/
out/ /out/
dist/ /dist/
# IDE/Editor specific # IDE/Editor specific
.vscode/ .vscode/

View File

@@ -6,6 +6,7 @@ const config = {
endOfLine: 'auto', endOfLine: 'auto',
singleQuote: true, singleQuote: true,
tabWidth: 2, tabWidth: 2,
semi: true,
}; };
module.exports = config; module.exports = config;

View File

@@ -1,20 +1,13 @@
FROM node:20.18.0-alpine FROM node:20.18.0-alpine
ARG NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
ARG NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
ENV NEXT_PUBLIC_WS_URL=${NEXT_PUBLIC_WS_URL}
ENV NEXT_PUBLIC_API_URL=${NEXT_PUBLIC_API_URL}
WORKDIR /home/perplexica WORKDIR /home/perplexica
COPY src /home/perplexica/src COPY ui /home/perplexica/
COPY public /home/perplexica/public
COPY package.json /home/perplexica/package.json
COPY yarn.lock /home/perplexica/yarn.lock
COPY tsconfig.json /home/perplexica/tsconfig.json
COPY next.config.mjs /home/perplexica/next.config.mjs
COPY next-env.d.ts /home/perplexica/next-env.d.ts
COPY postcss.config.js /home/perplexica/postcss.config.js
COPY drizzle.config.ts /home/perplexica/drizzle.config.ts
COPY tailwind.config.ts /home/perplexica/tailwind.config.ts
RUN mkdir /home/perplexica/data
RUN mkdir /home/perplexica/uploads
RUN yarn install --frozen-lockfile RUN yarn install --frozen-lockfile
RUN yarn build RUN yarn build

17
backend.dockerfile Normal file
View File

@@ -0,0 +1,17 @@
FROM node:18-slim
WORKDIR /home/perplexica
COPY src /home/perplexica/src
COPY tsconfig.json /home/perplexica/
COPY drizzle.config.ts /home/perplexica/
COPY package.json /home/perplexica/
COPY yarn.lock /home/perplexica/
RUN mkdir /home/perplexica/data
RUN mkdir /home/perplexica/uploads
RUN yarn install --frozen-lockfile --network-timeout 600000
RUN yarn build
CMD ["yarn", "start"]

View File

@@ -9,20 +9,41 @@ services:
- perplexica-network - perplexica-network
restart: unless-stopped restart: unless-stopped
app: perplexica-backend:
build: build:
context: . context: .
dockerfile: app.dockerfile dockerfile: backend.dockerfile
image: itzcrazykns1337/perplexica-backend:main
environment: environment:
- SEARXNG_API_URL=http://searxng:8080 - SEARXNG_API_URL=http://searxng:8080
depends_on:
- searxng
ports: ports:
- 3000:3000 - 3001:3001
networks:
- perplexica-network
volumes: volumes:
- backend-dbstore:/home/perplexica/data - backend-dbstore:/home/perplexica/data
- uploads:/home/perplexica/uploads - uploads:/home/perplexica/uploads
- ./config.toml:/home/perplexica/config.toml - ./config.toml:/home/perplexica/config.toml
extra_hosts:
- 'host.docker.internal:host-gateway'
networks:
- perplexica-network
restart: unless-stopped
perplexica-frontend:
build:
context: .
dockerfile: app.dockerfile
args:
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
image: itzcrazykns1337/perplexica-frontend:main
depends_on:
- perplexica-backend
ports:
- 3000:3000
networks:
- perplexica-network
restart: unless-stopped restart: unless-stopped
networks: networks:

View File

@@ -2,7 +2,7 @@ import { defineConfig } from 'drizzle-kit';
export default defineConfig({ export default defineConfig({
dialect: 'sqlite', dialect: 'sqlite',
schema: './src/lib/db/schema.ts', schema: './src/db/schema.ts',
out: './drizzle', out: './drizzle',
dbCredentials: { dbCredentials: {
url: './data/db.sqlite', url: './data/db.sqlite',

5
next-env.d.ts vendored
View File

@@ -1,5 +0,0 @@
/// <reference types="next" />
/// <reference types="next/image-types/global" />
// NOTE: This file should not be edited
// see https://nextjs.org/docs/app/api-reference/config/typescript for more information.

View File

@@ -1,62 +1,53 @@
{ {
"name": "perplexica-frontend", "name": "perplexica-backend",
"version": "1.10.0-rc3", "version": "1.10.0-rc3",
"license": "MIT", "license": "MIT",
"author": "ItzCrazyKns", "author": "ItzCrazyKns",
"scripts": { "scripts": {
"dev": "next dev", "start": "npm run db:push && node dist/app.js",
"build": "next build", "build": "tsc",
"start": "npm run db:push && next start", "dev": "nodemon --ignore uploads/ src/app.ts ",
"lint": "next lint", "db:push": "drizzle-kit push sqlite",
"format:write": "prettier . --write", "format": "prettier . --check",
"db:push": "drizzle-kit push" "format:write": "prettier . --write"
},
"dependencies": {
"@headlessui/react": "^2.2.0",
"@iarna/toml": "^2.2.5",
"@icons-pack/react-simple-icons": "^12.3.0",
"@langchain/community": "^0.3.36",
"@langchain/core": "^0.3.42",
"@langchain/openai": "^0.0.25",
"@langchain/textsplitters": "^0.1.0",
"@tailwindcss/typography": "^0.5.12",
"axios": "^1.8.3",
"better-sqlite3": "^11.9.1",
"clsx": "^2.1.0",
"compute-cosine-similarity": "^1.1.0",
"compute-dot": "^1.1.0",
"drizzle-orm": "^0.40.1",
"html-to-text": "^9.0.5",
"langchain": "^0.1.30",
"lucide-react": "^0.363.0",
"markdown-to-jsx": "^7.7.2",
"next": "^15.2.2",
"next-themes": "^0.3.0",
"pdf-parse": "^1.1.1",
"react": "^18",
"react-dom": "^18",
"react-text-to-speech": "^0.14.5",
"react-textarea-autosize": "^8.5.3",
"sonner": "^1.4.41",
"tailwind-merge": "^2.2.2",
"winston": "^3.17.0",
"yet-another-react-lightbox": "^3.17.2",
"zod": "^3.22.4"
}, },
"devDependencies": { "devDependencies": {
"@types/better-sqlite3": "^7.6.12", "@types/better-sqlite3": "^7.6.10",
"@types/cors": "^2.8.17",
"@types/express": "^4.17.21",
"@types/html-to-text": "^9.0.4", "@types/html-to-text": "^9.0.4",
"@types/node": "^20", "@types/multer": "^1.4.12",
"@types/pdf-parse": "^1.1.4", "@types/pdf-parse": "^1.1.4",
"@types/react": "^18", "@types/readable-stream": "^4.0.11",
"@types/react-dom": "^18", "@types/ws": "^8.5.12",
"autoprefixer": "^10.0.1", "drizzle-kit": "^0.22.7",
"drizzle-kit": "^0.30.5", "nodemon": "^3.1.0",
"eslint": "^8",
"eslint-config-next": "14.1.4",
"postcss": "^8",
"prettier": "^3.2.5", "prettier": "^3.2.5",
"tailwindcss": "^3.3.0", "ts-node": "^10.9.2",
"typescript": "^5" "typescript": "^5.4.3"
},
"dependencies": {
"@iarna/toml": "^2.2.5",
"@langchain/anthropic": "^0.2.3",
"@langchain/community": "^0.2.16",
"@langchain/openai": "^0.0.25",
"@langchain/google-genai": "^0.0.23",
"@xenova/transformers": "^2.17.1",
"axios": "^1.6.8",
"better-sqlite3": "^11.0.0",
"compute-cosine-similarity": "^1.1.0",
"compute-dot": "^1.1.0",
"cors": "^2.8.5",
"dotenv": "^16.4.5",
"drizzle-orm": "^0.31.2",
"express": "^4.19.2",
"html-to-text": "^9.0.5",
"langchain": "^0.1.30",
"mammoth": "^1.8.0",
"multer": "^1.4.5-lts.1",
"pdf-parse": "^1.1.1",
"winston": "^3.13.0",
"ws": "^8.17.1",
"zod": "^3.22.4"
} }
} }

View File

@@ -1,6 +1,10 @@
[GENERAL] [GENERAL]
PORT = 3001 # Port to run the server on PORT = 3001 # Port to run the server on
SIMILARITY_MEASURE = "cosine" # "cosine" or "dot" SIMILARITY_MEASURE = "cosine" # "cosine" or "dot"
CONFIG_PASSWORD = "lorem_ipsum" # Password to access config
DISCOVER_ENABLED = true
LIBRARY_ENABLED = true
COPILOT_ENABLED = true
KEEP_ALIVE = "5m" # How long to keep Ollama models loaded into memory. (Instead of using -1 use "-1m") KEEP_ALIVE = "5m" # How long to keep Ollama models loaded into memory. (Instead of using -1 use "-1m")
[MODELS.OPENAI] [MODELS.OPENAI]
@@ -24,4 +28,4 @@ MODEL_NAME = ""
API_URL = "" # Ollama API URL - http://host.docker.internal:11434 API_URL = "" # Ollama API URL - http://host.docker.internal:11434
[API_ENDPOINTS] [API_ENDPOINTS]
SEARXNG = "" # SearxNG API URL - http://localhost:32768 SEARXNG = "http://localhost:32768" # SearxNG API URL

38
src/app.ts Normal file
View File

@@ -0,0 +1,38 @@
import { startWebSocketServer } from './websocket';
import express from 'express';
import cors from 'cors';
import http from 'http';
import routes from './routes';
import { getPort } from './config';
import logger from './utils/logger';
const port = getPort();
const app = express();
const server = http.createServer(app);
const corsOptions = {
origin: '*',
};
app.use(cors(corsOptions));
app.use(express.json());
app.use('/api', routes);
app.get('/api', (_, res) => {
res.status(200).json({ status: 'ok' });
});
server.listen(port, () => {
logger.info(`Server is running on port ${port}`);
});
startWebSocketServer(server);
process.on('uncaughtException', (err, origin) => {
logger.error(`Uncaught Exception at ${origin}: ${err}`);
});
process.on('unhandledRejection', (reason, promise) => {
logger.error(`Unhandled Rejection at: ${promise}, reason: ${reason}`);
});

View File

@@ -1,360 +0,0 @@
import prompts from '@/lib/prompts';
import MetaSearchAgent from '@/lib/search/metaSearchAgent';
import crypto from 'crypto';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
import { EventEmitter } from 'stream';
import {
chatModelProviders,
embeddingModelProviders,
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '@/lib/providers';
import db from '@/lib/db';
import { chats, messages as messagesSchema } from '@/lib/db/schema';
import { and, eq, gt } from 'drizzle-orm';
import { getFileDetails } from '@/lib/utils/files';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { ChatOpenAI } from '@langchain/openai';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '@/lib/config';
export const runtime = 'nodejs';
export const dynamic = 'force-dynamic';
const searchHandlers: Record<string, MetaSearchAgent> = {
webSearch: new MetaSearchAgent({
activeEngines: [],
queryGeneratorPrompt: prompts.webSearchRetrieverPrompt,
responsePrompt: prompts.webSearchResponsePrompt,
rerank: true,
rerankThreshold: 0.3,
searchWeb: true,
summarizer: true,
}),
academicSearch: new MetaSearchAgent({
activeEngines: ['arxiv', 'google scholar', 'pubmed'],
queryGeneratorPrompt: prompts.academicSearchRetrieverPrompt,
responsePrompt: prompts.academicSearchResponsePrompt,
rerank: true,
rerankThreshold: 0,
searchWeb: true,
summarizer: false,
}),
writingAssistant: new MetaSearchAgent({
activeEngines: [],
queryGeneratorPrompt: '',
responsePrompt: prompts.writingAssistantPrompt,
rerank: true,
rerankThreshold: 0,
searchWeb: false,
summarizer: false,
}),
wolframAlphaSearch: new MetaSearchAgent({
activeEngines: ['wolframalpha'],
queryGeneratorPrompt: prompts.wolframAlphaSearchRetrieverPrompt,
responsePrompt: prompts.wolframAlphaSearchResponsePrompt,
rerank: false,
rerankThreshold: 0,
searchWeb: true,
summarizer: false,
}),
youtubeSearch: new MetaSearchAgent({
activeEngines: ['youtube'],
queryGeneratorPrompt: prompts.youtubeSearchRetrieverPrompt,
responsePrompt: prompts.youtubeSearchResponsePrompt,
rerank: true,
rerankThreshold: 0.3,
searchWeb: true,
summarizer: false,
}),
redditSearch: new MetaSearchAgent({
activeEngines: ['reddit'],
queryGeneratorPrompt: prompts.redditSearchRetrieverPrompt,
responsePrompt: prompts.redditSearchResponsePrompt,
rerank: true,
rerankThreshold: 0.3,
searchWeb: true,
summarizer: false,
}),
};
type Message = {
messageId: string;
chatId: string;
content: string;
};
type ChatModel = {
provider: string;
name: string;
};
type EmbeddingModel = {
provider: string;
name: string;
};
type Body = {
message: Message;
optimizationMode: 'speed' | 'balanced' | 'quality';
focusMode: string;
history: Array<[string, string]>;
files: Array<string>;
chatModel: ChatModel;
embeddingModel: EmbeddingModel;
};
const handleEmitterEvents = async (
stream: EventEmitter,
writer: WritableStreamDefaultWriter,
encoder: TextEncoder,
aiMessageId: string,
chatId: string,
) => {
let recievedMessage = '';
let sources: any[] = [];
stream.on('data', (data) => {
const parsedData = JSON.parse(data);
if (parsedData.type === 'response') {
writer.write(
encoder.encode(
JSON.stringify({
type: 'message',
data: parsedData.data,
messageId: aiMessageId,
}) + '\n',
),
);
recievedMessage += parsedData.data;
} else if (parsedData.type === 'sources') {
writer.write(
encoder.encode(
JSON.stringify({
type: 'sources',
data: parsedData.data,
messageId: aiMessageId,
}) + '\n',
),
);
sources = parsedData.data;
}
});
stream.on('end', () => {
writer.write(
encoder.encode(
JSON.stringify({
type: 'messageEnd',
messageId: aiMessageId,
}) + '\n',
),
);
writer.close();
db.insert(messagesSchema)
.values({
content: recievedMessage,
chatId: chatId,
messageId: aiMessageId,
role: 'assistant',
metadata: JSON.stringify({
createdAt: new Date(),
...(sources && sources.length > 0 && { sources }),
}),
})
.execute();
});
stream.on('error', (data) => {
const parsedData = JSON.parse(data);
writer.write(
encoder.encode(
JSON.stringify({
type: 'error',
data: parsedData.data,
}),
),
);
writer.close();
});
};
const handleHistorySave = async (
message: Message,
humanMessageId: string,
focusMode: string,
files: string[],
) => {
const chat = await db.query.chats.findFirst({
where: eq(chats.id, message.chatId),
});
if (!chat) {
await db
.insert(chats)
.values({
id: message.chatId,
title: message.content,
createdAt: new Date().toString(),
focusMode: focusMode,
files: files.map(getFileDetails),
})
.execute();
}
const messageExists = await db.query.messages.findFirst({
where: eq(messagesSchema.messageId, humanMessageId),
});
if (!messageExists) {
await db
.insert(messagesSchema)
.values({
content: message.content,
chatId: message.chatId,
messageId: humanMessageId,
role: 'user',
metadata: JSON.stringify({
createdAt: new Date(),
}),
})
.execute();
} else {
await db
.delete(messagesSchema)
.where(
and(
gt(messagesSchema.id, messageExists.id),
eq(messagesSchema.chatId, message.chatId),
),
)
.execute();
}
};
export const POST = async (req: Request) => {
try {
const body = (await req.json()) as Body;
const { message } = body;
if (message.content === '') {
return Response.json(
{
message: 'Please provide a message to process',
},
{ status: 400 },
);
}
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
const chatModelProvider =
chatModelProviders[
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
];
const chatModel =
chatModelProvider[
body.chatModel?.name || Object.keys(chatModelProvider)[0]
];
const embeddingProvider =
embeddingModelProviders[
body.embeddingModel?.provider || Object.keys(embeddingModelProviders)[0]
];
const embeddingModel =
embeddingProvider[
body.embeddingModel?.name || Object.keys(embeddingProvider)[0]
];
let llm: BaseChatModel | undefined;
let embedding = embeddingModel.model;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
openAIApiKey: getCustomOpenaiApiKey(),
modelName: getCustomOpenaiModelName(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (chatModelProvider && chatModel) {
llm = chatModel.model;
}
if (!llm) {
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
}
if (!embedding) {
return Response.json(
{ error: 'Invalid embedding model' },
{ status: 400 },
);
}
const humanMessageId =
message.messageId ?? crypto.randomBytes(7).toString('hex');
const aiMessageId = crypto.randomBytes(7).toString('hex');
const history: BaseMessage[] = body.history.map((msg) => {
if (msg[0] === 'human') {
return new HumanMessage({
content: msg[1],
});
} else {
return new AIMessage({
content: msg[1],
});
}
});
const handler = searchHandlers[body.focusMode];
if (!handler) {
return Response.json(
{
message: 'Invalid focus mode',
},
{ status: 400 },
);
}
const stream = await handler.searchAndAnswer(
message.content,
history,
llm,
embedding,
body.optimizationMode,
body.files,
);
const responseStream = new TransformStream();
const writer = responseStream.writable.getWriter();
const encoder = new TextEncoder();
handleEmitterEvents(stream, writer, encoder, aiMessageId, message.chatId);
handleHistorySave(message, humanMessageId, body.focusMode, body.files);
return new Response(responseStream.readable, {
headers: {
'Content-Type': 'text/event-stream',
Connection: 'keep-alive',
'Cache-Control': 'no-cache, no-transform',
},
});
} catch (err) {
console.error('An error ocurred while processing chat request:', err);
return Response.json(
{ message: 'An error ocurred while processing chat request' },
{ status: 500 },
);
}
};

