mirror of
https://github.com/ItzCrazyKns/Perplexica.git
synced 2025-09-17 23:01:32 +00:00
feat(app): remove backend
This commit is contained in:
360
src/app/api/chat/route.ts
Normal file
360
src/app/api/chat/route.ts
Normal file
@@ -0,0 +1,360 @@
|
||||
import prompts from '@/lib/prompts';
|
||||
import MetaSearchAgent from '@/lib/search/metaSearchAgent';
|
||||
import crypto from 'crypto';
|
||||
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
|
||||
import { EventEmitter } from 'stream';
|
||||
import {
|
||||
chatModelProviders,
|
||||
embeddingModelProviders,
|
||||
getAvailableChatModelProviders,
|
||||
getAvailableEmbeddingModelProviders,
|
||||
} from '@/lib/providers';
|
||||
import db from '@/lib/db';
|
||||
import { chats, messages as messagesSchema } from '@/lib/db/schema';
|
||||
import { and, eq, gt } from 'drizzle-orm';
|
||||
import { getFileDetails } from '@/lib/utils/files';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
import {
|
||||
getCustomOpenaiApiKey,
|
||||
getCustomOpenaiApiUrl,
|
||||
getCustomOpenaiModelName,
|
||||
} from '@/lib/config';
|
||||
|
||||
export const runtime = 'nodejs';
|
||||
export const dynamic = 'force-dynamic';
|
||||
|
||||
const searchHandlers: Record<string, MetaSearchAgent> = {
|
||||
webSearch: new MetaSearchAgent({
|
||||
activeEngines: [],
|
||||
queryGeneratorPrompt: prompts.webSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.webSearchResponsePrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0.3,
|
||||
searchWeb: true,
|
||||
summarizer: true,
|
||||
}),
|
||||
academicSearch: new MetaSearchAgent({
|
||||
activeEngines: ['arxiv', 'google scholar', 'pubmed'],
|
||||
queryGeneratorPrompt: prompts.academicSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.academicSearchResponsePrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0,
|
||||
searchWeb: true,
|
||||
summarizer: false,
|
||||
}),
|
||||
writingAssistant: new MetaSearchAgent({
|
||||
activeEngines: [],
|
||||
queryGeneratorPrompt: '',
|
||||
responsePrompt: prompts.writingAssistantPrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0,
|
||||
searchWeb: false,
|
||||
summarizer: false,
|
||||
}),
|
||||
wolframAlphaSearch: new MetaSearchAgent({
|
||||
activeEngines: ['wolframalpha'],
|
||||
queryGeneratorPrompt: prompts.wolframAlphaSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.wolframAlphaSearchResponsePrompt,
|
||||
rerank: false,
|
||||
rerankThreshold: 0,
|
||||
searchWeb: true,
|
||||
summarizer: false,
|
||||
}),
|
||||
youtubeSearch: new MetaSearchAgent({
|
||||
activeEngines: ['youtube'],
|
||||
queryGeneratorPrompt: prompts.youtubeSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.youtubeSearchResponsePrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0.3,
|
||||
searchWeb: true,
|
||||
summarizer: false,
|
||||
}),
|
||||
redditSearch: new MetaSearchAgent({
|
||||
activeEngines: ['reddit'],
|
||||
queryGeneratorPrompt: prompts.redditSearchRetrieverPrompt,
|
||||
responsePrompt: prompts.redditSearchResponsePrompt,
|
||||
rerank: true,
|
||||
rerankThreshold: 0.3,
|
||||
searchWeb: true,
|
||||
summarizer: false,
|
||||
}),
|
||||
};
|
||||
|
||||
type Message = {
|
||||
messageId: string;
|
||||
chatId: string;
|
||||
content: string;
|
||||
};
|
||||
|
||||
type ChatModel = {
|
||||
provider: string;
|
||||
name: string;
|
||||
};
|
||||
|
||||
type EmbeddingModel = {
|
||||
provider: string;
|
||||
name: string;
|
||||
};
|
||||
|
||||
type Body = {
|
||||
message: Message;
|
||||
optimizationMode: 'speed' | 'balanced' | 'quality';
|
||||
focusMode: string;
|
||||
history: Array<[string, string]>;
|
||||
files: Array<string>;
|
||||
chatModel: ChatModel;
|
||||
embeddingModel: EmbeddingModel;
|
||||
};
|
||||
|
||||
const handleEmitterEvents = async (
|
||||
stream: EventEmitter,
|
||||
writer: WritableStreamDefaultWriter,
|
||||
