Add DeepSeek and LMStudio providers

- Integrate DeepSeek and LMStudio AI providers
- Add message processing utilities for improved handling
- Implement reasoning panel for message actions
- Add logging functionality to UI
- Update configurations and dependencies
This commit is contained in:
haddadrm
2025-02-25 08:53:53 +04:00
parent 4d24d73161
commit a6e4402616
18 changed files with 8270 additions and 592 deletions

View File

@@ -0,0 +1,69 @@
import { DeepSeekChat } from '../deepseekChat';
import logger from '../../utils/logger';
import { getDeepseekApiKey } from '../../config';
import axios from 'axios';
interface DeepSeekModel {
id: string;
object: string;
owned_by: string;
}
interface ModelListResponse {
object: 'list';
data: DeepSeekModel[];
}
interface ChatModelConfig {
displayName: string;
model: DeepSeekChat;
}
const MODEL_DISPLAY_NAMES: Record<string, string> = {
'deepseek-reasoner': 'DeepSeek R1',
'deepseek-chat': 'DeepSeek V3'
};
export const loadDeepSeekChatModels = async (): Promise<Record<string, ChatModelConfig>> => {
const deepSeekEndpoint = 'https://api.deepseek.com';
const apiKey = getDeepseekApiKey();
if (!apiKey) return {};
if (!deepSeekEndpoint || !apiKey) {
logger.debug('DeepSeek endpoint or API key not configured, skipping');
return {};
}
try {
const response = await axios.get<{ data: DeepSeekModel[] }>(`${deepSeekEndpoint}/models`, {
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${apiKey}`,
},
});
const deepSeekModels = response.data.data;
const chatModels = deepSeekModels.reduce<Record<string, ChatModelConfig>>((acc, model) => {
// Only include models we have display names for
if (model.id in MODEL_DISPLAY_NAMES) {
acc[model.id] = {
displayName: MODEL_DISPLAY_NAMES[model.id],
model: new DeepSeekChat({
apiKey,
baseURL: deepSeekEndpoint,
modelName: model.id,
temperature: 0.7,
}),
};
}
return acc;
}, {});
return chatModels;
} catch (err) {
logger.error(`Error loading DeepSeek models: ${String(err)}`);
return {};
}
};

View File

@@ -4,6 +4,8 @@ import { loadOpenAIChatModels, loadOpenAIEmbeddingsModels } from './openai';
import { loadAnthropicChatModels } from './anthropic';
import { loadTransformersEmbeddingsModels } from './transformers';
import { loadGeminiChatModels, loadGeminiEmbeddingsModels } from './gemini';
import { loadDeepSeekChatModels } from './deepseek';
import { loadLMStudioChatModels, loadLMStudioEmbeddingsModels } from './lmstudio';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
@@ -17,6 +19,8 @@ const chatModelProviders = {
ollama: loadOllamaChatModels,
anthropic: loadAnthropicChatModels,
gemini: loadGeminiChatModels,
deepseek: loadDeepSeekChatModels,
lm_studio: loadLMStudioChatModels,
};
const embeddingModelProviders = {
@@ -24,6 +28,7 @@ const embeddingModelProviders = {
local: loadTransformersEmbeddingsModels,
ollama: loadOllamaEmbeddingsModels,
gemini: loadGeminiEmbeddingsModels,
lm_studio: loadLMStudioEmbeddingsModels,
};
export const getAvailableChatModelProviders = async () => {

View File

@@ -0,0 +1,96 @@
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
import { getLMStudioApiEndpoint, getKeepAlive } from '../../config';
import logger from '../../utils/logger';
import axios from 'axios';
interface LMStudioModel {
id: string;
name?: string;
}
const ensureV1Endpoint = (endpoint: string): string =>
endpoint.endsWith('/v1') ? endpoint : `${endpoint}/v1`;
const checkServerAvailability = async (endpoint: string): Promise<boolean> => {
try {
const keepAlive = getKeepAlive();
await axios.get(`${ensureV1Endpoint(endpoint)}/models`, {
timeout: parseInt(keepAlive) * 1000 || 5000,
headers: { 'Content-Type': 'application/json' },
});
return true;
} catch {
return false;
}
};
export const loadLMStudioChatModels = async () => {
const endpoint = getLMStudioApiEndpoint();
const keepAlive = getKeepAlive();
if (!endpoint) return {};
if (!await checkServerAvailability(endpoint)) return {};
try {
const response = await axios.get(`${ensureV1Endpoint(endpoint)}/models`, {
timeout: parseInt(keepAlive) * 1000 || 5000,
headers: { 'Content-Type': 'application/json' },
});
const chatModels = response.data.data.reduce((acc: Record<string, any>, model: LMStudioModel) => {
acc[model.id] = {
displayName: model.name || model.id,
model: new ChatOpenAI({
openAIApiKey: 'lm-studio',
configuration: {
baseURL: ensureV1Endpoint(endpoint),
},
modelName: model.id,
temperature: 0.7,
streaming: true,
maxRetries: 3
}),
};
return acc;
}, {});
return chatModels;
} catch (err) {
logger.error(`Error loading LM Studio models: ${err}`);
return {};
}
};
export const loadLMStudioEmbeddingsModels = async () => {
const endpoint = getLMStudioApiEndpoint();
const keepAlive = getKeepAlive();
if (!endpoint) return {};
if (!await checkServerAvailability(endpoint)) return {};
try {
const response = await axios.get(`${ensureV1Endpoint(endpoint)}/models`, {
timeout: parseInt(keepAlive) * 1000 || 5000,
headers: { 'Content-Type': 'application/json' },
});
const embeddingsModels = response.data.data.reduce((acc: Record<string, any>, model: LMStudioModel) => {
acc[model.id] = {
displayName: model.name || model.id,
model: new OpenAIEmbeddings({
openAIApiKey: 'lm-studio',
configuration: {
baseURL: ensureV1Endpoint(endpoint),
},
modelName: model.id,
}),
};
return acc;
}, {});
return embeddingsModels;
} catch (err) {
logger.error(`Error loading LM Studio embeddings model: ${err}`);
return {};
}
};