View File

@@ -1,69 +0,0 @@
import db from '@/lib/db';
import { chats, messages } from '@/lib/db/schema';
import { eq } from 'drizzle-orm';
export const GET = async (
req: Request,
{ params }: { params: Promise<{ id: string }> },
) => {
try {
const { id } = await params;
const chatExists = await db.query.chats.findFirst({
where: eq(chats.id, id),
});
if (!chatExists) {
return Response.json({ message: 'Chat not found' }, { status: 404 });
}
const chatMessages = await db.query.messages.findMany({
where: eq(messages.chatId, id),
});
return Response.json(
{
chat: chatExists,
messages: chatMessages,
},
{ status: 200 },
);
} catch (err) {
console.error('Error in getting chat by id: ', err);
return Response.json(
{ message: 'An error has occurred.' },
{ status: 500 },
);
}
};
export const DELETE = async (
req: Request,
{ params }: { params: Promise<{ id: string }> },
) => {
try {
const { id } = await params;
const chatExists = await db.query.chats.findFirst({
where: eq(chats.id, id),
});
if (!chatExists) {
return Response.json({ message: 'Chat not found' }, { status: 404 });
}
await db.delete(chats).where(eq(chats.id, id)).execute();
await db.delete(messages).where(eq(messages.chatId, id)).execute();
return Response.json(
{ message: 'Chat deleted successfully' },
{ status: 200 },
);
} catch (err) {
console.error('Error in deleting chat by id: ', err);
return Response.json(
{ message: 'An error has occurred.' },
{ status: 500 },
);
}
};

View File

@@ -1,15 +0,0 @@
import db from '@/lib/db';
export const GET = async (req: Request) => {
try {
let chats = await db.query.chats.findMany();
chats = chats.reverse();
return Response.json({ chats: chats }, { status: 200 });
} catch (err) {
console.error('Error in getting chats: ', err);
return Response.json(
{ message: 'An error has occurred.' },
{ status: 500 },
);
}
};

View File

@@ -1,109 +0,0 @@
import {
getAnthropicApiKey,
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
getGeminiApiKey,
getGroqApiKey,
getOllamaApiEndpoint,
getOpenaiApiKey,
updateConfig,
} from '@/lib/config';
import {
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '@/lib/providers';
export const GET = async (req: Request) => {
try {
const config: Record<string, any> = {};
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
config['chatModelProviders'] = {};
config['embeddingModelProviders'] = {};
for (const provider in chatModelProviders) {
config['chatModelProviders'][provider] = Object.keys(
chatModelProviders[provider],
).map((model) => {
return {
name: model,
displayName: chatModelProviders[provider][model].displayName,
};
});
}
for (const provider in embeddingModelProviders) {
config['embeddingModelProviders'][provider] = Object.keys(
embeddingModelProviders[provider],
).map((model) => {
return {
name: model,
displayName: embeddingModelProviders[provider][model].displayName,
};
});
}
config['openaiApiKey'] = getOpenaiApiKey();
config['ollamaApiUrl'] = getOllamaApiEndpoint();
config['anthropicApiKey'] = getAnthropicApiKey();
config['groqApiKey'] = getGroqApiKey();
config['geminiApiKey'] = getGeminiApiKey();
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
config['customOpenaiModelName'] = getCustomOpenaiModelName();
return Response.json({ ...config }, { status: 200 });
} catch (err) {
console.error('An error ocurred while getting config:', err);
return Response.json(
{ message: 'An error ocurred while getting config' },
{ status: 500 },
);
}
};
export const POST = async (req: Request) => {
try {
const config = await req.json();
const updatedConfig = {
MODELS: {
OPENAI: {
API_KEY: config.openaiApiKey,
},
GROQ: {
API_KEY: config.groqApiKey,
},
ANTHROPIC: {
API_KEY: config.anthropicApiKey,
},
GEMINI: {
API_KEY: config.geminiApiKey,
},
OLLAMA: {
API_URL: config.ollamaApiUrl,
},
CUSTOM_OPENAI: {
API_URL: config.customOpenaiApiUrl,
API_KEY: config.customOpenaiApiKey,
MODEL_NAME: config.customOpenaiModelName,
},
},
};
updateConfig(updatedConfig);
return Response.json({ message: 'Config updated' }, { status: 200 });
} catch (err) {
console.error('An error ocurred while updating config:', err);
return Response.json(
{ message: 'An error ocurred while updating config' },
{ status: 500 },
);
}
};

View File

@@ -1,61 +0,0 @@
import { searchSearxng } from '@/lib/searxng';
const articleWebsites = [
'yahoo.com',
'www.exchangewire.com',
'businessinsider.com',
/* 'wired.com',
'mashable.com',
'theverge.com',
'gizmodo.com',
'cnet.com',
'venturebeat.com', */
];
const topics = ['AI', 'tech']; /* TODO: Add UI to customize this */
export const GET = async (req: Request) => {
try {
const data = (
await Promise.all([
...new Array(articleWebsites.length * topics.length)
.fill(0)
.map(async (_, i) => {
return (
await searchSearxng(
`site:${articleWebsites[i % articleWebsites.length]} ${
topics[i % topics.length]
}`,
{
engines: ['bing news'],
pageno: 1,
},
)
).results;
}),
])
)
.map((result) => result)
.flat()
.sort(() => Math.random() - 0.5);
return Response.json(
{
blogs: data,
},
{
status: 200,
},
);
} catch (err) {
console.error(`An error ocurred in discover route: ${err}`);
return Response.json(
{
message: 'An error has occurred',
},
{
status: 500,
},
);
}
};

View File

@@ -1,83 +0,0 @@
import handleImageSearch from '@/lib/chains/imageSearchAgent';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '@/lib/config';
import { getAvailableChatModelProviders } from '@/lib/providers';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
import { ChatOpenAI } from '@langchain/openai';
interface ChatModel {
provider: string;
model: string;
}
interface ImageSearchBody {
query: string;
chatHistory: any[];
chatModel?: ChatModel;
}
export const POST = async (req: Request) => {
try {
const body: ImageSearchBody = await req.json();
const chatHistory = body.chatHistory
.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
return new AIMessage(msg.content);
}
})
.filter((msg) => msg !== undefined) as BaseMessage[];
const chatModelProviders = await getAvailableChatModelProviders();
const chatModelProvider =
chatModelProviders[
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
];
const chatModel =
chatModelProvider[
body.chatModel?.model || Object.keys(chatModelProvider)[0]
];
let llm: BaseChatModel | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
openAIApiKey: getCustomOpenaiApiKey(),
modelName: getCustomOpenaiModelName(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (chatModelProvider && chatModel) {
llm = chatModel.model;
}
if (!llm) {
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
}
const images = await handleImageSearch(
{
chat_history: chatHistory,
query: body.query,
},
llm,
);
return Response.json({ images }, { status: 200 });
} catch (err) {
console.error(`An error ocurred while searching images: ${err}`);
return Response.json(
{ message: 'An error ocurred while searching images' },
{ status: 500 },
);
}
};

View File

@@ -1,47 +0,0 @@
import {
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '@/lib/providers';
export const GET = async (req: Request) => {
try {
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
Object.keys(chatModelProviders).forEach((provider) => {
Object.keys(chatModelProviders[provider]).forEach((model) => {
delete (chatModelProviders[provider][model] as { model?: unknown })
.model;
});
});
Object.keys(embeddingModelProviders).forEach((provider) => {
Object.keys(embeddingModelProviders[provider]).forEach((model) => {
delete (embeddingModelProviders[provider][model] as { model?: unknown })
.model;
});
});
return Response.json(
{
chatModelProviders,
embeddingModelProviders,
},
{
status: 200,
},
);
} catch (err) {
console.error('An error ocurred while fetching models', err);
return Response.json(
{
message: 'An error has occurred.',
},
{
status: 500,
},
);
}
};

View File

@@ -1,81 +0,0 @@
import generateSuggestions from '@/lib/chains/suggestionGeneratorAgent';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '@/lib/config';
import { getAvailableChatModelProviders } from '@/lib/providers';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
import { ChatOpenAI } from '@langchain/openai';
interface ChatModel {
provider: string;
model: string;
}
interface SuggestionsGenerationBody {
chatHistory: any[];
chatModel?: ChatModel;
}
export const POST = async (req: Request) => {
try {
const body: SuggestionsGenerationBody = await req.json();
const chatHistory = body.chatHistory
.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
return new AIMessage(msg.content);
}
})
.filter((msg) => msg !== undefined) as BaseMessage[];
const chatModelProviders = await getAvailableChatModelProviders();
const chatModelProvider =
chatModelProviders[
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
];
const chatModel =
chatModelProvider[
body.chatModel?.model || Object.keys(chatModelProvider)[0]
];
let llm: BaseChatModel | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
openAIApiKey: getCustomOpenaiApiKey(),
modelName: getCustomOpenaiModelName(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (chatModelProvider && chatModel) {
llm = chatModel.model;
}
if (!llm) {
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
}
const suggestions = await generateSuggestions(
{
chat_history: chatHistory,
},
llm,
);
return Response.json({ suggestions }, { status: 200 });
} catch (err) {
console.error(`An error ocurred while generating suggestions: ${err}`);
return Response.json(
{ message: 'An error ocurred while generating suggestions' },
{ status: 500 },
);
}
};

View File

@@ -1,134 +0,0 @@
import { NextResponse } from 'next/server';
import fs from 'fs';
import path from 'path';
import crypto from 'crypto';
import { getAvailableEmbeddingModelProviders } from '@/lib/providers';
import { PDFLoader } from '@langchain/community/document_loaders/fs/pdf';
import { DocxLoader } from '@langchain/community/document_loaders/fs/docx';
import { RecursiveCharacterTextSplitter } from '@langchain/textsplitters';
import { Document } from 'langchain/document';
interface FileRes {
fileName: string;
fileExtension: string;
fileId: string;
}
const uploadDir = path.join(process.cwd(), 'uploads');
if (!fs.existsSync(uploadDir)) {
fs.mkdirSync(uploadDir, { recursive: true });
}
const splitter = new RecursiveCharacterTextSplitter({
chunkSize: 500,
chunkOverlap: 100,
});
export async function POST(req: Request) {
try {
const formData = await req.formData();
const files = formData.getAll('files') as File[];
const embedding_model = formData.get('embedding_model');
const embedding_model_provider = formData.get('embedding_model_provider');
if (!embedding_model || !embedding_model_provider) {
return NextResponse.json(
{ message: 'Missing embedding model or provider' },
{ status: 400 },
);
}
const embeddingModels = await getAvailableEmbeddingModelProviders();
const provider =
embedding_model_provider ?? Object.keys(embeddingModels)[0];
const embeddingModel =
embedding_model ?? Object.keys(embeddingModels[provider as string])[0];
let embeddingsModel =
embeddingModels[provider as string]?.[embeddingModel as string]?.model;
if (!embeddingsModel) {
return NextResponse.json(
{ message: 'Invalid embedding model selected' },
{ status: 400 },
);
}
const processedFiles: FileRes[] = [];
await Promise.all(
files.map(async (file: any) => {
const fileExtension = file.name.split('.').pop();
if (!['pdf', 'docx', 'txt'].includes(fileExtension!)) {
return NextResponse.json(
{ message: 'File type not supported' },
{ status: 400 },
);
}
const uniqueFileName = `${crypto.randomBytes(16).toString('hex')}.${fileExtension}`;
const filePath = path.join(uploadDir, uniqueFileName);
const buffer = Buffer.from(await file.arrayBuffer());
fs.writeFileSync(filePath, new Uint8Array(buffer));
let docs: any[] = [];
if (fileExtension === 'pdf') {
const loader = new PDFLoader(filePath);
docs = await loader.load();
} else if (fileExtension === 'docx') {
const loader = new DocxLoader(filePath);
docs = await loader.load();
} else if (fileExtension === 'txt') {
const text = fs.readFileSync(filePath, 'utf-8');
docs = [
new Document({ pageContent: text, metadata: { title: file.name } }),
];
}
const splitted = await splitter.splitDocuments(docs);
const extractedDataPath = filePath.replace(/\.\w+$/, '-extracted.json');
fs.writeFileSync(
extractedDataPath,
JSON.stringify({
title: file.name,
contents: splitted.map((doc) => doc.pageContent),
}),
);
const embeddings = await embeddingsModel.embedDocuments(
splitted.map((doc) => doc.pageContent),
);
const embeddingsDataPath = filePath.replace(
/\.\w+$/,
'-embeddings.json',
);
fs.writeFileSync(
embeddingsDataPath,
JSON.stringify({
title: file.name,
embeddings,
}),
);
processedFiles.push({
fileName: file.name,
fileExtension: fileExtension,
fileId: uniqueFileName.replace(/\.\w+$/, ''),
});
}),
);
return NextResponse.json({
files: processedFiles,
});
} catch (error) {
console.error('Error uploading file:', error);
return NextResponse.json(
{ message: 'An error has occurred.' },
{ status: 500 },
);
}
}

View File

@@ -1,83 +0,0 @@
import handleVideoSearch from '@/lib/chains/videoSearchAgent';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '@/lib/config';
import { getAvailableChatModelProviders } from '@/lib/providers';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
import { ChatOpenAI } from '@langchain/openai';
interface ChatModel {
provider: string;
model: string;
}
interface VideoSearchBody {
query: string;
chatHistory: any[];
chatModel?: ChatModel;
}
export const POST = async (req: Request) => {
try {
const body: VideoSearchBody = await req.json();
const chatHistory = body.chatHistory
.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
return new AIMessage(msg.content);
}
})
.filter((msg) => msg !== undefined) as BaseMessage[];
const chatModelProviders = await getAvailableChatModelProviders();
const chatModelProvider =
chatModelProviders[
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
];
const chatModel =
chatModelProvider[
body.chatModel?.model || Object.keys(chatModelProvider)[0]
];
let llm: BaseChatModel | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
openAIApiKey: getCustomOpenaiApiKey(),
modelName: getCustomOpenaiModelName(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (chatModelProvider && chatModel) {
llm = chatModel.model;
}
if (!llm) {
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
}
const videos = await handleVideoSearch(
{
chat_history: chatHistory,
query: body.query,
},
llm,
);
return Response.json({ videos }, { status: 200 });
} catch (err) {
console.error(`An error ocurred while searching videos: ${err}`);
return Response.json(
{ message: 'An error ocurred while searching videos' },
{ status: 500 },
);
}
};

View File

@@ -1,9 +0,0 @@
import ChatWindow from '@/components/ChatWindow';
import React from 'react';
const Page = ({ params }: { params: Promise<{ chatId: string }> }) => {
const { chatId } = React.use(params);
return <ChatWindow id={chatId} />;
};
export default Page;

View File

@@ -1,12 +0,0 @@
import { Metadata } from 'next';
import React from 'react';
export const metadata: Metadata = {
title: 'Library - Perplexica',
};
const Layout = ({ children }: { children: React.ReactNode }) => {
return <div>{children}</div>;
};
export default Layout;

View File

@@ -7,7 +7,7 @@ import { PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory'; import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages'; import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers'; import { StringOutputParser } from '@langchain/core/output_parsers';
import { searchSearxng } from '../searxng'; import { searchSearxng } from '../lib/searxng';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models'; import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
const imageSearchChainPrompt = ` const imageSearchChainPrompt = `
@@ -36,12 +36,6 @@ type ImageSearchChainInput = {
query: string; query: string;
}; };
interface ImageSearchResult {
img_src: string;
url: string;
title: string;
}
const strParser = new StringOutputParser(); const strParser = new StringOutputParser();
const createImageSearchChain = (llm: BaseChatModel) => { const createImageSearchChain = (llm: BaseChatModel) => {
@@ -62,7 +56,7 @@ const createImageSearchChain = (llm: BaseChatModel) => {
engines: ['bing images', 'google images'], engines: ['bing images', 'google images'],
}); });
const images: ImageSearchResult[] = []; const images = [];
res.results.forEach((result) => { res.results.forEach((result) => {
if (result.img_src && result.url && result.title) { if (result.img_src && result.url && result.title) {

View File

@@ -1,5 +1,5 @@
import { RunnableSequence, RunnableMap } from '@langchain/core/runnables'; import { RunnableSequence, RunnableMap } from '@langchain/core/runnables';
import ListLineOutputParser from '../outputParsers/listLineOutputParser'; import ListLineOutputParser from '../lib/outputParsers/listLineOutputParser';
import { PromptTemplate } from '@langchain/core/prompts'; import { PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory'; import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages'; import { BaseMessage } from '@langchain/core/messages';