encoder: TextEncoder,
|
||||
aiMessageId: string,
|
||||
chatId: string,
|
||||
) => {
|
||||
let recievedMessage = '';
|
||||
let sources: any[] = [];
|
||||
|
||||
stream.on('data', (data) => {
|
||||
const parsedData = JSON.parse(data);
|
||||
if (parsedData.type === 'response') {
|
||||
writer.write(
|
||||
encoder.encode(
|
||||
JSON.stringify({
|
||||
type: 'message',
|
||||
data: parsedData.data,
|
||||
messageId: aiMessageId,
|
||||
}) + '\n',
|
||||
),
|
||||
);
|
||||
|
||||
recievedMessage += parsedData.data;
|
||||
} else if (parsedData.type === 'sources') {
|
||||
writer.write(
|
||||
encoder.encode(
|
||||
JSON.stringify({
|
||||
type: 'sources',
|
||||
data: parsedData.data,
|
||||
messageId: aiMessageId,
|
||||
}) + '\n',
|
||||
),
|
||||
);
|
||||
|
||||
sources = parsedData.data;
|
||||
}
|
||||
});
|
||||
stream.on('end', () => {
|
||||
writer.write(
|
||||
encoder.encode(
|
||||
JSON.stringify({
|
||||
type: 'messageEnd',
|
||||
messageId: aiMessageId,
|
||||
}) + '\n',
|
||||
),
|
||||
);
|
||||
writer.close();
|
||||
|
||||
db.insert(messagesSchema)
|
||||
.values({
|
||||
content: recievedMessage,
|
||||
chatId: chatId,
|
||||
messageId: aiMessageId,
|
||||
role: 'assistant',
|
||||
metadata: JSON.stringify({
|
||||
createdAt: new Date(),
|
||||
...(sources && sources.length > 0 && { sources }),
|
||||
}),
|
||||
})
|
||||
.execute();
|
||||
});
|
||||
stream.on('error', (data) => {
|
||||
const parsedData = JSON.parse(data);
|
||||
writer.write(
|
||||
encoder.encode(
|
||||
JSON.stringify({
|
||||
type: 'error',
|
||||
data: parsedData.data,
|
||||
}),
|
||||
),
|
||||
);
|
||||
writer.close();
|
||||
});
|
||||
};
|
||||
|
||||
const handleHistorySave = async (
|
||||
message: Message,
|
||||
humanMessageId: string,
|
||||
focusMode: string,
|
||||
files: string[],
|
||||
) => {
|
||||
const chat = await db.query.chats.findFirst({
|
||||
where: eq(chats.id, message.chatId),
|
||||
});
|
||||
|
||||
if (!chat) {
|
||||
await db
|
||||
.insert(chats)
|
||||
.values({
|
||||
id: message.chatId,
|
||||
title: message.content,
|
||||
createdAt: new Date().toString(),
|
||||
focusMode: focusMode,
|
||||
files: files.map(getFileDetails),
|
||||
})
|
||||
.execute();
|
||||
}
|
||||
|
||||
const messageExists = await db.query.messages.findFirst({
|
||||
where: eq(messagesSchema.messageId, humanMessageId),
|
||||
});
|
||||
|
||||
if (!messageExists) {
|
||||
await db
|
||||
.insert(messagesSchema)
|
||||
.values({
|
||||
content: message.content,
|
||||
chatId: message.chatId,
|
||||
messageId: humanMessageId,
|
||||
role: 'user',
|
||||
metadata: JSON.stringify({
|
||||
createdAt: new Date(),
|
||||
}),
|
||||
})
|
||||
.execute();
|
||||
} else {
|
||||
await db
|
||||
.delete(messagesSchema)
|
||||
.where(
|
||||
and(
|
||||
gt(messagesSchema.id, messageExists.id),
|
||||
eq(messagesSchema.chatId, message.chatId),
|
||||
),
|
||||
)
|
||||
.execute();
|
||||
}
|
||||
};
|
||||
|
||||
export const POST = async (req: Request) => {
|
||||
try {
|
||||
const body = (await req.json()) as Body;
|
||||
const { message } = body;
|
||||
|
||||
if (message.content === '') {
|
||||
return Response.json(
|
||||
{
|
||||
message: 'Please provide a message to process',
|
||||
},
|
||||
{ status: 400 },
|
||||
);
|
||||
}
|
||||
|
||||
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
|
||||
getAvailableChatModelProviders(),
|
||||
getAvailableEmbeddingModelProviders(),
|
||||
]);
|
||||
|
||||
const chatModelProvider =
|
||||
chatModelProviders[
|
||||
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
|
||||
];
|
||||
const chatModel =
|
||||
chatModelProvider[
|
||||
body.chatModel?.name || Object.keys(chatModelProvider)[0]
|
||||
];
|
||||
|
||||
const embeddingProvider =
|
||||
embeddingModelProviders[
|
||||
body.embeddingModel?.provider || Object.keys(embeddingModelProviders)[0]
|
||||
