mirror of
https://github.com/ItzCrazyKns/Perplexica.git
synced 2025-11-20 20:18:15 +00:00
feat(app): migrate video search chain
This commit is contained in:
@@ -13,6 +13,13 @@ export const POST = async (req: Request) => {
|
|||||||
try {
|
try {
|
||||||
const body: VideoSearchBody = await req.json();
|
const body: VideoSearchBody = await req.json();
|
||||||
|
|
||||||
|
const registry = new ModelRegistry();
|
||||||
|
|
||||||
|
const llm = await registry.loadChatModel(
|
||||||
|
body.chatModel.providerId,
|
||||||
|
body.chatModel.key,
|
||||||
|
);
|
||||||
|
|
||||||
const chatHistory = body.chatHistory
|
const chatHistory = body.chatHistory
|
||||||
.map((msg: any) => {
|
.map((msg: any) => {
|
||||||
if (msg.role === 'user') {
|
if (msg.role === 'user') {
|
||||||
@@ -23,16 +30,9 @@ export const POST = async (req: Request) => {
|
|||||||
})
|
})
|
||||||
.filter((msg) => msg !== undefined) as BaseMessage[];
|
.filter((msg) => msg !== undefined) as BaseMessage[];
|
||||||
|
|
||||||
const registry = new ModelRegistry();
|
|
||||||
|
|
||||||
const llm = await registry.loadChatModel(
|
|
||||||
body.chatModel.providerId,
|
|
||||||
body.chatModel.key,
|
|
||||||
);
|
|
||||||
|
|
||||||
const videos = await handleVideoSearch(
|
const videos = await handleVideoSearch(
|
||||||
{
|
{
|
||||||
chat_history: chatHistory,
|
chatHistory: chatHistory,
|
||||||
query: body.query,
|
query: body.query,
|
||||||
},
|
},
|
||||||
llm,
|
llm,
|
||||||
|
|||||||
@@ -1,110 +1,65 @@
|
|||||||
import {
|
|
||||||
RunnableSequence,
|
|
||||||
RunnableMap,
|
|
||||||
RunnableLambda,
|
|
||||||
} from '@langchain/core/runnables';
|
|
||||||
import { ChatPromptTemplate } from '@langchain/core/prompts';
|
import { ChatPromptTemplate } from '@langchain/core/prompts';
|
||||||
import formatChatHistoryAsString from '@/lib/utils/formatHistory';
|
import formatChatHistoryAsString from '@/lib/utils/formatHistory';
|
||||||
import { BaseMessage } from '@langchain/core/messages';
|
import { BaseMessage, HumanMessage, SystemMessage } from '@langchain/core/messages';
|
||||||
import { StringOutputParser } from '@langchain/core/output_parsers';
|
|
||||||
import { searchSearxng } from '@/lib/searxng';
|
import { searchSearxng } from '@/lib/searxng';
|
||||||
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||||
import LineOutputParser from '@/lib/outputParsers/lineOutputParser';
|
import LineOutputParser from '@/lib/outputParsers/lineOutputParser';
|
||||||
|
import { videoSearchFewShots, videoSearchPrompt } from '@/lib/prompts/media/videos';
|
||||||
const videoSearchChainPrompt = `
|
|
||||||
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search Youtube for videos.
|
|
||||||
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
|
|
||||||
Output only the rephrased query wrapped in an XML <query> element. Do not include any explanation or additional text.
|
|
||||||
`;
|
|
||||||
|
|
||||||
type VideoSearchChainInput = {
|
type VideoSearchChainInput = {
|
||||||
chat_history: BaseMessage[];
|
chatHistory: BaseMessage[];
|
||||||
query: string;
|
query: string;
|
||||||
};
|
};
|
||||||
|
|
||||||
interface VideoSearchResult {
|
type VideoSearchResult = {
|
||||||
img_src: string;
|
img_src: string;
|
||||||
url: string;
|
url: string;
|
||||||
title: string;
|
title: string;
|
||||||
iframe_src: string;
|
iframe_src: string;
|
||||||
}
|
}
|
||||||
|
|
||||||
const strParser = new StringOutputParser();
|
const outputParser = new LineOutputParser({
|
||||||
|
key: 'query',
|
||||||
|
});
|
||||||
|
|
||||||
const createVideoSearchChain = (llm: BaseChatModel) => {
|
const searchVideos = async (
|
||||||
return RunnableSequence.from([
|
|
||||||
RunnableMap.from({
|
|
||||||
chat_history: (input: VideoSearchChainInput) => {
|
|
||||||
return formatChatHistoryAsString(input.chat_history);
|
|
||||||
},
|
|
||||||
query: (input: VideoSearchChainInput) => {
|
|
||||||
return input.query;
|
|
||||||
},
|
|
||||||
}),
|
|
||||||
ChatPromptTemplate.fromMessages([
|
|
||||||
['system', videoSearchChainPrompt],
|
|
||||||
[
|
|
||||||
'user',
|
|
||||||
'<conversation>\n</conversation>\n<follow_up>\nHow does a car work?\n</follow_up>',
|
|
||||||
],
|
|
||||||
['assistant', '<query>How does a car work?</query>'],
|
|
||||||
[
|
|
||||||
'user',
|
|
||||||
'<conversation>\n</conversation>\n<follow_up>\nWhat is the theory of relativity?\n</follow_up>',