View File

@@ -7,7 +7,7 @@ import { PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory'; import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages'; import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers'; import { StringOutputParser } from '@langchain/core/output_parsers';
import { searchSearxng } from '../searxng'; import { searchSearxng } from '../lib/searxng';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models'; import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
const VideoSearchChainPrompt = ` const VideoSearchChainPrompt = `
@@ -36,13 +36,6 @@ type VideoSearchChainInput = {
query: string; query: string;
}; };
interface VideoSearchResult {
img_src: string;
url: string;
title: string;
iframe_src: string;
}
const strParser = new StringOutputParser(); const strParser = new StringOutputParser();
const createVideoSearchChain = (llm: BaseChatModel) => { const createVideoSearchChain = (llm: BaseChatModel) => {
@@ -63,7 +56,7 @@ const createVideoSearchChain = (llm: BaseChatModel) => {
engines: ['youtube'], engines: ['youtube'],
}); });
const videos: VideoSearchResult[] = []; const videos = [];
res.results.forEach((result) => { res.results.forEach((result) => {
if ( if (

View File

@@ -1,101 +0,0 @@
'use client';
import { cn } from '@/lib/utils';
import { BookOpenText, Home, Search, SquarePen, Settings } from 'lucide-react';
import Link from 'next/link';
import { useSelectedLayoutSegments } from 'next/navigation';
import React, { useState, type ReactNode } from 'react';
import Layout from './Layout';
const VerticalIconContainer = ({ children }: { children: ReactNode }) => {
return (
<div className="flex flex-col items-center gap-y-3 w-full">{children}</div>
);
};
const Sidebar = ({ children }: { children: React.ReactNode }) => {
const segments = useSelectedLayoutSegments();
const [isSettingsOpen, setIsSettingsOpen] = useState(false);
const navLinks = [
{
icon: Home,
href: '/',
active: segments.length === 0 || segments.includes('c'),
label: 'Home',
},
{
icon: Search,
href: '/discover',
active: segments.includes('discover'),
label: 'Discover',
},
{
icon: BookOpenText,
href: '/library',
active: segments.includes('library'),
label: 'Library',
},
];
return (
<div>
<div className="hidden lg:fixed lg:inset-y-0 lg:z-50 lg:flex lg:w-20 lg:flex-col">
<div className="flex grow flex-col items-center justify-between gap-y-5 overflow-y-auto bg-light-secondary dark:bg-dark-secondary px-2 py-8">
<a href="/">
<SquarePen className="cursor-pointer" />
</a>
<VerticalIconContainer>
{navLinks.map((link, i) => (
<Link
key={i}
href={link.href}
className={cn(
'relative flex flex-row items-center justify-center cursor-pointer hover:bg-black/10 dark:hover:bg-white/10 duration-150 transition w-full py-2 rounded-lg',
link.active
? 'text-black dark:text-white'
: 'text-black/70 dark:text-white/70',
)}
>
<link.icon />
{link.active && (
<div className="absolute right-0 -mr-2 h-full w-1 rounded-l-lg bg-black dark:bg-white" />
)}
</Link>
))}
</VerticalIconContainer>
<Link href="/settings">
<Settings className="cursor-pointer" />
</Link>
</div>
</div>
<div className="fixed bottom-0 w-full z-50 flex flex-row items-center gap-x-6 bg-light-primary dark:bg-dark-primary px-4 py-4 shadow-sm lg:hidden">
{navLinks.map((link, i) => (
<Link
href={link.href}
key={i}
className={cn(
'relative flex flex-col items-center space-y-1 text-center w-full',
link.active
? 'text-black dark:text-white'
: 'text-black dark:text-white/70',
)}
>
{link.active && (
<div className="absolute top-0 -mt-4 h-1 w-full rounded-b-lg bg-black dark:bg-white" />
)}
<link.icon />
<p className="text-xs">{link.label}</p>
</Link>
))}
</div>
<Layout>{children}</Layout>
</div>
);
};
export default Sidebar;

View File

@@ -8,6 +8,10 @@ interface Config {
GENERAL: { GENERAL: {
PORT: number; PORT: number;
SIMILARITY_MEASURE: string; SIMILARITY_MEASURE: string;
CONFIG_PASSWORD: string;
DISCOVER_ENABLED: boolean;
LIBRARY_ENABLED: boolean;
COPILOT_ENABLED: boolean;
KEEP_ALIVE: string; KEEP_ALIVE: string;
}; };
MODELS: { MODELS: {
@@ -43,7 +47,7 @@ type RecursivePartial<T> = {
const loadConfig = () => const loadConfig = () =>
toml.parse( toml.parse(
fs.readFileSync(path.join(process.cwd(), `${configFileName}`), 'utf-8'), fs.readFileSync(path.join(__dirname, `../${configFileName}`), 'utf-8'),
) as any as Config; ) as any as Config;
export const getPort = () => loadConfig().GENERAL.PORT; export const getPort = () => loadConfig().GENERAL.PORT;
@@ -51,6 +55,14 @@ export const getPort = () => loadConfig().GENERAL.PORT;
export const getSimilarityMeasure = () => export const getSimilarityMeasure = () =>
loadConfig().GENERAL.SIMILARITY_MEASURE; loadConfig().GENERAL.SIMILARITY_MEASURE;
export const getConfigPassword = () => loadConfig().GENERAL.CONFIG_PASSWORD;
export const isDiscoverEnabled = () => loadConfig().GENERAL.DISCOVER_ENABLED;
export const isLibraryEnabled = () => loadConfig().GENERAL.LIBRARY_ENABLED;
export const isCopilotEnabled = () => loadConfig().GENERAL.COPILOT_ENABLED;
export const getKeepAlive = () => loadConfig().GENERAL.KEEP_ALIVE; export const getKeepAlive = () => loadConfig().GENERAL.KEEP_ALIVE;
export const getOpenaiApiKey = () => loadConfig().MODELS.OPENAI.API_KEY; export const getOpenaiApiKey = () => loadConfig().MODELS.OPENAI.API_KEY;
@@ -62,7 +74,7 @@ export const getAnthropicApiKey = () => loadConfig().MODELS.ANTHROPIC.API_KEY;
export const getGeminiApiKey = () => loadConfig().MODELS.GEMINI.API_KEY; export const getGeminiApiKey = () => loadConfig().MODELS.GEMINI.API_KEY;
export const getSearxngApiEndpoint = () => export const getSearxngApiEndpoint = () =>
loadConfig().API_ENDPOINTS.SEARXNG || process.env.SEARXNG_API_URL; process.env.SEARXNG_API_URL || loadConfig().API_ENDPOINTS.SEARXNG;
export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL; export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL;
@@ -109,8 +121,9 @@ const mergeConfigs = (current: any, update: any): any => {
export const updateConfig = (config: RecursivePartial<Config>) => { export const updateConfig = (config: RecursivePartial<Config>) => {
const currentConfig = loadConfig(); const currentConfig = loadConfig();
const mergedConfig = mergeConfigs(currentConfig, config); const mergedConfig = mergeConfigs(currentConfig, config);
fs.writeFileSync( fs.writeFileSync(
path.join(path.join(process.cwd(), `${configFileName}`)), path.join(__dirname, `../${configFileName}`),
toml.stringify(mergedConfig), toml.stringify(mergedConfig),
); );
}; };

View File

@@ -1,9 +1,8 @@
import { drizzle } from 'drizzle-orm/better-sqlite3'; import { drizzle } from 'drizzle-orm/better-sqlite3';
import Database from 'better-sqlite3'; import Database from 'better-sqlite3';
import * as schema from './schema'; import * as schema from './schema';
import path from 'path';
const sqlite = new Database(path.join(process.cwd(), 'data/db.sqlite')); const sqlite = new Database('data/db.sqlite');
const db = drizzle(sqlite, { const db = drizzle(sqlite, {
schema: schema, schema: schema,
}); });

View File

@@ -0,0 +1,82 @@
import { Embeddings, type EmbeddingsParams } from '@langchain/core/embeddings';
import { chunkArray } from '@langchain/core/utils/chunk_array';
export interface HuggingFaceTransformersEmbeddingsParams
extends EmbeddingsParams {
modelName: string;
model: string;
timeout?: number;
batchSize?: number;
stripNewLines?: boolean;
}
export class HuggingFaceTransformersEmbeddings
extends Embeddings
implements HuggingFaceTransformersEmbeddingsParams
{
modelName = 'Xenova/all-MiniLM-L6-v2';
model = 'Xenova/all-MiniLM-L6-v2';
batchSize = 512;
stripNewLines = true;
timeout?: number;
private pipelinePromise: Promise<any>;
constructor(fields?: Partial<HuggingFaceTransformersEmbeddingsParams>) {
super(fields ?? {});
this.modelName = fields?.model ?? fields?.modelName ?? this.model;
this.model = this.modelName;
this.stripNewLines = fields?.stripNewLines ?? this.stripNewLines;
this.timeout = fields?.timeout;
}
async embedDocuments(texts: string[]): Promise<number[][]> {
const batches = chunkArray(
this.stripNewLines ? texts.map((t) => t.replace(/\n/g, ' ')) : texts,
this.batchSize,
);
const batchRequests = batches.map((batch) => this.runEmbedding(batch));
const batchResponses = await Promise.all(batchRequests);
const embeddings: number[][] = [];
for (let i = 0; i < batchResponses.length; i += 1) {
const batchResponse = batchResponses[i];
for (let j = 0; j < batchResponse.length; j += 1) {
embeddings.push(batchResponse[j]);
}
}
return embeddings;
}
async embedQuery(text: string): Promise<number[]> {
const data = await this.runEmbedding([
this.stripNewLines ? text.replace(/\n/g, ' ') : text,
]);
return data[0];
}
private async runEmbedding(texts: string[]) {
const { pipeline } = await import('@xenova/transformers');
const pipe = await (this.pipelinePromise ??= pipeline(
'feature-extraction',
this.model,
));
return this.caller.call(async () => {
const output = await pipe(texts, { pooling: 'mean', normalize: true });
return output.tolist();
});
}
}

View File

@@ -9,7 +9,7 @@ class LineOutputParser extends BaseOutputParser<string> {
constructor(args?: LineOutputParserArgs) { constructor(args?: LineOutputParserArgs) {
super(); super();
this.key = args?.key ?? this.key; this.key = args.key ?? this.key;
} }
static lc_name() { static lc_name() {

View File

@@ -9,7 +9,7 @@ class LineListOutputParser extends BaseOutputParser<string[]> {
constructor(args?: LineListOutputParserArgs) { constructor(args?: LineListOutputParserArgs) {
super(); super();
this.key = args?.key ?? this.key; this.key = args.key ?? this.key;
} }
static lc_name() { static lc_name() {

View File

@@ -1,38 +1,6 @@
import { ChatOpenAI } from '@langchain/openai'; import { ChatAnthropic } from '@langchain/anthropic';
import { ChatModel } from '.'; import { getAnthropicApiKey } from '../../config';
import { getAnthropicApiKey } from '../config'; import logger from '../../utils/logger';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const anthropicChatModels: Record<string, string>[] = [
{
displayName: 'Claude 3.7 Sonnet',
key: 'claude-3-7-sonnet-20250219',
},
{
displayName: 'Claude 3.5 Haiku',
key: 'claude-3-5-haiku-20241022',
},
{
displayName: 'Claude 3.5 Sonnet v2',
key: 'claude-3-5-sonnet-20241022',
},
{
displayName: 'Claude 3.5 Sonnet',
key: 'claude-3-5-sonnet-20240620',
},
{
displayName: 'Claude 3 Opus',
key: 'claude-3-opus-20240229',
},
{
displayName: 'Claude 3 Sonnet',
key: 'claude-3-sonnet-20240229',
},
{
displayName: 'Claude 3 Haiku',
key: 'claude-3-haiku-20240307',
},
];
export const loadAnthropicChatModels = async () => { export const loadAnthropicChatModels = async () => {
const anthropicApiKey = getAnthropicApiKey(); const anthropicApiKey = getAnthropicApiKey();
@@ -40,25 +8,52 @@ export const loadAnthropicChatModels = async () => {
if (!anthropicApiKey) return {}; if (!anthropicApiKey) return {};
try { try {
const chatModels: Record<string, ChatModel> = {}; const chatModels = {
'claude-3-5-sonnet-20241022': {
anthropicChatModels.forEach((model) => { displayName: 'Claude 3.5 Sonnet',
chatModels[model.key] = { model: new ChatAnthropic({
displayName: model.displayName,
model: new ChatOpenAI({
openAIApiKey: anthropicApiKey,
modelName: model.key,
temperature: 0.7, temperature: 0.7,
configuration: { anthropicApiKey: anthropicApiKey,
baseURL: 'https://api.anthropic.com/v1/', model: 'claude-3-5-sonnet-20241022',
}),
},
'claude-3-5-haiku-20241022': {
displayName: 'Claude 3.5 Haiku',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-5-haiku-20241022',
}),
},
'claude-3-opus-20240229': {
displayName: 'Claude 3 Opus',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-opus-20240229',
}),
},
'claude-3-sonnet-20240229': {
displayName: 'Claude 3 Sonnet',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-sonnet-20240229',
}),
},
'claude-3-haiku-20240307': {
displayName: 'Claude 3 Haiku',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-haiku-20240307',
}),
}, },
}) as unknown as BaseChatModel,
}; };
});
return chatModels; return chatModels;
} catch (err) { } catch (err) {
console.error(`Error loading Anthropic models: ${err}`); logger.error(`Error loading Anthropic models: ${err}`);
return {}; return {};
} }
}; };

View File

@@ -1,42 +1,9 @@
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai'; import {
import { getGeminiApiKey } from '../config'; ChatGoogleGenerativeAI,
import { ChatModel, EmbeddingModel } from '.'; GoogleGenerativeAIEmbeddings,
import { BaseChatModel } from '@langchain/core/language_models/chat_models'; } from '@langchain/google-genai';
import { Embeddings } from '@langchain/core/embeddings'; import { getGeminiApiKey } from '../../config';
import logger from '../../utils/logger';
const geminiChatModels: Record<string, string>[] = [
{
displayName: 'Gemini 2.0 Flash',
key: 'gemini-2.0-flash',
},
{
displayName: 'Gemini 2.0 Flash-Lite',
key: 'gemini-2.0-flash-lite',
},
{
displayName: 'Gemini 2.0 Pro Experimental',
key: 'gemini-2.0-pro-exp-02-05',
},
{
displayName: 'Gemini 1.5 Flash',
key: 'gemini-1.5-flash',
},
{
displayName: 'Gemini 1.5 Flash-8B',
key: 'gemini-1.5-flash-8b',
},
{
displayName: 'Gemini 1.5 Pro',
key: 'gemini-1.5-pro',
},
];
const geminiEmbeddingModels: Record<string, string>[] = [
{
displayName: 'Gemini Embedding',
key: 'gemini-embedding-exp',
},
];
export const loadGeminiChatModels = async () => { export const loadGeminiChatModels = async () => {
const geminiApiKey = getGeminiApiKey(); const geminiApiKey = getGeminiApiKey();
@@ -44,53 +11,75 @@ export const loadGeminiChatModels = async () => {
if (!geminiApiKey) return {}; if (!geminiApiKey) return {};
try { try {
const chatModels: Record<string, ChatModel> = {}; const chatModels = {
'gemini-1.5-flash': {
geminiChatModels.forEach((model) => { displayName: 'Gemini 1.5 Flash',
chatModels[model.key] = { model: new ChatGoogleGenerativeAI({
displayName: model.displayName, modelName: 'gemini-1.5-flash',
model: new ChatOpenAI({
openAIApiKey: geminiApiKey,
modelName: model.key,
temperature: 0.7, temperature: 0.7,
configuration: { apiKey: geminiApiKey,
baseURL: 'https://generativelanguage.googleapis.com/v1beta/openai/', }),
},
'gemini-1.5-flash-8b': {
displayName: 'Gemini 1.5 Flash 8B',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-1.5-flash-8b',
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
'gemini-1.5-pro': {
displayName: 'Gemini 1.5 Pro',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-1.5-pro',
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
'gemini-2.0-flash-exp': {
displayName: 'Gemini 2.0 Flash Exp',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-2.0-flash-exp',
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
'gemini-2.0-flash-thinking-exp-01-21': {
displayName: 'Gemini 2.0 Flash Thinking Exp 01-21',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-2.0-flash-thinking-exp-01-21',
temperature: 0.7,
apiKey: geminiApiKey,
}),
}, },
}) as unknown as BaseChatModel,
}; };
});
return chatModels; return chatModels;
} catch (err) { } catch (err) {
console.error(`Error loading Gemini models: ${err}`); logger.error(`Error loading Gemini models: ${err}`);
return {}; return {};
} }
}; };
export const loadGeminiEmbeddingModels = async () => { export const loadGeminiEmbeddingsModels = async () => {
const geminiApiKey = getGeminiApiKey(); const geminiApiKey = getGeminiApiKey();
if (!geminiApiKey) return {}; if (!geminiApiKey) return {};
try { try {
const embeddingModels: Record<string, EmbeddingModel> = {}; const embeddingModels = {
'text-embedding-004': {
geminiEmbeddingModels.forEach((model) => { displayName: 'Text Embedding',
embeddingModels[model.key] = { model: new GoogleGenerativeAIEmbeddings({
displayName: model.displayName, apiKey: geminiApiKey,
model: new OpenAIEmbeddings({ modelName: 'text-embedding-004',
openAIApiKey: geminiApiKey, }),
modelName: model.key,
configuration: {
baseURL: 'https://generativelanguage.googleapis.com/v1beta/openai/',
}, },
}) as unknown as Embeddings,
}; };
});
return embeddingModels; return embeddingModels;
} catch (err) { } catch (err) {
console.error(`Error loading OpenAI embeddings models: ${err}`); logger.error(`Error loading Gemini embeddings model: ${err}`);
return {}; return {};
} }
}; };