];
|
||||
const embeddingModel =
|
||||
embeddingProvider[
|
||||
body.embeddingModel?.name || Object.keys(embeddingProvider)[0]
|
||||
];
|
||||
|
||||
let llm: BaseChatModel | undefined;
|
||||
let embedding = embeddingModel.model;
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
openAIApiKey: getCustomOpenaiApiKey(),
|
||||
modelName: getCustomOpenaiModelName(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
baseURL: getCustomOpenaiApiUrl(),
|
||||
},
|
||||
}) as unknown as BaseChatModel;
|
||||
} else if (chatModelProvider && chatModel) {
|
||||
llm = chatModel.model;
|
||||
}
|
||||
|
||||
if (!llm) {
|
||||
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
|
||||
}
|
||||
|
||||
if (!embedding) {
|
||||
return Response.json(
|
||||
{ error: 'Invalid embedding model' },
|
||||
{ status: 400 },
|
||||
);
|
||||
}
|
||||
|
||||
const humanMessageId =
|
||||
message.messageId ?? crypto.randomBytes(7).toString('hex');
|
||||
const aiMessageId = crypto.randomBytes(7).toString('hex');
|
||||
|
||||
const history: BaseMessage[] = body.history.map((msg) => {
|
||||
if (msg[0] === 'human') {
|
||||
return new HumanMessage({
|
||||
content: msg[1],
|
||||
});
|
||||
} else {
|
||||
return new AIMessage({
|
||||
content: msg[1],
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
const handler = searchHandlers[body.focusMode];
|
||||
|
||||
if (!handler) {
|
||||
return Response.json(
|
||||
{
|
||||
message: 'Invalid focus mode',
|
||||
},
|
||||
{ status: 400 },
|
||||
);
|
||||
}
|
||||
|
||||
const stream = await handler.searchAndAnswer(
|
||||
message.content,
|
||||
history,
|
||||
llm,
|
||||
embedding,
|
||||
body.optimizationMode,
|
||||
body.files,
|
||||
);
|
||||
|
||||
const responseStream = new TransformStream();
|
||||
const writer = responseStream.writable.getWriter();
|
||||
const encoder = new TextEncoder();
|
||||
|
||||
handleEmitterEvents(stream, writer, encoder, aiMessageId, message.chatId);
|
||||
handleHistorySave(message, humanMessageId, body.focusMode, body.files);
|
||||
|
||||
return new Response(responseStream.readable, {
|
||||
headers: {
|
||||
'Content-Type': 'text/event-stream',
|
||||
Connection: 'keep-alive',
|
||||
'Cache-Control': 'no-cache, no-transform',
|
||||
},
|
||||
});
|
||||
} catch (err) {
|
||||
console.error('An error ocurred while processing chat request:', err);
|
||||
return Response.json(
|
||||
{ message: 'An error ocurred while processing chat request' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
69
src/app/api/chats/[id]/route.ts
Normal file
69
src/app/api/chats/[id]/route.ts
Normal file
@@ -0,0 +1,69 @@
|
||||
import db from '@/lib/db';
|
||||
import { chats, messages } from '@/lib/db/schema';
|
||||
import { eq } from 'drizzle-orm';
|
||||
|
||||
export const GET = async (
|
||||
req: Request,
|
||||
{ params }: { params: Promise<{ id: string }> },
|
||||
) => {
|
||||
try {
|
||||
const { id } = await params;
|
||||
|
||||
const chatExists = await db.query.chats.findFirst({
|
||||
where: eq(chats.id, id),
|
||||
});
|
||||
|
||||
if (!chatExists) {
|
||||
return Response.json({ message: 'Chat not found' }, { status: 404 });
|
||||
}
|
||||
|
||||
const chatMessages = await db.query.messages.findMany({
|
||||
where: eq(messages.chatId, id),
|
||||
});
|
||||
|
||||
return Response.json(
|
||||
{
|
||||
chat: chatExists,
|
||||
messages: chatMessages,
|
||||
},
|
||||
{ status: 200 },
|
||||
);
|
||||
} catch (err) {
|
||||
console.error('Error in getting chat by id: ', err);
|
||||
return Response.json(
|
||||
{ message: 'An error has occurred.' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
export const DELETE = async (
|
||||
req: Request,
|
||||
{ params }: { params: Promise<{ id: string }> },
|
||||
) => {
|
||||
try {
|
||||
const { id } = await params;
|
||||
|
||||
const chatExists = await db.query.chats.findFirst({
