feat: Add LM Studio Support and Thinking Model Panel

LM Studio Integration:
- Added LM Studio provider with OpenAI-compatible API support
- Dynamic model discovery via /v1/models endpoint
- Support for both chat and embeddings models
- Docker-compatible networking configuration

Thinking Model Panel:
- Added collapsible UI panel for model's chain of thought
- Parses responses with <think> tags to separate reasoning
- Maintains backward compatibility with regular responses
- Styled consistently with app theme for light/dark modes
- Preserves all existing message functionality (sources, markdown, etc.)

These improvements enhance the app's compatibility with local LLMs and
provide better visibility into model reasoning processes while maintaining
existing functionality.
This commit is contained in:
haddadrm
2025-01-26 18:18:35 +04:00
parent 115e6b2a71
commit 1d6ab2c90c
5 changed files with 170 additions and 18 deletions

View File

@ -4,6 +4,7 @@ import { loadOpenAIChatModels, loadOpenAIEmbeddingsModels } from './openai';
import { loadAnthropicChatModels } from './anthropic';
import { loadTransformersEmbeddingsModels } from './transformers';
import { loadGeminiChatModels, loadGeminiEmbeddingsModels } from './gemini';
import { loadLMStudioChatModels, loadLMStudioEmbeddingsModels } from './lmstudio';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
@ -17,6 +18,7 @@ const chatModelProviders = {
ollama: loadOllamaChatModels,
anthropic: loadAnthropicChatModels,
gemini: loadGeminiChatModels,
lm_studio: loadLMStudioChatModels,
};
const embeddingModelProviders = {
@ -24,6 +26,7 @@ const embeddingModelProviders = {
local: loadTransformersEmbeddingsModels,
ollama: loadOllamaEmbeddingsModels,
gemini: loadGeminiEmbeddingsModels,
lm_studio: loadLMStudioEmbeddingsModels,
};
export const getAvailableChatModelProviders = async () => {

View File

@ -0,0 +1,89 @@
import { OpenAIEmbeddings } from '@langchain/openai';
import { ChatOpenAI } from '@langchain/openai';
import { getKeepAlive, getLMStudioApiEndpoint } from '../../config';
import logger from '../../utils/logger';
import axios from 'axios';
interface LMStudioModel {
id: string;
// add other properties if LM Studio API provides them
}
interface ChatModelConfig {
displayName: string;
model: ChatOpenAI;
}
export const loadLMStudioChatModels = async (): Promise<Record<string, ChatModelConfig>> => {
const lmStudioEndpoint = getLMStudioApiEndpoint();
if (!lmStudioEndpoint) {
logger.debug('LM Studio endpoint not configured, skipping');
return {};
}
try {
const response = await axios.get<{ data: LMStudioModel[] }>(`${lmStudioEndpoint}/models`, {
headers: {
'Content-Type': 'application/json',
},
});
const lmStudioModels = response.data.data;
const chatModels = lmStudioModels.reduce<Record<string, ChatModelConfig>>((acc, model) => {
acc[model.id] = {
displayName: model.id,
model: new ChatOpenAI({
openAIApiKey: 'lm-studio',
configuration: {
baseURL: lmStudioEndpoint,
},
modelName: model.id,
temperature: 0.7,
}),
};
return acc;
}, {});
return chatModels;
} catch (err) {
logger.error(`Error loading LM Studio models: ${err}`);
return {};
}
};
export const loadLMStudioEmbeddingsModels = async () => {
const lmStudioEndpoint = getLMStudioApiEndpoint();
if (!lmStudioEndpoint) return {};
try {
const response = await axios.get(`${lmStudioEndpoint}/models`, {
headers: {
'Content-Type': 'application/json',
},
});
const lmStudioModels = response.data.data;
const embeddingsModels = lmStudioModels.reduce((acc, model) => {
acc[model.id] = {
displayName: model.id,
model: new OpenAIEmbeddings({
openAIApiKey: 'lm-studio', // Dummy key required by LangChain
configuration: {
baseURL: lmStudioEndpoint,
},
modelName: model.id,
}),
};
return acc;
}, {});
return embeddingsModels;
} catch (err) {
logger.error(`Error loading LM Studio embeddings model: ${err}`);
return {};
}
};