View File

@@ -1,82 +1,6 @@
import { ChatOpenAI } from '@langchain/openai'; import { ChatOpenAI } from '@langchain/openai';
import { getGroqApiKey } from '../config'; import { getGroqApiKey } from '../../config';
import { ChatModel } from '.'; import logger from '../../utils/logger';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const groqChatModels: Record<string, string>[] = [
{
displayName: 'Gemma2 9B IT',
key: 'gemma2-9b-it',
},
{
displayName: 'Llama 3.3 70B Versatile',
key: 'llama-3.3-70b-versatile',
},
{
displayName: 'Llama 3.1 8B Instant',
key: 'llama-3.1-8b-instant',
},
{
displayName: 'Llama3 70B 8192',
key: 'llama3-70b-8192',
},
{
displayName: 'Llama3 8B 8192',
key: 'llama3-8b-8192',
},
{
displayName: 'Mixtral 8x7B 32768',
key: 'mixtral-8x7b-32768',
},
{
displayName: 'Qwen QWQ 32B (Preview)',
key: 'qwen-qwq-32b',
},
{
displayName: 'Mistral Saba 24B (Preview)',
key: 'mistral-saba-24b',
},
{
displayName: 'Qwen 2.5 Coder 32B (Preview)',
key: 'qwen-2.5-coder-32b',
},
{
displayName: 'Qwen 2.5 32B (Preview)',
key: 'qwen-2.5-32b',
},
{
displayName: 'DeepSeek R1 Distill Qwen 32B (Preview)',
key: 'deepseek-r1-distill-qwen-32b',
},
{
displayName: 'DeepSeek R1 Distill Llama 70B SpecDec (Preview)',
key: 'deepseek-r1-distill-llama-70b-specdec',
},
{
displayName: 'DeepSeek R1 Distill Llama 70B (Preview)',
key: 'deepseek-r1-distill-llama-70b',
},
{
displayName: 'Llama 3.3 70B SpecDec (Preview)',
key: 'llama-3.3-70b-specdec',
},
{
displayName: 'Llama 3.2 1B Preview (Preview)',
key: 'llama-3.2-1b-preview',
},
{
displayName: 'Llama 3.2 3B Preview (Preview)',
key: 'llama-3.2-3b-preview',
},
{
displayName: 'Llama 3.2 11B Vision Preview (Preview)',
key: 'llama-3.2-11b-vision-preview',
},
{
displayName: 'Llama 3.2 90B Vision Preview (Preview)',
key: 'llama-3.2-90b-vision-preview',
},
];
export const loadGroqChatModels = async () => { export const loadGroqChatModels = async () => {
const groqApiKey = getGroqApiKey(); const groqApiKey = getGroqApiKey();
@@ -84,25 +8,129 @@ export const loadGroqChatModels = async () => {
if (!groqApiKey) return {}; if (!groqApiKey) return {};
try { try {
const chatModels: Record<string, ChatModel> = {}; const chatModels = {
'llama-3.3-70b-versatile': {
groqChatModels.forEach((model) => { displayName: 'Llama 3.3 70B',
chatModels[model.key] = { model: new ChatOpenAI(
displayName: model.displayName, {
model: new ChatOpenAI({
openAIApiKey: groqApiKey, openAIApiKey: groqApiKey,
modelName: model.key, modelName: 'llama-3.3-70b-versatile',
temperature: 0.7, temperature: 0.7,
configuration: { },
{
baseURL: 'https://api.groq.com/openai/v1', baseURL: 'https://api.groq.com/openai/v1',
}, },
}) as unknown as BaseChatModel, ),
},
'llama-3.2-3b-preview': {
displayName: 'Llama 3.2 3B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.2-3b-preview',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama-3.2-11b-vision-preview': {
displayName: 'Llama 3.2 11B Vision',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.2-11b-vision-preview',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama-3.2-90b-vision-preview': {
displayName: 'Llama 3.2 90B Vision',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.2-90b-vision-preview',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama-3.1-8b-instant': {
displayName: 'Llama 3.1 8B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.1-8b-instant',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama3-8b-8192': {
displayName: 'LLaMA3 8B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama3-8b-8192',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama3-70b-8192': {
displayName: 'LLaMA3 70B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama3-70b-8192',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'mixtral-8x7b-32768': {
displayName: 'Mixtral 8x7B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'mixtral-8x7b-32768',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'gemma2-9b-it': {
displayName: 'Gemma2 9B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'gemma2-9b-it',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
}; };
});
return chatModels; return chatModels;
} catch (err) { } catch (err) {
console.error(`Error loading Groq models: ${err}`); logger.error(`Error loading Groq models: ${err}`);
return {}; return {};
} }
}; };

View File

@@ -1,49 +1,33 @@
import { Embeddings } from '@langchain/core/embeddings'; import { loadGroqChatModels } from './groq';
import { BaseChatModel } from '@langchain/core/language_models/chat_models'; import { loadOllamaChatModels, loadOllamaEmbeddingsModels } from './ollama';
import { loadOpenAIChatModels, loadOpenAIEmbeddingModels } from './openai'; import { loadOpenAIChatModels, loadOpenAIEmbeddingsModels } from './openai';
import { loadAnthropicChatModels } from './anthropic';
import { loadTransformersEmbeddingsModels } from './transformers';
import { loadGeminiChatModels, loadGeminiEmbeddingsModels } from './gemini';
import { import {
getCustomOpenaiApiKey, getCustomOpenaiApiKey,
getCustomOpenaiApiUrl, getCustomOpenaiApiUrl,
getCustomOpenaiModelName, getCustomOpenaiModelName,
} from '../config'; } from '../../config';
import { ChatOpenAI } from '@langchain/openai'; import { ChatOpenAI } from '@langchain/openai';
import { loadOllamaChatModels, loadOllamaEmbeddingModels } from './ollama';
import { loadGroqChatModels } from './groq';
import { loadAnthropicChatModels } from './anthropic';
import { loadGeminiChatModels, loadGeminiEmbeddingModels } from './gemini';
export interface ChatModel { const chatModelProviders = {
displayName: string;
model: BaseChatModel;
}
export interface EmbeddingModel {
displayName: string;
model: Embeddings;
}
export const chatModelProviders: Record<
string,
() => Promise<Record<string, ChatModel>>
> = {
openai: loadOpenAIChatModels, openai: loadOpenAIChatModels,
ollama: loadOllamaChatModels,
groq: loadGroqChatModels, groq: loadGroqChatModels,
ollama: loadOllamaChatModels,
anthropic: loadAnthropicChatModels, anthropic: loadAnthropicChatModels,
gemini: loadGeminiChatModels, gemini: loadGeminiChatModels,
}; };
export const embeddingModelProviders: Record< const embeddingModelProviders = {
string, openai: loadOpenAIEmbeddingsModels,
() => Promise<Record<string, EmbeddingModel>> local: loadTransformersEmbeddingsModels,
> = { ollama: loadOllamaEmbeddingsModels,
openai: loadOpenAIEmbeddingModels, gemini: loadGeminiEmbeddingsModels,
ollama: loadOllamaEmbeddingModels,
gemini: loadGeminiEmbeddingModels,
}; };
export const getAvailableChatModelProviders = async () => { export const getAvailableChatModelProviders = async () => {
const models: Record<string, Record<string, ChatModel>> = {}; const models = {};
for (const provider in chatModelProviders) { for (const provider in chatModelProviders) {
const providerModels = await chatModelProviders[provider](); const providerModels = await chatModelProviders[provider]();
@@ -68,7 +52,7 @@ export const getAvailableChatModelProviders = async () => {
configuration: { configuration: {
baseURL: customOpenAiApiUrl, baseURL: customOpenAiApiUrl,
}, },
}) as unknown as BaseChatModel, }),
}, },
} }
: {}), : {}),
@@ -78,7 +62,7 @@ export const getAvailableChatModelProviders = async () => {
}; };
export const getAvailableEmbeddingModelProviders = async () => { export const getAvailableEmbeddingModelProviders = async () => {
const models: Record<string, Record<string, EmbeddingModel>> = {}; const models = {};
for (const provider in embeddingModelProviders) { for (const provider in embeddingModelProviders) {
const providerModels = await embeddingModelProviders[provider](); const providerModels = await embeddingModelProviders[provider]();

View File

@@ -1,73 +1,74 @@
import axios from 'axios';
import { getKeepAlive, getOllamaApiEndpoint } from '../config';
import { ChatModel, EmbeddingModel } from '.';
import { ChatOllama } from '@langchain/community/chat_models/ollama';
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama'; import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
import { getKeepAlive, getOllamaApiEndpoint } from '../../config';
import logger from '../../utils/logger';
import { ChatOllama } from '@langchain/community/chat_models/ollama';
import axios from 'axios';
export const loadOllamaChatModels = async () => { export const loadOllamaChatModels = async () => {
const ollamaApiEndpoint = getOllamaApiEndpoint(); const ollamaEndpoint = getOllamaApiEndpoint();
const keepAlive = getKeepAlive();
if (!ollamaApiEndpoint) return {}; if (!ollamaEndpoint) return {};
try { try {
const res = await axios.get(`${ollamaApiEndpoint}/api/tags`, { const response = await axios.get(`${ollamaEndpoint}/api/tags`, {
headers: { headers: {
'Content-Type': 'application/json', 'Content-Type': 'application/json',
}, },
}); });
const { models } = res.data; const { models: ollamaModels } = response.data;
const chatModels: Record<string, ChatModel> = {}; const chatModels = ollamaModels.reduce((acc, model) => {
acc[model.model] = {
models.forEach((model: any) => {
chatModels[model.model] = {
displayName: model.name, displayName: model.name,
model: new ChatOllama({ model: new ChatOllama({
baseUrl: ollamaApiEndpoint, baseUrl: ollamaEndpoint,
model: model.model, model: model.model,
temperature: 0.7, temperature: 0.7,
keepAlive: getKeepAlive(), keepAlive: keepAlive,
}), }),
}; };
});
return acc;
}, {});
return chatModels; return chatModels;
} catch (err) { } catch (err) {
console.error(`Error loading Ollama models: ${err}`); logger.error(`Error loading Ollama models: ${err}`);
return {}; return {};
} }
}; };
export const loadOllamaEmbeddingModels = async () => { export const loadOllamaEmbeddingsModels = async () => {
const ollamaApiEndpoint = getOllamaApiEndpoint(); const ollamaEndpoint = getOllamaApiEndpoint();
if (!ollamaApiEndpoint) return {}; if (!ollamaEndpoint) return {};
try { try {
const res = await axios.get(`${ollamaApiEndpoint}/api/tags`, { const response = await axios.get(`${ollamaEndpoint}/api/tags`, {
headers: { headers: {
'Content-Type': 'application/json', 'Content-Type': 'application/json',
}, },
}); });
const { models } = res.data; const { models: ollamaModels } = response.data;
const embeddingModels: Record<string, EmbeddingModel> = {}; const embeddingsModels = ollamaModels.reduce((acc, model) => {
acc[model.model] = {
models.forEach((model: any) => {
embeddingModels[model.model] = {
displayName: model.name, displayName: model.name,
model: new OllamaEmbeddings({ model: new OllamaEmbeddings({
baseUrl: ollamaApiEndpoint, baseUrl: ollamaEndpoint,
model: model.model, model: model.model,
}), }),
}; };
});
return embeddingModels; return acc;
}, {});
return embeddingsModels;
} catch (err) { } catch (err) {
console.error(`Error loading Ollama embeddings models: ${err}`); logger.error(`Error loading Ollama embeddings model: ${err}`);
return {}; return {};
} }
}; };

View File

@@ -1,90 +1,89 @@
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai'; import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
import { getOpenaiApiKey } from '../config'; import { getOpenaiApiKey } from '../../config';
import { ChatModel, EmbeddingModel } from '.'; import logger from '../../utils/logger';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { Embeddings } from '@langchain/core/embeddings';
const openaiChatModels: Record<string, string>[] = [
{
displayName: 'GPT-3.5 Turbo',
key: 'gpt-3.5-turbo',
},
{
displayName: 'GPT-4',
key: 'gpt-4',
},
{
displayName: 'GPT-4 turbo',
key: 'gpt-4-turbo',
},
{
displayName: 'GPT-4 omni',
key: 'gpt-4o',
},
{
displayName: 'GPT-4 omni mini',
key: 'gpt-4o-mini',
},
];
const openaiEmbeddingModels: Record<string, string>[] = [
{
displayName: 'Text Embedding 3 Small',
key: 'text-embedding-3-small',
},
{
displayName: 'Text Embedding 3 Large',
key: 'text-embedding-3-large',
},
];
export const loadOpenAIChatModels = async () => { export const loadOpenAIChatModels = async () => {
const openaiApiKey = getOpenaiApiKey(); const openAIApiKey = getOpenaiApiKey();
if (!openaiApiKey) return {}; if (!openAIApiKey) return {};
try { try {
const chatModels: Record<string, ChatModel> = {}; const chatModels = {
'gpt-3.5-turbo': {
openaiChatModels.forEach((model) => { displayName: 'GPT-3.5 Turbo',
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatOpenAI({ model: new ChatOpenAI({
openAIApiKey: openaiApiKey, openAIApiKey,
modelName: model.key, modelName: 'gpt-3.5-turbo',
temperature: 0.7, temperature: 0.7,
}) as unknown as BaseChatModel, }),
},
'gpt-4': {
displayName: 'GPT-4',
model: new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4',
temperature: 0.7,
}),
},
'gpt-4-turbo': {
displayName: 'GPT-4 turbo',
model: new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4-turbo',
temperature: 0.7,
}),
},
'gpt-4o': {
displayName: 'GPT-4 omni',
model: new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4o',
temperature: 0.7,
}),
},
'gpt-4o-mini': {
displayName: 'GPT-4 omni mini',
model: new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4o-mini',
temperature: 0.7,
}),
},
}; };
});
return chatModels; return chatModels;
} catch (err) { } catch (err) {
console.error(`Error loading OpenAI models: ${err}`); logger.error(`Error loading OpenAI models: ${err}`);
return {}; return {};
} }
}; };
export const loadOpenAIEmbeddingModels = async () => { export const loadOpenAIEmbeddingsModels = async () => {
const openaiApiKey = getOpenaiApiKey(); const openAIApiKey = getOpenaiApiKey();
if (!openaiApiKey) return {}; if (!openAIApiKey) return {};
try { try {
const embeddingModels: Record<string, EmbeddingModel> = {}; const embeddingModels = {
'text-embedding-3-small': {
openaiEmbeddingModels.forEach((model) => { displayName: 'Text Embedding 3 Small',
embeddingModels[model.key] = {
displayName: model.displayName,
model: new OpenAIEmbeddings({ model: new OpenAIEmbeddings({
openAIApiKey: openaiApiKey, openAIApiKey,
modelName: model.key, modelName: 'text-embedding-3-small',
}) as unknown as Embeddings, }),
},
'text-embedding-3-large': {
displayName: 'Text Embedding 3 Large',
model: new OpenAIEmbeddings({
openAIApiKey,
modelName: 'text-embedding-3-large',
}),
},
}; };
});
return embeddingModels; return embeddingModels;
} catch (err) { } catch (err) {
console.error(`Error loading OpenAI embeddings models: ${err}`); logger.error(`Error loading OpenAI embeddings model: ${err}`);
return {}; return {};
} }
}; };

View File

@@ -0,0 +1,32 @@
import logger from '../../utils/logger';
import { HuggingFaceTransformersEmbeddings } from '../huggingfaceTransformer';
export const loadTransformersEmbeddingsModels = async () => {
try {
const embeddingModels = {
'xenova-bge-small-en-v1.5': {
displayName: 'BGE Small',
model: new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/bge-small-en-v1.5',
}),
},
'xenova-gte-small': {
displayName: 'GTE Small',
model: new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/gte-small',
}),
},
'xenova-bert-base-multilingual-uncased': {
displayName: 'Bert Multilingual',
model: new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/bert-base-multilingual-uncased',
}),
},
};
return embeddingModels;
} catch (err) {
logger.error(`Error loading Transformers embeddings model: ${err}`);
return {};
}
};

View File

@@ -1,5 +1,5 @@
import axios from 'axios'; import axios from 'axios';
import { getSearxngApiEndpoint } from './config'; import { getSearxngApiEndpoint } from '../config';
interface SearxngSearchOptions { interface SearxngSearchOptions {
categories?: string[]; categories?: string[];
@@ -30,12 +30,11 @@ export const searchSearxng = async (
if (opts) { if (opts) {
Object.keys(opts).forEach((key) => { Object.keys(opts).forEach((key) => {
const value = opts[key as keyof SearxngSearchOptions]; if (Array.isArray(opts[key])) {
if (Array.isArray(value)) { url.searchParams.append(key, opts[key].join(','));
url.searchParams.append(key, value.join(','));
return; return;
} }
url.searchParams.append(key, value as string); url.searchParams.append(key, opts[key]);
}); });
} }

View File

@@ -1,5 +0,0 @@
declare function computeDot(vectorA: number[], vectorB: number[]): number;
declare module 'compute-dot' {
export default computeDot;
}