|
||||
where: eq(chats.id, id),
|
||||
});
|
||||
|
||||
if (!chatExists) {
|
||||
return Response.json({ message: 'Chat not found' }, { status: 404 });
|
||||
}
|
||||
|
||||
await db.delete(chats).where(eq(chats.id, id)).execute();
|
||||
await db.delete(messages).where(eq(messages.chatId, id)).execute();
|
||||
|
||||
return Response.json(
|
||||
{ message: 'Chat deleted successfully' },
|
||||
{ status: 200 },
|
||||
);
|
||||
} catch (err) {
|
||||
console.error('Error in deleting chat by id: ', err);
|
||||
return Response.json(
|
||||
{ message: 'An error has occurred.' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
15
src/app/api/chats/route.ts
Normal file
15
src/app/api/chats/route.ts
Normal file
@@ -0,0 +1,15 @@
|
||||
import db from '@/lib/db';
|
||||
|
||||
export const GET = async (req: Request) => {
|
||||
try {
|
||||
let chats = await db.query.chats.findMany();
|
||||
chats = chats.reverse();
|
||||
return Response.json({ chats: chats }, { status: 200 });
|
||||
} catch (err) {
|
||||
console.error('Error in getting chats: ', err);
|
||||
return Response.json(
|
||||
{ message: 'An error has occurred.' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
109
src/app/api/config/route.ts
Normal file
109
src/app/api/config/route.ts
Normal file
@@ -0,0 +1,109 @@
|
||||
import {
|
||||
getAnthropicApiKey,
|
||||
getCustomOpenaiApiKey,
|
||||
getCustomOpenaiApiUrl,
|
||||
getCustomOpenaiModelName,
|
||||
getGeminiApiKey,
|
||||
getGroqApiKey,
|
||||
getOllamaApiEndpoint,
|
||||
getOpenaiApiKey,
|
||||
updateConfig,
|
||||
} from '@/lib/config';
|
||||
import {
|
||||
getAvailableChatModelProviders,
|
||||
getAvailableEmbeddingModelProviders,
|
||||
} from '@/lib/providers';
|
||||
|
||||
export const GET = async (req: Request) => {
|
||||
try {
|
||||
const config: Record<string, any> = {};
|
||||
|
||||
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
|
||||
getAvailableChatModelProviders(),
|
||||
getAvailableEmbeddingModelProviders(),
|
||||
]);
|
||||
|
||||
config['chatModelProviders'] = {};
|
||||
config['embeddingModelProviders'] = {};
|
||||
|
||||
for (const provider in chatModelProviders) {
|
||||
config['chatModelProviders'][provider] = Object.keys(
|
||||
chatModelProviders[provider],
|
||||
).map((model) => {
|
||||
return {
|
||||
name: model,
|
||||
displayName: chatModelProviders[provider][model].displayName,
|
||||
};
|
||||
});
|
||||
}
|
||||
|
||||
for (const provider in embeddingModelProviders) {
|
||||
config['embeddingModelProviders'][provider] = Object.keys(
|
||||
embeddingModelProviders[provider],
|
||||
).map((model) => {
|
||||
return {
|
||||
name: model,
|
||||
displayName: embeddingModelProviders[provider][model].displayName,
|
||||
};
|
||||
});
|
||||
}
|
||||
|
||||
config['openaiApiKey'] = getOpenaiApiKey();
|
||||
config['ollamaApiUrl'] = getOllamaApiEndpoint();
|
||||
config['anthropicApiKey'] = getAnthropicApiKey();
|
||||
config['groqApiKey'] = getGroqApiKey();
|
||||
config['geminiApiKey'] = getGeminiApiKey();
|
||||
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
|
||||
config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
|
||||
config['customOpenaiModelName'] = getCustomOpenaiModelName();
|
||||
|
||||
return Response.json({ ...config }, { status: 200 });
|
||||
} catch (err) {
|
||||
console.error('An error ocurred while getting config:', err);
|
||||
return Response.json(
|
||||
{ message: 'An error ocurred while getting config' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
export const POST = async (req: Request) => {
|
||||
try {
|
||||
const config = await req.json();
|
||||
|
||||
const updatedConfig = {
|
||||
MODELS: {
|
||||
OPENAI: {
|
||||
API_KEY: config.openaiApiKey,
|
||||
},
|
||||
GROQ: {
|
||||
API_KEY: config.groqApiKey,
|
||||
},
|
||||
ANTHROPIC: {
|
||||
API_KEY: config.anthropicApiKey,
|
||||
},
|