|
|
||||||
],
|
|
||||||
['assistant', '<query>Theory of relativity</query>'],
|
|
||||||
[
|
|
||||||
'user',
|
|
||||||
'<conversation>\n</conversation>\n<follow_up>\nHow does an AC work?\n</follow_up>',
|
|
||||||
],
|
|
||||||
['assistant', '<query>AC working</query>'],
|
|
||||||
[
|
|
||||||
'user',
|
|
||||||
'<conversation>{chat_history}</conversation>\n<follow_up>\n{query}\n</follow_up>',
|
|
||||||
],
|
|
||||||
]),
|
|
||||||
llm,
|
|
||||||
strParser,
|
|
||||||
RunnableLambda.from(async (input: string) => {
|
|
||||||
const queryParser = new LineOutputParser({
|
|
||||||
key: 'query',
|
|
||||||
});
|
|
||||||
return await queryParser.parse(input);
|
|
||||||
}),
|
|
||||||
RunnableLambda.from(async (input: string) => {
|
|
||||||
const res = await searchSearxng(input, {
|
|
||||||
engines: ['youtube'],
|
|
||||||
});
|
|
||||||
|
|
||||||
const videos: VideoSearchResult[] = [];
|
|
||||||
|
|
||||||
res.results.forEach((result) => {
|
|
||||||
if (
|
|
||||||
result.thumbnail &&
|
|
||||||
result.url &&
|
|
||||||
result.title &&
|
|
||||||
result.iframe_src
|
|
||||||
) {
|
|
||||||
videos.push({
|
|
||||||
img_src: result.thumbnail,
|
|
||||||
url: result.url,
|
|
||||||
title: result.title,
|
|
||||||
iframe_src: result.iframe_src,
|
|
||||||
});
|
|
||||||
}
|
|
||||||
});
|
|
||||||
|
|
||||||
return videos.slice(0, 10);
|
|
||||||
}),
|
|
||||||
]);
|
|
||||||
};
|
|
||||||
|
|
||||||
const handleVideoSearch = (
|
|
||||||
input: VideoSearchChainInput,
|
input: VideoSearchChainInput,
|
||||||
llm: BaseChatModel,
|
llm: BaseChatModel,
|
||||||
) => {
|
) => {
|
||||||
const videoSearchChain = createVideoSearchChain(llm);
|
const chatPrompt = await ChatPromptTemplate.fromMessages([
|
||||||
return videoSearchChain.invoke(input);
|
new SystemMessage(videoSearchPrompt),
|
||||||
|
...videoSearchFewShots,
|
||||||
|
new HumanMessage(`<conversation>${formatChatHistoryAsString(input.chatHistory)}\n</conversation>\n<follow_up>\n${input.query}\n</follow_up>`)
|
||||||
|
]).formatMessages({})
|
||||||
|
|
||||||
|
const res = await llm.invoke(chatPrompt)
|
||||||
|
|
||||||
|
const query = await outputParser.invoke(res)
|
||||||
|
|
||||||
|
const searchRes = await searchSearxng(query!, {
|
||||||
|
engines: ['youtube'],
|
||||||
|
});
|
||||||
|
|
||||||
|
const videos: VideoSearchResult[] = [];
|
||||||
|
|
||||||
|
searchRes.results.forEach((result) => {
|
||||||
|
if (
|
||||||
|
result.thumbnail &&
|
||||||
|
result.url &&
|
||||||
|
result.title &&
|
||||||
|
result.iframe_src
|
||||||
|
) {
|
||||||
|
videos.push({
|
||||||
|
img_src: result.thumbnail,
|
||||||
|
url: result.url,
|
||||||
|
title: result.title,
|
||||||
|
iframe_src: result.iframe_src,
|
||||||
|
});
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
return videos.slice(0, 10);
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
export default handleVideoSearch;
|
export default searchVideos;
|
||||||
|
|||||||
25
src/lib/prompts/media/videos.ts
Normal file
25
src/lib/prompts/media/videos.ts
Normal file
@@ -0,0 +1,25 @@
|
|||||||
|
import { BaseMessageLike } from "@langchain/core/messages";
|
||||||
|
|
||||||
|
export const videoSearchPrompt = `
|
||||||
|
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question so it is a standalone question that can be used by the LLM to search Youtube for videos.
|
||||||
|
You need to make sure the rephrased question agrees with the conversation and is relevant to the conversation.
|
||||||
|
Output only the rephrased query wrapped in an XML <query> element. Do not include any explanation or additional text.
|
||||||
|
`;
|
||||||
|
|
||||||
|
export const videoSearchFewShots: BaseMessageLike[] = [
|
||||||
|
[
|
||||||
|
'user',
|
||||||
|
'<conversation>\n</conversation>\n<follow_up>\nHow does a car work?\n</follow_up>',
|
||||||
|
],
|
||||||
|
['assistant', '<query>How does a car work?</query>'],
|
||||||
|
[
|
||||||
|
'user',
|
||||||
|
'<conversation>\n</conversation>\n<follow_up>\nWhat is the theory of relativity?\n</follow_up>',
|
||||||
|
],
|
||||||
|
['assistant', '<query>Theory of relativity</query>'],
|
||||||
|
[
|
||||||
|
'user',
|
||||||
|
'<conversation>\n</conversation>\n<follow_up>\nHow does an AC work?\n</follow_up>',
|
||||||
|
],
|
||||||
|
['assistant', '<query>AC working</query>'],
|
||||||
|
]
|
||||||
Reference in New Issue
Block a user