66
src/routes/chats.ts Normal file
View File

@@ -0,0 +1,66 @@
import express from 'express';
import logger from '../utils/logger';
import db from '../db/index';
import { eq } from 'drizzle-orm';
import { chats, messages } from '../db/schema';
const router = express.Router();
router.get('/', async (_, res) => {
try {
let chats = await db.query.chats.findMany();
chats = chats.reverse();
return res.status(200).json({ chats: chats });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error in getting chats: ${err.message}`);
}
});
router.get('/:id', async (req, res) => {
try {
const chatExists = await db.query.chats.findFirst({
where: eq(chats.id, req.params.id),
});
if (!chatExists) {
return res.status(404).json({ message: 'Chat not found' });
}
const chatMessages = await db.query.messages.findMany({
where: eq(messages.chatId, req.params.id),
});
return res.status(200).json({ chat: chatExists, messages: chatMessages });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error in getting chat: ${err.message}`);
}
});
router.delete(`/:id`, async (req, res) => {
try {
const chatExists = await db.query.chats.findFirst({
where: eq(chats.id, req.params.id),
});
if (!chatExists) {
return res.status(404).json({ message: 'Chat not found' });
}
await db.delete(chats).where(eq(chats.id, req.params.id)).execute();
await db
.delete(messages)
.where(eq(messages.chatId, req.params.id))
.execute();
return res.status(200).json({ message: 'Chat deleted successfully' });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error in deleting chat: ${err.message}`);
}
});
export default router;

139
src/routes/config.ts Normal file
View File

@@ -0,0 +1,139 @@
import express from 'express';
import {
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '../lib/providers';
import {
getGroqApiKey,
getOllamaApiEndpoint,
getAnthropicApiKey,
getGeminiApiKey,
getOpenaiApiKey,
updateConfig,
getConfigPassword,
isLibraryEnabled,
isCopilotEnabled,
isDiscoverEnabled,
getCustomOpenaiApiUrl,
getCustomOpenaiApiKey,
getCustomOpenaiModelName,
} from '../config';
import logger from '../utils/logger';
const router = express.Router();
router.get('/', async (req, res) => {
try {
const authHeader = req.headers['authorization']?.split(' ')[1];
const password = getConfigPassword();
if (authHeader !== password) {
res.status(401).json({ message: 'Unauthorized' });
return;
}
const config = {};
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
config['chatModelProviders'] = {};
config['embeddingModelProviders'] = {};
for (const provider in chatModelProviders) {
config['chatModelProviders'][provider] = Object.keys(
chatModelProviders[provider],
).map((model) => {
return {
name: model,
displayName: chatModelProviders[provider][model].displayName,
};
});
}
for (const provider in embeddingModelProviders) {
config['embeddingModelProviders'][provider] = Object.keys(
embeddingModelProviders[provider],
).map((model) => {
return {
name: model,
displayName: embeddingModelProviders[provider][model].displayName,
};
});
}
config['openaiApiKey'] = getOpenaiApiKey();
config['ollamaApiUrl'] = getOllamaApiEndpoint();
config['anthropicApiKey'] = getAnthropicApiKey();
config['groqApiKey'] = getGroqApiKey();
config['geminiApiKey'] = getGeminiApiKey();
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
config['customOpenaiModelName'] = getCustomOpenaiModelName();
res.status(200).json(config);
} catch (err: any) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error getting config: ${err.message}`);
}
});
router.post('/', async (req, res) => {
const authHeader = req.headers['authorization']?.split(' ')[1];
const password = getConfigPassword();
if (authHeader !== password) {
res.status(401).json({ message: 'Unauthorized' });
return;
}
const config = req.body;
const updatedConfig = {
GENERAL: {
DISCOVER_ENABLED: config.isDiscoverEnabled,
LIBRARY_ENABLED: config.isLibraryEnabled,
COPILOT_ENABLED: config.isCopilotEnabled,
},
MODELS: {
OPENAI: {
API_KEY: config.openaiApiKey,
},
GROQ: {
API_KEY: config.groqApiKey,
},
ANTHROPIC: {
API_KEY: config.anthropicApiKey,
},
GEMINI: {
API_KEY: config.geminiApiKey,
},
OLLAMA: {
API_URL: config.ollamaApiUrl,
},
CUSTOM_OPENAI: {
API_URL: config.customOpenaiApiUrl,
API_KEY: config.customOpenaiApiKey,
MODEL_NAME: config.customOpenaiModelName,
},
},
};
updateConfig(updatedConfig);
res.status(200).json({ message: 'Config updated' });
});
router.get('/preferences', (_, res) => {
const preferences = {
isLibraryEnabled: isLibraryEnabled(),
isCopilotEnabled: isCopilotEnabled(),
isDiscoverEnabled: isDiscoverEnabled(),
};
res.status(200).json(preferences);
});
export default router;

48
src/routes/discover.ts Normal file
View File

@@ -0,0 +1,48 @@
import express from 'express';
import { searchSearxng } from '../lib/searxng';
import logger from '../utils/logger';
const router = express.Router();
router.get('/', async (req, res) => {
try {
const data = (
await Promise.all([
searchSearxng('site:businessinsider.com AI', {
engines: ['bing news'],
pageno: 1,
}),
searchSearxng('site:www.exchangewire.com AI', {
engines: ['bing news'],
pageno: 1,
}),
searchSearxng('site:yahoo.com AI', {
engines: ['bing news'],
pageno: 1,
}),
searchSearxng('site:businessinsider.com tech', {
engines: ['bing news'],
pageno: 1,
}),
searchSearxng('site:www.exchangewire.com tech', {
engines: ['bing news'],
pageno: 1,
}),
searchSearxng('site:yahoo.com tech', {
engines: ['bing news'],
pageno: 1,
}),
])
)
.map((result) => result.results)
.flat()
.sort(() => Math.random() - 0.5);
return res.json({ blogs: data });
} catch (err: any) {
logger.error(`Error in discover route: ${err.message}`);
return res.status(500).json({ message: 'An error has occurred' });
}
});
export default router;

82
src/routes/images.ts Normal file
View File

@@ -0,0 +1,82 @@
import express from 'express';
import handleImageSearch from '../chains/imageSearchAgent';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { getAvailableChatModelProviders } from '../lib/providers';
import { HumanMessage, AIMessage } from '@langchain/core/messages';
import logger from '../utils/logger';
import { ChatOpenAI } from '@langchain/openai';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '../config';
const router = express.Router();
interface ChatModel {
provider: string;
model: string;
}
interface ImageSearchBody {
query: string;
chatHistory: any[];
chatModel?: ChatModel;
}
router.post('/', async (req, res) => {
try {
let body: ImageSearchBody = req.body;
const chatHistory = body.chatHistory.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
return new AIMessage(msg.content);
}
});
const chatModelProviders = await getAvailableChatModelProviders();
const chatModelProvider =
body.chatModel?.provider || Object.keys(chatModelProviders)[0];
const chatModel =
body.chatModel?.model ||
Object.keys(chatModelProviders[chatModelProvider])[0];
let llm: BaseChatModel | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
modelName: getCustomOpenaiModelName(),
openAIApiKey: getCustomOpenaiApiKey(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (
chatModelProviders[chatModelProvider] &&
chatModelProviders[chatModelProvider][chatModel]
) {
llm = chatModelProviders[chatModelProvider][chatModel]
.model as unknown as BaseChatModel | undefined;
}
if (!llm) {
return res.status(400).json({ message: 'Invalid model selected' });
}
const images = await handleImageSearch(
{ query: body.query, chat_history: chatHistory },
llm,
);
res.status(200).json({ images });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error in image search: ${err.message}`);
}
});
export default router;

24
src/routes/index.ts Normal file
View File

@@ -0,0 +1,24 @@
import express from 'express';
import imagesRouter from './images';
import videosRouter from './videos';
import configRouter from './config';
import modelsRouter from './models';
import suggestionsRouter from './suggestions';
import chatsRouter from './chats';
import searchRouter from './search';
import discoverRouter from './discover';
import uploadsRouter from './uploads';
const router = express.Router();
router.use('/images', imagesRouter);
router.use('/videos', videosRouter);
router.use('/config', configRouter);
router.use('/models', modelsRouter);
router.use('/suggestions', suggestionsRouter);
router.use('/chats', chatsRouter);
router.use('/search', searchRouter);
router.use('/discover', discoverRouter);
router.use('/uploads', uploadsRouter);
export default router;

59
src/routes/models.ts Normal file
View File

@@ -0,0 +1,59 @@
import express from 'express';
import logger from '../utils/logger';
import {
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '../lib/providers';
const router = express.Router();
router.get('/', async (req, res) => {
try {
const [chatModelProvidersRaw, embeddingModelProvidersRaw] =
await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
const chatModelProviders = {};
const chatModelProvidersKeys = Object.keys(chatModelProvidersRaw);
chatModelProvidersKeys.forEach((provider) => {
chatModelProviders[provider] = {};
const models = Object.keys(chatModelProvidersRaw[provider]);
models.forEach((model) => {
chatModelProviders[provider][model] = {};
});
});
const embeddingModelProviders = {};
const embeddingModelProvidersKeys = Object.keys(embeddingModelProvidersRaw);
embeddingModelProvidersKeys.forEach((provider) => {
embeddingModelProviders[provider] = {};
const models = Object.keys(embeddingModelProvidersRaw[provider]);
models.forEach((model) => {
embeddingModelProviders[provider][model] = {};
});
});
Object.keys(chatModelProviders).forEach((provider) => {
Object.keys(chatModelProviders[provider]).forEach((model) => {
delete chatModelProviders[provider][model].model;
});
});
Object.keys(embeddingModelProviders).forEach((provider) => {
Object.keys(embeddingModelProviders[provider]).forEach((model) => {
delete embeddingModelProviders[provider][model].model;
});
});
res.status(200).json({ chatModelProviders, embeddingModelProviders });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(err.message);
}
});
export default router;

158
src/routes/search.ts Normal file
View File

@@ -0,0 +1,158 @@
import express from 'express';
import logger from '../utils/logger';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import { ChatOpenAI } from '@langchain/openai';
import {
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '../lib/providers';
import { searchHandlers } from '../websocket/messageHandler';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
import { MetaSearchAgentType } from '../search/metaSearchAgent';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '../config';
const router = express.Router();
interface chatModel {
provider: string;
model: string;
customOpenAIKey?: string;
customOpenAIBaseURL?: string;
}
interface embeddingModel {
provider: string;
model: string;
}
interface ChatRequestBody {
optimizationMode: 'speed' | 'balanced';
focusMode: string;
chatModel?: chatModel;
embeddingModel?: embeddingModel;
query: string;
history: Array<[string, string]>;
}
router.post('/', async (req, res) => {
try {
const body: ChatRequestBody = req.body;
if (!body.focusMode || !body.query) {
return res.status(400).json({ message: 'Missing focus mode or query' });
}
body.history = body.history || [];
body.optimizationMode = body.optimizationMode || 'balanced';
const history: BaseMessage[] = body.history.map((msg) => {
if (msg[0] === 'human') {
return new HumanMessage({
content: msg[1],
});
} else {
return new AIMessage({
content: msg[1],
});
}
});
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
const chatModelProvider =
body.chatModel?.provider || Object.keys(chatModelProviders)[0];
const chatModel =
body.chatModel?.model ||
Object.keys(chatModelProviders[chatModelProvider])[0];
const embeddingModelProvider =
body.embeddingModel?.provider || Object.keys(embeddingModelProviders)[0];
const embeddingModel =
body.embeddingModel?.model ||
Object.keys(embeddingModelProviders[embeddingModelProvider])[0];
let llm: BaseChatModel | undefined;
let embeddings: Embeddings | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
modelName: body.chatModel?.model || getCustomOpenaiModelName(),
openAIApiKey:
body.chatModel?.customOpenAIKey || getCustomOpenaiApiKey(),
temperature: 0.7,
configuration: {
baseURL:
body.chatModel?.customOpenAIBaseURL || getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (
chatModelProviders[chatModelProvider] &&
chatModelProviders[chatModelProvider][chatModel]
) {
llm = chatModelProviders[chatModelProvider][chatModel]
.model as unknown as BaseChatModel | undefined;
}
if (
embeddingModelProviders[embeddingModelProvider] &&
embeddingModelProviders[embeddingModelProvider][embeddingModel]
) {
embeddings = embeddingModelProviders[embeddingModelProvider][
embeddingModel
].model as Embeddings | undefined;
}
if (!llm || !embeddings) {
return res.status(400).json({ message: 'Invalid model selected' });
}
const searchHandler: MetaSearchAgentType = searchHandlers[body.focusMode];
if (!searchHandler) {
return res.status(400).json({ message: 'Invalid focus mode' });
}
const emitter = await searchHandler.searchAndAnswer(
body.query,
history,
llm,
embeddings,
body.optimizationMode,
[],
);
let message = '';
let sources = [];
emitter.on('data', (data) => {
const parsedData = JSON.parse(data);
if (parsedData.type === 'response') {
message += parsedData.data;
} else if (parsedData.type === 'sources') {
sources = parsedData.data;
}
});
emitter.on('end', () => {
res.status(200).json({ message, sources });
});
emitter.on('error', (data) => {
const parsedData = JSON.parse(data);
res.status(500).json({ message: parsedData.data });
});
} catch (err: any) {
logger.error(`Error in getting search results: ${err.message}`);
res.status(500).json({ message: 'An error has occurred.' });
}
});
export default router;

81
src/routes/suggestions.ts Normal file
View File

@@ -0,0 +1,81 @@
import express from 'express';
import generateSuggestions from '../chains/suggestionGeneratorAgent';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { getAvailableChatModelProviders } from '../lib/providers';
import { HumanMessage, AIMessage } from '@langchain/core/messages';
import logger from '../utils/logger';
import { ChatOpenAI } from '@langchain/openai';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '../config';
const router = express.Router();
interface ChatModel {
provider: string;
model: string;
}
interface SuggestionsBody {
chatHistory: any[];
chatModel?: ChatModel;
}
router.post('/', async (req, res) => {
try {
let body: SuggestionsBody = req.body;
const chatHistory = body.chatHistory.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
return new AIMessage(msg.content);
}
});
const chatModelProviders = await getAvailableChatModelProviders();
const chatModelProvider =
body.chatModel?.provider || Object.keys(chatModelProviders)[0];
const chatModel =
body.chatModel?.model ||
Object.keys(chatModelProviders[chatModelProvider])[0];
let llm: BaseChatModel | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
modelName: getCustomOpenaiModelName(),
openAIApiKey: getCustomOpenaiApiKey(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (
chatModelProviders[chatModelProvider] &&
chatModelProviders[chatModelProvider][chatModel]
) {
llm = chatModelProviders[chatModelProvider][chatModel]
.model as unknown as BaseChatModel | undefined;
}
if (!llm) {
return res.status(400).json({ message: 'Invalid model selected' });
}
const suggestions = await generateSuggestions(
{ chat_history: chatHistory },
llm,
);
res.status(200).json({ suggestions: suggestions });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error in generating suggestions: ${err.message}`);
}
});
export default router;

151
src/routes/uploads.ts Normal file
View File

@@ -0,0 +1,151 @@
import express from 'express';
import logger from '../utils/logger';
import multer from 'multer';
import path from 'path';
import crypto from 'crypto';
import fs from 'fs';
import { Embeddings } from '@langchain/core/embeddings';
import { getAvailableEmbeddingModelProviders } from '../lib/providers';
import { PDFLoader } from '@langchain/community/document_loaders/fs/pdf';
import { DocxLoader } from '@langchain/community/document_loaders/fs/docx';
import { RecursiveCharacterTextSplitter } from '@langchain/textsplitters';
import { Document } from 'langchain/document';
const router = express.Router();
const splitter = new RecursiveCharacterTextSplitter({
chunkSize: 500,
chunkOverlap: 100,
});
const storage = multer.diskStorage({
destination: (req, file, cb) => {
cb(null, path.join(process.cwd(), './uploads'));
},
filename: (req, file, cb) => {
const splitedFileName = file.originalname.split('.');
const fileExtension = splitedFileName[splitedFileName.length - 1];
if (!['pdf', 'docx', 'txt'].includes(fileExtension)) {
return cb(new Error('File type is not supported'), '');
}
cb(null, `${crypto.randomBytes(16).toString('hex')}.${fileExtension}`);
},
});
const upload = multer({ storage });
router.post(
'/',
upload.fields([
{ name: 'files' },
{ name: 'embedding_model', maxCount: 1 },
{ name: 'embedding_model_provider', maxCount: 1 },
]),
async (req, res) => {
try {
const { embedding_model, embedding_model_provider } = req.body;
if (!embedding_model || !embedding_model_provider) {
res
.status(400)
.json({ message: 'Missing embedding model or provider' });
return;
}
const embeddingModels = await getAvailableEmbeddingModelProviders();
const provider =
embedding_model_provider ?? Object.keys(embeddingModels)[0];
const embeddingModel: Embeddings =
embedding_model ?? Object.keys(embeddingModels[provider])[0];
let embeddingsModel: Embeddings | undefined;
if (
embeddingModels[provider] &&
embeddingModels[provider][embeddingModel]
) {
embeddingsModel = embeddingModels[provider][embeddingModel].model as
| Embeddings
| undefined;
}
if (!embeddingsModel) {
res.status(400).json({ message: 'Invalid LLM model selected' });
return;
}
const files = req.files['files'] as Express.Multer.File[];
if (!files || files.length === 0) {
res.status(400).json({ message: 'No files uploaded' });
return;
}
await Promise.all(
files.map(async (file) => {
let docs: Document[] = [];
if (file.mimetype === 'application/pdf') {
const loader = new PDFLoader(file.path);
docs = await loader.load();
} else if (
file.mimetype ===
'application/vnd.openxmlformats-officedocument.wordprocessingml.document'
) {
const loader = new DocxLoader(file.path);
docs = await loader.load();
} else if (file.mimetype === 'text/plain') {
const text = fs.readFileSync(file.path, 'utf-8');
docs = [
new Document({
pageContent: text,
metadata: {
title: file.originalname,
},
}),
];
}
const splitted = await splitter.splitDocuments(docs);
const json = JSON.stringify({
title: file.originalname,
contents: splitted.map((doc) => doc.pageContent),
});
const pathToSave = file.path.replace(/\.\w+$/, '-extracted.json');
fs.writeFileSync(pathToSave, json);
const embeddings = await embeddingsModel.embedDocuments(
splitted.map((doc) => doc.pageContent),
);
const embeddingsJSON = JSON.stringify({
title: file.originalname,
embeddings: embeddings,
});
const pathToSaveEmbeddings = file.path.replace(
/\.\w+$/,
'-embeddings.json',
);
fs.writeFileSync(pathToSaveEmbeddings, embeddingsJSON);
}),
);
res.status(200).json({
files: files.map((file) => {
return {
fileName: file.originalname,
fileExtension: file.filename.split('.').pop(),
fileId: file.filename.replace(/\.\w+$/, ''),
};
}),
});
} catch (err: any) {
logger.error(`Error in uploading file results: ${err.message}`);
res.status(500).json({ message: 'An error has occurred.' });
}
},
);
export default router;