||||
GEMINI: {
|
||||
API_KEY: config.geminiApiKey,
|
||||
},
|
||||
OLLAMA: {
|
||||
API_URL: config.ollamaApiUrl,
|
||||
},
|
||||
CUSTOM_OPENAI: {
|
||||
API_URL: config.customOpenaiApiUrl,
|
||||
API_KEY: config.customOpenaiApiKey,
|
||||
MODEL_NAME: config.customOpenaiModelName,
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
updateConfig(updatedConfig);
|
||||
|
||||
return Response.json({ message: 'Config updated' }, { status: 200 });
|
||||
} catch (err) {
|
||||
console.error('An error ocurred while updating config:', err);
|
||||
return Response.json(
|
||||
{ message: 'An error ocurred while updating config' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
61
src/app/api/discover/route.ts
Normal file
61
src/app/api/discover/route.ts
Normal file
@@ -0,0 +1,61 @@
|
||||
import { searchSearxng } from '@/lib/searxng';
|
||||
|
||||
const articleWebsites = [
|
||||
'yahoo.com',
|
||||
'www.exchangewire.com',
|
||||
'businessinsider.com',
|
||||
/* 'wired.com',
|
||||
'mashable.com',
|
||||
'theverge.com',
|
||||
'gizmodo.com',
|
||||
'cnet.com',
|
||||
'venturebeat.com', */
|
||||
];
|
||||
|
||||
const topics = ['AI', 'tech']; /* TODO: Add UI to customize this */
|
||||
|
||||
export const GET = async (req: Request) => {
|
||||
try {
|
||||
const data = (
|
||||
await Promise.all([
|
||||
...new Array(articleWebsites.length * topics.length)
|
||||
.fill(0)
|
||||
.map(async (_, i) => {
|
||||
return (
|
||||
await searchSearxng(
|
||||
`site:${articleWebsites[i % articleWebsites.length]} ${
|
||||
topics[i % topics.length]
|
||||
}`,
|
||||
{
|
||||
engines: ['bing news'],
|
||||
pageno: 1,
|
||||
},
|
||||
)
|
||||
).results;
|
||||
}),
|
||||
])
|
||||
)
|
||||
.map((result) => result)
|
||||
.flat()
|
||||
.sort(() => Math.random() - 0.5);
|
||||
|
||||
return Response.json(
|
||||
{
|
||||
blogs: data,
|
||||
},
|
||||
{
|
||||
status: 200,
|
||||
},
|
||||
);
|
||||
} catch (err) {
|
||||
console.error(`An error ocurred in discover route: ${err}`);
|
||||
return Response.json(
|
||||
{
|
||||
message: 'An error has occurred',
|
||||
},
|
||||
{
|
||||
status: 500,
|
||||
},
|
||||
);
|
||||
}
|
||||
};
|
83
src/app/api/images/route.ts
Normal file
83
src/app/api/images/route.ts
Normal file
@@ -0,0 +1,83 @@
|
||||
import handleImageSearch from '@/lib/chains/imageSearchAgent';
|
||||
import {
|
||||
getCustomOpenaiApiKey,
|
||||
getCustomOpenaiApiUrl,
|
||||
getCustomOpenaiModelName,
|
||||
} from '@/lib/config';
|
||||
import { getAvailableChatModelProviders } from '@/lib/providers';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
|
||||
interface ChatModel {
|
||||
provider: string;
|
||||
model: string;
|
||||
}
|
||||
|
||||
interface ImageSearchBody {
|
||||
query: string;
|
||||
chatHistory: any[];
|
||||
chatModel?: ChatModel;
|
||||
}
|
||||
|
||||
export const POST = async (req: Request) => {
|
||||
try {
|
||||
const body: ImageSearchBody = await req.json();
|
||||
|
||||
const chatHistory = body.chatHistory
|
||||
.map((msg: any) => {
|
||||
if (msg.role === 'user') {
|
||||
return new HumanMessage(msg.content);
|
||||
} else if (msg.role === 'assistant') {
|
||||
return new AIMessage(msg.content);
|
||||
}
|
||||
})
|
||||
.filter((msg) => msg !== undefined) as BaseMessage[];
|
||||
|
||||
const chatModelProviders = await getAvailableChatModelProviders();
|
||||
|
||||
const chatModelProvider =
|
||||
chatModelProviders[
|
||||
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
|
||||
];
|
||||
const chatModel =
|
||||
chatModelProvider[
|
||||
body.chatModel?.model || Object.keys(chatModelProvider)[0]
|
||||
];
|
||||
|
||||
let llm: BaseChatModel | undefined;
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
openAIApiKey: getCustomOpenaiApiKey(),
|
||||
modelName: getCustomOpenaiModelName(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
baseURL: getCustomOpenaiApiUrl(),