82
src/routes/videos.ts Normal file
View File

@@ -0,0 +1,82 @@
import express from 'express';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { getAvailableChatModelProviders } from '../lib/providers';
import { HumanMessage, AIMessage } from '@langchain/core/messages';
import logger from '../utils/logger';
import handleVideoSearch from '../chains/videoSearchAgent';
import { ChatOpenAI } from '@langchain/openai';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '../config';
const router = express.Router();
interface ChatModel {
provider: string;
model: string;
}
interface VideoSearchBody {
query: string;
chatHistory: any[];
chatModel?: ChatModel;
}
router.post('/', async (req, res) => {
try {
let body: VideoSearchBody = req.body;
const chatHistory = body.chatHistory.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
return new AIMessage(msg.content);
}
});
const chatModelProviders = await getAvailableChatModelProviders();
const chatModelProvider =
body.chatModel?.provider || Object.keys(chatModelProviders)[0];
const chatModel =
body.chatModel?.model ||
Object.keys(chatModelProviders[chatModelProvider])[0];
let llm: BaseChatModel | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
modelName: getCustomOpenaiModelName(),
openAIApiKey: getCustomOpenaiApiKey(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (
chatModelProviders[chatModelProvider] &&
chatModelProviders[chatModelProvider][chatModel]
) {
llm = chatModelProviders[chatModelProvider][chatModel]
.model as unknown as BaseChatModel | undefined;
}
if (!llm) {
return res.status(400).json({ message: 'Invalid model selected' });
}
const videos = await handleVideoSearch(
{ chat_history: chatHistory, query: body.query },
llm,
);
res.status(200).json({ videos });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error in video search: ${err.message}`);
}
});
export default router;

View File

@@ -13,17 +13,18 @@ import {
} from '@langchain/core/runnables'; } from '@langchain/core/runnables';
import { BaseMessage } from '@langchain/core/messages'; import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers'; import { StringOutputParser } from '@langchain/core/output_parsers';
import LineListOutputParser from '../outputParsers/listLineOutputParser'; import LineListOutputParser from '../lib/outputParsers/listLineOutputParser';
import LineOutputParser from '../outputParsers/lineOutputParser'; import LineOutputParser from '../lib/outputParsers/lineOutputParser';
import { getDocumentsFromLinks } from '../utils/documents'; import { getDocumentsFromLinks } from '../utils/documents';
import { Document } from 'langchain/document'; import { Document } from 'langchain/document';
import { searchSearxng } from '../searxng'; import { searchSearxng } from '../lib/searxng';
import path from 'node:path'; import path from 'path';
import fs from 'node:fs'; import fs from 'fs';
import computeSimilarity from '../utils/computeSimilarity'; import computeSimilarity from '../utils/computeSimilarity';
import formatChatHistoryAsString from '../utils/formatHistory'; import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events'; import eventEmitter from 'events';
import { StreamEvent } from '@langchain/core/tracers/log_stream'; import { StreamEvent } from '@langchain/core/tracers/log_stream';
import { IterableReadableStream } from '@langchain/core/utils/stream';
export interface MetaSearchAgentType { export interface MetaSearchAgentType {
searchAndAnswer: ( searchAndAnswer: (
@@ -89,7 +90,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
question = 'summarize'; question = 'summarize';
} }
let docs: Document[] = []; let docs = [];
const linkDocs = await getDocumentsFromLinks({ links }); const linkDocs = await getDocumentsFromLinks({ links });
@@ -310,7 +311,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
const embeddings = JSON.parse(fs.readFileSync(embeddingsPath, 'utf8')); const embeddings = JSON.parse(fs.readFileSync(embeddingsPath, 'utf8'));
const fileSimilaritySearchObject = content.contents.map( const fileSimilaritySearchObject = content.contents.map(
(c: string, i: number) => { (c: string, i) => {
return { return {
fileName: content.title, fileName: content.title,
content: c, content: c,
@@ -413,8 +414,6 @@ class MetaSearchAgent implements MetaSearchAgentType {
return sortedDocs; return sortedDocs;
} }
return [];
} }
private processDocs(docs: Document[]) { private processDocs(docs: Document[]) {
@@ -427,7 +426,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
} }
private async handleStream( private async handleStream(
stream: AsyncGenerator<StreamEvent, any, any>, stream: IterableReadableStream<StreamEvent>,
emitter: eventEmitter, emitter: eventEmitter,
) { ) {
for await (const event of stream) { for await (const event of stream) {

View File

@@ -6,7 +6,7 @@ const computeSimilarity = (x: number[], y: number[]): number => {
const similarityMeasure = getSimilarityMeasure(); const similarityMeasure = getSimilarityMeasure();
if (similarityMeasure === 'cosine') { if (similarityMeasure === 'cosine') {
return cosineSimilarity(x, y) as number; return cosineSimilarity(x, y);
} else if (similarityMeasure === 'dot') { } else if (similarityMeasure === 'dot') {
return dot(x, y); return dot(x, y);
} }

View File

@@ -3,6 +3,7 @@ import { htmlToText } from 'html-to-text';
import { RecursiveCharacterTextSplitter } from 'langchain/text_splitter'; import { RecursiveCharacterTextSplitter } from 'langchain/text_splitter';
import { Document } from '@langchain/core/documents'; import { Document } from '@langchain/core/documents';
import pdfParse from 'pdf-parse'; import pdfParse from 'pdf-parse';
import logger from './logger';
export const getDocumentsFromLinks = async ({ links }: { links: string[] }) => { export const getDocumentsFromLinks = async ({ links }: { links: string[] }) => {
const splitter = new RecursiveCharacterTextSplitter(); const splitter = new RecursiveCharacterTextSplitter();
@@ -78,13 +79,12 @@ export const getDocumentsFromLinks = async ({ links }: { links: string[] }) => {
docs.push(...linkDocs); docs.push(...linkDocs);
} catch (err) { } catch (err) {
console.error( logger.error(
'An error occurred while getting documents from links: ', `Error at generating documents from links: ${err.message}`,
err,
); );
docs.push( docs.push(
new Document({ new Document({
pageContent: `Failed to retrieve content from the link: ${err}`, pageContent: `Failed to retrieve content from the link: ${err.message}`,
metadata: { metadata: {
title: 'Failed to retrieve content', title: 'Failed to retrieve content',
url: link, url: link,

22
src/utils/logger.ts Normal file
View File

@@ -0,0 +1,22 @@
import winston from 'winston';
const logger = winston.createLogger({
level: 'info',
transports: [
new winston.transports.Console({
format: winston.format.combine(
winston.format.colorize(),
winston.format.simple(),
),
}),
new winston.transports.File({
filename: 'app.log',
format: winston.format.combine(
winston.format.timestamp(),
winston.format.json(),
),
}),
],
});
export default logger;

View File

@@ -0,0 +1,122 @@
import { WebSocket } from 'ws';
import { handleMessage } from './messageHandler';
import {
getAvailableEmbeddingModelProviders,
getAvailableChatModelProviders,
} from '../lib/providers';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import type { IncomingMessage } from 'http';
import logger from '../utils/logger';
import { ChatOpenAI } from '@langchain/openai';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '../config';
export const handleConnection = async (
ws: WebSocket,
request: IncomingMessage,
) => {
try {
const searchParams = new URL(request.url, `http://${request.headers.host}`)
.searchParams;
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
const chatModelProvider =
searchParams.get('chatModelProvider') ||
Object.keys(chatModelProviders)[0];
const chatModel =
searchParams.get('chatModel') ||
Object.keys(chatModelProviders[chatModelProvider])[0];
const embeddingModelProvider =
searchParams.get('embeddingModelProvider') ||
Object.keys(embeddingModelProviders)[0];
const embeddingModel =
searchParams.get('embeddingModel') ||
Object.keys(embeddingModelProviders[embeddingModelProvider])[0];
let llm: BaseChatModel | undefined;
let embeddings: Embeddings | undefined;
if (
chatModelProviders[chatModelProvider] &&
chatModelProviders[chatModelProvider][chatModel] &&
chatModelProvider != 'custom_openai'
) {
llm = chatModelProviders[chatModelProvider][chatModel]
.model as unknown as BaseChatModel | undefined;
} else if (chatModelProvider == 'custom_openai') {
const customOpenaiApiKey = getCustomOpenaiApiKey();
const customOpenaiApiUrl = getCustomOpenaiApiUrl();
const customOpenaiModelName = getCustomOpenaiModelName();
if (customOpenaiApiKey && customOpenaiApiUrl && customOpenaiModelName) {
llm = new ChatOpenAI({
modelName: customOpenaiModelName,
openAIApiKey: customOpenaiApiKey,
temperature: 0.7,
configuration: {
baseURL: customOpenaiApiUrl,
},
}) as unknown as BaseChatModel;
}
}
if (
embeddingModelProviders[embeddingModelProvider] &&
embeddingModelProviders[embeddingModelProvider][embeddingModel]
) {
embeddings = embeddingModelProviders[embeddingModelProvider][
embeddingModel
].model as Embeddings | undefined;
}
if (!llm || !embeddings) {
ws.send(
JSON.stringify({
type: 'error',
data: 'Invalid LLM or embeddings model selected, please refresh the page and try again.',
key: 'INVALID_MODEL_SELECTED',
}),
);
ws.close();
}
const interval = setInterval(() => {
if (ws.readyState === ws.OPEN) {
ws.send(
JSON.stringify({
type: 'signal',
data: 'open',
}),
);
clearInterval(interval);
}
}, 5);
ws.on(
'message',
async (message) =>
await handleMessage(message.toString(), ws, llm, embeddings),
);
ws.on('close', () => logger.debug('Connection closed'));
} catch (err) {
ws.send(
JSON.stringify({
type: 'error',
data: 'Internal server error.',
key: 'INTERNAL_SERVER_ERROR',
}),
);
ws.close();
logger.error(err);
}
};

8
src/websocket/index.ts Normal file
View File

@@ -0,0 +1,8 @@
import { initServer } from './websocketServer';
import http from 'http';
export const startWebSocketServer = (
server: http.Server<typeof http.IncomingMessage, typeof http.ServerResponse>,
) => {
initServer(server);
};

View File

@@ -0,0 +1,281 @@
import { EventEmitter, WebSocket } from 'ws';
import { BaseMessage, AIMessage, HumanMessage } from '@langchain/core/messages';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import logger from '../utils/logger';
import db from '../db';
import { chats, messages as messagesSchema } from '../db/schema';
import { eq, gt, and } from 'drizzle-orm';
import crypto from 'crypto';
import { isLibraryEnabled } from '../config';
import { getFileDetails } from '../utils/files';
import MetaSearchAgent, {
MetaSearchAgentType,
} from '../search/metaSearchAgent';
import prompts from '../prompts';
type Message = {
messageId: string;
chatId: string;
content: string;
};
type WSMessage = {
message: Message;
optimizationMode: 'speed' | 'balanced' | 'quality';
type: string;
focusMode: string;
history: Array<[string, string]>;
files: Array<string>;
};
export const searchHandlers = {
webSearch: new MetaSearchAgent({
activeEngines: [],
queryGeneratorPrompt: prompts.webSearchRetrieverPrompt,
responsePrompt: prompts.webSearchResponsePrompt,
rerank: true,
rerankThreshold: 0.3,
searchWeb: true,
summarizer: true,
}),
academicSearch: new MetaSearchAgent({
activeEngines: ['arxiv', 'google scholar', 'pubmed'],
queryGeneratorPrompt: prompts.academicSearchRetrieverPrompt,
responsePrompt: prompts.academicSearchResponsePrompt,
rerank: true,
rerankThreshold: 0,
searchWeb: true,
summarizer: false,
}),
writingAssistant: new MetaSearchAgent({
activeEngines: [],
queryGeneratorPrompt: '',
responsePrompt: prompts.writingAssistantPrompt,
rerank: true,
rerankThreshold: 0,
searchWeb: false,
summarizer: false,
}),
wolframAlphaSearch: new MetaSearchAgent({
activeEngines: ['wolframalpha'],
queryGeneratorPrompt: prompts.wolframAlphaSearchRetrieverPrompt,
responsePrompt: prompts.wolframAlphaSearchResponsePrompt,
rerank: false,
rerankThreshold: 0,
searchWeb: true,
summarizer: false,
}),
youtubeSearch: new MetaSearchAgent({
activeEngines: ['youtube'],
queryGeneratorPrompt: prompts.youtubeSearchRetrieverPrompt,
responsePrompt: prompts.youtubeSearchResponsePrompt,
rerank: true,
rerankThreshold: 0.3,
searchWeb: true,
summarizer: false,
}),
redditSearch: new MetaSearchAgent({
activeEngines: ['reddit'],
queryGeneratorPrompt: prompts.redditSearchRetrieverPrompt,
responsePrompt: prompts.redditSearchResponsePrompt,
rerank: true,
rerankThreshold: 0.3,
searchWeb: true,
summarizer: false,
}),
};
const handleEmitterEvents = (
emitter: EventEmitter,
ws: WebSocket,
messageId: string,
chatId: string,
) => {
let recievedMessage = '';
let sources = [];
const libraryEnabled = isLibraryEnabled();
emitter.on('data', (data) => {
const parsedData = JSON.parse(data);
if (parsedData.type === 'response') {
ws.send(
JSON.stringify({
type: 'message',
data: parsedData.data,
messageId: messageId,
}),
);
recievedMessage += parsedData.data;
} else if (parsedData.type === 'sources') {
ws.send(
JSON.stringify({
type: 'sources',
data: parsedData.data,
messageId: messageId,
}),
);
sources = parsedData.data;
}
});
emitter.on('end', () => {
ws.send(JSON.stringify({ type: 'messageEnd', messageId: messageId }));
if (libraryEnabled) {
db.insert(messagesSchema)
.values({
content: recievedMessage,
chatId: chatId,
messageId: messageId,
role: 'assistant',
metadata: JSON.stringify({
createdAt: new Date(),
...(sources && sources.length > 0 && { sources }),
}),
})
.execute();
}
});
emitter.on('error', (data) => {
const parsedData = JSON.parse(data);
ws.send(
JSON.stringify({
type: 'error',
data: parsedData.data,
key: 'CHAIN_ERROR',
}),
);
});
};
export const handleMessage = async (
message: string,
ws: WebSocket,
llm: BaseChatModel,
embeddings: Embeddings,
) => {
try {
const parsedWSMessage = JSON.parse(message) as WSMessage;
const parsedMessage = parsedWSMessage.message;
if (parsedWSMessage.files.length > 0) {
/* TODO: Implement uploads in other classes/single meta class system*/
parsedWSMessage.focusMode = 'webSearch';
}
const humanMessageId =
parsedMessage.messageId ?? crypto.randomBytes(7).toString('hex');
const aiMessageId = crypto.randomBytes(7).toString('hex');
if (!parsedMessage.content)
return ws.send(
JSON.stringify({
type: 'error',
data: 'Invalid message format',
key: 'INVALID_FORMAT',
}),
);
const history: BaseMessage[] = parsedWSMessage.history.map((msg) => {
if (msg[0] === 'human') {
return new HumanMessage({
content: msg[1],
});
} else {
return new AIMessage({
content: msg[1],
});
}
});
if (parsedWSMessage.type === 'message') {
const handler: MetaSearchAgentType =
searchHandlers[parsedWSMessage.focusMode];
const libraryEnabled = isLibraryEnabled();
if (handler) {
try {
const emitter = await handler.searchAndAnswer(
parsedMessage.content,
history,
llm,
embeddings,
parsedWSMessage.optimizationMode,
parsedWSMessage.files,
);
handleEmitterEvents(emitter, ws, aiMessageId, parsedMessage.chatId);
if (libraryEnabled) {
const chat = await db.query.chats.findFirst({
where: eq(chats.id, parsedMessage.chatId),
});
if (!chat) {
await db
.insert(chats)
.values({
id: parsedMessage.chatId,
title: parsedMessage.content,
createdAt: new Date().toString(),
focusMode: parsedWSMessage.focusMode,
files: parsedWSMessage.files.map(getFileDetails),
})
.execute();
}
const messageExists = await db.query.messages.findFirst({
where: eq(messagesSchema.messageId, humanMessageId),
});
if (!messageExists) {
await db
.insert(messagesSchema)
.values({
content: parsedMessage.content,
chatId: parsedMessage.chatId,
messageId: humanMessageId,
role: 'user',
metadata: JSON.stringify({
createdAt: new Date(),
}),
})
.execute();
} else {
await db
.delete(messagesSchema)
.where(
and(
gt(messagesSchema.id, messageExists.id),
eq(messagesSchema.chatId, parsedMessage.chatId),
),
)
.execute();
}
}
} catch (err) {
console.log(err);
}
} else {
ws.send(
JSON.stringify({
type: 'error',
data: 'Invalid focus mode',
key: 'INVALID_FOCUS_MODE',
}),
);
}
}
} catch (err) {
ws.send(
JSON.stringify({
type: 'error',
data: 'Invalid message format',
key: 'INVALID_FORMAT',
}),
);
logger.error(`Failed to handle message: ${err}`);
}
};