|
||||
},
|
||||
}) as unknown as BaseChatModel;
|
||||
} else if (chatModelProvider && chatModel) {
|
||||
llm = chatModel.model;
|
||||
}
|
||||
|
||||
if (!llm) {
|
||||
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
|
||||
}
|
||||
|
||||
const images = await handleImageSearch(
|
||||
{
|
||||
chat_history: chatHistory,
|
||||
query: body.query,
|
||||
},
|
||||
llm,
|
||||
);
|
||||
|
||||
return Response.json({ images }, { status: 200 });
|
||||
} catch (err) {
|
||||
console.error(`An error ocurred while searching images: ${err}`);
|
||||
return Response.json(
|
||||
{ message: 'An error ocurred while searching images' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
47
src/app/api/models/route.ts
Normal file
47
src/app/api/models/route.ts
Normal file
@@ -0,0 +1,47 @@
|
||||
import {
|
||||
getAvailableChatModelProviders,
|
||||
getAvailableEmbeddingModelProviders,
|
||||
} from '@/lib/providers';
|
||||
|
||||
export const GET = async (req: Request) => {
|
||||
try {
|
||||
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
|
||||
getAvailableChatModelProviders(),
|
||||
getAvailableEmbeddingModelProviders(),
|
||||
]);
|
||||
|
||||
Object.keys(chatModelProviders).forEach((provider) => {
|
||||
Object.keys(chatModelProviders[provider]).forEach((model) => {
|
||||
delete (chatModelProviders[provider][model] as { model?: unknown })
|
||||
.model;
|
||||
});
|
||||
});
|
||||
|
||||
Object.keys(embeddingModelProviders).forEach((provider) => {
|
||||
Object.keys(embeddingModelProviders[provider]).forEach((model) => {
|
||||
delete (embeddingModelProviders[provider][model] as { model?: unknown })
|
||||
.model;
|
||||
});
|
||||
});
|
||||
|
||||
return Response.json(
|
||||
{
|
||||
chatModelProviders,
|
||||
embeddingModelProviders,
|
||||
},
|
||||
{
|
||||
status: 200,
|
||||
},
|
||||
);
|
||||
} catch (err) {
|
||||
console.error('An error ocurred while fetching models', err);
|
||||
return Response.json(
|
||||
{
|
||||
message: 'An error has occurred.',
|
||||
},
|
||||
{
|
||||
status: 500,
|
||||
},
|
||||
);
|
||||
}
|
||||
};
|
81
src/app/api/suggestions/route.ts
Normal file
81
src/app/api/suggestions/route.ts
Normal file
@@ -0,0 +1,81 @@
|
||||
import generateSuggestions from '@/lib/chains/suggestionGeneratorAgent';
|
||||
import {
|
||||
getCustomOpenaiApiKey,
|
||||
getCustomOpenaiApiUrl,
|
||||
getCustomOpenaiModelName,
|
||||
} from '@/lib/config';
|
||||
import { getAvailableChatModelProviders } from '@/lib/providers';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
|
||||
interface ChatModel {
|
||||
provider: string;
|
||||
model: string;
|
||||
}
|
||||
|
||||
interface SuggestionsGenerationBody {
|
||||
chatHistory: any[];
|
||||
chatModel?: ChatModel;
|
||||
}
|
||||
|
||||
export const POST = async (req: Request) => {
|
||||
try {
|
||||
const body: SuggestionsGenerationBody = await req.json();
|
||||
|
||||
const chatHistory = body.chatHistory
|
||||
.map((msg: any) => {
|
||||
if (msg.role === 'user') {
|
||||
return new HumanMessage(msg.content);
|
||||
} else if (msg.role === 'assistant') {
|
||||
return new AIMessage(msg.content);
|
||||
}
|
||||
})
|
||||
.filter((msg) => msg !== undefined) as BaseMessage[];
|
||||
|
||||
const chatModelProviders = await getAvailableChatModelProviders();
|
||||
|
||||
const chatModelProvider =
|
||||
chatModelProviders[
|
||||
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
|
||||
];
|
||||
const chatModel =
|
||||
chatModelProvider[
|
||||
body.chatModel?.model || Object.keys(chatModelProvider)[0]
|
||||
];
|
||||
|
||||
let llm: BaseChatModel | undefined;
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
openAIApiKey: getCustomOpenaiApiKey(),
|
||||
modelName: getCustomOpenaiModelName(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
baseURL: getCustomOpenaiApiUrl(),
|
||||
},
|
||||
}) as unknown as BaseChatModel;
|
||||
} else if (chatModelProvider && chatModel) {
|
||||
llm = chatModel.model;
|
||||
}
|
||||
|
||||
if (!llm) {
|
||||
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
|
||||
}
|
||||
|
||||
const suggestions = await generateSuggestions(
|
||||
{
|
||||
chat_history: chatHistory,
|
||||
},
|
||||
llm,
|
||||
);
|
||||
|
||||
return Response.json({ suggestions }, { status: 200 });
|
||||
} catch (err) {
|
||||
console.error(`An error ocurred while generating suggestions: ${err}`);
|
||||
return Response.json(
|
||||
{ message: 'An error ocurred while generating suggestions' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
134
src/app/api/uploads/route.ts
Normal file
134
src/app/api/uploads/route.ts
Normal file
@@ -0,0 +1,134 @@
|
||||
import { NextResponse } from 'next/server';
|
||||
import fs from 'fs';
|
||||
import path from 'path';
|
||||
import crypto from 'crypto';
|
||||
import { getAvailableEmbeddingModelProviders } from '@/lib/providers';
|
||||
import { PDFLoader } from '@langchain/community/document_loaders/fs/pdf';
|
||||
import { DocxLoader } from '@langchain/community/document_loaders/fs/docx';
|
||||
import { RecursiveCharacterTextSplitter } from '@langchain/textsplitters';
|
||||
import { Document } from 'langchain/document';
|
||||
|
||||
interface FileRes {
|
||||
fileName: string;
|
||||
fileExtension: string;
|
||||
fileId: string;
|
||||
}
|
||||
|
||||
const uploadDir = path.join(process.cwd(), 'uploads');
|
||||
|
||||
if (!fs.existsSync(uploadDir)) {
|
||||
fs.mkdirSync(uploadDir, { recursive: true });
|
||||
}
|
||||
|
||||
const splitter = new RecursiveCharacterTextSplitter({
|
||||
chunkSize: 500,
|
||||
chunkOverlap: 100,
|
||||
});
|
||||
|
||||
export async function POST(req: Request) {
|
||||
try {
|
||||
const formData = await req.formData();
|
||||
|
||||
const files = formData.getAll('files') as File[];
|
||||
const embedding_model = formData.get('embedding_model');
|
||||
const embedding_model_provider = formData.get('embedding_model_provider');
|
||||
|
||||
if (!embedding_model || !embedding_model_provider) {
|
||||
return NextResponse.json(
|
||||
{ message: 'Missing embedding model or provider' },
|
||||
{ status: 400 },
|
||||
);
|
||||
}
|
||||
|
||||
const embeddingModels = await getAvailableEmbeddingModelProviders();
|
||||
const provider =
|
||||
embedding_model_provider ?? Object.keys(embeddingModels)[0];
|
||||
const embeddingModel =
|
||||
embedding_model ?? Object.keys(embeddingModels[provider as string])[0];
|
||||
|
||||
let embeddingsModel =
|
||||
embeddingModels[provider as string]?.[embeddingModel as string]?.model;
|
||||
if (!embeddingsModel) {
|
||||
return NextResponse.json(
|
||||
{ message: 'Invalid embedding model selected' },
|
||||
{ status: 400 },
|
||||
);
|
||||
}
|
||||
|
||||
const processedFiles: FileRes[] = [];
|
||||
|
||||
await Promise.all(
|
||||
files.map(async (file: any) => {
|
||||
const fileExtension = file.name.split('.').pop();
|
||||
if (!['pdf', 'docx', 'txt'].includes(fileExtension!)) {
|
||||
return NextResponse.json(
|
||||
{ message: 'File type not supported' },
|
||||
{ status: 400 },
|
||||
);
|
||||
}
|
||||
|
||||
const uniqueFileName = `${crypto.randomBytes(16).toString('hex')}.${fileExtension}`;
|
||||
const filePath = path.join(uploadDir, uniqueFileName);
|
||||
|
||||
const buffer = Buffer.from(await file.arrayBuffer());
|
||||
fs.writeFileSync(filePath, new Uint8Array(buffer));
|
||||
|
||||
let docs: any[] = [];
|
||||
if (fileExtension === 'pdf') {
|
||||
const loader = new PDFLoader(filePath);
|
||||
docs = await loader.load();
|
||||
} else if (fileExtension === 'docx') {
|
||||
const loader = new DocxLoader(filePath);
|
||||
docs = await loader.load();
|
||||
} else if (fileExtension === 'txt') {
|
||||
const text = fs.readFileSync(filePath, 'utf-8');
|
||||