View File

@@ -0,0 +1,16 @@
import { WebSocketServer } from 'ws';
import { handleConnection } from './connectionManager';
import http from 'http';
import { getPort } from '../config';
import logger from '../utils/logger';
export const initServer = (
server: http.Server<typeof http.IncomingMessage, typeof http.ServerResponse>,
) => {
const port = getPort();
const wss = new WebSocketServer({ server });
wss.on('connection', handleConnection);
logger.info(`WebSocket server started on port ${port}`);
};

View File

@@ -1,27 +1,18 @@
{ {
"compilerOptions": { "compilerOptions": {
"lib": ["dom", "dom.iterable", "esnext"], "lib": ["ESNext"],
"allowJs": true, "module": "Node16",
"skipLibCheck": true, "moduleResolution": "Node16",
"strict": true, "target": "ESNext",
"noEmit": true, "outDir": "dist",
"sourceMap": false,
"esModuleInterop": true, "esModuleInterop": true,
"module": "esnext", "experimentalDecorators": true,
"moduleResolution": "bundler", "emitDecoratorMetadata": true,
"resolveJsonModule": true, "allowSyntheticDefaultImports": true,
"isolatedModules": true, "skipLibCheck": true,
"jsx": "preserve", "skipDefaultLibCheck": true
"incremental": true,
"plugins": [
{
"name": "next"
}
],
"paths": {
"@/*": ["./src/*"]
}, },
"target": "ES2017" "include": ["src"],
}, "exclude": ["node_modules", "**/*.spec.ts"]
"include": ["next-env.d.ts", "**/*.ts", "**/*.tsx", ".next/types/**/*.ts"],
"exclude": ["node_modules"]
} }

2
ui/.env.example Normal file
View File

@@ -0,0 +1,2 @@
NEXT_PUBLIC_WS_URL=ws://localhost:3001
NEXT_PUBLIC_API_URL=http://localhost:3001/api

34
ui/.gitignore vendored Normal file
View File

@@ -0,0 +1,34 @@
# dependencies
/node_modules
/.pnp
.pnp.js
.yarn/install-state.gz
# testing
/coverage
# next.js
/.next/
/out/
# production
/build
# misc
.DS_Store
*.pem
# debug
npm-debug.log*
yarn-debug.log*
yarn-error.log*
# local env files
.env*.local
# vercel
.vercel
# typescript
*.tsbuildinfo
next-env.d.ts

11
ui/.prettierrc.js Normal file
View File

@@ -0,0 +1,11 @@
/** @type {import("prettier").Config} */
const config = {
printWidth: 80,
trailingComma: 'all',
endOfLine: 'auto',
singleQuote: true,
tabWidth: 2,
};
module.exports = config;

View File

@@ -0,0 +1,7 @@
import ChatWindow from '@/components/ChatWindow';
const Page = ({ params }: { params: { chatId: string } }) => {
return <ChatWindow id={params.chatId} />;
};
export default Page;

View File

@@ -19,7 +19,7 @@ const Page = () => {
useEffect(() => { useEffect(() => {
const fetchData = async () => { const fetchData = async () => {
try { try {
const res = await fetch(`/api/discover`, { const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/discover`, {
method: 'GET', method: 'GET',
headers: { headers: {
'Content-Type': 'application/json', 'Content-Type': 'application/json',

View File

Before

Width:  |  Height:  |  Size: 25 KiB

After

Width:  |  Height:  |  Size: 25 KiB

36
ui/app/library/layout.tsx Normal file
View File

@@ -0,0 +1,36 @@
import { Metadata } from 'next';
import React from 'react';
export const metadata: Metadata = {
title: 'Library - Perplexica',
};
const Layout = async ({ children }: { children: React.ReactNode }) => {
const res = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/config/preferences`,
{
method: 'GET',
headers: {
'Content-Type': 'application/json',
},
},
);
const data = await res.json();
const { isLibraryEnabled } = data;
if (!isLibraryEnabled) {
return (
<div className="flex flex-row items-center justify-center min-h-screen w-full">
<p className="text-lg dark:text-white/70 text-black/70">
Library is disabled
</p>
</div>
);
}
return <div>{children}</div>;
};
export default Layout;

View File

@@ -1,8 +1,9 @@
'use client'; 'use client';
import DeleteChat from '@/components/DeleteChat'; import DeleteChat from '@/components/DeleteChat';
import { cn, formatTimeDifference } from '@/lib/utils'; import { formatTimeDifference } from '@/lib/utils';
import { BookOpenText, ClockIcon, Delete, ScanEye } from 'lucide-react'; import { cn } from '@/lib/utils';
import { BookOpenText, ClockIcon } from 'lucide-react';
import Link from 'next/link'; import Link from 'next/link';
import { useEffect, useState } from 'react'; import { useEffect, useState } from 'react';
@@ -21,7 +22,7 @@ const Page = () => {
const fetchChats = async () => { const fetchChats = async () => {
setLoading(true); setLoading(true);
const res = await fetch(`/api/chats`, { const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/chats`, {
method: 'GET', method: 'GET',
headers: { headers: {
'Content-Type': 'application/json', 'Content-Type': 'application/json',

View File

@@ -113,12 +113,90 @@ const Page = () => {
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false); const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({}); const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
const [password, setPassword] = useState('');
const [passwordSubmitted, setPasswordSubmitted] = useState(false);
const [isPasswordValid, setIsPasswordValid] = useState(true);
const handlePasswordSubmit = async () => {
setIsLoading(true);
setPasswordSubmitted(true);
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/config`, {
headers: {
'Content-Type': 'application/json',
Authorization: `Bearer ${password}`,
},
});
if (res.status === 401) {
setIsPasswordValid(false);
setPasswordSubmitted(false);
setIsLoading(false);
return;
} else {
setIsPasswordValid(true);
}
const data = (await res.json()) as SettingsType;
setConfig(data);
const chatModelProvidersKeys = Object.keys(data.chatModelProviders || {});
const embeddingModelProvidersKeys = Object.keys(
data.embeddingModelProviders || {},
);
const defaultChatModelProvider =
chatModelProvidersKeys.length > 0 ? chatModelProvidersKeys[0] : '';
const defaultEmbeddingModelProvider =
embeddingModelProvidersKeys.length > 0
? embeddingModelProvidersKeys[0]
: '';
const chatModelProvider =
localStorage.getItem('chatModelProvider') ||
defaultChatModelProvider ||
'';
const chatModel =
localStorage.getItem('chatModel') ||
(data.chatModelProviders &&
data.chatModelProviders[chatModelProvider]?.length > 0
? data.chatModelProviders[chatModelProvider][0].name
: undefined) ||
'';
const embeddingModelProvider =
localStorage.getItem('embeddingModelProvider') ||
defaultEmbeddingModelProvider ||
'';
const embeddingModel =
localStorage.getItem('embeddingModel') ||
(data.embeddingModelProviders &&
data.embeddingModelProviders[embeddingModelProvider]?.[0].name) ||
'';
setSelectedChatModelProvider(chatModelProvider);
setSelectedChatModel(chatModel);
setSelectedEmbeddingModelProvider(embeddingModelProvider);
setSelectedEmbeddingModel(embeddingModel);
setChatModels(data.chatModelProviders || {});
setEmbeddingModels(data.embeddingModelProviders || {});
setAutomaticImageSearch(
localStorage.getItem('autoImageSearch') === 'true',
);
setAutomaticVideoSearch(
localStorage.getItem('autoVideoSearch') === 'true',
);
setIsLoading(false);
};
useEffect(() => { useEffect(() => {
const fetchConfig = async () => { const fetchConfig = async () => {
setIsLoading(true); setIsLoading(true);
const res = await fetch(`/api/config`, { const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/config`, {
headers: { headers: {
'Content-Type': 'application/json', 'Content-Type': 'application/json',
Authorization: `Bearer ${password}`,
}, },
}); });
@@ -187,13 +265,21 @@ const Page = () => {
[key]: value, [key]: value,
} as SettingsType; } as SettingsType;
const response = await fetch(`/api/config`, { const response = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/config`,
{
method: 'POST', method: 'POST',
headers: { headers: {
'Content-Type': 'application/json', 'Content-Type': 'application/json',
Authorization: `Bearer ${password}`,
}, },
body: JSON.stringify(updatedConfig), body: JSON.stringify(updatedConfig),
}); },
);
if (response.status === 401) {
throw new Error('Unauthorized');
}
if (!response.ok) { if (!response.ok) {
throw new Error('Failed to update config'); throw new Error('Failed to update config');
@@ -205,9 +291,10 @@ const Page = () => {
key.toLowerCase().includes('api') || key.toLowerCase().includes('api') ||
key.toLowerCase().includes('url') key.toLowerCase().includes('url')
) { ) {
const res = await fetch(`/api/config`, { const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/config`, {
headers: { headers: {
'Content-Type': 'application/json', 'Content-Type': 'application/json',
Authorization: `Bearer ${password}`,
}, },
}); });
@@ -373,6 +460,33 @@ const Page = () => {
/> />
</svg> </svg>
</div> </div>
) : !passwordSubmitted ? (
<div className="flex flex-col max-w-md mx-auto mt-10 p-6 bg-light-secondary dark:bg-dark-secondary border border-light-200 dark:border-dark-200 rounded-2xl">
<h2 className="text-sm text-black/80 dark:text-white/80">
Enter the password to access the settings
</h2>
<div className="flex flex-col">
<Input
type="password"
placeholder="Password"
className="mt-4"
disabled={isLoading}
onChange={(e) => setPassword(e.target.value)}
/>
</div>
{!isPasswordValid && (
<p className="text-xs text-red-500 mt-2">
Password is incorrect
</p>
)}
<button
onClick={handlePasswordSubmit}
disabled={isLoading}
className="bg-[#24A0ED] flex flex-row items-center text-xs mt-4 text-white disabled:text-white/50 hover:bg-opacity-85 transition duration-100 disabled:bg-[#ececec21] rounded-full px-4 py-2"
>
Submit
</button>
</div>
) : ( ) : (
config && ( config && (
<div className="flex flex-col space-y-6 pb-28 lg:pb-8"> <div className="flex flex-col space-y-6 pb-28 lg:pb-8">

View File

@@ -48,17 +48,11 @@ const Chat = ({
}); });
useEffect(() => { useEffect(() => {
const scroll = () => {
messageEnd.current?.scrollIntoView({ behavior: 'smooth' }); messageEnd.current?.scrollIntoView({ behavior: 'smooth' });
};
if (messages.length === 1) { if (messages.length === 1) {
document.title = `${messages[0].content.substring(0, 30)} - Perplexica`; document.title = `${messages[0].content.substring(0, 30)} - Perplexica`;
} }
if (messages[messages.length - 1]?.role == 'user') {
scroll();
}
}, [messages]); }, [messages]);
return ( return (

View File

@@ -29,27 +29,36 @@ export interface File {
fileId: string; fileId: string;
} }
interface ChatModelProvider { const useSocket = (
name: string; url: string,
provider: string; setIsWSReady: (ready: boolean) => void,
} setError: (error: boolean) => void,
interface EmbeddingModelProvider {
name: string;
provider: string;
}
const checkConfig = async (
setChatModelProvider: (provider: ChatModelProvider) => void,
setEmbeddingModelProvider: (provider: EmbeddingModelProvider) => void,
setIsConfigReady: (ready: boolean) => void,
setHasError: (hasError: boolean) => void,
) => { ) => {
const wsRef = useRef<WebSocket | null>(null);
const reconnectTimeoutRef = useRef<NodeJS.Timeout>();
const retryCountRef = useRef(0);
const isCleaningUpRef = useRef(false);
const MAX_RETRIES = 3;
const INITIAL_BACKOFF = 1000; // 1 second
const isConnectionErrorRef = useRef(false);
const getBackoffDelay = (retryCount: number) => {
return Math.min(INITIAL_BACKOFF * Math.pow(2, retryCount), 10000); // Cap at 10 seconds
};
useEffect(() => {
const connectWs = async () => {
if (wsRef.current?.readyState === WebSocket.OPEN) {
wsRef.current.close();
}
try { try {
let chatModel = localStorage.getItem('chatModel'); let chatModel = localStorage.getItem('chatModel');
let chatModelProvider = localStorage.getItem('chatModelProvider'); let chatModelProvider = localStorage.getItem('chatModelProvider');
let embeddingModel = localStorage.getItem('embeddingModel'); let embeddingModel = localStorage.getItem('embeddingModel');
let embeddingModelProvider = localStorage.getItem('embeddingModelProvider'); let embeddingModelProvider = localStorage.getItem(
'embeddingModelProvider',
);
const autoImageSearch = localStorage.getItem('autoImageSearch'); const autoImageSearch = localStorage.getItem('autoImageSearch');
const autoVideoSearch = localStorage.getItem('autoVideoSearch'); const autoVideoSearch = localStorage.getItem('autoVideoSearch');
@@ -62,11 +71,14 @@ const checkConfig = async (
localStorage.setItem('autoVideoSearch', 'false'); localStorage.setItem('autoVideoSearch', 'false');
} }
const providers = await fetch(`/api/models`, { const providers = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/models`,
{
headers: { headers: {
'Content-Type': 'application/json', 'Content-Type': 'application/json',
}, },
}).then(async (res) => { },
).then(async (res) => {
if (!res.ok) if (!res.ok)
throw new Error( throw new Error(
`Failed to fetch models: ${res.status} ${res.statusText}`, `Failed to fetch models: ${res.status} ${res.statusText}`,
@@ -88,7 +100,10 @@ const checkConfig = async (
chatModel = Object.keys(chatModelProviders[chatModelProvider])[0]; chatModel = Object.keys(chatModelProviders[chatModelProvider])[0];
if (!chatModelProviders || Object.keys(chatModelProviders).length === 0) if (
!chatModelProviders ||
Object.keys(chatModelProviders).length === 0
)
return toast.error('No chat models available'); return toast.error('No chat models available');
} }
@@ -110,7 +125,10 @@ const checkConfig = async (
localStorage.setItem('chatModel', chatModel!); localStorage.setItem('chatModel', chatModel!);
localStorage.setItem('chatModelProvider', chatModelProvider); localStorage.setItem('chatModelProvider', chatModelProvider);
localStorage.setItem('embeddingModel', embeddingModel!); localStorage.setItem('embeddingModel', embeddingModel!);
localStorage.setItem('embeddingModelProvider', embeddingModelProvider); localStorage.setItem(
'embeddingModelProvider',
embeddingModelProvider,
);
} else { } else {
const chatModelProviders = providers.chatModelProviders; const chatModelProviders = providers.chatModelProviders;
const embeddingModelProviders = providers.embeddingModelProviders; const embeddingModelProviders = providers.embeddingModelProviders;
@@ -147,7 +165,10 @@ const checkConfig = async (
!embeddingModelProviders[embeddingModelProvider] !embeddingModelProviders[embeddingModelProvider]
) { ) {
embeddingModelProvider = Object.keys(embeddingModelProviders)[0]; embeddingModelProvider = Object.keys(embeddingModelProviders)[0];
localStorage.setItem('embeddingModelProvider', embeddingModelProvider); localStorage.setItem(
'embeddingModelProvider',
embeddingModelProvider,
);
} }
if ( if (
@@ -161,22 +182,127 @@ const checkConfig = async (
} }
} }
setChatModelProvider({ const wsURL = new URL(url);
name: chatModel!, const searchParams = new URLSearchParams({});
provider: chatModelProvider,
});
setEmbeddingModelProvider({ searchParams.append('chatModel', chatModel!);
name: embeddingModel!, searchParams.append('chatModelProvider', chatModelProvider);
provider: embeddingModelProvider,
});
setIsConfigReady(true); if (chatModelProvider === 'custom_openai') {
} catch (err) { searchParams.append(
console.error('An error occurred while checking the configuration:', err); 'openAIApiKey',
setIsConfigReady(false); localStorage.getItem('openAIApiKey')!,
setHasError(true); );
searchParams.append(
'openAIBaseURL',
localStorage.getItem('openAIBaseURL')!,
);
} }
searchParams.append('embeddingModel', embeddingModel!);
searchParams.append('embeddingModelProvider', embeddingModelProvider);
wsURL.search = searchParams.toString();
const ws = new WebSocket(wsURL.toString());
wsRef.current = ws;
const timeoutId = setTimeout(() => {
if (ws.readyState !== 1) {
toast.error(
'Failed to connect to the server. Please try again later.',
);
}
}, 10000);
ws.addEventListener('message', (e) => {
const data = JSON.parse(e.data);
if (data.type === 'signal' && data.data === 'open') {
const interval = setInterval(() => {
if (ws.readyState === 1) {
setIsWSReady(true);
setError(false);
if (retryCountRef.current > 0) {
toast.success('Connection restored.');
}
retryCountRef.current = 0;
clearInterval(interval);
}
}, 5);
clearTimeout(timeoutId);
console.debug(new Date(), 'ws:connected');
}
if (data.type === 'error') {
isConnectionErrorRef.current = true;
setError(true);
toast.error(data.data);
}
});
ws.onerror = () => {
clearTimeout(timeoutId);
setIsWSReady(false);
toast.error('WebSocket connection error.');
};
ws.onclose = () => {
clearTimeout(timeoutId);
setIsWSReady(false);
console.debug(new Date(), 'ws:disconnected');
if (!isCleaningUpRef.current && !isConnectionErrorRef.current) {
toast.error('Connection lost. Attempting to reconnect...');
attemptReconnect();
}
};
} catch (error) {
console.debug(new Date(), 'ws:error', error);
setIsWSReady(false);
attemptReconnect();
}
};
const attemptReconnect = () => {
retryCountRef.current += 1;
if (retryCountRef.current > MAX_RETRIES) {
console.debug(new Date(), 'ws:max_retries');
setError(true);
toast.error(
'Unable to connect to server after multiple attempts. Please refresh the page to try again.',
);
return;
}
const backoffDelay = getBackoffDelay(retryCountRef.current);
console.debug(
new Date(),
`ws:retry attempt=${retryCountRef.current}/${MAX_RETRIES} delay=${backoffDelay}ms`,
);
if (reconnectTimeoutRef.current) {
clearTimeout(reconnectTimeoutRef.current);
}
reconnectTimeoutRef.current = setTimeout(() => {
connectWs();
}, backoffDelay);
};
connectWs();
return () => {
if (reconnectTimeoutRef.current) {
clearTimeout(reconnectTimeoutRef.current);
}
if (wsRef.current?.readyState === WebSocket.OPEN) {
wsRef.current.close();
isCleaningUpRef.current = true;
console.debug(new Date(), 'ws:cleanup');
}
};
}, [url, setIsWSReady, setError]);
return wsRef.current;
}; };
const loadMessages = async ( const loadMessages = async (
@@ -189,12 +315,15 @@ const loadMessages = async (
setFiles: (files: File[]) => void, setFiles: (files: File[]) => void,
setFileIds: (fileIds: string[]) => void, setFileIds: (fileIds: string[]) => void,
) => { ) => {
const res = await fetch(`/api/chats/${chatId}`, { const res = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/chats/${chatId}`,
{
method: 'GET', method: 'GET',
headers: { headers: {
'Content-Type': 'application/json', 'Content-Type': 'application/json',
}, },
}); },
);
if (res.status === 404) { if (res.status === 404) {
setNotFound(true); setNotFound(true);
@@ -244,32 +373,15 @@ const ChatWindow = ({ id }: { id?: string }) => {
const [chatId, setChatId] = useState<string | undefined>(id); const [chatId, setChatId] = useState<string | undefined>(id);
const [newChatCreated, setNewChatCreated] = useState(false); const [newChatCreated, setNewChatCreated] = useState(false);
const [chatModelProvider, setChatModelProvider] = useState<ChatModelProvider>(
{
name: '',
provider: '',
},
);
const [embeddingModelProvider, setEmbeddingModelProvider] =
useState<EmbeddingModelProvider>({
name: '',
provider: '',
});
const [isConfigReady, setIsConfigReady] = useState(false);
const [hasError, setHasError] = useState(false); const [hasError, setHasError] = useState(false);
const [isReady, setIsReady] = useState(false); const [isReady, setIsReady] = useState(false);
useEffect(() => { const [isWSReady, setIsWSReady] = useState(false);
checkConfig( const ws = useSocket(
setChatModelProvider, process.env.NEXT_PUBLIC_WS_URL!,
setEmbeddingModelProvider, setIsWSReady,
setIsConfigReady,
setHasError, setHasError,
); );
// eslint-disable-next-line react-hooks/exhaustive-deps
}, []);
const [loading, setLoading] = useState(false); const [loading, setLoading] = useState(false);
const [messageAppeared, setMessageAppeared] = useState(false); const [messageAppeared, setMessageAppeared] = useState(false);
@@ -287,6 +399,8 @@ const ChatWindow = ({ id }: { id?: string }) => {
const [notFound, setNotFound] = useState(false); const [notFound, setNotFound] = useState(false);
const [isSettingsOpen, setIsSettingsOpen] = useState(false);
useEffect(() => { useEffect(() => {
if ( if (
chatId && chatId &&
@@ -312,6 +426,16 @@ const ChatWindow = ({ id }: { id?: string }) => {
// eslint-disable-next-line react-hooks/exhaustive-deps // eslint-disable-next-line react-hooks/exhaustive-deps
}, []); }, []);
useEffect(() => {
return () => {
if (ws?.readyState === 1) {
ws.close();
console.debug(new Date(), 'ws:cleanup');
}
};
// eslint-disable-next-line react-hooks/exhaustive-deps
}, []);
const messagesRef = useRef<Message[]>([]); const messagesRef = useRef<Message[]>([]);
useEffect(() => { useEffect(() => {
@@ -319,18 +443,18 @@ const ChatWindow = ({ id }: { id?: string }) => {
}, [messages]); }, [messages]);
useEffect(() => { useEffect(() => {
if (isMessagesLoaded && isConfigReady) { if (isMessagesLoaded && isWSReady) {
setIsReady(true); setIsReady(true);
console.debug(new Date(), 'app:ready'); console.debug(new Date(), 'app:ready');
} else { } else {
setIsReady(false); setIsReady(false);
} }
}, [isMessagesLoaded, isConfigReady]); }, [isMessagesLoaded, isWSReady]);
const sendMessage = async (message: string, messageId?: string) => { const sendMessage = async (message: string, messageId?: string) => {
if (loading) return; if (loading) return;
if (!isConfigReady) { if (!ws || ws.readyState !== WebSocket.OPEN) {
toast.error('Cannot send message before the configuration is ready'); toast.error('Cannot send message while disconnected');
return; return;
} }
@@ -343,27 +467,18 @@ const ChatWindow = ({ id }: { id?: string }) => {
messageId = messageId ?? crypto.randomBytes(7).toString('hex'); messageId = messageId ?? crypto.randomBytes(7).toString('hex');
console.log( ws.send(
JSON.stringify({ JSON.stringify({
content: message, type: 'message',
message: { message: {
messageId: messageId, messageId: messageId,
chatId: chatId!, chatId: chatId!,
content: message, content: message,
}, },
chatId: chatId!,
files: fileIds, files: fileIds,
focusMode: focusMode, focusMode: focusMode,
optimizationMode: optimizationMode, optimizationMode: optimizationMode,
history: chatHistory, history: [...chatHistory, ['human', message]],
chatModel: {
name: chatModelProvider.name,
provider: chatModelProvider.provider,
},
embeddingModel: {
name: embeddingModelProvider.name,
provider: embeddingModelProvider.provider,
},
}), }),
); );
@@ -378,7 +493,9 @@ const ChatWindow = ({ id }: { id?: string }) => {
}, },
]); ]);
const messageHandler = async (data: any) => { const messageHandler = async (e: MessageEvent) => {
const data = JSON.parse(e.data);
if (data.type === 'error') { if (data.type === 'error') {
toast.error(data.data); toast.error(data.data);
setLoading(false); setLoading(false);
@@ -441,6 +558,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
['assistant', recievedMessage], ['assistant', recievedMessage],
]); ]);
ws?.removeEventListener('message', messageHandler);
setLoading(false); setLoading(false);
const lastMsg = messagesRef.current[messagesRef.current.length - 1]; const lastMsg = messagesRef.current[messagesRef.current.length - 1];
@@ -466,72 +584,16 @@ const ChatWindow = ({ id }: { id?: string }) => {
const autoVideoSearch = localStorage.getItem('autoVideoSearch'); const autoVideoSearch = localStorage.getItem('autoVideoSearch');
if (autoImageSearch === 'true') { if (autoImageSearch === 'true') {
document document.getElementById('search-images')?.click();
.getElementById(`search-images-${lastMsg.messageId}`)
?.click();
} }
if (autoVideoSearch === 'true') { if (autoVideoSearch === 'true') {
document document.getElementById('search-videos')?.click();
.getElementById(`search-videos-${lastMsg.messageId}`)
?.click();
} }
} }
}; };
const res = await fetch('/api/chat', { ws?.addEventListener('message', messageHandler);
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
content: message,
message: {
messageId: messageId,
chatId: chatId!,
content: message,
},
chatId: chatId!,
files: fileIds,
focusMode: focusMode,
optimizationMode: optimizationMode,
history: chatHistory,
chatModel: {
name: chatModelProvider.name,
provider: chatModelProvider.provider,
},
embeddingModel: {
name: embeddingModelProvider.name,
provider: embeddingModelProvider.provider,
},
}),
});
if (!res.body) throw new Error('No response body');
const reader = res.body?.getReader();
const decoder = new TextDecoder('utf-8');
let partialChunk = '';
while (true) {
const { value, done } = await reader.read();
if (done) break;
partialChunk += decoder.decode(value, { stream: true });
try {
const messages = partialChunk.split('\n');
for (const msg of messages) {
if (!msg.trim()) continue;
const json = JSON.parse(msg);
messageHandler(json);
}
partialChunk = '';
} catch (error) {
console.warn('Incomplete JSON, waiting for next chunk...');
}
}
}; };
const rewrite = (messageId: string) => { const rewrite = (messageId: string) => {
@@ -552,11 +614,11 @@ const ChatWindow = ({ id }: { id?: string }) => {
}; };
useEffect(() => { useEffect(() => {
if (isReady && initialMessage && isConfigReady) { if (isReady && initialMessage && ws?.readyState === 1) {
sendMessage(initialMessage); sendMessage(initialMessage);
} }
// eslint-disable-next-line react-hooks/exhaustive-deps // eslint-disable-next-line react-hooks/exhaustive-deps
}, [isConfigReady, isReady, initialMessage]); }, [ws?.readyState, isReady, initialMessage, isWSReady]);
if (hasError) { if (hasError) {
return ( return (

View File

@@ -29,12 +29,15 @@ const DeleteChat = ({
const handleDelete = async () => { const handleDelete = async () => {
setLoading(true); setLoading(true);
try { try {
const res = await fetch(`/api/chats/${chatId}`, { const res = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/chats/${chatId}`,
{
method: 'DELETE', method: 'DELETE',
headers: { headers: {
'Content-Type': 'application/json', 'Content-Type': 'application/json',
}, },
}); },
);
if (res.status != 200) { if (res.status != 200) {
throw new Error('Failed to delete chat'); throw new Error('Failed to delete chat');

View File

@@ -68,13 +68,7 @@ const MessageBox = ({
return ( return (
<div> <div>
{message.role === 'user' && ( {message.role === 'user' && (
<div <div className={cn('w-full', messageIndex === 0 ? 'pt-16' : 'pt-8', 'break-words')}>
className={cn(
'w-full',
messageIndex === 0 ? 'pt-16' : 'pt-8',
'break-words',
)}
>
<h2 className="text-black dark:text-white font-medium text-3xl lg:w-9/12"> <h2 className="text-black dark:text-white font-medium text-3xl lg:w-9/12">
{message.content} {message.content}
</h2> </h2>
@@ -193,12 +187,10 @@ const MessageBox = ({
<SearchImages <SearchImages
query={history[messageIndex - 1].content} query={history[messageIndex - 1].content}
chatHistory={history.slice(0, messageIndex - 1)} chatHistory={history.slice(0, messageIndex - 1)}
messageId={message.messageId}
/> />
<SearchVideos <SearchVideos
chatHistory={history.slice(0, messageIndex - 1)} chatHistory={history.slice(0, messageIndex - 1)}
query={history[messageIndex - 1].content} query={history[messageIndex - 1].content}
messageId={message.messageId}
/> />
</div> </div>
</div> </div>

View File

@@ -41,7 +41,7 @@ const Attach = ({
data.append('embedding_model_provider', embeddingModelProvider!); data.append('embedding_model_provider', embeddingModelProvider!);
data.append('embedding_model', embeddingModel!); data.append('embedding_model', embeddingModel!);
const res = await fetch(`/api/uploads`, { const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/uploads`, {
method: 'POST', method: 'POST',
body: data, body: data,
}); });

View File

@@ -39,7 +39,7 @@ const AttachSmall = ({
data.append('embedding_model_provider', embeddingModelProvider!); data.append('embedding_model_provider', embeddingModelProvider!);
data.append('embedding_model', embeddingModel!); data.append('embedding_model', embeddingModel!);
const res = await fetch(`/api/uploads`, { const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/uploads`, {
method: 'POST', method: 'POST',
body: data, body: data,
}); });

View File

@@ -1,5 +1,6 @@
import { cn } from '@/lib/utils'; import { cn } from '@/lib/utils';
import { Switch } from '@headlessui/react'; import { Switch } from '@headlessui/react';
import { useEffect } from 'react';
const CopilotToggle = ({ const CopilotToggle = ({
copilotEnabled, copilotEnabled,
@@ -8,11 +9,33 @@ const CopilotToggle = ({
copilotEnabled: boolean; copilotEnabled: boolean;
setCopilotEnabled: (enabled: boolean) => void; setCopilotEnabled: (enabled: boolean) => void;
}) => { }) => {
const fetchAndSetCopilotEnabled = async () => {
const res = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/config/preferences`,
{
method: 'GET',
headers: {
'Content-Type': 'application/json',
},
},
);
const preferences = await res.json();
setCopilotEnabled(preferences.isCopilotEnabled);
};
useEffect(() => {
fetchAndSetCopilotEnabled();
// eslint-disable-next-line react-hooks/exhaustive-deps
}, []);
return ( return (
<div className="group flex flex-row items-center space-x-1 active:scale-95 duration-200 transition cursor-pointer"> <div className="group flex flex-row items-center space-x-1 active:scale-95 duration-200 transition cursor-pointer">
<Switch <Switch
checked={copilotEnabled} checked={copilotEnabled}
onChange={setCopilotEnabled} onChange={setCopilotEnabled}
disabled={true}
className="bg-light-secondary dark:bg-dark-secondary border border-light-200/70 dark:border-dark-200 relative inline-flex h-5 w-10 sm:h-6 sm:w-11 items-center rounded-full" className="bg-light-secondary dark:bg-dark-secondary border border-light-200/70 dark:border-dark-200 relative inline-flex h-5 w-10 sm:h-6 sm:w-11 items-center rounded-full"
> >
<span className="sr-only">Copilot</span> <span className="sr-only">Copilot</span>

View File

@@ -45,13 +45,25 @@ const focusModes = [
key: 'youtubeSearch', key: 'youtubeSearch',
title: 'Youtube', title: 'Youtube',
description: 'Search and watch videos', description: 'Search and watch videos',
icon: <SiYoutube className="h-5 w-auto mr-0.5" />, icon: (
<SiYoutube
className="h-5 w-auto mr-0.5"
onPointerEnterCapture={undefined}
onPointerLeaveCapture={undefined}
/>
),
}, },
{ {
key: 'redditSearch', key: 'redditSearch',
title: 'Reddit', title: 'Reddit',
description: 'Search for discussions and opinions', description: 'Search for discussions and opinions',
icon: <SiReddit className="h-5 w-auto mr-0.5" />, icon: (
<SiReddit
className="h-5 w-auto mr-0.5"
onPointerEnterCapture={undefined}
onPointerLeaveCapture={undefined}
/>
),
}, },
]; ];

View File

@@ -69,15 +69,11 @@ const MessageSources = ({ sources }: { sources: Document[] }) => {
<div className="flex flex-row items-center space-x-1"> <div className="flex flex-row items-center space-x-1">
{sources.slice(3, 6).map((source, i) => { {sources.slice(3, 6).map((source, i) => {
return source.metadata.url === 'File' ? ( return source.metadata.url === 'File' ? (
<div <div className="bg-dark-200 hover:bg-dark-100 transition duration-200 flex items-center justify-center w-6 h-6 rounded-full">
key={i}
className="bg-dark-200 hover:bg-dark-100 transition duration-200 flex items-center justify-center w-6 h-6 rounded-full"
>
<File size={12} className="text-white/70" /> <File size={12} className="text-white/70" />
</div> </div>
) : ( ) : (
<img <img
key={i}
src={`https://s2.googleusercontent.com/s2/favicons?domain_url=${source.metadata.url}`} src={`https://s2.googleusercontent.com/s2/favicons?domain_url=${source.metadata.url}`}
width={16} width={16}
height={16} height={16}

Some files were not shown because too many files have changed in this diff Show More