docs = [
|
||||
new Document({ pageContent: text, metadata: { title: file.name } }),
|
||||
];
|
||||
}
|
||||
|
||||
const splitted = await splitter.splitDocuments(docs);
|
||||
|
||||
const extractedDataPath = filePath.replace(/\.\w+$/, '-extracted.json');
|
||||
fs.writeFileSync(
|
||||
extractedDataPath,
|
||||
JSON.stringify({
|
||||
title: file.name,
|
||||
contents: splitted.map((doc) => doc.pageContent),
|
||||
}),
|
||||
);
|
||||
|
||||
const embeddings = await embeddingsModel.embedDocuments(
|
||||
splitted.map((doc) => doc.pageContent),
|
||||
);
|
||||
const embeddingsDataPath = filePath.replace(
|
||||
/\.\w+$/,
|
||||
'-embeddings.json',
|
||||
);
|
||||
fs.writeFileSync(
|
||||
embeddingsDataPath,
|
||||
JSON.stringify({
|
||||
title: file.name,
|
||||
embeddings,
|
||||
}),
|
||||
);
|
||||
|
||||
processedFiles.push({
|
||||
fileName: file.name,
|
||||
fileExtension: fileExtension,
|
||||
fileId: uniqueFileName.replace(/\.\w+$/, ''),
|
||||
});
|
||||
}),
|
||||
);
|
||||
|
||||
return NextResponse.json({
|
||||
files: processedFiles,
|
||||
});
|
||||
} catch (error) {
|
||||
console.error('Error uploading file:', error);
|
||||
return NextResponse.json(
|
||||
{ message: 'An error has occurred.' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
}
|
83
src/app/api/videos/route.ts
Normal file
83
src/app/api/videos/route.ts
Normal file
@@ -0,0 +1,83 @@
|
||||
import handleVideoSearch from '@/lib/chains/videoSearchAgent';
|
||||
import {
|
||||
getCustomOpenaiApiKey,
|
||||
getCustomOpenaiApiUrl,
|
||||
getCustomOpenaiModelName,
|
||||
} from '@/lib/config';
|
||||
import { getAvailableChatModelProviders } from '@/lib/providers';
|
||||
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
|
||||
import { ChatOpenAI } from '@langchain/openai';
|
||||
|
||||
interface ChatModel {
|
||||
provider: string;
|
||||
model: string;
|
||||
}
|
||||
|
||||
interface VideoSearchBody {
|
||||
query: string;
|
||||
chatHistory: any[];
|
||||
chatModel?: ChatModel;
|
||||
}
|
||||
|
||||
export const POST = async (req: Request) => {
|
||||
try {
|
||||
const body: VideoSearchBody = await req.json();
|
||||
|
||||
const chatHistory = body.chatHistory
|
||||
.map((msg: any) => {
|
||||
if (msg.role === 'user') {
|
||||
return new HumanMessage(msg.content);
|
||||
} else if (msg.role === 'assistant') {
|
||||
return new AIMessage(msg.content);
|
||||
}
|
||||
})
|
||||
.filter((msg) => msg !== undefined) as BaseMessage[];
|
||||
|
||||
const chatModelProviders = await getAvailableChatModelProviders();
|
||||
|
||||
const chatModelProvider =
|
||||
chatModelProviders[
|
||||
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
|
||||
];
|
||||
const chatModel =
|
||||
chatModelProvider[
|
||||
body.chatModel?.model || Object.keys(chatModelProvider)[0]
|
||||
];
|
||||
|
||||
let llm: BaseChatModel | undefined;
|
||||
|
||||
if (body.chatModel?.provider === 'custom_openai') {
|
||||
llm = new ChatOpenAI({
|
||||
openAIApiKey: getCustomOpenaiApiKey(),
|
||||
modelName: getCustomOpenaiModelName(),
|
||||
temperature: 0.7,
|
||||
configuration: {
|
||||
baseURL: getCustomOpenaiApiUrl(),
|
||||
},
|
||||
}) as unknown as BaseChatModel;
|
||||
} else if (chatModelProvider && chatModel) {
|
||||
llm = chatModel.model;
|
||||
}
|
||||
|
||||
if (!llm) {
|
||||
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
|
||||
}
|
||||
|
||||
const videos = await handleVideoSearch(
|
||||
{
|
||||
chat_history: chatHistory,
|
||||
query: body.query,
|
||||
},
|
||||
llm,
|
||||
);
|
||||
|
||||
return Response.json({ videos }, { status: 200 });
|
||||
} catch (err) {
|
||||
console.error(`An error ocurred while searching videos: ${err}`);
|
||||
return Response.json(
|
||||
{ message: 'An error ocurred while searching videos' },
|
||||
{ status: 500 },
|
||||
);
|
||||
}
|
||||
};
|
Reference in New Issue
Block a user